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Abstract

This article describes abstract dialectical frameworks, or adfs for short.
adfs are generalizations of the widely used Dung argumentation frameworks.
Whereas the latter focus on a single relation among abstract arguments, namely
attack, adfs allow arbitrary relationships among arguments to be expressed.
For instance, arguments may support each other, or a group of arguments may
jointly attack another one while each single member of the group is not strong
enough to do so. This additional expressiveness is achieved by handling accept-
ance conditions for each argument explicitly.

The semantics of adfs are inspired by approximation fixpoint theory (AFT),
a general algebraic theory for approximation based semantics developed by
Denecker, Marek and Truszczyski. We briefly introduce AFT and discuss its
role in argumentation. This puts us in a position to formally introduce adfs
and their semantics. In particular, we show how the most important Dung
semantics can be generalized to adfs. Furthermore, we illustrate the use of adfs
as semantical tool in various modelling scenarios, demonstrating how typical
representations in argumentation can be equipped with precise semantics via
translations to adfs. We also present grappa, a related approach where the
semantics of arbitrary labelled argument graphs can be directly defined in an
adf-like manner, circumventing the need for explicit translations. Finally, we
address various computational aspects of adfs, like complexity, expressiveness
and realizability, and present several implemented systems.

Vol. 4 No. 8 2017
IFCoLog Journal of Logics and Their Applications



Brewka, Ellmauthaler, Strass, Wallner and Woltran

1 Introduction
This article is about abstract dialectical frameworks, or adfs for short. adfs are
generalizations of Dung argumentation frameworks (afs, see the chapter Abstract
Argumentation Frameworks and Their Semantics of [Baroni et al., in press]). afs
are very popular tools in argumentation. They abstract away from the content of
particular arguments and focus on conflicts among arguments, where each argument
is viewed as an atomic item. The only information afs take into account is whether
an argument attacks another one or not. Based on a set of arguments and an attack
relation, different af semantics single out coherent subsets of arguments which “fit”
together, according to specific criteria. More formally, an af semantics takes an
argumentation framework as input and produces as output a collection of sets of
arguments, called extensions.

afs are typically not used directly for knowledge representation purposes, but
as semantical tools: given a knowledge base KB in some knowledge representation
formalism, the set of arguments induced by KB is formally defined and the attack
relation on these arguments is identified. This defines an af that can be evaluated
according to a chosen semantics. The KB formulas supported by accepted arguments
are then the ones which are accepted. This stepwise evaluation is often referred to
as the argumentation process [Caminada and Amgoud, 2007].

Given that afs are in wide use, a natural question to ask is why a generalization
of afs is useful in the first place. There are at least two possible answers to this
question:

• the generalization is more expressive than afs,

• the generalization allows for easier modelling.

In fact, it turns out that both answers apply to adfs. We will discuss the issue
of expressiveness in detail in Section 6.2. For the time being let us focus on the
modelling issue. afs restrict their attention to the attack relation, and the basic
intuition is the following: assume an argument b is attacked by argument c, then
whenever c is accepted b is defeated. But how about more fine-grained – or entirely
different – relations which could be of potential interest? What if c alone is not
strong enough and a second argument, say d, is needed to jointly defeat b? And,
maybe even more importantly, aren’t there situations where accepting an argument
can be a reason for accepting another one, in other words, where arguments are in
support rather than in attack relation? We do not claim here that examples like the
ones just discussed cannot be modelled at all with afs. However, additional nodes
in the af argument graph will be needed which have the sole purpose of modelling
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other relations indirectly, via attack. These nodes will often be entirely unrelated
to the original knowledge base and thus meaningless from the perspective of the
application.

Indeed, for these reasons many authors have felt the need to extend the func-
tionality available in afs in one way or another. Examples of extensions described
in the literature are preference or value-based afs [Simari and Loui, 1992; Amgoud
and Cayrol, 2002; Amgoud and Vesic, 2011; Bench-Capon, 2003], afs with support
relations [Cayrol and Lagasquie-Schiex, 2005; Cayrol and Lagasquie-Schiex, 2013;
Oren and Norman, 2008; Polberg and Oren, 2014], necessities [Nouioua, 2013],
set attacks [Nielsen and Parsons, 2007], attacks on attacks [Modgil, 2009], re-
cursive attacks [Baroni et al., 2011] and afs with weights [Martínez et al., 2008;
Dunne et al., 2011; Coste-Marquis et al., 2012] or probabilities [Hunter, 2013;
Thimm, 2012]. We refer the reader to [Brewka et al., 2014] for an overview of
such extensions.

In a nutshell, adfs are an attempt to unify several of these different approaches
and to generalize afs in a principled, systematic way. The basic idea is very simple.
Consider again the conditions under which an argument, say b, with attackers c and
d is accepted in an af: b is accepted iff c is not accepted and d is not accepted.
This condition can easily be expressed as the propositional formula ¬c ∧ ¬d. The
acceptance condition for each argument in an af is obtained in exactly the same
way, by constructing the conjunction of the negations of its attackers. Once the
implicit acceptance conditions which are at work in afs are made explicit this way,
the generalization adfs build upon are pretty straightforward: rather than using
implicit acceptance conditions of the form we just saw, adfs use explicit acceptance
conditions which can conveniently be expressed as arbitrary propositional formulas.

Let us see how explicit acceptance conditions allow us to handle some of the ex-
amples discussed above. We start with joint attack. If b can only be defeated jointly
by c and d, then all we have to do is change the acceptance condition accordingly:
rather than a conjunction, we have to use the disjunction ¬c ∨ ¬d as acceptance
condition for b. The effect is that b is only defeated when both c and d are accepted,
as intended. As soon as one of them is not accepted, b is no longer defeated.

Support can be handled in a similar manner. Assume g has two supporting
arguments a and b, and one attacking argument c, as illustrated in Figure 1. We
use + and − to indicate support and attack, respectively.

Note that the information about supporting and attacking links in the graph
does not sufficiently specify under what conditions g should be accepted. Let us call
a link active if its source node is accepted. There are various options we may want
to choose, all of them expressible as a particular acceptance condition for g:
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Figure 1: An argument with two supporters and one attacker.

• no negative and all positive links must be active: ¬c ∧ (a ∧ b)

• no negative and at least one positive link must be active: ¬c ∧ (a ∨ b)

• no negative or both positive links must be active: ¬c ∨ (a ∧ b)

• no negative or at least one positive link must be active: ¬c ∨ (a ∨ b)

• more positive than negative links must be active: (¬c ∧ (a ∨ b)) ∨ (a ∧ b)

Note how it depends on the acceptance condition whether supporting links are
“stronger than” attacking links (meaning that if all incoming links are active, the
node is accepted), as in the last three items, or attacking links are “stronger than”
supporting links (meaning that if all incoming links are active, the node is rejected),
as for the first two items.

We hope these examples are sufficient to illustrate the additional modelling cap-
abilities adfs provide, and also the simplicity of the basic idea they rest upon. We
will see, however, that generalizing the af semantics to adfs is far from being simple.
This issue will be addressed in Section 3.

In spite of their additional expressiveness, we do not view adfs primarily as a
knowledge representation formalism. We rather consider them as “argumentation
middleware”, that is, as a framework which is particularly useful for providing se-
mantics to other, maybe more user-friendly formalisms via translations [Brewka et
al., 2014]. We will further illustrate this in Section 4.

The rest of this article is organized as follows. In Section 2 we recall some relev-
ant background and in particular discuss some relationships between approximation
fixpoint theory and afs which will be useful later. Section 3 introduces adfs and
their semantics formally. The presentation of this section is based on [Brewka et
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al., 2013]. Section 4 illustrates the role of adfs in argumentation, showing how
they can be used for modelling. Section 5 describes grappa (GRaph-based Ar-
gument Processing based on Patterns of Acceptance) along the lines of [Brewka
and Woltran, 2014]; grappa is an approach to graph-based argumentation which is
closely related to adfs and their underlying formal techniques. Section 6 discusses
subclasses, computational aspects, and expressivity of adfs. Section 6.1 focuses on
an interesting special case of adfs, so-called bipolar adfs where each link in the adf
graph is attacking or supporting (or both). This rather expressive class is not only
of practical interest, but also has nice computational properties. Expressiveness of
adfs and bipolar adfs is investigated in Section 6.2, computational complexity in
Section 6.3, and recent systems in Section 6.4. Section 7 concludes the article.

2 Approximation Fixpoint Theory in Abstract Argu-
mentation

Denecker, Marek and Truszczyski [Denecker et al., 2000] (henceforth shortened to
DMT) introduced an algebraic framework for studying semantics of knowledge rep-
resentation formalisms. In this framework – approximation fixpoint theory (AFT)
– knowledge bases are associated with operators (functions) on algebraic structures
(for example lattices). The fixpoints of those operators are then studied in order to
analyse the semantics of knowledge bases. While this technique is standard to define
semantics of programming languages and has indeed been used in early works on
logic programming [van Emden and Kowalski, 1976], the major invention of DMT
has been the important concept of an approximation of an operator. In the study
of semantics of knowledge representation formalisms, elements of lattices represent
objects of interest. Operators transform such objects into others according to the
contents of a given knowledge base. Consequently, fixpoints of such operators are
then objects that cannot be updated any more – informally speaking, the knowledge
base can neither add information to a fixpoint nor remove information from it.

In classical approaches to fixpoint-based semantics, the underlying algebraic
structure is the complete lattice of the set V2 = {v : A → {t, f}} of all two-valued
interpretations over some vocabulary A ordered by the truth ordering ≤t with

v1 ≤t v2 if and only if ∀a ∈ A : v1(a) = t =⇒ v2(a) = t.1

Consequently, an operator O on this lattice (V2, ≤t) takes as input a two-valued
interpretation v ∈ V2 and returns a revised interpretation O(v) ∈ V2. The intuition

1(V2, ≤t) is isomorphic to (2A, ⊆) via v 7→ v−1(t) = {a ∈ A | v(a) = t}.
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of the operator is that the revised interpretation O(v) incorporates additional know-
ledge that is induced by the knowledge base associated to O from interpretation v.
Based on this intuition, fixpoints of O correspond to the models of the knowledge
base.

To study fixpoints of operators O, DMT investigate fixpoints of their approxim-
ating operators O. When O operates on two-valued interpretations V2, its approxim-
ation O operates on three-valued interpretations V3 = {v : A → {t, f , u}}. The three
truth values t (true), f (false), and u (undefined) can be ordered by the informa-
tion ordering ≤i. This ordering intuitively assigns a greater information content to
the classical truth values {t, f} than to undefined u; more formally, we have u <i t
and u <i f and ≤i is the reflexive transitive closure of <i. The partially ordered
set ({t, f , u} , ≤i) forms a complete meet-semilattice with the meet operation ⊓i.2
This meet can be read as consensus and assigns t ⊓i t = t, f ⊓i f = f , and returns
u otherwise. The ordering ≤i can be generalized to three-valued interpretations in
a pointwise fashion:

v1 ≤i v2 if and only if ∀a ∈ A : v1(a) ∈ {t, f} =⇒ v1(a) = v2(a).3

Again, the resulting algebraic structure is a complete meet-semilattice; its ≤i-
maximal elements are exactly the two-valued interpretations V2, which form an
≤i-antichain. Intuitively, in that complete meet-semilattice, a single three-valued
interpretation

v : A → {t, f , u}
serves to approximate a set [v]2 = {w ∈ V2 | v ≤i w} of two-valued interpreta-
tions. For example, for the vocabulary A = {a, b, c}, the three-valued interpretation
v = {a 7→ t, b 7→ u, c 7→ f} approximates the set {w1, w2} of two-valued interpreta-
tions where w1 = {a 7→ t, b 7→ t, c 7→ f} and w2 = {a 7→ t, b 7→ f , c 7→ f}.

In a similar vein, a three-valued operator O : V3 → V3 approximates a two-valued
operator O : V2 → V2 if and only if

1. for all v ∈ V2, we have O(v) = O(v) (O agrees with O on two-valued v), and

2. for all v1, v2 ∈ V3, v1 ≤i v2 =⇒ O(v1) ≤i O(v2) (O is ≤i-monotone).

DMT [Denecker et al., 2000] showed that in this case fixpoints of O approximate
fixpoints of O. More specifically, for every fixpoint v2 of O, there is a fixpoint v3

2A complete meet-semilattice is such that every non-empty finite subset has a greatest lower
bound, the meet; and every non-empty directed subset has a least upper bound. A subset is directed
iff any two of its elements have an upper bound in the set.

3(V3, ≤i) is isomorphic to ({M ⊆ A ∪ {¬a | a ∈ A} | a ∈ M =⇒ ¬a /∈ M} , ⊆) via the mapping
v 7→ {a ∈ A | v(a) = t} ∪ {¬a | a ∈ A, v(a) = f}.
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of O such that v2 ∈ [v3]2. Moreover, an approximating operator O always has a
fixpoint, which need not be the case for two-valued operators O. In particular, O
has an ≤i-least fixpoint, which approximates all fixpoints of O.

In subsequent work, DMT [Denecker et al., 2004] presented a general, abstract
way to define the most precise approximation of a given operator O : V2 → V2. Most
precise here refers to a generalisation of ≤i to operators, where for O1, O2 : V3 → V3,
they define O1 ≤i O2 iff for all v ∈ V3 it holds that O1(v) ≤i O2(v). Specifically,
DMT then show that the most precise – called the ultimate – approximation of O
is given by the operator UO : V3 → V3 that maps a given v ∈ V3 to

UO(v) : A → {t, f , u} with a 7→





t if w(a) = t for all w ∈ {O(x) | x ∈ [v]2}
f if w(a) = f for all w ∈ {O(x) | x ∈ [v]2}
u otherwise

This definition is remarkable since previously, approximations of operators had to be
devised by hand rather than automatically derived. DMT [Denecker et al., 2004] give
additional definitions introducing stable semantics that are only of minor interest
here and will be introduced in a special form later.

AFT on AFs
AFT can be used for defining semantics of afs as follows [Strass, 2013a]. The stable
semantics for afs can be understood as a two-valued semantics given by the fixpoints
of an operator (going back to Pollock [1987]) on two-valued interpretations.

Definition 1. For each af F = (A, R), the operator UF : V2 → V2 yields – for a
given interpretation v : A → {t, f} – a new interpretation

UF (v) : A → {t, f} with a 7→
{

f if ∃b ∈ A : v(b) = t, (b, a) ∈ R

t otherwise

Intuitively, all arguments that are attacked in F by some argument that is true
in v are set to false in UF and set to true otherwise, that is, if unattacked by all t
arguments of v. (So the U is for “unattacked”.) It is easy to see that the fixpoints of
this operator exactly correspond to stable extensions [Strass, 2013a, Proposition 4.4].

Proposition 2. Let F = (A, R) be an AF and v : A → {t, f} be an interpretation.
Then v = UF (v) iff the set v−1(t) = {a ∈ A | v(a) = t} is a stable extension of F .

Example 3. Consider the af F1 = (A1, R1) with A1 = {a, b} and
R1 = {(a, b), (b, a)}:
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a b

Below, we depict the complete lattice ({v : A1 → {t, f}} , ≤t) of two-valued interpret-
ations over A1 ordered by the truth ordering as a Hasse diagram (i.e. straight lines
show direct ≤t-neighbours), and how the operator UF1 assigns its points to others
(dashed arrows).

{a 7→ f , b 7→ f}

{a 7→ t, b 7→ f} {a 7→ f , b 7→ t}

{a 7→ t, b 7→ t}

It can be seen from the diagram that the operator has two fixpoints, {a 7→ t, b 7→ f}
and {a 7→ f , b 7→ t}. They correspond one-to-one to the stable extensions {a} and
{b} of the AF F1.

Example 4. In contrast, consider the af F2 = (A2, R2) with A2 = {a, b, c} and
R2 = {(a, b), (b, c), (c, a)}:

a

bc

Again, we depict the complete lattice ({v : A2 → {t, f}} , ≤t) and how the operator
UF2 assigns its points to others.
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{a 7→ f , b 7→ f , c 7→ f}

{a 7→ t, b 7→ f , c 7→ f} {a 7→ f , b 7→ t, c 7→ f} {a 7→ f , b 7→ f , c 7→ t}

{a 7→ f , b 7→ t, c 7→ t}{a 7→ t, b 7→ f , c 7→ t}{a 7→ t, b 7→ t, c 7→ f}

{a 7→ t, b 7→ t, c 7→ t}

The picture makes it obvious that UF2 has no fixpoint, in accordance with the fact
that F2 has no stable extension.

Using the definitions of Denecker, Marek and Truszczyski, it is easy to obtain
the ultimate approximation of UF . (See also [Strass, 2013a, Proposition 4.1].)

Corollary 5. Given an interpretation v : A → {t, f , u}, the three-valued operator
ΥF : V3 → V3 yields a new interpretation

ΥF (v) : A → {t, f , u} with a 7→





f if ∃b ∈ A : v(b) = t, (b, a) ∈ R

t if ∀b ∈ A : (b, a) ∈ R =⇒ v(b) = f
u otherwise

For any given AF F , the fixpoints of UF constitute the stable semantics of F .
The ultimate approximation ΥF approximates UF , thus the semantics induced by ΥF

then intuitively approximate af stable semantics. More specifically, the following
result is straightforward [Strass, 2013a, Section 4]:4

Proposition 6. Let F = (A, R) be an AF and v : A → {t, f , u} be an interpretation.

1. v is complete for F iff v = ΥF (v).
4Given an AF F = (A, R), an extension E ⊆ A uniquely determines a three-valued interpret-

ation vE by letting vE(a) = t if a ∈ E, vE(a) = f if a is attacked by E in F , and vE(a) = u oth-
erwise. Similarly, a three-valued interpretation v : A → {t, f , u} uniquely determines an extension
Ev = {a | v(a) = t}. This allows us to switch freely between extensions and interpretations.
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2. v is admissible for F iff v ≤i ΥF (v).

3. v is preferred for F iff v is ≤i-maximal admissible.

4. v is grounded for F iff v is the ≤i-least fixpoint of ΥF .

In the next section, we will use approximation fixpoint theory and this result to
define the semantics of adfs in a straightforward way.

Example 7. Consider the AF F3 = (A3, R3) with A3 = {a, b} and R3 = {(a, b)}:

a b

Below, we depict the associated meet-semilattice ({v : A3 → {t, f , u}} , ≤i) of the set
of all three-valued interpretations over A3 ordered by the information ordering, and
how the operator ΥF3 maps those interpretations to others.

{a 7→ u, b 7→ u}

{a 7→ f , b 7→ u}{a 7→ u, b 7→ f} {a 7→ t, b 7→ u} {a 7→ u, b 7→ t}

{a 7→ f , b 7→ f} {a 7→ t, b 7→ f} {a 7→ f , b 7→ t} {a 7→ t, b 7→ t}

The picture shows how the grounded semantics can be obtained by following the
dotted line starting in the ≤i-least element up to the operator’s single fixpoint. (In
fact, it obviates that all (sufficiently long) sequences of operator applications lead to
the fixpoint, showing that this interpretation really is the intended meaning of F3.)

Example 8. Reconsider the AF F1 = (A1, R1) from Example 3 with A1 = {a, b}
and R1 = {(a, b), (b, a)}:

a b
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Again, we show the complete meet-semilattice ({v : A1 → {t, f , u}} , ≤i) along with
the mappings of the operator ΥF1 (dotted arrows).

{a 7→ u, b 7→ u}

{a 7→ f , b 7→ u}{a 7→ u, b 7→ f} {a 7→ t, b 7→ u} {a 7→ u, b 7→ t}

{a 7→ f , b 7→ f} {a 7→ t, b 7→ f} {a 7→ f , b 7→ t} {a 7→ t, b 7→ t}

In this picture, the operator UF1 re-appears in the top row of all two-valued inter-
pretations. Those form a complete lattice with respect to ≤t, but an antichain with
respect to ≤i. Likewise, the two fixpoints of UF1 re-appear as fixpoints of ΥF1 in
the top row. The additional fixpoint of ΥF1 consequently constitutes the grounded
semantics of F1.

As we have seen, the operator ΥF arises naturally from a straightforward ap-
plication of ultimate approximation [Denecker et al., 2004] to an operator proposed
by Pollock [1987]. It is interesting to observe that the assignments of the operator
correspond precisely to what has independently been defined as “legal argument
labellings” [Caminada and Gabbay, 2009].

3 ADFs: Syntax and Semantics
Like an af, an abstract dialectical framework (adf) is a directed graph whose nodes
represent arguments, statements or positions. One can think of the nodes as arbit-
rary items which can be accepted or not. The links represent dependencies. However,
unlike a link in an af, the meaning of an adf link can vary. The status of a node s
only depends on the status of its parents (denoted par(s)), that is, the nodes with
a direct link to s. In addition, each node s has an associated acceptance condition
Cs specifying the exact conditions under which s is accepted. Cs is a function as-
signing to each subset of par(s) one of the truth values t, f .5 Intuitively, if for some

5In the original paper in and out were used. We prefer truth values here as they allow us to
apply standard logical terminology.
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R ⊆ par(s) we have Cs(R) = t, then s will be accepted provided the nodes in R are
accepted and those in par(s) \ R are not accepted.

Definition 9. An abstract dialectical framework is a tuple D = (S, L, C) where

• S is a set of statements (positions, nodes),

• L ⊆ S × S is a set of links,

• C = {Cs}s∈S is a set of total functions Cs : 2par(s) → {t, f}, one for each state-
ment s. Cs is called acceptance condition of s.

In many cases it is convenient to represent acceptance conditions as propositional
formulas. For this reason we will frequently use a logical representation of adfs
(S, L, C) where C is a collection {φs}s∈S of propositional formulas.6

Example 10. In the following adf, which will act as running example throughout
the article, we use formulas to specify acceptance conditions.

a b

c d

φa = ⊤ φb = b

φc = a ∧ b φd = ¬b

Intuitively, φa states that a should always be accepted. Condition φb expresses a kind
of self-support, which can be utilized as a guess whether or not to accept b. Finally,
c should be accepted if both a and b are, while d is attacked by statement b.

Unless specified differently we will tacitly assume that the acceptance formulas
specify the parents a node depends on implicitly. It is then not necessary to give
the links in the graph explicitly. We thus can represent an adf D as a tuple (S, C)
where S and C are as above and L is implicitly given as (a, b) ∈ L iff a appears in
φb.

6More precisely, each acceptance condition Cs will be represented as a propositional formula φs

over the vocabulary par(s).
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The different semantics of adfs over statements S are based (via approximation
fixpoint theory) on the notion of a two-valued model. A two-valued interpretation
v : S → {t, f} – a mapping from statements to the truth values true and false – is a
two-valued model (model, if clear from the context) of an adf (S, C) whenever for
all statements s ∈ S we have v(s) = v(φs), that is, v maps exactly those statements
to true whose acceptance conditions are satisfied under v.7

Approximation Fixpoint Theory on ADFs
We now come back to AFT and illustrate its role to define semantics for
ADFs [Strass, 2013a; Brewka et al., 2013]. As AFT deals with operator-based se-
mantics and how to approximate them, the starting point is an operator for the
two-valued semantics: the notion of an adf model allows us to associate a two-
valued operator to a given adf.

Definition 11. Let D = (S, {φs}s∈S) be an ADF. The operator GD : V2 → V2 takes
an input v : S → {t, f} and returns an updated interpretation

GD(v) : S → {t, f} with s 7→ v(φs)

In words, the operator takes a two-valued interpretation v and returns a two-
valued interpretation GD(v) mapping each s ∈ S to the truth value that is obtained
by evaluating φs with v. It is easy to see that this operator characterises the adf
model semantics [Strass, 2013a, Proposition 3.4].

Proposition 12. Let D = (S, L, C) be an adf and v : S → {t, f} be a two-valued
interpretation. Then v is a (two-valued) model of D iff v = GD(v).

Example 13. For the ADF D from Example 10, Figure 2 depicts the complete
lattice ({v : S → {t, f}} , ≤t) and how the operator GD assigns its points to others.

Using the general operator-based definitions of Denecker, Marek and Truszczyski
[Denecker et al., 2004], it is again straightforward to determine the ultimate approx-
imation of GD. Recall from the section on approximation fixpoint theory (Section 2)
that the set V3 of all three-valued interpretations over S forms a complete meet-
semilattice with respect to the information ordering ≤i. The consensus meet oper-
ation ⊓i of this semilattice is given by (v1 ⊓i v2)(s) = v1(s) ⊓i v2(s) for all s ∈ S.
The least element of this semilattice is the interpretation vu : S → {u} mapping all

7In an earlier paper [Brewka et al., 2013], there was the notion of a “three-valued model”. The
development and analysis of that concept has been discontinued.
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{a 7→ f ,
b 7→ f ,
c 7→ f ,
d 7→ f}

{a 7→ t,
b 7→ f ,
c 7→ f ,
d 7→ f}

{a 7→ f ,
b 7→ t,
c 7→ f ,
d 7→ f}

{a 7→ f ,
b 7→ f ,
c 7→ t,
d 7→ f}

{a 7→ f ,
b 7→ f ,
c 7→ f ,
d 7→ t}

{a 7→ t,
b 7→ t,
c 7→ f ,
d 7→ f}

{a 7→ t,
b 7→ f ,
c 7→ t,
d 7→ f}

{a 7→ t,
b 7→ f ,
c 7→ f ,
d 7→ t}

{a 7→ f ,
b 7→ t,
c 7→ t,
d 7→ f}

{a 7→ f ,
b 7→ t,
c 7→ f ,
d 7→ t}

{a 7→ f ,
b 7→ f ,
c 7→ t,
d 7→ t}

{a 7→ t,
b 7→ t,
c 7→ t,
d 7→ f}

{a 7→ t,
b 7→ t,
c 7→ f ,
d 7→ t}

{a 7→ t,
b 7→ f ,
c 7→ t,
d 7→ t}

{a 7→ f ,
b 7→ t,
c 7→ t,
d 7→ t}

{a 7→ t,
b 7→ t,
c 7→ t,
d 7→ t}

Figure 2: Complete lattice of two-valued interpretations for Example 10; dashed
arrows visualise the assignments of the operator GD. It can be readily seen that GD

has two fixpoints, whence D has two models (Proposition 12).
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statements to undefined – the least informative interpretation. The ultimate ap-
proximation of the two-valued adf operator GD is now obtained as follows [Strass,
2013a, Lemma 3.12]:

Corollary 14. Let D be an adf. The operator ΓD : V3 → V3 is the ultimate ap-
proximation of GD and is defined as follows: for an adf D and a three-valued
interpretation v, the revised interpretation ΓD(v) is given by

ΓD(v) : S → {t, f , u} with s 7→ �
i {w(φs) | w ∈ [v]2}

That is, for each statement s, the operator returns the consensus truth value for
its acceptance formula φs, where the consensus takes into account all possible two-
valued interpretations w that extend the input valuation v. If this v is two-valued,
then [v]2 = {v}, thus ΓD(v)(s) = v(φs) = GD(v)(s) and ΓD indeed approximates GD.

Example 15. Consider the adf D1 = (S1, L1, C1) given by S1 = {a, b, c}, and L1
and C1 given as follows:

a b c

φa = ⊥ φb = a ∨ b ∨ ¬c φc = ¬a ∨ ¬b

Roughly, a cannot be accepted. Statement b supports itself, and is furthermore sup-
ported by a and attacked by c – more precisely, b can be accepted if a can be accepted
or b can be accepted or c can be rejected. In turn, c is jointly attacked by a and b –
c can only be rejected if both a and b are accepted, otherwise c is accepted. Figure 3
shows the associated complete meet-semilattice ({v : S1 → {t, f , u}} , ≤i) along with
the mappings of the operator ΓD1.

It is now an easy corollary of Proposition 6 to generalize the standard af se-
mantics to adfs:

Definition 16. Let D = (S, L, C) be an adf and v : S → {t, f , u} be an interpret-
ation.

1. v is complete for D iff v = ΓD(v).

2. v is admissible for D iff v ≤i ΓD(v).
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{a 7→ u,
b 7→ u,
c 7→ u}

{a 7→ u,
b 7→ u,
c 7→ t}

{a 7→ u,
b 7→ t,
c 7→ u}

{a 7→ t,
b 7→ u,
c 7→ u}

{a 7→ f ,
b 7→ u,
c 7→ u}

{a 7→ u,
b 7→ f ,
c 7→ u}

{a 7→ u,
b 7→ u,
c 7→ f}

{a 7→ u,
b 7→ t,
c 7→ t}

{a 7→ t,
b 7→ u,
c 7→ t}

{a 7→ t,
b 7→ t,
c 7→ u}

{a 7→ u,
b 7→ f ,
c 7→ t}

{a 7→ f ,
b 7→ t,
c 7→ u}

{a 7→ u,
b 7→ t,
c 7→ f}

{a 7→ f ,
b 7→ u,
c 7→ t}

{a 7→ t,
b 7→ f ,
c 7→ u}

{a 7→ t,
b 7→ u,
c 7→ f}

{a 7→ f ,
b 7→ f ,
c 7→ u}

{a 7→ f ,
b 7→ u,
c 7→ f}

{a 7→ u,
b 7→ f ,
c 7→ f}

{a 7→ t,
b 7→ t,
c 7→ t}

{a 7→ t,
b 7→ t,
c 7→ f}

{a 7→ t,
b 7→ f ,
c 7→ t}

{a 7→ f ,
b 7→ t,
c 7→ t}

{a 7→ t,
b 7→ f ,
c 7→ f}

{a 7→ f ,
b 7→ t,
c 7→ f}

{a 7→ f ,
b 7→ f ,
c 7→ t}

{a 7→ f ,
b 7→ f ,
c 7→ f}

Figure 3: Complete meet-semilattice of three-valued interpretations over
S1 = {a, b, c} under the information ordering for Example 15; dotted arrows visual-
ise mappings of the operator ΓD1. It can be seen that ΓD1 has a ≤i-least fixpoint,
which is situated right ≤i-beneath its two-valued models, the other two fixpoints of
ΓD1.

3. v is preferred for D iff v is ≤i-maximal admissible.

4. v is grounded for D iff v is the ≤i-least fixpoint of ΓD.

Incidentally, Brewka and Woltran [2010] already defined the operator ΓD (manu-
ally) and used it to define the grounded semantics. Thus the grounded semantics can
be seen as the greatest possible consensus between all acceptable ways of interpret-
ing the adf at hand. A three-valued interpretation is admissible for an adf D iff
it does not make an unjustified commitment that the operator ΓD will subsequently
revoke.

There is an alternative and perhaps slightly more accessible way of introducing
the operator ΓD. We will briefly pursue this way for illustration, and start out with
an additional definition. For a propositional formula φ over vocabulary S and a
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three-valued interpretation v : S → {t, f , u}, the partial valuation of φ by v is the
formula

φv = φ[p/⊤ : v(p) = t][p/⊥ : v(p) = f ]

Intuitively, given a three-valued interpretation v and a formula φ, the partial eval-
uation of φ with v takes the two-valued part of v and replaces the evaluated vari-
ables with their truth values. For example, consider the propositional formula
φ = a ∨ (b ∧ c) and the interpretation v1 = {a 7→ f , b 7→ t, c 7→ u}. Statement c with
v1(c) = u will remain in φ, while a and b are replaced, and we get φv1 = ⊥ ∨ (⊤ ∧ c).
Now assume that an adf D = (S, {φs}s∈S) is given via acceptance formulas; for this
D and a three-valued interpretation v, the revised interpretation ΓD(v) is given by

ΓD(v) : S → {t, f , u} with s 7→





t if φv
s is irrefutable

f if φv
s is unsatisfiable

u otherwise

An irrefutable formula is a formula that is satisfied under any two-valued interpret-
ation (i.e. the formula is a tautology).

For reasons of brevity, we will sometimes shorten the notation of a three-
valued interpretation v = {a1 7→ t1, . . . , an 7→ tn, } with statements a1, . . . , an and
truth values t1, . . . , tn to v =̂ {ai | v(ai) = t} ∪ {¬ai | v(ai) = f}. For instance,
v = {a 7→ t, b 7→ u, c 7→ f} =̂ {a, ¬c}.

We now show some concrete interpretations and semantics for an example.

Example 17. As we have seen before, for the adf D from Example 10 we obtain
the following two-valued models:

• v1 = {a 7→ t, b 7→ t, c 7→ t, d 7→ f} =̂ {a, b, c, ¬d}

• v2 = {a 7→ t, b 7→ f , c 7→ f , d 7→ t} =̂ {a, ¬b, ¬c, d}

Unfortunately, due to its sheer size (34 = 81 interpretations), we cannot depict the
semi-lattice ({S → {t, f , u}} , ≤i) and will henceforth resort to textual descriptions.
The grounded interpretation of D is v3 = {a 7→ t, b 7→ u, c 7→ u, d 7→ u} =̂ {a}. The
admissible interpretations (ordered by ≤i) of our example adf are as follows:
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∅

{a}{b} {¬b}

{a, ¬b}{a, b}{b, ¬d} {¬b, d} {¬b, ¬c}

{a, ¬b, d}{a, b, ¬d}{a, b, c} {a, ¬b, ¬c} {¬b, ¬c, d}

{a, b, c, ¬d} {a, ¬b, ¬c, d}

We verify that v4 =̂ {a, ¬b, ¬c} is admissible in the example adf. Statement a’s
acceptance condition is a tautology. This means that under any three-valued inter-
pretation v′ it holds that ΓD(v′)(a) = t, and, in particular, ΓD(v4)(a) = v4(a) = t.
Acceptance condition of statement b is the formula b. Such an acceptance condition
(a single unnegated variable) implies that for any three-valued interpretation v′ that
assigns a value to b, it holds that ΓD(v′)(b) = v′(b). If b is assigned t by v′, then
φv′

b is a tautology, if b is assigned f , then φv′
b is unsatisfiable, and if b is assigned

u by v′, then φv′
b = b is neither a tautology nor unsatisfiable. The acceptance con-

dition of statement c is a ∧ b. Evaluating φc under v4 gives φv4
c = ⊤ ∧ ⊥ ≡ ⊥,

and ΓD(v4)(c) = f = v4(c). Finally, v4(d) = u and φd = ¬b. Since for the un-
defined truth value it holds that u ≤i t and u ≤i f , if a three-valued interpretation v′

assigns undefined to a statement, then applying the operator ΓD under v′ cannot re-
turn a truth value with less information than u for that statement. For our example
interpretation, we have v4(d) ≤i ΓD(v4)(d) = t.

The complete interpretations of our example adf are

v3 =̂ {a}, v5 =̂ {a, b, c, ¬d}, v6 =̂ {a, ¬b, ¬c, d}.

The latter two, v5 and v6, are the preferred interpretations.

The definition of stable model semantics for adfs [Brewka et al., 2013] is based
on ideas from Logic Programming (LP) where stable models strengthen the no-
tion of minimal models by excluding self-justifying cycles of atoms. In LP, this is
achieved by a test which picks a candidate model M , uses M to reduce the original
logic program to a program without negative literals, and then checks whether M
coincides with the (typically unique) least model of the reduced program. This way
self-justifying cycles cannot appear. What we do for an adf D is very similar: to
check whether a two-valued model v of D is stable we do the following:

• we eliminate in D all nodes with v-value f and corresponding links,
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• we replace eliminated nodes in acceptance conditions by ⊥,

• we check whether nodes that are t in v coincide with those that are t in the
grounded interpretation of the reduced adf.

This is captured in the following definition [Brewka et al., 2013, Definition 6]. (See
also [Strass and Wallner, 2015, Proposition 2.4] for an alternative definition via
AFT.)

Definition 18. Let D = (S, L, C) be an adf with C = {φs}s∈S and v : S → {t, f}
be a two-valued model of D. Define the reduced adf Dv with Dv = (Sv, Lv, Cv),
where

• Sv = {s ∈ S | v(s) = t}

• Lv = L ∩ Sv × Sv

• Cv = {φv
s}s∈Sv where for each s ∈ Sv, we set φv

s = φs[b/⊥ : v(b) = f ].

Denote by w the unique grounded interpretation of Dv. Now the two-valued model v
of D is a stable model of D if and only if for all s ∈ S, we find that v(s) = t implies
w(s) = t.

Note that a stable model of an adf D is a model of D by definition (v is assumed
to be a model). In the reduct for a model v, (i) only statements assigned to true by
v are present, (ii) only links with both ends being statements assigned to true by
v are considered, and (iii) in each acceptance formula of the remaining statements
we replace statements b ∈ S that v maps to false by their truth value, i.e., in these
acceptance conditions variables assigned to false by v are replaced by ⊥ (and the
remaining statements/variables remain unmodified in the formulas). This definition
straightforwardly expresses the intuition underlying stable models: if all statements
the model v takes to be false are indeed false, we must find a constructive proof for
all statements the model takes to be true.

Example 19. Consider the adf D given by

φa = ⊤, φb = ¬a ∨ c, φc = b.

It has two models: v1 = {a 7→ t, b 7→ t, c 7→ t} and v2 = {a 7→ t, b 7→ f , c 7→ f}. Let
us check whether they are stable models. For v1, the reduct, Dv1, is equal to D
(every statement is assigned to true by v1, thus all statements and links remain
in the reduct and no statement is replaced by ⊥ in an acceptance condition). The
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grounded interpretation of D is v3 = {a 7→ t, b 7→ u, c 7→ u}, implying that v1 is not
stable in D, since the grounded interpretation of Dv1 is not equal to v1.8

For the other model of D, the reduct Dv2 = (Sv2 , Lv2 , Cv2) with Sv2 = {a},
Lv2 = ∅, and φa = ⊤. The grounded interpretation of Dv2 is v4 = {a 7→ t}. The
final condition of Definition 18, v2(a) = t implies v4(a) = t, is satisfied, and, there-
fore, v2 is a stable model of D. Further, v2 is the only stable model of D, since
we considered all models of D, only one being stable, and any other interpretation
cannot be stable for D, since being a model is a prerequisite for being stable.

Next, we illustrate that there are cases where an adf has a model, but no stable
model.

Example 20. Consider the adf D given by

φa = c, φb = c, φc = a ↔ b.

The only two-valued model of D is v = {a 7→ t, b 7→ t, c 7→ t}. Since c is true because
a and b are and vice versa, the model contains unintended cyclic support and thus
should not be stable. Indeed, for the reduct we get Dv = D. Let us compute the
grounded semantics of D. We start with interpretation w = {a 7→ u, b 7→ u, c 7→ u}.
Since none of the acceptance formulas is a tautology or an unsatisfiable formula,
w is already a fixpoint of ΓD and thus the grounded interpretation of D. Hence
v is not a stable model and D has no stable models, just as intended. Since v is a
minimal model of D the example illustrates that in Definition 18 we actually need the
grounded semantics; requiring v to be among the (subset-inclusion or information)
minimal two-valued models of the reduct is insufficient, in contrast to, e.g., stable
semantics of logic programs.

For our running example, the concept of reduct is applied as follows.

Example 21. The ADF from Example 10 has two two-valued models, namely
v1 = {a 7→ t, b 7→ t, c 7→ t, d 7→ f} and v2 = {a 7→ t, b 7→ f , c 7→ f , d 7→ t}. We obtain
the reducts for each model of D as follows:

8The definition of stable models in this article, taken from [Brewka et al., 2013, Definition 6],
supersedes the definition of stable models in the original paper on adfs [Brewka and Woltran,
2010, Definition 6] in that the new definition corrects certain unintended results. For instance, v1
in Example 19 is the only stable model according to the old definition, but this is not the case
under the new definition. The model v1 violates the basic intuition of stable semantics that all
elements of a stable model should have a non-cyclic justification: in the model v1 it holds that b is
accepted because c is and vice versa (these two statements have supporting links to each other; see
Section 6.1 for a formalization of attacking and supporting links between statements).
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a b

c

φa = ⊤ φb = b

φc = a ∧ b

Reduct Dv1

a

d

φa = ⊤

φd = ¬⊥

Reduct Dv2

The grounded interpretation of reduct Dv1 is {a}, v1 is thus not a stable model of D.
For v2, the reduct Dv2 has the grounded interpretation {a 7→ t, d 7→ t}. The model
v2 of D is thus the single stable model of D.

Well-known relationships between semantics defined on Dung AFs carry over to
adfs. This is formalized in the next theorem [Brewka et al., 2013, Theorem 3].

Theorem 3.1. Let D be an adf.

• Each stable model of D is a two-valued model of D;

• each two-valued model of D is a preferred interpretation of D;

• each preferred interpretation of D is complete;

• each complete interpretation of D is admissible;

• the grounded interpretation of D is complete.

We illustrate the relationships in Figure 4 where an arrow from a σ-interpretation
to a τ -interpretation denotes that every σ-interpretation is a τ -interpretation. Fur-
ther, again similarly as in AFs, any ADF possesses at least one admissible, complete,
preferred, and grounded interpretation, while this is not guaranteed for models and
stable models.

In addition to the semantical relationships generalizing those known from afs,
semantics on adfs also directly generalize semantics for afs. We first define for a
given af its associated adf.

Definition 22. For an af F = (A, R), define the adf associated to F as DF =
(A, R, C) with C = {φa}a∈A such that for each a ∈ A, the acceptance condition is
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stable model

two-valued model

preferred interpretation

complete interpretation

admissible interpretation

grounded interpretation

Figure 4: Relations between adf semantics

given by

φa =
∧

b∈A,

(b,a)∈R

¬b

Now we can formalize the way adfs, and their semantics, generalize afs in the
next two theorems [Brewka et al., 2013].

Theorem 3.2. Let F = (A, R) be an af and DF its associated adf. For any two-
valued interpretation v for A, the following are equivalent:

(A) the set v−1(t) = {a ∈ A | v(a) = t} is a stable extension of F ,

(B) v is a stable model of DF ,

(C) v is a two-valued model of DF .

Note that for af-based adfs, there is no distinction between models and stable
models. The intuitive explanation for this is that stable semantics on adfs breaks
cyclic supports, which cannot arise in afs because they cannot (directly) express
support.
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More generally, we can also show that our definitions are indeed proper gener-
alizations of Dung’s notions for afs as given in Proposition 6. The result is due to
[Brewka et al., 2013].

Theorem 3.3. Let F be an af and DF its associated adf. An interpretation
is admissible, complete, preferred, grounded for F iff it is admissible, complete,
preferred, grounded for DF .

On afs, if v is a preferred interpretation (a stable model) for an af F it holds
that there is no preferred interpretation (stable model) v ′ ̸= v such that the set of
statements assigned to true by v is a subset of the statements assigned to true by v ′,
i.e., {s | v(s) = t} ̸⊆ {s | v′(s) = t}. On general adfs, this property does not hold
for preferred interpretations and two-valued models, i.e., there are adfs with two
preferred interpretations (models) v and v′ such that {s | v(s) = t} ⊆ {s | v′(s) = t}.

Example 23. Consider adf D = ({a}, {(a, a)}, {φa = a}). Both v1 = {a 7→ f}
and v2 = {a 7→ t} are models and preferred interpretations of D. It holds that
{s | v(s) = t} = ∅ ⊊ {a} = {s | v′(s) = t}.

On the other hand, for any ADF D with stable models v1 and v2, it holds
that v1 ≤t v2 implies v1 = v2 [Strass, 2013a, Proposition 3.8], that is, such strict
relationships cannot occur between stable models. (This follows easily from AFT.)

4 ADFs as Modelling Tools
In this section we will provide various examples illustrating why – as we believe –
adfs are useful tools in formal argumentation. We discussed the term argumentation
middleware in the introduction already. We now want to give a clearer picture
what we actually mean by this. More precisely, we will discuss various graphical
representations of argumentation scenarios users may find useful. In each case we
define the semantics of the chosen representation by providing a formal translation
to adfs. The representation is thus equipped – via the translation – with the whole
range of Dung semantics we have defined for adfs. We also discuss how adfs can
serve as a tool for providing semantics to systems based on strict and defeasible
inference rules, again via a translation.

4.1 Weights and Preferences
In our informal discussion in the introduction we have already shown how graphical
representations based on link types (+ for supporting, − for attacking) can be
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a

b

c

g

5

2

−6

Figure 5: An argument graph with weighted links.

modeled using adfs. The same is obviously true for links annotated with numerical
weights. Throughout the paper we will assume a positive weight represents support,
a negative weight attack, in both cases with a given strength. An example can be
found in Figure 5.

The figure uses a weighted graph to represent a simple argumentation scenario.
We will provide the graph with a formal semantics based on translating it to an adf.
There are various ways of interpreting the numbers and of actually deriving specific
adf acceptance conditions from representations like this one. We first have to specify
how the numbers should actually be used to decide whether a node is accepted or
not. Recall that a link is active if its source node is accepted. A straightforward
idea is to accept a node whenever the sum of the weights of all active links pointing
to the node is positive. We will call this strategy sum-of-weights (sow). For node
g in Figure 5 this amounts, as we will see, to the following acceptance condition:
(¬c ∧ (a ∨ b)) ∨ (a ∧ b).

Secondly, we need to take care of those nodes which do not depend on other
nodes, that is, nodes without incoming links. We will call these nodes input nodes
and denote the input nodes of a graph G as input(G). It is often useful to consider
input nodes as parameters whose truth values can be chosen freely, with the aim to
explore the consequences of a particular choice. Consequently, our translation will
depend on the assignment of truth values to the input nodes.

Definition 24. Let G = (N, E, I) be a labelled graph with nodes N , edges E and
(integer) labelling function I : E → Z. Let A ⊆ input(G) be the subset of input
nodes considered true (the other input nodes are considered false). The sum-of-
weights translation of G under A is the adf D = (S, L, C) with S = N , L = E, and
the acceptance condition Cs (represented as a formula ϕs) is defined as follows:
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ϕs =





⊤, if s ∈ A

⊥, if s ∈ input(G) \ A

ϕsow(s), otherwise
where the formula ϕsow(s) is the disjunction of all conjunctions of literals built from
parent nodes of s which represent truth value assignments under which the sum of
weights of active links is positive.

Let us check how the acceptance condition for node g in Figure 5 is obtained.
The following table shows 8 possible assignments of truth values to g’s parent nodes,
together with the sum of values of active links:

a b c
t t t 1
t t f 7
t f t -1
t f f 5
f t t -4
f t f 2
f f t -6
f f f 0

The sum of weights of active links is positive in 4 of the 8 lines, the acceptance
condition of g is the disjunction of the conjunctions corresponding to these lines,
that is:

(a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ b ∧ ¬c)
which can be simplified to (¬c ∧ (a ∨ b)) ∨ (a ∧ b), the formula presented earlier.

Of course, there are many more strategies how to evaluate the numbers. One
possibility is to check whether the maximal positive weight of an active link is
higher than the maximal negative weight of an active link. This leads to a different
definition of acceptance conditions for non-input nodes. We leave the details to the
reader and just mention that in Figure 5 the acceptance condition for g under this
new strategy becomes (¬c ∧ (a ∨ b)).

Qualitative preferences can be handled in a similar manner. Let us first introduce
prioritized argument graphs.

Definition 25. A prioritized argument graph is a tuple G = (S, L+, L−, >) where
S is the set of nodes, L+ and L− are subsets of S × S, the supporting and attacking
links, and > is a strict partial order (irreflexive, transitive, antisymmetric) on S
representing preferences among the nodes.
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d

g

+
−
−
−

Figure 6: An argument graph with qualitative weights.

As before, we will translate prioritized argument graphs to adfs. We illustrate the
translation using an example. Assume we are given the graph in Figure 6.

Assume further the preference ordering is a > c and g > d, that is a is strictly
preferred to c, g to d. We want to capture the following intuition: an attacker
(represented by label − in the graph) does not succeed if the attacked node is
more preferred than the attacker, or if there is a more preferred supporting node
(represented by label + in the graph).

We treat input nodes as in Definition 24. The general scheme for deriving for-
mulas expressing the corresponding acceptance condition ϕs for a node s with a
non-empty set of parents is the following: we create a conjunction of implications,
one for each attacker t of s which is not less preferred than s. The left side of the
implication (the precondition) consists of the attacker t, the right side (conclusion)
is the disjunction of all supporting nodes of s which are more preferred than t.

In the example above, the only attackers which are not less preferred than g are
b and c. For b we obtain the implication b → f (as there is no supporting node more
preferred than b and the empty disjunction is equivalent to f). For attacker c we
obtain the implication c → a, as a is more preferred than c. This yields the following
acceptance condition for g: (b → f) ∧ (c → a) or, equivalently ¬b ∧ (c → a).

As a matter of fact, preferences are often not given in advance, as assumed in the
example, but an issue of debate themselves. One way to model situations where the
preference relation > is established dynamically in the course of argumentation is
the following. Let us assume some nodes represent (possibly conflicting) preference
information, that is information about which pairs of nodes belong to >. The idea is
to guess a (stable, preferred, grounded) interpretation M and then to verify whether
M can be generated in a way satisfying the preference relation it contains. To do so
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we extract the preference information from the relevant nodes in M . We then check
whether M can be reconstructed under this (now static) preference information using
the techniques described above. We thus verify whether the preferences represented
in the model itself were taken into account adequately.

Definition 26. An argument graph with dynamic preferences is a tuple

G = (S, L+, L−, P )

where S is the set of nodes, L+ and L− are subsets of S × S, the supporting and
attacking links, and P : S → S × S is a partial function.

The function P assigns preference information to some of the nodes in S. If
P (a) = (b, c) then node a carries the information that b is preferred over c. For a
three-valued interpretation M we use >M to denote the smallest strict partial order
on S containing the set {(b, c) | P (a) = (b, c), M(a) = t}. Note that >M may be
undefined, e.g. if M contains two nodes with conflicting preference information. The
semantics of argument graphs with dynamic preferences is now defined as follows:

Definition 27. Let G = (S, L+, L−, P ) be an argument graph with dynamic pref-
erences, A a subset of its input nodes. E is a (stable, preferred, grounded) inter-
pretation of G under A iff >E is a strict partial order and E is a (stable, preferred,
grounded) interpretation of the prioritized argument graph DE = (S, L+, L−, >E)
under A.

We thus guess an interpretation E of the intended type, extract from E the
corresponding strict partial order on S, and check whether E is among the intended
interpretations of the (non-dynamic) prioritized argument graph which is based on
the extracted preference information. The evaluation of the prioritized graph is
based on the translation to adfs described earlier in this section. For further details
see [Brewka et al., 2013].

4.2 Proof Standards
Proof standards are well known and play an important role in legal reasoning. They
are based on the intuitive idea that decisions or verdicts which have drastic con-
sequences, say for a defendant, should be based on stronger, less doubtful criteria
than decisions with limited consequences, say a small fine. Farley and Freeman
[Farley and Freeman, 1995] introduced a model of legal argumentation which distin-
guishes four types of arguments (in decreasing order of strength):

• valid arguments based on deductive inference,
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• strong arguments based on inference with defeasible rules,

• credible arguments where premises give some evidence,

• weak arguments based on abductive reasoning.
By using values V = {+v, +s, +c, +w, −v, −s, −c, −w} we will distinguish pro and
con links of the corresponding types in argument graphs, where the type of a link is
inherited from the type of its source node.

Based on these argument types, Farley and Freeman define the following proof
standards:

• Scintilla of Evidence: at least one pro-argument is accepted.

• Preponderance of Evidence: at least one pro-argument is accepted, all accepted
con arguments are outweighed by stronger accepted pro arguments.

• Dialectical Validity: there is at least one credible accepted pro-argument, none
of the other side’s arguments is accepted.

• Beyond Reasonable Doubt: there is at least one strong accepted pro-argument,
none of the other side’s arguments is accepted.

• Beyond Doubt: there is at least one valid active pro-argument, none of the
other side’s arguments is accepted.

Again we will show how these notions can be formalized using adfs.
Consider the labelled graph in Figure 7. Let us focus on the acceptance condition

for g, represented as a propositional formula. The condition obviously depends on
g’s proof standard. For scintilla of evidence it is sufficient that at least one pro-
argument is accepted. There are two such arguments, a and b, the acceptance
condition thus is a ∨ b. For preponderance of evidence at least one pro-argument
must be accepted, and in addition each accepted con-argument must be outweighed
by a stronger pro-argument. In our case this means that if c is accepted, then the
stronger pro-argument b must also be accepted, and d cannot be accepted, as there
is no stronger pro-argument than the valid argument d. Taken together this yields
the formula (a ∨ b) ∧ (c → b) ∧ ¬d. In a similar manner we obtain the formulas for
g for the remaining proof standards, as shown in the following table:

Scintilla of evidence: a ∨ b
Preponderance of evidence: (a ∨ b) ∧ (c → b) ∧ ¬d
Dialectical validity: b ∧ ¬c ∧ ¬d
Beyond reasonable doubt: b ∧ ¬c ∧ ¬d
Beyond doubt: ⊥
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Figure 7: A Farley/Freeman argument graph.
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Figure 8: A graph with dynamic proof standards.

It is even possible to choose the proof standard dynamically. For ease of presenta-
tion let’s focus on three proof standards, namely scintilla of evidence, preponderance
of evidence and dialectical validity, represented as se, pe and dv, respectively.9 Con-
sider the graph in Figure 8 which should be viewed as part of a larger argument
graph. The idea here is that scintilla of evidence is the default proof standard. If
the corresponding node se is attacked from outside (e.g. since a crime was com-
mitted), then preponderance of evidence becomes the active proof standard. If also
the corresponding node pe is attacked from outside (e.g. since the crime has serious
consequences), then dialectical validity will be active. To model this intuition, the

9The type of these nodes is irrelevant and thus left out.
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acceptance condition of node g becomes:

(se ∧ (a ∨ b)) ∨ (pe ∧ (a ∨ b) ∧ (c → b) ∧ ¬d) ∨ (dv ∧ b ∧ ¬c ∧ ¬d).

4.3 Carneades
Carneades [Gordon et al., 2007] is an advanced model of argumentation based on a
graphical representation of arguments and the propositions involved in them. Each
proposition has an associated proof standard (scintilla of evidence, preponderance
of evidence, clear and convincing evidence, beyond reasonable doubt, dialectical
validity). There is some paraconsistency at work in the system as scintilla of evidence
allows both a proposition and its negation to be accepted at the same time. The
adf graphs we will construct later will for this reason have separate nodes for each
proposition p and its complement p. A major restriction of Carneades is that cycles
in the graph are not allowed (which means the system handles only cases where all
Dung semantics coincide).

Let us start with some basic definitions underlying Carneades. Our presentation
follows [Brewka and Gordon, 2010].

Definition 28. An argument is a tuple ⟨P, E, c⟩ with premises P , exceptions E
(P ∩ E = ∅) and conclusion c. c and elements of P , E are literals.

An argument evaluation structure (CAES) is a tuple S =
⟨args, as, weight, standard⟩, where

• args is a set of arguments generating an acyclic argument graph,

• as is a consistent set of literals,

• weight assigns a real number to each argument, and

• standard maps propositions to a proof standard.

The argument graph generated by a CAES is obtained as follows: each literal
occurring in an argument arg becomes a node; each argument arg becomes a node;
each premise of an argument arg is linked to the corresponding argument node arg
via a link labelled with +, each exception via a link labelled with -; an additional
link, labelled with weight(arg), connects arg and the conclusion of arg.

The central notions in Carneades are applicability of arguments and acceptability
of propositions. These notions are defined via mutual recursion. Note that for the
recursion to bottom out it is essential that Carneades is acyclic.

Definition 29. We say an argument ⟨P, E, c⟩ ∈ args is applicable in S iff
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• p ∈ P implies p ∈ as or [p ̸∈ as and p acceptable in S], and

• p ∈ E implies p ̸∈ as and [p ∈ as or p is not acceptable in S].

Based on the applicability of arguments, we can define what it means for a
proposition p to be acceptable in S. As expected, acceptability depends on p’s proof
standard. The Carneades proof standards differ form those of Farley and Freeman.
In particular, they depend on numerical values:

• standard(p) = se: there is an applicable argument for p,

• standard(p) = pe: p satisfies se, and the maximum weight assigned to an
applicable argument pro p is greater than the maximum weight of an applicable
argument con p,

• standard(p) = ce: p satisfies pe, and the maximum weight of an applicable
pro argument exceeds a threshold α, and difference between the maximum
weight of applicable pro arguments and the maximum weight of applicable
con arguments exceeds a threshold β,

• standard(p) = bd: p satisfies ce, and the maximum weight of the applicable
con arguments is less than a threshold γ,

• standard(p) = dv: there is an applicable argument pro p and no applicable
argument con p.

We now show how arguments and the generated argument graphs are represented
using adfs. The translation to adfs is based on the techniques we have seen so
far in this section. Consider the argument a = ⟨{bird}, {peng, ostr}, flies⟩ with
weight(a) = 0.8. This argument is represented graphically as shown in Figure 9.

Apart from the duplication of propositions/complements the graphical repres-
entation corresponds to the original Carneades graph. Using techniques similar to
the ones described earlier, we can properly define acceptance conditions such that
an argument node is t in the adf graph iff the argument is applicable, and a pro-
position node is t iff the proposition is acceptable. The acceptance condition of an
argument node arg requires that all premises of arg are true, all exceptions false (as-
sumptions can be handled by an easy preprocessing step). The acceptance condition
of a proposition node depends on the proof standard and is modelled along the lines
of what we have discussed earlier in this section. We leave the details to the reader.
Note that we will resume our discussion of Carneades at the end of Section 5 where
we show how the relevant acceptance conditions can be formalized in grappa.
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Figure 9: A Carneades argument represented graphically.

What has been gained by this reconstruction? Why is it useful? First of all, it
shows the generality of adfs. Secondly, it puts Carneades on safe formal ground.
But in addition, and this is probably the main advantage, it allows us to give up
the restriction of Carneades to acyclic argument graphs. Nothing in our translation
rests on the assumption that Carneades is acyclic. The translation works perfectly
well also for cyclic argument evaluation structures. The only difference is that the
resulting adf graph will have cycles as well. But handling cycles of this kind is part
of the core functionality of adfs, and they have a variety of different semantics to
offer for this case, as we have seen in Section 3.

4.4 Rule-based Languages
A major strand of research in formal argumentation is concerned with using argu-
mentation techniques to assign semantics to simple rule-based languages (see the
paper Abstract Rule-based Argumentation by Modgil and Prakken in this issue).
Those languages are simple logic-inspired formalisms working with inference rules
on a set of propositional literals. Inference rules can be strict, in which case the
conclusion of the inference (a literal) must necessarily hold whenever all antecedents
(also literals) hold. Inference rules can also be defeasible, which means that the
conclusion usually holds whenever the antecedents hold. Here, the word “usually”
suggests that there could be exceptional cases where a defeasible rule has not been
applied [Pollock, 1987] (for example to avoid an imminent inconsistency).

Most of the existing works in this area translate rule-based languages to afs by
constructing arguments and identifying attacks. But this approach is not always
without problems, as Caminada and Amgoud [Caminada and Amgoud, 2007] ob-
served. (They even devised a set of rationality postulates for capturing the intended
behavior of semantics for rule-based languages.) While there exist af-based solu-
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tions to those problems [Wyner et al., 2013], we concentrate here on one approach
using adfs as target language [Strass, 2013b; Strass, 2015b]. Translating to adfs in-
stead of afs has the additional benefit of tackling the problem of cyclic justifications
amongst arguments on the semantic level instead of the syntactic one (like it is done
in the ASPIC approach [Caminada and Amgoud, 2007] among others). We only give
intuitions here and refer the reader to the original paper(s) for details [Strass, 2013b;
Strass, 2015b].

Inspired by the approach of Wyner et al. [Wyner et al., 2013], Strass [Strass,
2013b; Strass, 2015b] directly uses the literals from the theory base as statements
that express whether the literal holds. He also uses rule names as statements indic-
ating that the rule is applicable. Additionally, for each rule r he creates a statement
-r indicating that the rule has not been applied. Not applying a rule is acceptable for
defeasible rules, but unacceptable for strict rules since it would violate the closure
postulate. This is enforced via integrity constraints saying that it may not be the
case in any model that the rule body holds but the head does not hold: Technic-
ally, for a strict rule r, he introduces a conditional self-attack of -r; this self-attack
becomes active if (and only if) the body of r is satisfied but the head of r is not sat-
isfied, thereby preventing this undesirable state of affairs from getting included in a
model. Defeasible rules offer some degree of choice, whence it is left to the semantics
whether or not to apply them. This choice is modelled by a mutual attack cycle
between r and -r. The remaining acceptance conditions are equally straightforward:

• Opposite literals attack each other.

• A literal is accepted whenever some rule deriving it is applicable, that is, all
rules with head ψ support statement ψ.

• A strict rule is applicable whenever all of its body literals hold, that is, the
body literals of r are exactly the supporters of r.

• Likewise, a defeasible rule is applicable whenever all of its body literals hold,
and additionally the negation of its head literal must not hold.

Strass [2013b, 2015b] showed that the approach satisfies the rationality pos-
tulates of Caminada and Amgoud [2007]. Furthermore, this method has a mild
computational complexity (with an at most quadratic blowup from rule-based the-
ory to adf formalization, while there can be exponential to infinite blowup in other
approaches).
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5 Graph-based Argument Processing
We have seen in Section 4 how adfs can be used to provide graphical representations
of argumentation scenarios with semantics. The different approaches were based
on translations from some graphical representation to adfs. In a nutshell, the
grappa approach [Brewka and Woltran, 2014] described in this section addresses
the opposite question: is it possible to extend the formal techniques underlying adfs
in such a way that the semantics of various kinds of graphical representations can
be defined directly for these representations, without the detour of a translation?
More specifically, we will consider arbitrary (edge) labelled graphs. Such graphs are
highly popular for visualizing argumentation scenarios, and indeed the literature on
argumentation is full of such representations. The goal of this section is to define
various semantics directly for such labelled graphs.

Another way of looking at the approach is the following: Dung afs actually
can be seen as graphs where all edges have the same label, which is left implicit
for this reason. In addition, all nodes have the same type of acceptance condition.
Dung’s seminal contribution can thus be characterized as defining various semantics
for specific graphs with a single label and uniform acceptance conditions. Our goal is
to generalize this to arbitrary labelled graphs with flexible, user-defined acceptance
conditions.

grappa requires two major changes. First of all, the acceptance conditions can
no longer be propositional formulas built from parent nodes, as in adfs. We rather
have to define them in terms of the labels of active links in the graph, that is links
whose source nodes are accepted (true). More precisely, since it may be relevant
whether there are multiple active links with the same label, we have to consider
multisets of labels. An acceptance condition will thus be a function assigning a
truth value to each multiset of labels. Secondly, we have to modify the operator ΓD

for adfs D as defined in Section 3 in such a way that the new acceptance conditions
are taken into account adequately.

In the following we describe multisets as functions into the natural numbers.
Intuitively, the number assigned to an element describes the number of occurrences
of the element in the multiset.

Definition 30. An acceptance function over a set of labels L is a function c : (L →
N) → {t, f}.

The set of all acceptance functions over L is denoted F L.

Definition 31. A labelled argument graph (LAG) is a tuple G = (S, E, L, λ, α)
where

2296



Abstract Dialectical Frameworks

• S is a set of nodes (statements),

• E is a set of edges (dependencies),

• L is a set of labels,

• λ : E → L assigns labels to edges,

• α : S → F L assigns L-acceptance-functions to nodes.

The characteristic operator ΓG of a LAG G basically does what the corresponding
operator does for adfs: it takes a three-valued (or, equivalently, partial) interpreta-
tion v and produces a new one v′. In doing so, it checks which truth values of nodes
in S can be justified by v. This is done by considering all possible completions of
v, more precisely the multisets of active labels induced by completions of v. These
multisets are obtained by including an occurrence of a particular label for each oc-
currence of that label in a link which is active in the completion. If the acceptance
function of s yields t under all completions (more precisely, for all multisets induced
by any completion), then v′ assigns t to s. If the acceptance function of s yields f
under all completions, then v′ assigns f to s. In all other cases the value remains
undefined.

Here are the formal details. Note that we represent here three-valued interpreta-
tions v as sets of literals: nodes true in v appear positively in the set, nodes assigned
false appear negated, and undefined nodes are left out.

Definition 32. Let G = (S, E, L, λ, α) be a LAG, v a three-valued interpretation
of S. mv

s, the multiset of active labels of s ∈ S in G under v, is defined as

mv
s(l) = |{(e, s) ∈ E | e ∈ v, λ((e, s)) = l}|

for each l ∈ L.

The characteristic operator ΓG of G takes a three-valued interpretation v of S
and produces a revised three-valued interpretation ΓG(v) of S.

Definition 33. Let G = (S, E, L, λ, α) be a LAG, v a three-valued interpretation
of S. ΓG(v) = PG(v) ∪ NG(v) with

PG(v) =
{

s
��� α(s)(m) = t for each m ∈ {mv′

s | v′ ∈ [v]c}
}

NG(v) =
{

¬s
��� α(s)(m) = f for each m ∈ {mv′

s | v′ ∈ [v]c}
}

With this new operator we can define the semantics of grappa in exactly the
same way as was done for adfs:
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Definition 34. Let G = (S, E, L, λ, α) be a LAG, v a three-valued interpretation of
S.

• v is a model of G iff v is total and v = ΓG(v),

• v is grounded in G iff v is the least fixed point of ΓG,

• v is admissible in G iff v ⊆ ΓG(v),

• v is preferred in G iff v is ⊆-maximal admissible in G,

• v is complete in G iff v = ΓG(v).

Example 35. This is a variation of Example 10. Consider the LAG with S =
{a, b, c, d} and L = { , }. The following graph shows the labels of each link.

a b

c d

For simplicity, let us assume all nodes have the same acceptance condition re-
quiring that all positive links must be active (that is the respective parents must be
t) and no negative link is active.10 We obtain two models, namely v1 = {a, b, c, ¬d}
and v2 = {a, ¬b, ¬c, d}. The grounded interpretation is v3 = {a}. The 16 admissible
interpretations are exactly the same as for Example 17. Among the admissible in-
terpretations {a, b, c, ¬d} and {a, ¬b, ¬c, d} are preferred. Complete interpretations
are these two and in addition {a}.

Now let us turn to stable semantics. The idea underlying stable semantics is to
exclude self-justifying cycles. Again this semantics can be defined along the lines
of the corresponding definition for ADFs in [Brewka et al., 2013]: take a model
v, reduce the LAG based on v and check whether the grounded extension of the
reduced LAG coincides with the nodes true in v. Here is the definition:

Definition 36. Let G = (S, E, L, λ, α) be a LAG, v a model of G, Sv = v ∩ S.
v is a stable model of G iff v restricted to Sv is the grounded interpretation of
Gv = (Sv, Ev, L, λv, αv), the v-reduct of G, where

10In the pattern language developed later in this section this can be expressed as (#t( )−#( ) =
0) ∧ (#( ) = 0).
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• Ev = E ∩ (Sv × Sv),

• λv is λ restricted to Sv,11

• αv is α restricted to Sv.

Observe that in αv we did not have to alter the values of the function, i.e. the
true and false multisets remain the same (although some of them might become
“unused” since the number of parents shrinked). We will see later that this exactly
matches the stable semantics for ADFs from [Brewka et al., 2013]. For the moment,
we continue our running example.

Example 37. For Example 35 we obtained two models, v1 = {a, b, c, ¬d} and v2 =
{a, ¬b, ¬c, d}. In v1 the justification for b is obviously based on a cycle. The v1-reduct
of our graph is

a b

c

It is easy to see that the grounded interpretation of the reduced graph is {a}, v1
is thus not a stable model, as intended. We leave it to the reader to verify that v2
indeed is a stable model.

Results about the semantics carry over from adfs [Brewka et al., 2013].

Proposition 38. Let G be a LAG. The following inclusions hold:

stb(G) ⊆ mod(G) ⊆ pref (G) ⊆ com(G) ⊆ adm(G),

where stb(G),mod(G), pref (G), com(G) and adm(G) denote the sets of stable mod-
els, models, preferred interpretations, complete interpretations and admissible inter-
pretations of G, respectively. Moreover, pref (G) ̸= ∅, whereas mod(G′) = ∅ for some
LAG G′.

11Given a function f : M → N and M ′ ⊆ M , f restricted to M ′ is the function f ′ : M ′ → N
such that f ′(m) = f(m) for all m ∈ M ′.
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A remaining question is how to actually specify acceptance functions for grappa.
In [Brewka and Woltran, 2014] a specific pattern language has been developed for
this purpose. This pattern language allows for the specification of conditions on
multisets of labels. In the patterns one can refer to the number of total and active
labels of specific types, to minimal/maximal numerical labels of active links. It is
also possible to use simple arithmetics and relations.

More precisely, grappa acceptance functions are specified using acceptance pat-
terns over a set of labels L defined as follows:

• A term over L is of the form #(l), #t(l) (with l ∈ L), or min, mint, max,
maxt, sum, sumt, count, countt.

• A basic acceptance pattern (over L) is of the form a1t1 + · · · + antn R a, where
the ti are terms over L, the ais and a are integers and R ∈ {<, ≤, =, ̸=, ≥, >}.

• An acceptance pattern (over L) is a basic acceptance pattern or a Boolean
combination of acceptance patterns.

A grappa instance then is a labelled argument graph with acceptance functions
represented as acceptance patterns:

Definition 39. A grappa instance is a tuple G = (S, E, L, λ, π) where S is a set
of statements, E a set of edges, L a set of labels, λ an assignment of labels to edges,
and π an assignment of acceptance patterns over L to all elements of S.

We still need to specify what the acceptance function represented by a particular
pattern assigned to a node s is. Recall that an acceptance function assigns a truth
value in {t, f} to a multiset of labels. We will define this function by specifying
a satisfaction relation |= between multisets and patterns: the basic idea is that
a multiset receives value t iff it satisfies the corresponding pattern. The actual
definition is slightly more complicated, though, as some of the terms (actually those
indexed with t) are actually independent of the multiset, but depend on the node
s, more precisely on the labels of links – active or not – with target s. For this
reason, satisfaction of a pattern depends on both a multiset of labels and the node
the pattern is assigned to via π. For a multiset of labels m : L → N and s ∈ S the
value function valm

s is:

valms (#l) = m(l)
valms (#tl) = |{(e, s) ∈ E | λ((e, s)) = l}|
valms (min) = min{l ∈ L | m(l) > 0}
valms (mint) = min{λ((e, s)) | (e, s) ∈ E}
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valms (max) = max{l ∈ L | m(l) > 0}
valms (maxt) = max{λ((e, s)) | (e, s) ∈ E}
valms (sum) = ∑

l∈L m(l)
valms (sumt) = ∑

(e,s)∈E λ((e, s))
valms (count) = |{l | m(l) > 0}|
valms (countt) = |{λ((e, s)) | (e, s) ∈ E}|

min(t), max(t), sum(t) are undefined in case of non-numerical labels. For ∅ they
yield the neutral element of the corresponding operation, i.e.

valms (sum) = valms (sumt) = 0,

valms (min) = valms (mint) = ∞,

valms (max) = valms (maxt) = −∞.

Let m and s be as before. For basic acceptance patterns the satisfaction relation
|= is defined by

(m, s) |= a1t1 + · · · + antnR a iff
n∑

i=1

(
ai valms (ti)

)
R a.

The extension to Boolean combinations is as usual. The acceptance function rep-
resented by pattern p at node s then is the function assigning t to multiset m iff
(m, s) |= p.

Example 40. Let L = { , , , } be a set of labels representing strong support,
support, attack and strong attack, respectively. Assume a node s is accepted if its
(active) support is stronger than its attack, where we measure strength by counting
the respective links, hereby multiplying strong support/attack with a factor of 2. This
can be specified using the following pattern for s:

2(# ) + (# ) − 2(# ) − (# ) > 0.

We conclude this section by showing how the necessary patterns for Carneades
argument graphs, which we discussed in Section 4.3, can be defined in grappa.
Recall that these graphs have two kinds of nodes, argument nodes and propositions
nodes. The pattern for all argument nodes is

(
(#t ) − (# ) = 0

) ∧ (
(
# ) = 0

)
.
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which says that all premises and none of the exceptions must be accepted. The
patterns for proposition nodes depend on their proof standard. Recall that some of
these standards have additional numerical parameters α, β and γ. The terms max
and min represent the maximal, respectively minimal, label of an active link:

• scintilla of evidence: max > 0

• preponderance of evidence: max + min > 0

• clear and convincing evidence: (max > α) ∧ (max + min > β)

• beyond reasonable doubt: (max > α) ∧ (max + min > β) ∧ (− min < γ)

• dialectical validity: (max > 0) ∧ (min > 0)

This representation of the acceptance conditions underlying Carneades is not only
extremely simple. It has the big advantage that it is uniform: the patterns for all
nodes with the same proof standard are actually the same. This is different from
representations of proof standards and other notions we discussed in Section 4 in
adfs where the acceptance condition for each node depends on its specific parents.

6 Computational Aspects
In the introduction we discussed, in an informal manner, relationships between state-
ments (arguments) that are supporting or attacking, in the sense that a statement
can have a positive or negative influence on the acceptance of another statement.
General adfs have a generic notion of links (dependencies) between statements.
However, such links can be formally categorized into 4 groups, depending on whether
they have an attacking or supporting nature (or both or neither). This leads to the
notion of so-called bipolar adfs (badfs for short) which contain only attacking or
supporting dependencies. We will introduce them, based on the original definition
of [Brewka and Woltran, 2010], in Section 6.1, together with the formalization of
attacking and supporting links. Such badfs are a subclass of general adfs, yet have
appealing computational properties. They generalize afs in a direct manner, but
are strictly “in-between” afs and general adfs w.r.t. their corresponding express-
iveness. Results relating to expressiveness are presented in Section 6.2. Further,
many frameworks arising in argumentation in AI, other than afs, can be translated
to badfs [Polberg, 2016] (partially under semantics not discussed in this article).

From a computational perspective, badfs have the following interesting proper-
ties: they have the same worst-time complexity as afs for many semantics, while
general adfs typically exhibit higher computational complexity. We summarize
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these results in Section 6.3, followed by Section 6.4 that gives pointers to recent
systems for computing reasoning tasks on adfs and badfs.

6.1 Bipolar ADFs
As we have seen in previous sections, the concept of acceptance condition is quite
powerful. A natural question is to what extent different restrictions of acceptance
conditions may form interesting subclasses of adfs. One such subclass are bipolar
adfs, as already defined in [Brewka and Woltran, 2010]. This class relies on the
concept of attacking and supporting links which are defined as follows.

Let D = (S, L, C) be an adf. Formally, a link (r, s) ∈ L is

• supporting in D iff for all R ⊆ par(s), we have Cs(R) = t implies Cs(R∪{r}) =
t;

• attacking in D iff for all R ⊆ par(s), we have Cs(R∪{r}) = t implies Cs(R) =
t.

We use L+ ⊆ L to denote all supporting and L− ⊆ L to denote all attacking links
of L in an adf D = (S, L, C).

Example 41. In Figure 10 we see an example adf D = (S, L, C) with S = {a, b, c}
and acceptance conditions φa = b → c, φb = a ∧ (c ∨ ¬c), and φc = a ↔ b. On
the right of that figure the link types are shown. Let us investigate why some of the
links are supporting or attacking. Looking at the acceptance condition of a, φa, and
the parents of a then we have the following relevant sets of statements (shown as
two-valued interpretations):

v1 =̂ {¬b, ¬c} |= φa

v2 =̂ {b, ¬c} ̸|= φa

v3 =̂ {¬b, c} |= φa

v4 =̂ {b, c} |= φa

We see, e.g., that the link (c, a) is supporting, because whenever c is added to a
subset of parents that is mapped to t by Ca (switched to true in every model of φa)
then the new set (interpretation) is again mapped to true by acceptance condition
Ca (is a model of φa). More concretely, v1, v3, and v4 are models of acceptance
condition φa. Switching the truth value of c to true in each of them, results in v3
and v4 (assigning c to true in v1 and v3 results in both cases with v3, and assigning
c to true in v4 is again equal to v4). Both v3 and v4 are models of φa. This means
(c, a) is a supporting link. Similarly, link (b, a) is attacking because whenever we
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a

b c

b → c

a ∧ (c ∨ ¬c) a ↔ b

L+ L−

(a, b) (b, a)
(c, b) (c, b)
(c, a)

Figure 10: An adf with link types.

remove b from a set of parents of a that is mapped to t by Ca we get a set that is
likewise mapped to t by Ca.

Links (a, b) which are both attacking and supporting are so-called redundant
links. The reason to call such a link redundant is that switching the truth value
of a in any interpretation does not change the evaluation of acceptance condition
φb w.r.t. the original interpretation and the modified interpretation. A link that is
neither attacking nor supporting is called dependent.

Example 42. Continuing Example 41, the link (c, b) is a redundant link. This link
is both attacking and supporting. Redundancy means that the evaluation of φb is
independent of the value of c (formula φb only depends on the truth value of a). In
contrast, the links (b, c) and (a, c) are dependent links. For instance, {¬a, ¬b} |= φc

and {a, ¬b} ̸|= φc taken together show that (a, c) is not supporting in this adf. To
see that (a, c) is not attacking, consider {a, b} |= φc and {¬a, b} ̸|= φc.

An adf D = (S, L, C) is bipolar (a badf) if all links in L are supporting or
attacking or both, i.e., L = L+ ∪ L−. For example, our running example adf from
Example 10 is a badf. Further, for any af F its associated adf DF is bipolar, in
fact each link in DF is attacking.

Bipolar adfs are still a quite expressible class; they allow acceptance conditions
not only to express simply attack and support (for example ¬a1 ∧ · · · ∧ ¬an ∧ s1 ∧
· · · ∧ sm expressing that a statement is attacked by statements ai and supported by
statements sj), but more advanced relations, like e.g. ((¬a1∨s1)∧(¬a2∨s2))∨¬a3; in
fact, all examples given in Section 4 are also bipolar adfs. We would like to mention
here that bipolar adfs behave differently than the prominent class of bipolar afs
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[Cayrol and Lagasquie-Schiex, 2013]. Indeed, several concepts of support relations
have been discussed in the literature (abstract, deductive, necessary, and evidential
support), thus a detailed discussion is beyond the scope of this article, and we refer
the reader to works relating adfs to formalisms including support [Polberg and
Oren, 2014; Polberg, 2016]. However, what is important to state is that bipolar
adfs treat support and attack as equally strong concepts. Given the generality
of bipolar adfs which allow to “mix” support and attack as exemplified above, a
distinct handling of support and attack in adfs, e.g. as separated concepts in the
language instead of a property of links and acceptance conditions, would require a
lot of additional machinery.

Acceptance conditions in badfs are, in fact, not only interesting for defining
adfs. The study of the concept of bipolar Boolean functions has meanwhile found
applications outside of adfs. Baumann and Strass (2016) have analyzed the integer
sequence that arises when considering for each positive integer n the number of
bipolar Boolean functions in n arguments. The resulting sequence is novel and has
been added to the Online Encyclopedia of Number Sequences12. In further related
work, Alviano, Faber, and Strass [Alviano et al., 2016] applied the concept of bipolar
Boolean functions to aggregates in answer set programming and obtained a novel
class of aggregates whose model checking problems (according to the semantics of
Pelov et al. [Pelov et al., 2007] and Son and Pontelli [Son and Pontelli, 2007])
can be decided in deterministic polynomial time. They even identify a class that
goes beyond bipolar Boolean functions but still retains polynomial-time decidability;
this might constitute an interesting avenue for research that extends the bipolarity
concept of adfs.

6.2 Expressiveness and Realizability
Expressiveness of a formalism F (i.e. the set of structures available in a formalism)
with a semantics σ over a vocabulary A can be defined as the set of interpretation-
sets over A that elements of F (the knowledge bases kb ∈ F of that formalism) can
produce. Formally, the signature of a formalism F w.r.t. semantics σ is the set

Σσ
F = {σ(kb) | kb ∈ F}

Intuitively, expressiveness is a basic measure of the capabilities of formalism F under
σ, because it characterizes what “can and cannot be done” with F under semantics
σ [Gogic et al., 1995]. Whenever we have two formalisms, say F1 and F2, that share
a semantics σ and we find that Σσ

F1 ⊊ Σσ
F2 , then this intuitively means that F2 is

12https://oeis.org/A245079
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strictly more expressive than F1: all sets V ⊆ V3 that can be realized with F1 can
be realized with F2, and there is at least one set V ⊆ V3 that can be realized with
F2 but not with F1.

For afs, badfs and adfs under various semantics, their relative expressiveness
is summarized in the following result [Strass, 2015c; Strass, 2015a; Linsbichler et al.,
2016b].
Theorem 6.1. For σ ∈ {adm, com, prf , mod}, we find that

Σσ
AF ⊊ Σσ

BADF ⊊ Σσ
ADF.

For the stable model semantics stb, we find that
Σmod

AF = Σstb
AF ⊊ Σstb

BADF = Σstb
ADF.

Furthermore, for the model semantics we have
Σmod

ADF = V2 = {v : A → {t, f}},
that is, adfs under the model semantics are universally expressive.
Example 43. We give example sets of interpretations that can be used to witness
Σprf

AF ⊊ Σprf
BADF ⊊ Σprf

ADF. Consider S = {a, b, c} and interpretations v1 = {a 7→
t, b 7→ t, c 7→ f}, v2 = {a 7→ t, b 7→ f , c 7→ t}, and v3 = {a 7→ f , b 7→ t, c 7→ t}. To
see that {v1, v2, v3} ∈ Σprf

BADF, consider the adf over S with acceptance conditions
φa = ¬b ∨ ¬c, φb = ¬a ∨ ¬c, and φc = ¬a ∨ ¬b. It is easy to verify that this adf
is bipolar and that {v1, v2, v3} constitute its preferred interpretations. On the other
hand, from results in [Dunne et al., 2015] it follows that there is no af with preferred
extensions {a, b}, {a, c}, and {b, c}. In fact, this is quite easy to see: consider there
would exist an af F with those three preferred extensions. Then, there cannot be
an attack in F between a and b, and moreover {a, b} defends itself in F ; the same
holds for the pairs a, c, and b, c. But then, {a, b, c} has to be conflict-free in F and
defends itself, and thus {a, b} (and likewise, {a, c} and {b, c}) cannot be preferred in
F ; a contradiction.

For Σprf
BADF ⊊ Σprf

ADF, we use an example given in [Linsbichler et al., 2016a,
Theorem 8]: consider S′ = {a, b} and interpretations v4 = {a 7→ t, b 7→ t}, v5 =
{a 7→ t, b 7→ f}, and v6 = {a 7→ f , b 7→ u}. For X ′ = {v4, v5, v6} we have X ′ ∈ Σprf

ADF,
but X ′ /∈ Σprf

BADF. For general adfs, one example adf is D′ = (S′, L′, {φa = a, φb =
a ↔ b}). All three interpretations v4, v5, and v6 are preferred interpretations of D′.
This adf D′ is not bipolar (due to φb, see Example 42). There is no badf that has
X ′ exactly as its preferred interpretations.13

13For an automated way to check whether for a given set of three-valued interpretations there is
an adf, badf, or af that has exactly this set as its σ-interpretations, one can use the system UN-
REAL [Linsbichler et al., 2016a], available at http://www.dbai.tuwien.ac.at/proj/adf/unreal/.
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While this shows that badfs can do strictly more than afs, and in turn adfs can
do strictly more than badfs (with the exception of the stable model semantics), there
is little information on what exactly these signatures look like. Work on precisely
characterizing signatures has been carried out for afs (see the paper On the Nature
of Argumentation Semantics by Baumann in this issue. There has also been work
on characterizing realizability for adfs under two-valued [Strass, 2015a] and three-
valued [Pührer, 2015; Linsbichler et al., 2016b] semantics.

Finally, initial results on characterizing the representational succinctness of these
formalisms have recently been obtained. Succinctness not only takes into account
what formalisms can realize, but also to what representational cost, that is, what
amount of space is needed to represent the smallest knowledge base realizing some
desired set of interpretations. Again, the capabilities of different formalisms can be
compared with respect to this measure [Gogic et al., 1995]. As one promising result
on adfs, it turned out that even badfs are exponentially more succinct than normal
logic programs [Strass, 2015a].

6.3 Computational Complexity
The computational complexity of adfs is well-studied [Strass and Wallner, 2014;
Strass and Wallner, 2015; Gaggl et al., 2015; Brewka et al., 2013; Polberg and
Wallner, 2017; Wallner, 2014]; for an overview we refer the reader to the paper
Computational Problems of Formal Argumentation by Dvořák and Dunne in this
issue. For the reader’s convenience we repeat here the main results. For a specified
semantics σ, the main reasoning tasks for adfs to solve are:

• Credulous acceptance of a statement: is statement s assigned to true in at
least one interpretation under semantics σ?

• Skeptical acceptance of a statement: is statement s assigned to true in all
interpretations under semantics σ?

• Interpretation verification: is a given interpretation an interpretation under
semantics σ?

• Interpretation existence: is there an interpretation under semantics σ?

• Non-trivial interpretation existence: is there an interpretation under semantics
σ assigning true or false to some statement?

Briefly put, complexity of reasoning tasks on general adfs is situated one level
higher in the polynomial hierarchy compared to the corresponding tasks on afs. For
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adf compile to
ASP/QBF

ASP/QBF
solver results

(a)

adf

ASP
solver

encoding of
semantics

ASP
solver

encoding of
semantics

results

(b)

Figure 11: Workflow for systems based on (a) instance-based compilation (QADF,
GrappaVis, and YADF), and (b) static encodings (diamond and GrappaVis)

badfs complexity of reasoning stays at the same level as reasoning on afs for most
reasoning tasks, if the link type (attack or support) for each link is known (part of
the input). Thus, badfs offer more modeling capabilities than afs while having the
same (worst-case) computational cost as afs for many reasoning tasks.

6.4 Systems
Systems for implementing reasoning on adfs rely on declarative encodings in answer-
set programming (ASP) [Brewka et al., 2011] or quantified Boolean satisfiability, and
utilize available solvers for these languages [Gebser et al., 2011; Lonsing and Biere,
2010]. Most prominently, the diamond family14 [Strass and Ellmauthaler, 2017;
Ellmauthaler and Strass, 2016; Ellmauthaler and Strass, 2014; Ellmauthaler and
Strass, 2013] consists of ASP-based systems for reasoning on adfs. In each diamond
version an adf is encoded via ASP facts and, when augmented with static encodings
for semantics, several reasoning tasks can be solved by computing answer-sets of the
resulting ASP. Depending on the complexity of the reasoning task and used options
in diamond one call (in some family members two calls) to an ASP-solver are carried
out to solve the given problem instance. diamond includes dedicated badf-specific

14http://diamond-adf.sourceforge.net/
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encodings that make use of badfs’ upper complexity bounds.
The system QADF15 [Diller et al., 2015] uses solvers for quantified Boolean

formulas (QBFs) to perform reasoning on adfs. In QADF, in contrast to diamond,
each adf instance is compiled to a QBF incorporating both the input adf and the
chosen semantics, i.e., the encodings for the semantics are not static.

GrappaVis16 [Heißenberger, 2016] is a system implementing grappa (see Sec-
tion 5) and incorporates both instance-based compilation of grappa input into
declarative ASP encodings and static encodings for the semantics utilizing in both
cases one ASP solver call.

The system YADF17 [Brewka et al., 2017] is an ASP-based system for adfs,
based on the encodings for grappa used in GrappaVis. This system compiles adf
instances into one program to call an ASP solver (once).

The basic workflows for diamond, QADF, GrappaVis, and YADF are shown
in Figure 11. With this figure we illustrate that QADF, GrappaVis, and YADF
implement algorithms that take an instance of an adf, compile this instance, to-
gether with the chosen semantics and reasoning task, to one instance of an ASP or
a QBF. On the other hand, diamond and GrappaVis implement algorithms that
take an instance of an adf, add to this instance a static encoding for the semantics
and reasoning task, and give these to an ASP solver (with calling such a solver once
or twice, depending on the task). The difference between (a) and (b) is that in (a)
adf and semantics have to be compiled together into one input for the solver, while
for (b) semantics can be encoded separately (and modified separately).

A technique to cope with the high computational complexity of reasoning on
adfs was proposed by Linsbichler (2014). The technique is based on splitting the
input adf into partitions and solving one partition and transforming and solving
the other partitions accordingly.

7 Conclusion
In this article, we have reviewed the argumentation formalism of abstract dialectical
frameworks (adfs). In contrast to Dung style frameworks, adfs allow for a much
more general specification of the interrelationship between the arguments. We have
discussed how standard semantics like admissible, grounded, complete, preferred and
stable can be generalized to adfs by making use of the well known approximation
fixpoint theory due to Denecker, Marek and Truszczyski [Denecker et al., 2004].

15http://www.dbai.tuwien.ac.at/proj/adf/qadf/
16http://www.dbai.tuwien.ac.at/proj/adf/grappavis/
17http://www.dbai.tuwien.ac.at/proj/adf/yadf/
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Alternative approaches to defining adf semantics can be found in the works
of Polberg and colleagues [Polberg et al., 2013; Polberg, 2014a; Polberg, 2014b;
Polberg, 2015]. Likewise, further well-known semantics for afs have been generalized
to adfs, e.g. naive, stage, and the cf2 family of semantics [Gaggl and Strass, 2014]
and an alternative, symmetric version of the naive semantics [Strass and Wallner,
2015].

A further subclass of adfs, related to a certain notion of acyclicity and dif-
ferent from badfs, is investigated in [Polberg, 2015; Polberg, 2016]. Other au-
thors have analyzed the relationship of adfs and logic programs [Strass, 2013a;
Alviano and Faber, 2015] and in the course of that have defined new adf semantics,
like approximate stable models [Strass, 2013a], F-stable models [Alviano and Faber,
2015], and the grounded fixpoint semantics [Bogaerts et al., 2015]. The whole adf
formalism has even been lifted to the probabilistic case [Polberg and Doder, 2014].

We also addressed the modelling capabilities of adfs; for a thorough discussion
on the relation between adfs and other argumentations frameworks, see also [Pol-
berg, 2017]. A further application of adfs in the context of legal reasoning can
be found in [Al-Abdulkarim et al., 2014; Al-Abdulkarim et al., 2016]. The use of
adfs in text exploration has been investigated in [Cabrio and Villata, 2016]. Fi-
nally, we discussed the grappa approach which makes use of adf-like semantics in
a flexible graph-based formalism. grappa is the formal system underlying a mobile
argumentation app developed by Pührer [2017].
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