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Abstract. High School Timetabling (HSTT) is a well known and wide
spread problem. The problem consists of coordinating resources (e.g.
teachers, rooms), times, and events (e.g. lectures) with respect to vari-
ous constraints. Unfortunately, HSTT is hard to solve and just finding a
feasible solution for simple variants of HSTT have been proven to be NP-
complete. We propose a new algorithm for HSTT which combines local
search with a novel maxSAT-based large neighborhood search. A local
search algorithm is used to drive an initial solution into a local optimum
and then more powerful large neighborhood search (LNS) techniques
based on maxSAT are used to further improve the solution. We prove
the effectiveness of our approach with experimental results on instances
taken from the Third International Timetabling Competition 2011 and
the XHSTT-2014 benchmark archive. We were able to model 27 out
of 39 instances. The remaining 12 instances were not modeled because
the currently used maxSAT formulation for XHSTT does not support re-
source assignments in general. For the instances which could be modeled,
our algorithm shows good performance when compared to other XHSTT
state-of-the-art solvers and for several instances new best known upper
bounds have been computed.

Keywords: maxSAT, high school timetabling, large neighborhood search,
local search

1 Introduction

The problem of high school timetabling (HSTT) is to coordinate resources (e.g.
rooms, teachers, students) with times in order to fulfill certain goals (e.g. schedul-
ing lectures). Every high school requires some form of timetabling which is a
well known and wide spread problem. The difference between a good and a bad
timetable can be significant, as timetables directly contribute to the quality of
the educational system, satisfaction of students and staff, etc. Every timetable
affects hundreds of students and teachers for prolonged amounts of time, since
each timetable is typically used for at least a semester, making HSTT an ex-
tremely important and responsible task. However, constructing timetables by
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hand can be time consuming, very difficult, and error prone. Thus, develop-
ing high quality algorithms which would generate automatically timetables is of
great importance.

Unfortunately, High School Timetabling is hard to solve and just finding a
feasible solution of simple variants of High School Timetabling has been proven
to be NP-complete [6]. Apart from the fact that practical problems can be very
large and have many different constraints, high school timetabling requirements
vary from country to country. Due to this, many variations of the timetabling
problem exist. A lot of research has been done and HSTT is still an active field
of research, even having its own specific HSTT competition ITC 2011.

In order to standardize the formulation for HSTT, researches have recently
proposed a general high school timetabling problem formulation [19] called XH-
STT. This formulation has been endorsed by the Third International Timetabling
Competition 2011 (ITC 2011) [18, 19] which attracted 17 competitors from across
the globe. In this work, we consider the general HSTT problem formulation (XH-
STT). We took all relevant XHSTT instances (see Section 6.1) and out of the
pool of 39 instances we were able to model 27 of them. The remaining 12 in-
stances were not modeled because the currently used maxSAT formulation for
XHSTT does not support resource assignments in general. We have a specific
modeling for resource assignments (Assign Resource Constraints and related
constraints) for two instances, but our current model is not practical for other
instances with resource assignments.

The main contributions of this paper are as follows:

– We present a new large neighborhood search (LNS) algorithm which ex-
ploits maxSAT to solve XHSTT. To this end, we propose a destroy operator
with two neighborhood vectors and a novel insertion approach, for which we
modified the open-source maxSAT solver Open-WBO [15] to support our
exhaustive insertion strategy. The overall algorithm combines local search
and LNS to solve XHSTT instances which are modeled as maxSAT.

– We experimentally compare our algorithm with other approaches in the liter-
ature on 27 out of 39 instances. Our approach outperforms the state-of-the-
art solvers on many instances. Using our algorithm, we managed to compute
four new best known upper bounds. The approach presented is a novel con-
tribution to the state-of-the-art for XHSTT. Furthermore, to the best of our
knowledge, it is the first time maxSAT is used within a LNS scheme.

The rest of the paper is organized as follows. In Section 2, we present the
problem description followed by related work in Section 3. For completeness,
the (max)SAT problem and its modeling for high school timetabling is briefly
described in Section 4. The main section of this paper is Section 5, which de-
scribes our algorithm. Afterwards, Section 6 provides experimental results on
benchmark instances. Finally, a conclusion is given in Section 7.
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2 Problem description

High School Timetabling has been extensively studied in the past. However, a
lot of work has been done in isolation, because each country has its own educa-
tional system which resulted in many different timetabling formulations. Thus,
it was difficult to compare algorithms and the state-of-the-art was unclear. To
solve this issue and encourage timetabling research, researchers have agreed on
a standardized general timetabling formulation called XHSTT [19]. This formu-
lation was general enough to be able to model education systems from different
countries and was endorsed by the International Timetabling Competition 2011.
This is the formulation used in this work.

The general High School Timetabling formulation specifies three main enti-
ties: times, resources, and events. Times refer to the available discrete time units,
such as Monday 9:00-10:00 and Monday 10:00-11:00. Resources correspond to
available rooms, teachers, students, etc. The main entities are the events, which
in order to take place require certain times and resources. An event could be
a mathematics lecture, which requires a math teacher (who needs to be deter-
mined) and a specific student group (both the teacher and the student group are
considered resources) and two units of time (two times). Events are to be sched-
uled into one or more solution events or subevents. For example, a mathematics
lecture with a total duration of four hours can be split into two subevents with a
duration of two hours each, but can also be scheduled as a single subevent with
a duration of four hours (constraints may restrict the durations of subevents).

Constraints impose limits on what kind of assignments are desirable. They
may state that a teacher can teach no more than five lessons per day, that
younger students should attend more demanding subjects (e.g. mathematics)
in the morning, etc. It is important to differentiate between hard and soft con-
straints. The former are very important and are given precedence over the latter,
in the sense that any single violation of a hard constraint is more important than
all soft constraints violations combined. Thus, one aims to satisfy as many hard
constraint violations as possible, and then optimize for the soft constraints. In
the general formulation, any constraint may be declared hard or soft and no con-
straint is predefined as such, but rather left as a modeling option based on the
specific timetabling needs. Additionally, each constraint has several parameters,
such as the events or resources it applies to and to what extent (e.g. how many
idle times are acceptable during the week), its weight, and other properties,
allowing great flexibility.

We now give an informal overview of all the constraints in XHSTT (as re-
ported in [19]). There is a total of 16 constraints (plus preassignments of times
or resources to events, which are not listed).

Constraints related to events:

1. Assign Time Constraints - assign the specified number of times to specified
events.

2. Split Events Constraints - limits the minimum and maximum duration of
subevents and the amount of subevents that may be derived from specified



4 Emir Demirović, Nysret Musliu

events. Distribute Split Events Constraints (below) gives further control on
subevents.

3. Distribute Split Events Constraints - limits the number and duration of
subevents for specified events.

4. Prefer Times Constraints - specified times are preferred over others for spec-
ified events.

5. Avoid Split Assignments Constraints - assign the same resource for all subevents
derived from the same event.

6. Spread Events Constraints - specified events must be spread out during the
week.

7. Link Events Constraints - specified events must take place simultaneously.
8. Order Events Constraints - specified events must be scheduled one after the

other with a specified number of times in between.

Constraints related to resources:

1. Assign Resource Constraints - assign specified resources to specified events.
2. Prefer Resources Constraints - specified resources are preferred over others

for specified events.
3. Avoid Clashes Constraints - specified resources cannot be used by two or

more subevents at the same time.
4. Avoid Unavailable Times Constraints - specified resources cannot be used at

specified times.
5. Limit Idle Times Constraints - specified resources within specified days must

have their number of idle times lie between given values.
6. Cluster Busy Times Constraints - specified resources’ activities must all take

place within a minimum and maximum number of days.
7. Limit Busy Times Constraints - specified resources within specified days

must have their number of busy times lie between given values.
8. Limit Workload Constraints - specified resources must have their workload

lie between given values.

For more details regarding the problem formulation, see [17, 19].

3 Related work

For HSTT, both heuristic and exact methods have been proposed. Heuristic
methods were historically the dominating approach, as they were able to pro-
vide good solutions in reasonable amounts of time even when dealing with large
instances, albeit not being able to always obtain or prove optimality. Recently
exact methods have been proposed and had success in obtaining good results
and proving bounds, but require significantly more time (days or weeks).

All of the best algorithms in the International Timetabling Competition 2011
(ITC 2011) were algorithms based on heuristics. The winner was the group
GOAL, followed by Lectio and HySST. In GOAL, an initial solution is gener-
ated, which is further improved with Simulated Annealing and Iterated Local
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Search, using seven different neighborhoods [2]. Lectio uses an Adaptive Large
Neighborhood Search [25] with nine insertion methods based on the greedy re-
gret heuristics [26] and fourteen removal methods. HySST uses a Hyper-Heuristic
Search [9].

Afterwards, the winning team of ITC 2011 has developed several new Variable
Neighborhood Search (VNS) approaches [8]. All of the VNS approaches have a
common search pattern: from one of the available neighborhoods, a random
solution is chosen, after which a descent method is applied and the resulting
solution is accepted if it is better than the previous best. Each iteration starts
from the best solution. The most successful VSN algorithm was the Skewed
Variable Neighborhood in which a relaxed rule is used to accept the new solution,
taking into consideration the cost of the new solution as well as its distance
from the best solution. A related approach is Late Acceptance Hill Climbing for
XHSTT [7], in which a solution is accepted based on its comparison with the
previous k solutions, where k is a parameter.

Kingston [10] introduced an efficient heuristic algorithm called KHE14 which
directly focuses on repairing defects (violations of constraints). Constraint vio-
lations are examined individually and specialized procedures are developed for
most constraints to repair them. The algorithm is designed to provide high qual-
ity solutions in a small amount of time, but does not necessarily outperform
other methods with respect to solution quality.

XHSTT has been modeled with Integer Programming (IP) in [12]. This exact
approach is able to compute good (and in some cases optimal) solutions as
well as lower bounds over longer periods of time using Gurobi (a commercial
optimization solver). Additionally, a Large Neighborhood Search with IP has
also been developed in [28] which is more efficient than pure IP when given
limited time.

Another exact approach is the maxSAT approach proposed in [3]. Most of
the XHSTT instances could be modeled as a Partial Weighted maxSAT prob-
lem and are then solved with a maxSAT solver. The approach can yield good
(in some cases optimal) results, although it too requires longer running times.
Satisfiability Modulo Theory (SMT) has also been investigated for XHSTT in
[4], but this SMT method is still not mature enough to handle XHSTT instances
efficiently.

Furthermore, several IP-based techniques have been introduced for similar
HSTT problems which provide bounds and good solutions after long running
times [20] [24] [27], including a fix-and-optimize IP-based hybrid approach re-
ported in [5].

Even though significant work has been done for HSTT, many problems are
still not solved efficiently or optimally. Therefore, calculating high quality so-
lutions and providing new modeling approaches are important issues in this
domain.

Our algorithm has several novel features compared to LNS approaches pro-
posed in Lectio [25], the IP LNS in [28], and the fix-and-optimize approach in
[5]. First, we use a novel exhaustive maxSAT insertion technique. Further, the



6 Emir Demirović, Nysret Musliu

destroy operators are used in a different way and our approach is combined with
a local search technique.

4 Modeling XHSTT as maxSAT

In this section we briefly describe the Satisfiability problem (SAT), its extention
called maxSAT, and the modeling of XHSTT with maxSAT.

4.1 SAT and maxSAT

The Satisfiability problem (SAT) is a decision problem where it is asked if there
exists an assignment of truth values to variables such that a propositional logic
formula is true (that is, the formula is satisfied). A propositional logic formula
is built from Boolean variables using logic operators (such as ∧ AND, ∨ OR, and
¬ NOT) and parentheses. The formula is usually given as a conjuction of clauses
(in Conjuctive Normal Form). A clause is a disjunction of literals, where a literal
is a variable or its negation. For example, the formula (X1 ∨X2)∧ (¬X1 ∨¬X3)
has three variables (X1, X2, and X3), two clauses, and is said to be satisfiable
because there exists an assignment, namely (X1, X2, X3) = (true, false, false),
which satisfies the formula. However, had we inserted the clause (¬X1∨X2∨X3)
the same assignment would no longer satisfy the formula. Instead of writing ¬X1

it is common to write X1 and this is the notation used in this work.
The extension of SAT considered in this work is Partial Weighted maxSAT,

in which clauses are partitioned into two types: hard and soft clauses. Each soft
clause is given a weight. The goal is to find an assignment which satisfies the
hard clauses and minimizes the sum of the weights of the unsatisfied soft clauses.
For more information about SAT and maxSAT, the interested reader is referred
to [1].

4.2 XHSTT as maxSAT

We model XHSTT using the Partial Weighted maxSAT formulation given in [3].
Once a XHSTT instance has been modeled as maxSAT, any satisfiable assign-
ment of cost c for the maxSAT formulation directly corresponds to a XHSTT
solution of cost c. However, if the hard constraints cannot be satisfied, the model
does not admit any solution, even though such solutions are possible in XHSTT
(in which case the infeasibility value would tell us how severe is the viola-
tion). The modeling revolves around Boolean variables Ye,t, which are true iff a
subevent of event e is taking place at time t (not just starting at t). A solution
to XHSTT corresponds to assigning truth values to these variables. Their as-
signments are constrained by other variables and clauses which encode XHSTT
constraints.

We do not give a complete overview of the modeling of XHSTT as Partial
Weighted maxSAT, but instead give brief examples of the encoding of two XH-
STT constraints, and refer the interested reader to [3] for full details.
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Algorithm 1: XHSTT algorithm

begin
S ←− initialSolutionAndLocalSearch()
tcurrent ←− current time; tvec ←− tcurrent
tdefault ←− 30 secs; tmax active ←− 500 secs
(Vr, Vd) = generateNeighborhoodV ectors()
active(Vr)←− true; active(Vd)←− false
while there is time left do

if condition for vector switch satisfied then
switch active vector
tvec ←− tcurrent
randomize orderings of active vector

N ←− selectNeighborhood() . Section 5.1
Sdestroyed ←− destroy(S,N)
Sold ←− S
S ←− insert(Sdestroyed, allocatedT ime(N))
if insertion was successful then

previouslySuccessful(N)←− true . Used for selection;
cost(N)←− cost(S) . Used for selection;
allocatedT ime(N)←− tdefault

else
previouslySuccessful(N)←− false . Used for selection;
allocatedT ime(N)←− allocatedT ime(N) + 10
S ←− Sold

An important part of modeling are cardinality constraints which impose lim-
its on the truth values assigned to a set of literals. These are atLeast k[xi :
xi ∈ X], atMost k[xi : xi ∈ X], and exactly k[xi : xi ∈ X], which state that at
least, at most, or exactly k literals out of the specified ones must be true. These
constraints are used frequently when modeling XHSTT. One way to encode the
cardinality constraints, which we refer to as the Combinatorial encoding, is to
forbid all undesired assignments. For example, for atMost 2{x1, x2, x3, x4} we
forbid every possible combination of three literals being simultaneously set to
true with the following clauses: (x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x4), (x1 ∨ x3 ∨ x4) and
(x2 ∨ x3 ∨ x4).

There are many ways to encode cardinality constraints, each with its own
advantages and disadvantages in terms of the number of auxiliary variables and
clauses that are needed, propagation properties, etc. The type of encoding cho-
sen impacts the solution process and is therefore very important. However, it is
often difficult to assess which cardinality constraint would be appropriate for a
particular application. In [3], experiments were made with a number of different
cardinality constraints and maxSAT solvers in order to choose the best encoding
for XHSTT. During experimentation it was concluded that Assign Time Con-
straints (ATC) are particularly important since changing their encoding inde-
pendently from other constraints had significant impact during the search (using
a “bad” encoding for ATC leads to noticeably worse solutions). We believe that
a good encoding for this constraint is crucial, because ATC is fundamental for
timetabling as it has (arguably) the most impact on other constraints. Therefore,
ATC was given special treatment during the experimentation. Different combi-
nations of cardinality encodings were considered for ATC and other constraints,
and after extensive experimentation the best combination for cardinality con-
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straints was the following: Sequential encoding [23] for Assign Time Constraints,
Combinatorial encoding for other constraints, and Bit adder in cases where Com-
binatorial encoding is too large (n ≥ 50∨(n ≥ 42 ∧k ≥ 5), where n is the number
of variables and k is the cardinality constraint constant). We believe that these
choices proved to be the best because of their simplicity over other variants when
encoding relatively small cardinality constraint requirements which are encoun-
tered in XHSTT. We do not describe the cardinality constraints in more detail,
but refer the interested reader to [3].

We now give two examples for encoding XHSTT constraints. As mentioned
earlier, we frequently use cardinality constraints when modeling XHSTT con-
straints. For example, we use cardinality constraints in order to model Assign
Time Constraints, which impose that each event e ∈ E must be assigned a
number of times equal to its duration de:∧

∀e∈E

(exactly de[Ye,t : t ∈ T ]) (1)

In order to model soft XHSTT constraints, soft cardinality constraints are
used which penalize undesirable assignments rather than forbidding them. The
farther away from the imposed limits they are the more severe the penalty is.
For example, for the soft cardinality constraint atMost 2{x1, x2, x3, x4}, the
assignment (x1, x2, x3, x4) = (1, 0, 0, 0) would incur no penalty, while assign-
ments (x1, x2, x3, x4) = (1, 0, 1, 1) and (x1, x2, x3, x4) = (1, 1, 1, 1) would incur a
penalty of 1 and 2 (respectively) if a linear penalty function is used. An exam-
ple of their usage would be to model the Avoid Unavailable Times Constraints
which, if given as a soft constraints, try to minimize the occurrences where re-
sources r ∈ Rspec are busy during undesired times Tundesired (both Tundesired
and Rspec are specified in the constraint). Let the variables Xt,r be such that
they are true iff a resource r is busy at time t. With these variables we encode
the constraint as: ∧

∀r∈Rspec

(atMostsoft 0[Xt,r : t ∈ Tundesired]) (2)

The interested reader will find the full details about the maxSAT formulation
in [3].

5 Algorithm description

We introduce a new algorithm for the XHSTT problem which combines local
search and maxSAT-based large neighborhood search (LNS). LNS is a technique
first introduced by Shaw [21] which has been used for many problems, including
related timetabling problems [16], but never in a combination with maxSAT. The
LNS algorithm is the main contribution of this paper and consists of two main
components: destroy and insertion operations. The destroy operator unschedules
certain subevents. Insertion is the opposite: it assigns times to the previously
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unscheduled subevents. We proceed by explaining in detail the destroy operator,
the insertion technique with maxSAT, the initial solution generation by local
search, and finally we give a complete overview of the algorithm.

5.1 Destroy operator

The destroy operator selects a neighborhood from one of the two neighborhood
vectors and destroys the solution with respect to the selected neighborhood. The
two neighborhood vectors are based on resources and days. We first introduce
these vectors and then explain how a neighborhood is selected from them.

Neighborhood vector based on resources. This vector consists of all possible
combinations of two resources (e.g. rooms, teachers, etc). When a neighbor-
hood from this vector is used, every subevent which uses at least one of these
two resources is unscheduled (unassigned from each time unit), as well as ev-
ery subevent which is linked to any of the unassigned subevents via Link Event
Constraints. A similar idea of unscheduling resources has been presented in [11].

Using events that share one of the selected resources and linked events are
both important for the insertion step. For example, students in HSTT have
compact schedules and attempting to assign a subevent which requires class
C to a new time without previously unassigning other subevents which also
require class C will most likely result in a clash. Additionally, since linked events
should take place simultaneously, unassigning one subevent requires that its
linked subevents also get unassigned in order to be able to schedule all subevents
at a different time.

Neighborhood vector based on days. This vector consists of all possible com-
binations of days. For example, if we are considering a timetable with three
days {Mon, Tu, Wed}, the corresponding day vector would be: { {Mon}, {Tu},
{Wed}, {Mon, Tu}, {Mon, Wed}, {Tu, We}, {Mon, Tu, Wed} }. When a neigh-
borhood from this vector is used, subevents assigned to times pertaining to the
days of the selected neighborhood are unscheduled.

This neighborhood vector is used to make better rearrangements within each
individual day (e.g. for Limit Idle Times Constraint), as well as to be able to
move, merge, or split subevent throughout different days (e.g. for Spread and
Cluster Events Constraints).

Neighborhood selection. Only one of the two neighborhood vectors are con-
sidered active and neighborhoods are selected from the active one. The other
neighborhood vector will become active after either a timeout occurs (equal to
half of the total running time) or if all neighborhoods from the active vector
have been visited exactly twice. A neighborhood can be visited a second time
only after all other neighborhoods in the vector have been visited once, and no
neighborhood will be visited more than twice within a single activation of its
neighborhood vector.

After using a neighborhood to destroy the solution and applying the insertion
operator based on a maxSAT solver, we record the objective value and whether
the insertion operator has successfully exhaustively explored the neighborhood.
If the maxSAT solver did not show progress within a certain amount of time
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(did not find a better solution nor proved that one does not exist), we stop
further exploration, label the attempt as unsuccessful, and move on to the next
neighborhood. Initially we set the objective value of a neighborhood to be a large
number and label it as if an insertion operation has successfully terminated. Note
that if the recorded objective value for a neighborhood is the same as the current
upper bound then it means that the solution has not changed since the last time
the neighborhood was visited.

The order of the neighborhoods in a neighborhood vector are reset randomly
when a neighborhood vector becomes active or when all of its members have been
visited once. Neighborhoods are then visited in order, with the exception of the
day neighborhood vector where smaller neighborhoods are visited first before
proceeding to larger ones (e.g. single-day neighborhoods are visited before two-
day neighborhoods).

In some cases a neighborhood will be skipped rather than examined. This is
done in order to avoid spending time with neighborhoods that are likely to be
unsuccessful. A neighborhood is skipped if its recorded objective value (previ-
ously explained in this section) is equal to the current upper bound, and any of
the following conditions hold:

– Its previous insertion attempt was successful. The neighborhood is surely of
no use as it has already been thoroughly explored.

– It is being visited for the second time since the current neighborhood vector
has been set active. In this case we heuristically choose to skip the neighbor-
hood, because it has already been unsuccessfully explored, so the chances
are that it will be unsuccessful again when given the same amount of time.
It is better to allocate time to other neighborhoods.

– The neighborhood is an element of the day neighborhood vector, and since
the last time the neighborhood vector became active, another neighborhood
which is a subset of the currently considered one has not successfully been
explored. For example, the three-day neighborhood {Mon, Tu, Wed} will be
skipped if the single-day neighborhood {Mon} has been labeled unsuccessful.

Each neighborhood is allocated a specified amount of time. For each subse-
quent run on a neighborhood that has not successfully terminated, more time is
allocated. After successfully terminating, the next run with that neighborhood
will be given the default amount of time.

We now further comment on our motivation for choosing this neighborhood
selection strategy. Our strategy was devised through heuristic reasoning and
experimentation, leaving the possibility that we might have missed other better
strategies. Nevertheless, experiments in Section 6 show that our approach is
effective. The two main reasons for our strategy are:

First, the idea is to examine smaller neighborhoods before going on to larger
ones. Accordingly, local search (see Section 5.3) takes place before the LNS
algorithm, the resource based neighborhood vector precede the day neighborhood
vector, and smaller day neighborhoods are examined before larger ones. The
reason is that smaller neighborhoods are much easier to explore and often provide
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improvements quickly. Once they are no longer useful, we go to larger ones, which
will now be explored faster because of the clauses learned and bounds obtained
(see Section 5.2) in the process of solving smaller neighborhoods (as variant
LNS.v2 confirms, see Section 6.7).

Second, we want to thoroughly examine all neighborhoods in the hope of
finding good ones. We wish to avoid situations where a useful neighborhood is
getting overlooked because other neighborhoods are getting selected repeatedly.
Therefore, we introduce fairness in the sense that a neighborhood will be exam-
ined a second time only after all other neighborhoods have been examined at
least once. We chose to explore every neighborhood exactly twice before mov-
ing on to the other neighborhood vector. Considering the same neighborhood
again after a series of other neighborhoods have been examined might be useful,
but we opted not to examine it more than twice in order to avoid getting stuck
in a search space which consumes too much time. The neighborhood skipping
mechanism directs the search by filtering out neighborhoods which are unlikely
to contain better solutions.

5.2 Insert operation

The insertion operation repairs the solution by trying to find the best possi-
ble insertion for the unscheduled events using an exhaustive search based on a
maxSAT formulation. The idea is to call a maxSAT solver to solve the maxSAT
formula which represents a XHSTT instance while fixing the assignments of all
subevents which were not unassigned in the destroying phase. In principle, any
exhaustive search technique could be used for the insertion operator. In Section
6.6 we provide a comparison of maxSAT with Integer Programming and further
elaborate on our decision to choose maxSAT.

With regard to the traditional decision problem, the problem of solving a SAT
instance while fixing certain variables is known as “solving under assumptions”.
This can be done by having the solver first “branch” on the fixed variables and
then continue doing a regular SAT search. However, this kind of technique cannot
be directly used for maxSAT because the underlying formula is being changed
during the solution process. We elaborate on this further below.

We use the Linear maxSAT algorithm (Algorithm 2) [13] which makes re-
peated calls to a SAT solver and after each call adds constraints which ask for a
better solution than the previous one (in Algorithm 2, K is the set of soft con-
straints). The optimal solution is obtained when the SAT solver returns false.

Another maxSAT algorithm is based on unsatisfiable cores. An unsatisfi-
able core is a set of clauses whose conjuction is unsatisfiable. Initially one may
consider all soft clauses as hard and then attempt to solve the formulation. If
the solver reports that the formulation is unsatisfiable (not all soft clauses can
be satisfied), an unsatisfiable core is computed and used to relax the SAT for-
mulation and the process is repeated iteratively.

We opted to use the Linear algorithm because better results were reported in
[3] when compared to core guided solvers for XHSTT instances. In this algorithm,
the original maxSAT formula gets changed because bounds are added at each
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Algorithm 2: Linear algorithm for maxSAT

begin
P ←− maxSAT formula
c =∞
bestAssignment = ∅
while isSatisfiable(P ) do

bestAssignment = satisfiableAssignment(P )
c←− cost(P, bestAssignment)
P = P ∪ (

∑
i∈K softConstraint(i) < c)

iteration, in addition to learned clauses which are added to direct the search (see
[22] for clause learning). It is not straightforward to remove the added clauses
at later stages of the algorithm, because clauses are learned with respect to
other clauses (including other learned clauses) and removing some clauses may
therefore invalidate previously learned clauses. To the best of our knowledge,
no maxSAT solver supports this kind of search. An alternative is to restart the
solver after each call, losing possibly valuable learned clauses and bounds. This
motivated us to investigate a different approach: instead of restarting between
calls, we keep the modified formula intact. Thus, each call to the solver depends
on all previous calls due to the bounds and learned clauses. When querying the
solver with a new set of assumptions, it will attempt to report the best possible
solution, but only if it is better than all of the previously computed solutions.
To this end, we modified the linear algorithm in the open-source maxSAT solver
Open-WBO [15]. Keeping the solver state between runs proved to be important
and this is discussed in more detail in Section 6.7. A different approach related
to ours is presented in [14] for lower bounding maxSAT algorithms.

5.3 Initial solution

We use two approaches for generating an initial solution. The first approach is
to use the KHE14 algorithm [10] to obtain an initial solution. We chose KHE14
because it is a publicly available state-of-the-art solver designed to produce high
quality solutions very quickly. If KHE14 does not succeed in generating a feasible
solution, we generate an initial solution by ignoring all soft constraints and
solving the corresponding XHSTT as a pure SAT instance, with the exception
of Split Events Constraints which are treated as hard constraints even if they are
given as soft ones. This solution is then improved with a local search procedure.
Split Events Constraints are treated as hard constraints because the following
local search algorithm does not split or merge subevents, making it very difficult
to find a good solution if the constraint is not satisfied initially. The local search
procedure is based on simulated annealing (SA) and it uses two neighborhoods:
swap (the times of two subevents are exchanged) and block-swap (similar to a
swap, with the exception that if a swap move causes two subevents to overlap,
an appropriate time is assigned to the second one so that they appear one after
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the other). Similar neighborhoods were previously used in [8]. In our algorithm
we only apply feasible moves to subevents that share resources. The importance
of using subevents with shared resources has been discussed in Section 5.1. The
following parameter values are used in the SA: the initial temperature Tinitial is
set to 0.1 and the temperature is multiplied by α = 0.99 every 10 iterations. If the
last five improvements are made at the initial temperature, then the algorithm
starts accepting only improving moves. The probabilities of selecting the swap or
block-swap neighborhoods at each iteration are set to 2/3 and 1/3, respectively.
When a neighborhood is selected, two subevents are randomly selected until they
both share a resource (this is attempted 100000 times). The goal is to quickly
improve the solution through simple moves leaving more complicated moves to
LNS. We note that the generation of the initial solution takes only a small
amount of time when compared to the maxSAT-based LNS part. However, it is
still important and we discuss in Section 6.7 the impact of using a non optimized
initial solution (c.f., LNS.v1 variant).

5.4 Algorithm summary

The pseudo-code in Algorithm 1 summarizes our problem-solving approach. An
initial solution is generated and improved with SA, after which the LNS provides
further improvements. LNS consists of two parts: the destroy operator which un-
schedules subevents based on a neighborhood chosen using either the resource or
day vector (described in Section 5.1), and the insertion operator which resched-
ules the previously selected subevents and records the performance of the chosen
neighborhood. The algorithm iterates until a timeout occurs (in our experiments,
1000 seconds).

6 Experimental results

In this section we introduce the problem instances, experimentally evaluate our
algorithm including different variants, and compare with existing state-of-the-art
solutions.

6.1 Instances

We evaluated our approach on XHSTT benchmark instances which can be found
in the repository of the International Timetabling Competition 2011 (ITC 2011)
1. We used the XHSTT-2014 benchmark set which contains instances that were
carefully selected by the ITC 2011 over the years and are meant to be inter-
esting test beds for researchers. Additionally, we included every instance used
in the competition (these two sets of instances overlap). This way we took into
consideration all relevant XHSTT instances to the best of our knowledge.

Overall, we can efficiently model 27 out of 39 (70%) selected instances with
maxSAT. The remaining 12 instances were not modeled because the currently

1 http://www.utwente.nl/ctit/hstt/itc2011/welcome/
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used maxSAT formulation for XHSTT does not support resource assignments in
general. We have a specific modeling for resource assignments (Assign Resource
Constraints and related constraints) for two instances (FinlandArtificialSchool,
EnglandStPaul), but our current model is not practical for other instances with
resource assignments. Unfortunately, in this case the number of variables and
clauses is very large, and until now we could not come up with a more efficient
encoding for these constraints. Thus, for the remaining 12 instances, we currently
do not have an appropriate model and could not experiment with them.

In the test instances, the number of times ranges from 25 to 125, the number
of resources from 8 to 99, the number of events from 21 to 809 with a total
duration between 75 to 1912. These numbers vary heavily from instance to in-
stance. We do not provide detailed information for the instances, but refer the
interested reader to [17, ?].

6.2 Computer Specification and Computational Time Limit

All tests were performed on an Intel Core i3-2120 CPU @ 3.30GHz with 4 GB
of RAM and each instance was given a single core. To determine the compu-
tational time we used the ITC’s benchmark tool which is designed to test how
fast a machine performs operations relevant for timetabling. The tool suggested
a computational time of 1007 seconds, which is a similar to the one used in the
second round of ITC 2011 (1000 seconds).

6.3 Solvers

We compared our approach (abbreviated by LNS) with VNS [8], KHE14 [10],
Matheuristic [28], and a pure maxSAT approach, all using the time limit of 1000
seconds. Additionally, we ran our solver for longer running times and compared
its results to the best known upper bounds.

VNS [8] was developed by the winners of ITC 2011 after the competition.
KHE14 [10] is a competitive solver which is also used in our approach for gen-
erating the initial solution, as described in Section 5.3. Matheuristic [28] is an
Integer Programming-based LNS algorithm. These solvers were chosen because
they are state-of-the-art XHSTT algorithms which can generate good solutions
in the time limit set by the competition. The pure maxSAT approach runs the
maxSAT solver used in our algorithm (open-WBO) on the same maxSAT model
of the XHSTT instance as LNS, but without using any of our LNS techniques.

6.4 Results

The algorithms were run for the same amount of time (1000 seconds) on the same
machine, except Matheuristic because it is not available to the public. In this
case, we compare with the results reported in [28]. We believe the comparison is
fair because the authors used the same benchmarking tool as we did to determine
the computational time. When no result was reported with Matheuristic for a
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given instance, we put ’-’ in the table. Since KHE14 was designed to run for
shorter durations, we ran the algorithm multiple times during the time limit
and report the best solution found.

We denote the objective function cost as a pair (x, y), where x and y are the
hard and soft constraint costs. If the hard cost is zero, we only present the soft
cost. The algorithms include some forms of randomness during their execution
and we present the average values of five runs. For BrazilInstance5, we included
the best solution computed out of the five runs, since the solution is the best
solution known so far for this instance.

The comparison is given in Table 1. Instances noted above the bold horizontal
line are part of the XHSTT-2014 benchmark set, while the ones below are not
but have been used in the competition.

Name LNS VNS KHE14 maxSAT Math.
Brazil2 5.4∗ (1, 44.4) 14 57 6
Brazil4 61.4 (17.2, 94.8) −c 214 58
Brazil6 50.6 (4, 223.6) 124 352 57

GreecePatras10 0∗ 0∗ 0∗ 2329m -
GreeceUni4 5 6.2 8 141 12

GreeceHSchool 0∗ 0∗ 0∗ 0∗ -
Italy4 35 178 40 16979m 48

SAfricaWood 1.2∗ (2, 6.2) (3, 0) 0∗ (2, 429)
SAfricaLewitt −m 8 −c 1039m -

FinlandHSchool 9.8 36.6 29 812 -
FinlandCollege 54.6 (2.8, 25) 20 1309 -
FinlandSSchool 95.2 (0.4, 93) 90 504 -

KosovaInst −m 14 (8 , 6) 29946m -
EngStPaul - (92, 1739.4) (26, 764) −m -

Brazil1 39 52.2 54 39 -
Brazil3 23∗ 107.8 116 75 -
Brazil5 19.4 (17) (4, 138.4) (1, 179) 224 -
Brazil7 136.2 (11.6, 234.6) 179 603 -
Italy1 12p 21.2 31 12p -

FinlandSSchool2 0.2∗ 0.2∗ 2 3523 -
FinlandESchool 3p 3 4 3p -
FinlandASchool 0∗ (5.4, 4.2) (4, 6) 12 -
GreecePreveza 38.2 2∗ 2 5617 -

GreeceUni3 7 5 7 7 6
GreeceUni5 0∗ 0∗ 0∗ 0∗ 0∗

GreeceAigio 368 (0.2, 6.2) 6 4582 180
NetherGEPRO −m (3, 7518) −c −m -

Table 1. Comparison of results with different methods using a time limit of 1000
seconds. The best results are in bold. Legend: ∗ optimality was found within the five
runs; m ’out of memory’; p proof of optimality; c program crash (a bug); and ” − ”
solution has not been produced within the time limit .
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Our approach outperforms the VNS solver for 16 instances out of 27, while
in five cases it gives the same result. For KHE14, we get a better result in 15
cases and a tie in four cases. When compared to the pure maxSAT approach,
our algorithm has a clear advantage given the computational limit. As for the
Matheuristic algorithm, we get a better result for five out of nine instances and
a tie for one instance based on the published results. Overall, our solver is better
than or equal any other solver in 16 cases.

We note that a new best known upper bound has been computed for BrazilIn-
stance5 within the time limit. Moreover, our solver found and proved optimality
within the time limit in two cases, while the other solvers were not able to
generate proofs of optimality. Our method is able to prove optimality for these
instances because larger and larger neighborhoods are explored over time until
the whole problem is solved, that is, the complete solution is destroyed and opti-
mally reassigned. Further improvements to the best known solutions with other
time limits are discussed in Section 6.5.

Overall, the results obtained are very encouraging, as our approach outper-
formed the state-of-the-art solvers on many instances that were modeled with
our maxSAT approach.

6.5 Longer runs and additional improvements to the best known
solutions

With more computational time, it was possible to produce three new best known
solutions (in addition to the ones from the previous section). For the KosovaIn-
stance, we ran our algorithm using the previous best known solution as a starting
point. In Table 2, we present the results in column LNS(time) together with
the time used in brackets, but only when it was possible to produce better so-
lutions with longer running times. In column ′Best′ we give the previously best
known solution values. The other instances (including the ones that we have
previously computed optimally) are marked with ′−′. We note that after pro-
viding our results for the Brazilian instances to the ITC 2011’s repository, the
instance modelers decided to slightly modify them. After reviewing our solution
they decided to make the Prefer Times Constraints hard constraints, instead
of soft ones. Nevertheless, we provide these results as no other method could
compute those values.

6.6 MaxSAT vs Integer Programming

We now provide a comparison of maxSAT with Integer Programming and further
elaborate on our decision to choose maxSAT for the insertion operator.

We compare Integer Programming2 [12] and pure maxSAT for XHSTT. Both
solvers were run for 30 seconds (the initial time used in this paper for each
neighborhood) and 600 seconds using a single thread. The results are given in
Table 3. In most instances the pure maxSAT approach produces better results.

2 We thank the authors for providing their solver
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The maxSAT results can easily be reproduced by running our maxSAT instances
3 with open-WBO (parameter: -algorithm=1). Based on these results, we believe
that maxSAT is an appropriate exact method to be used as part of LNS.

In addition, we note two other very important points for our maxSAT choice:
this is the first time, to the best of our knowledge, that maxSAT has been used
in a LNS algorithm. Second, Gurobi (the commercial IP solver used in [12]) is a
highly engineered piece of software, while open-WBO (the maxSAT solver that
we modified) is open source and not so heavily engineered, but still provides
competitive results.

6.7 Variants of the algorithm

We experimented with three variants of our algorithm and compared them with
our standard algorithm (’LNS’ column), still using 1000 seconds of computa-
tional time. The results of all three variants are given in Table 2. Each variant
is aimed at testing a certain aspect of our algorithm.

Variant LNS.v1 is similar to our standard algorithm, except that it uses a
non optimized initial solution as a starting point, generated by ignoring all soft
constrains and solving the problem as a SAT problem. Based on the results
obtained, we conclude that using optimized initial solutions is better overall,
since the local search quickly eliminates simple improvements, leaving more time
for the maxSAT solver to identify the more challenging ones.

The second variant LNS.v2 consists of restarting the maxSAT solver between
two consecutive calls. In the original version, the maxSAT solver is not restarted
from scratch, thus all learned clauses and previous bounds are kept (see Section
5.2). The lower quality of results indicate that restarting the maxSAT solver after
every insertion operation is detrimental. We note that the total time required
for restarting the solver was not very significant (typically under 50 seconds).

The third variant LNS.v3(R) and LNS.v3(D) consists of using only one of
the two proposed neighborhood sets (resource or day vector) in order to analyze
whether the combination of neighborhoods is beneficial. Overall these variants
seem to be worse than the standard version. We believe that the resource neigh-
borhood vector can provide quick improvements and leave the more complicated
ones to the day neighborhood vector. Thus, both neighborhoods complement
each other.

7 Conclusion

We introduced an algorithm which uses local search and a novel maxSAT-based
LNS approach to solve XHSTT problems. The LNS part consists of two main
components: the destroy and insertion operations. The first operator destroys the
part of the solution based on a neighborhood selection from one of the two neigh-
borhood vectors, while the second operator repairs the solution using exhaustive

3 http://www.dbai.tuwien.ac.at/user/demir/WCNF SNA.rar
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search in the form of maxSAT. During the course of the algorithm, information
regarding the neighborhoods is kept in order to avoid selecting neighborhoods
which are most likely to be of no use.

The proposed approach outperforms state-of-the-art solvers on most instances
which we were able to model with maxSAT. In addition, new upper bounds have
been obtained on four instances. We have also discussed variants of our algorithm
to gain further insights into its inner workings. Our approach is highly effective
and we believe that it is a good direction for further research on XHSTT. Finally,
we think that our maxSAT-based framework can be used in other domains as
well. However, problem specific neighborhood vectors need to be introduced and
a particular maxSAT formulation for the problem at hand has to be developed.

Acknowledgments. The work was supported by the Austrian Science Fund
(FWF): P24814-N23 and the Vienna PhD School of Informatics.
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Name LNS(1000s) LNS(time) Best LNS.v1 LNS.v2 LNS.v3(R) LNS.v3(D)

Brazil2 5 - 5 5.4 5 12.6 5

Brazil4 61.4 53 (4000) 51 60.6 69 91 88.2

Brazil6 50.6 34 (27000) 35 99 75 56.8 74.6

GreecePatras10 0 - 0 57.8 6 0.5 0

GreeceUni4 5 - 5 38.8 6 13 5

GreeceHSchool 0 - 0 0 0 0 0

Italy4 35 35 (3500) 34 −m 52 48 55

SAfricaWood 1.2 - 0 1.2 0.4 27.8 0

SAfricaLewitt - - 0 - - - -

FinlandHSchool 9.8 8 (3200) 1 37.2 15.8 14.6 23.2

FinlandCollege 54.6 23 (4000) 0 43.4 84.8 50 643.8

FinlandSSchool 95.2 82 (9000) 77 92.2 104 117 126

KosovaInst - 0 (300) 3 - - - -

Brazil1 39 38 (10000) 38 38.6 38 41.8 38.8

Brazil3 23 - 23 23.6 23 61 23.2

Brazil5 19.4 17 (20000) 20 23.4 27.6 43.6 27.6

Brazil7 136.2 57 (14000) 67 282 176 114.4 217.6

GreecePreveza 38.2 0 (1200) 0 39.6 69 168.8 5.5

GreeceUni3 7 - 5 8 6 10 7.2

GreeceUni5 0 - 0 0 0 1.2 0

GreeceAigio 368 97 (5300) 0 −m 442 461.2 200

Italy1 12 - 12 12.2 12.2 14 12

FinlandSSchool2 0.2 - 0 76.8 1 5 0

FinlandESchool 3 - 3 3 3 3 3

FinlandASchool 0 - 0 0 0 30 0

Table 2. Comparisons of results for longer running times, different variants of our al-
gorithm, and previously best known upper bounds. The new best known upper bounds
computed are in bold.
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Name maxSAT(30s) IP(30s) maxSAT (600s) IP (600s)

Brazil2 98 (16, 293) 55 87

Brazil4 261 (55, 266) 199 241

Brazil6 505 (162, 580) 341 609

GreecePatras 3219 - 3219 25

GreeceUni4 186 193 141 55

Italy4 18671 (2387, 26756) 18671 21228

SAWoodlands 4028 - 811 -

SALewitt 1189 - 1189 802

FinlandHSchool 1231 (331, 981) 501 351

FinlandCollege 1056 - 1056 (546, 1185)

FinlandSSchool 765 (30, 1053) 575 166

Brazil1 44 59 41 41

Brazil3 171 (77, 407) 65 93

Brazil5 406 (118, 487) 225 585

Brazil7 819 (240, 887) 771 (157, 908)

Italy1 2039 141 27 17

FinlandSSchool2 2464 - 2464 (279, 3483)

FinlandESchool 3 - 3 4

FinlandASchool 4004 (416, 125) 43 (202, 111)

GreecePreveza 5617 - 5617 (18, 3145)

GreeceUni3 161 183 122 37

GreeceUni5 100 52 32 37

GreeceAigio 4582 - 4582 (6609, 195)

Table 3. Comparison of Integer Programming [12] and pure maxSAT for XHSTT. The
hypen in the table indicates that the solver was not able to produce a solution within
the specified time limit.
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