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Graphs are Everywhere ...
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The Whole Story in 3 Minutes ...

Tree Decomposition and Treewidth
By-product in the theory of graph minors
due to Robertson and Seymour (1984);
similar notions appeared even earlier
(Bertelè and Brioschi, 1972; Halin, 1976).

Courcelle’s Theorem (1990)

Any property of finite structures which is definable
in MSO can be decided in time O(f (k) · n) where
n is the size of the structure and k is its treewidth.

SEQUOIA (2011)
A system developed by Rossmanith’s group at
RWTH Aachen; SEQUOIA takes a graph and
MSO description of problem and does decompo-
sition and dynamic programming “inside”.
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The Whole Story in 3 Minutes ...

But ...

“. . . rather than synthesizing methods
indirectly from Courcelle’s Theorem,
one could attempt to develop practical
direct methods.” (Niedermeier, 2006)

... and, more recently ...
“Courcelle’s theorem [...] should be regarded primarily as
classification tool, whereas designing efficient dynamic
programming routines on tree decompositions requires
’getting your hands dirty’ and constructing the algorithm
explicitly. ” (Cygan et al., 2015)
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The Whole Story in 3 Minutes ...

Our Vision
A system that

I supports declarative specifications of
dynamic programming on tree
decompositions

I performs reasonably efficient
I bothers the user only with the actual

algorithm design

Quick thanks to all collaborators...
Michael Abseher, Bernhard Bliem, Günther Charwat, Frederico Dusberger, Johannes
Fichte, Markus Hecher, Marius Moldovan, Michael Morak, Nysret Musliu and
Reinhard Pichler.
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Treewidth
I Some graphs are more “tree-like” than others.

I Treewidth measures “tree-likeness”.
I Trees have treewidth 1.
I The higher the treewidth, the more complex the graph.

I Often “easy on trees” implies “easy on tree-like graph”.
I Many problems are fixed-parameter tractable w.r.t. treewidth w , i.e.

can be decided in O(2w · n).
I That is, they become easy when putting a bound on the treewidth.

I It works for many hard problems.
I Real-world applications often have small treewidth.
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Example: Treewidth 3.

Still.



Treewidth (ctd.)

Example: Treewidth 3. Still.



Treewidth (ctd.)

Example: Treewidth 3. Still.

Treewidth is defined in terms of tree decompositions.



Tree Decompositions

Definition
A tree decomposition is a tree obtained from an arbitrary graph s.t.

1. Each vertex must occur in some bag.
2. For each edge, there is a bag containing both endpoints.
3. If vertex v appears in bags of nodes n0 and n1, then v is also in

the bag of each node on the path between n0 and n1.

Example

a
b

c
d

f
e {b, c, d} {b, c, d}

{a, b, c} {d , e}

{b, c, d}{c, f}

I Decomposition width: size of the largest bag (minus 1)
I Treewidth: minimum width over all possible tree decompositions



Tree Decompositions (ctd.)

Constructing a Tree Decomposition
I Any graph admits at least a trivial tree decomposition.
I But finding a minimum-width tree decomposition is difficult.
I However, there are good heuristics!

Dynamic Programming on Tree Decompositions
I Traverse tree decomposition from leaves to root and compute

partial solutions in each node by
I suitably combining partial solutions of child nodes.
I Algorithms often exponential only in decomposition width but

linear in the input size.
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Dynamic Programming on Tree Decompositions

Example: MINIMUM INDEPENDENT DOMINATING SET

Methodology:

1. Decompose instance
2. Solve partial problems
3. Combine the solutions

a
b

c
d

f
e

{b, c, d} {b, c, d}

{a, b, c} {d , e}

{b, c, d}{c, f}

b c d cost
0 d d s 2
1 d d - 1
2 s d d 1
3 d s d 1

b c d cost
0 d d s 1
1 s d d 2
2 d s d 2
3 - - d 1

a b c cost
0 s d d 1
1 d s d 1
2 d d s 1
3 - - - 0

d e cost
0 s d 1
1 d s 1
2 - - 0

b c d cost
0 d d s 2
1 d d d 2
2 s d d 2
3 d s d 2

c f cost
0 d s 3
1 d - 2
2 s d 2
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D-FLAT
Dynamic Programming Framework with Local Execution of ASP on Tree Decompositions

What does it do?
1. Constructs a tree decomposition of the input structure
2. In each node: Executes user-supplied logic program that

describes the dynamic programming algorithm
3. Decides the problem (or materializes solutions)

Properties
I Relies on Answer-Set Programming (ASP) paradigm
I Users only need to write an ASP program
I Communication with the user’s program via special predicates
I Uses external libraries for ASP solving, tree decomposition, etc.



Answer-Set Programming (ASP)
I Successful declarative programming paradigm in AI
I Has its roots in nonmonotonic reasoning and datalog
I Systems have been developed since the late 90s
I Applications in many diverse areas

I Bio-Informatics
I Diagnosis
I Configuration
I Linguistics
I . . .



Answer Set Programming (ctd.)
I ASP provides a convenient Guess & Check method

1. Guess a candidate solution non-deterministically
2. Check if the candidate is indeed a solution

I Any search problem in NP (even in ΣP
2 ) can be solved with ASP

MINIMUM INDEPENDENT DOMINATING SET

Input:
Graph G = (V ,E) via predicates vertex/1 and edge/2.

{ in(X) : vertex(X) }.
← in(X), in(Y), edge(X,Y).
dominated(X) ← in(Y), edge(Y,X).
← vertex(X), not in(X), not dominated(X).
#minimize{ 1,X : in(X) }.



Why ASP for Dynamic Programming?
I Compact declarative description of combinatorial problems
I ASP typically delivers all solutions
I Powerful systems available

Practical Observation:
I If ASP is well suited for a problem, it is usually also well suited for

the subproblems required in a decomposition
=⇒ allows for rapid prototyping of dynamic programming

on tree decompositions



D-FLAT at Work
Illustrated by means of INDEPENDENT DOMINATING SET

Store partial
solutions ASP call

Parse
instance

Decompose Done?
no

yes

Visit next
node in

post-order

Print
complete
solutions
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D-FLAT at Work (ctd.)
Illustrated by means of INDEPENDENT DOMINATING SET

Current table

Answer sets

ASP solver

User-supplied program
1 { extend(R) : childRow(R,N) } 1 ← childNode(N).
← extend(R1;R2), childItem(R1,in(X)),

not childItem(R2,in(X)).
← removed(X), extend(R),

not childItem(R,in(X)), not childItem(R,dom(X)).
item(in(X)) ← extend(R), childItem(R,in(X)),

current(X).
item(dom(X)) ← extend(R), childItem(R,dom(X)),

current(X).
{ item(in(X)) : introduced(X) }.
item(dom(X)) ← item(in(Y)), edge(Y,X),

current(X).
← edge(X,Y), item(in(X;Y)).

Instance
vertex(a;b;c;d;e).
edge(a,b). edge(a,c). edge(b,c).
edge(b,d). edge(c,d). edge(d,e).

Bag

Child rows

1st child table

Child rows

nth child table

. . .

. . .



Another Example: Boolean Satisfiability (SAT)
Although SAT is not a graph problem, we can still decompose it.

I Use the incidence graph of the formula:
I One vertex for each variable and each clause.
I Edge (v , c) if variable v occurs in clause c.

D-FLAT encoding
% Extend c o m p a t i b l e rows from c h i l d nodes .
1 { extend(R) : childRow(R,N) } 1 ← childNode(N).
← extend(R;S), atom(A), childItem(R,A), not childItem(S,A).
% R e t a i n e x t e n d e d a s s i g n m e n t and g u e s s on i n t r o d u c e d atoms .
item(X) ← extend(R), childItem(R,X), current(X).
{ item(A) : atom(A), introduced(A) }.
% A d d i t i o n a l c l a u s e s migh t have become s a t i s f i e d .
item(C) ← current(C;A), pos(C,A), item(A).
item(C) ← current(C;A), neg(C,A), not item(A).
% K i l l a s s i g n m e n t s t h a t l e a v e some c l a u s e u n s a t i s f i e d .
← clause(C), removed(C), extend(R), not childItem(R,C).
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D-FLAT Features

I Special predicates in LP allow the user to delegate tasks to
D-FLAT

I Different modes for decision, counting, optimization and
enumeration problems

I Support of different normalizations of the decomposition
I Support of hypergraphs
I “Default Join”
I Two modes for storing and handling solutions of subproblems



D-FLAT Features (ctd.)

“Table-Mode” for Problems in NP
I We compute a table at each node
I We guess rows using ASP
I . . . yields all accepting computation branches of an NTM

“Tree-Mode” for Problems in the Polynomial Hierarchy
I We compute a tree at each node
I We guess branches using ASP
I . . . yields all accepting computation branches of an ATM

(D-FLAT appropriately handles the trees inside).
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General Applicability

Recall Courcelle’s theorem
Any problem definable in MSO can be solved in linear time
on graphs of bounded treewidth.

It is such problems that decomposition is usually employed for.

Good news
D-FLAT can be effectively used for all such problems

I It can evaluate MSO formulas in linear time if the treewidth is
bounded

I Encoding for MSO is not overly complicated
(approx. 30 lines of ASP code)

I However, expressing the problem at hand via MSO and then feed
to D-FLAT is not recommended

I instead, D-FLAT is designed for problem-specific dynamic
programming solutions
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Experimental Evaluation: #Maximum Independent Set
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A First Conclusion

Summary
I Hard problems often become tractable when instances exhibit

certain properties.
I Especially bounded treewidth often leads to tractability (problems

expressible in MSO).
I The “D-FLAT” method [TPLP 2012, JELIA 2014] allows to specify

dynamic programming algorithms in a declarative way.
I This works for all MSO-definable problems [IPEC 2013]

Next Steps
I additional D-FLAT features for arithmetics
I lazy D-FLAT
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Motivation

Lesson Learnt
I DP algorithms often show recurring patterns . . .

I In particular, DP algorithms for problems on the 2nd level of PH
often require treatment of subset-minimization or maximization

I This leads to quite involved DP specifications.

Goals
I Provide a simple mechanism for the user
I Improve performance for 2nd -level problems



Motivation

Lesson Learnt
I DP algorithms often show recurring patterns . . .

I In particular, DP algorithms for problems on the 2nd level of PH
often require treatment of subset-minimization or maximization

I This leads to quite involved DP specifications.

Goals
I Provide a simple mechanism for the user
I Improve performance for 2nd -level problems



Motivation (ctd.)

D-FLAT program for MINSAT
length(2). level(1..2). or(0). and(1).
extend(0,R) ← root(R).
1 { extend(L+1,S) : sub(R,S) } 1 ← extend(L,R), L<2.

{ item(2,A;1,A) : atom(A), introduced(A) }.
auxItem(L,C) ← current(C;A), pos(C,A), item(L,A), level(L).
auxItem(L,C) ← current(C;A), neg(C,A), not item(L,A), level(L).
item(L,X) ← extend(L,R), childItem(R,X), current(X), level(L).
auxItem(L,C) ← extend(L,R), childAuxItem(R,C), current(C), level(L).

false(S,X) ← atNode(S,N), childNode(N), bag(N,X), sub(_,S), not childItem(S,X).
unsat(S,C) ← atNode(S,N), childNode(N), bag(N,C), sub(_,S), not childAuxItem(S,C).
unsat(R) ← clause(C), removed(C), unsat(R,C).
← extend(L,X;L,Y), atom(A), childItem(X,A), false(Y,A), level(L).
← extend(L,R), unsat(R), level(L).

reject ← final, extend(1,R), sub(R,S), childAuxItem(S,smaller), not unsat(S).
accept ← final, not reject.
auxItem(2,smaller) ← extend(2,S), childAuxItem(S,smaller).
auxItem(2,smaller) ← atom(A), item(1,A), not item(2,A).
← atom(A), item(2,A), not item(1,A).



D-FLATˆ2
DP Framework with Local Execution of ASP on TDs for 2nd -Level Subset-Optimizations

What does it do?
1. Constructs a tree decomposition of the input structure
2. First pass executes user-supplied program and stores partial

solutions (as before)

3. Second pass (in each node)
I Executes our native subset optimization algorithm
I Stores counter candidate pointers by reusing partial solutions

Properties
I Users only need to write an ASP program
I Subset optimization on user-specified items via optItem/1 done

“inside”
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D-FLATˆ2 (ctd.)

Recall encoding for SAT
1 { extend(R) : childRow(R,N) } 1 ← childNode(N).
← extend(R;S), atom(A), childItem(R,A), not childItem(S,A).
item(X) ← extend(R), childItem(R,X), current(X).
{ item(A) : atom(A), introduced(A) }.
item(C) ← current(C;A), pos(C,A), item(A).
item(C) ← current(C;A), neg(C,A), not item(A).
← clause(C), removed(C), extend(R), not childItem(R,C).

For MINSAT, we just need to add
optItem(X) ← item(X), atom(X).

For Circumscription, we just need to add
optItem(X) ← item(X), minatom(X).
optItem(t(X)) ← item(X), varyatom(X).
optItem(f(X)) ← not item(X), varyatom(X).
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D-FLAT vs. D-FLATˆ2
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D-FLATˆ2 – Discussion

Summary
I D-FLATˆ2 [ASPOCP 2015] is an extension of D-FLAT for rapid

prototyping of 2nd -level DP algorithms on tree decompositions
involving subset optimization

I Preliminary results indicate that optimization is almost for free in
case of small treewidth

Next Steps
I D-FLATˆ2 =⇒ D-FLATˆn (generalize D-FLATˆ2 to handle

problems on the nth level of the polynomial hierarchy)
I Implement further problems and improve D-FLATˆ2 towards more

general specifications of optimization task



Outline



Motivation

Lesson Learnt
I Bottleneck of D-FLAT (resp. DP in general): size of tables

I size grows exponentially with treewidth
I Can we find a match to logic (truth-table vs. formula)?

Idea
I Employ Binary Decision Diagrams (BDDs):

I compact representation of truth-tables
I can be treated like formulas

Goals
I Understand feasibility of this approach
I Understand limits in describing DPs as formula manipulation
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Binary Decision Diagrams

Example (OBDD representation)
Let formula ϕ = (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c).

a

b1 b2

c1 c2 c3 c4

> ⊥

Figure : OBDD of ϕ.

a

b

c

> ⊥

Figure : ROBDD of ϕ.
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Binary Decision Diagrams (ctd.)
Advantages of BDDs:

I Well-studied and mature concepts that are successfully applied to
planning, verification, etc.

I Efficient implementations available
I Delegate burden of memory-efficient implementation to data

structure
I Logic-based algorithm specification
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DP of Independent Dominating Set (on Digraphs) via
BDDs
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Experiments: Independent Dominating Set
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Dynamic Programming with BDDs – Discussion

Summary
I dynBDD is a first prototype that performs DP algorithms on tree

decompositions via manipulation of BDDs [LPNMR 2015]
I allows for realization of more advanced DP algorithms (“wild

cards” etc)
I preliminary results indicate significant decrease of space used
I currently, algorithms have to be implemented in C++ on top of

CUDD

Next Steps
I user front-end
I so far, methodology only tested for “table-mode”;

generalization to arbitrary DP is also theoretically challenging
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Motivation

Lesson Learnt
I Generation of decompositions rather cheap (compared to the

runtime of dynamic programming)
I Shape of decomposition crucial for performance

(it’s not the width only!)
I Better understanding needed how “good tree decompositions”

look like

Goal
I Identification of features for tree decompositions (rather than on

the actual input instance)
I Understand how machine learning can help us to select a good

decomposition from a set of decompositions
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Methodology

Given a specific problem
I Training data: 90 small random instances with rather low treewidth

(10 decompositions for each instance)
I Obtain regression models (5 different methods) for ranking

decompositions using specific decomposition features
I Apply model to real-world instances (treewidth up to 8)

I Generate 10 tree decompositions per instance
I Model selects the best-ranked decomposition



Experimental Set-Up (ctd.)

Features (Selection)
Decomposition Size:

I BagSize∗

I BagSize∗NL
I ContainerCount∗

I Σ BagSize
I NodeCount

Introduce / Forget / Join /
Leaf Nodes:

I Depth∗

I BagSize∗

I NodeCount (#)
I Percentage

Structural Features:

I JoinNodeDistance∗

I ItemLifetime∗

I NumberOfChildren∗

I BalancednessFactor
I AdjacencyRatio∗

I BagConnectednessRatio∗

I NeighbourCoverageRatio∗



Experimental Results
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Decomposition Features – Discussion

Summary
I We conducted huge test series [IJCAI 2015] for several problems

and two systems (D-FLAT and SEQUOIA)
I Feature-based ML successfully identified good decompositions
I However, crucial features are in general not problem independent

Next Steps
I We need to get a precise picture on crucial features
I Use gained insights to tailor tree decomposition heuristics
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Summary
I Tree-Decompositions known as a promising tool to exploit

structure in hard problems
I D-FLAT: a system for rapid prototyping of DP algorithms

I takes care of the decomposition task
I declarative specifications of dynamic programming via ASP
I ASP systems used to solve subproblems
I general applicability
I able to outperform standard technology

I Many ongoing developments



The D-FLAT Suite
I D-FLAT System
I D-FLAT Debugger (new and improved visualization tool currently

under development)
I D-FLATˆ2
I dynBDD



Ongoing + Future Work
I Automatic generation of D-FLAT code from “standard” encoding

I D-FLATˆ2 as a first step towards a library for DP designers

I Exploit smarter ways to store solutions
I BDDs a promising option
I easy-to-use interface still missing

I Tailor tree decomposition heuristics
I observation: shape of decomposition crucial for performance
I huge test series showed the potential of ML methods

I Tighter integration of D-FLAT with ASP solvers
I communication between D-FLAT and ASP solver is bottleneck
I exploit recent ASP technology (“multishot solving”)



Try it out! D-FLAT is free software, available at

http://dbai.tuwien.ac.at/proj/dflat/

. . . and have fun with decompositions . . .

Thanks for your attention!

http://dbai.tuwien.ac.at/proj/dflat/
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