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Abstract. Every day, the factories of the automotive supply industry
have to process the painting of large amounts of items that are requested
by car manufacturing companies. Because of the many complex con-
straints and optimization objectives, �nding a good schedule becomes a
challenging task in practice and currently several full time employees are
required to manually create feasible production plans.
In this paper we propose a novel constraint programming model for a
real life paint shop scheduling problem. Using this model, we compare
results produced by state of the art solvers using a collection of real life
based instances. Additionally, we show that the decision variant of the
problem is NP-complete.

Keywords: Constraint Programming · Paint Shop Scheduling · Exact
Methods · NP-complete

1 Introduction

Every day, the paint shops of the automotive supply industry will paint a large
number of items that are requested by car manufacturing companies. To ensure a
cost e�cient production, modern factories will utilize a high level of automation
that includes multiple painting robots and conveyor belt systems. Because of the
sophisticated production process it becomes a hard task to �nd good painting
schedules, and human planners are usually not able to �nd optimized production
sequences. Therefore, there is a strong need to develop automated techniques for
paint shop scheduling.

In the literature related problems have been studied and several publications
consider the minimization of color changes for paint shop scheduling (e.g. [9], [8],
[7], [2]). However, the problem we investigate in this paper includes additional
important practical features like the optimized allocation of materials onto car-
rying devices and the consideration of many sequence and resource constraints.

? The �nancial support by the Austrian Federal Ministry for Digital and Economic
A�airs and the National Foundation for Research, Technology and Development is
gratefully acknowledged.
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We have previously introduced this real life paint shop scheduling problem that
appears in the automotive industry [11]. Its aim is to �nd a production sequence
that ful�lls a large set of given demands and to minimize the number of color
changes as well as the number of carrying devices that are used to carry ma-
terials through the paint shop. To solve the problem, we previously proposed a
greedy algorithm as well as a local search based approach and we provided a set
of practical benchmark instances in [11]. However, up to now no exact solution
approaches have been described and no optimal solutions could be provided.

In this paper we investigate constraint programming (CP) modeling tech-
niques to solve the paint shop scheduling problem. We describe two di�erent
modeling techniques that can be used to e�ciently formulate the problem. One
of them using a direct modeling approach and the other one using deterministic
�nite automatons (DFAs). Furthermore, we evaluate and compare our proposed
modeling techniques by performing a series of benchmark experiments using
state of the art solvers on known practical paint shop scheduling benchmark
instances. Although currently the exact methods we describe cannot be used to
solve very large practical instances, the proposed approaches can provide opti-
mal solutions for 7 benchmark instances that have been previously unknown.
Additionally, we analyze the complexity of the paint shop scheduling problem
and show that it is NP-complete.

In the next section we give a short description of the paint shop scheduling
problem as it appears in practice. Afterwards we will provide a formal descrip-
tion of the problem's input and describe our modeling techniques. Later we will
present the NP-completeness proof and discuss experimental results before we
give concluding remarks at the end of the paper.

2 The Paint Shop Scheduling Problem

The aim of the paint shop scheduling problem we investigate in this paper is
to determine an optimized production sequence that schedules the painting for
a number of raw material items within given due dates. To understand the
details behind the problem's optimization objective, one needs to know that
all items scheduled for painting have to be placed on custom carrier devices
that will move through the paint shop's painting cabins. Due to the fact that
there are many di�erent carrier types available, each being able to transport
certain con�gurations of demanded materials, it will be necessary to use a variety
of di�erent carrier device types during production. Although combinations of
di�erent raw material items may be transported by a single carrier, it is never
possible to schedule products that should be painted with di�erent colors on a
single carrying device.

The paint shops of the automotive supply industry are designed to support
an almost fully automated production process. Therefore, any scheduled carry-
ing devices will be automatically moved through the paint shop on a circular
conveyor belt system. Carriers can be inserted and removed from and onto the
conveyor belt at two carrier gates. One of the gates is used to insert carrying
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devices, while the other one can be used to remove carriers from the circular
conveyor belt system. Once a carrier has been inserted, it will be moved through
the cyclic paint shop system where it repeatedly will pass by the painting cabins,
the carrier gates, and a material gate, until the schedule will select the carrier
for ejection at the output gate. At the material gate unpainted raw materials
may be placed on any empty carrying device by paint shop employees. A loaded
carrier will then move to the painting cabins, where the scheduled color will be
applied on all carried items. Whenever a loaded carrier arrives at the material
gate after having completed a full round, another employee will take o� the col-
ored material pieces and may place new uncolored raw materials onto the carrier
that will then be painted in the succeeding round.

Figure 1 shows a schematic of the paint shop's layout and visualizes the
movement of carriers through the paint shop.

Material Gate

Carrier Gate (In)Carrier Gate (Out)

Carriers (Unpainted) Carriers (Painted)

Painting Cabins

Fig. 1: Schematic showing a paint shop
layout that is commonly used in the au-
tomotive supply industry.
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Fig. 2: Three possible options to reuse car-
riers between two consecutive rounds. The
feasible option on the left side of the �gure
will reuse only a single carrier of type C and
requires a total of two carrier insertions and
two carrier removals. The infeasible option
shown in the middle of the �gure suggests to
keep carriers of type B and C between two
consecutive rounds, however this is techni-
cally not possible. The option shown on the
right side of the �gure requires the fewest
number of carrier insertions and removals
for this example.

Because of the circular layout of the paint shop, the painting schedule is
organized in rounds. Within each painting round, several carrier units will be
painted one after the other in a sequence that is predetermined by the schedule.
We represent a candidate solution to the paint shop scheduling problem as a
table, where each column represents the scheduling sequence for a single round.
Each table cell will then assign the carrier type, material con�guration, and
color that should be scheduled in the associated round sequence. Considering all
carrier con�gurations and colors that can be scheduled for production, usually
a tremendous number of di�erent schedules can be created, however many con-
straints impose restrictions regarding due dates and allowed carrier sequences
have to be ful�lled on feasible schedules. A multi-objective minimization func-
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tion further includes two optimization criteria. The �rst optimization goal is to
minimize color changes in the scheduling sequence, while the second optimiza-
tion goal is concerned with an e�cient utilization of carrying devices. In the
following we will further explain the second minimization goal.

Since a paint shop schedule will usually not use the same carrier type sequence
in each round, it is often required to remove and insert the carriers from the
conveyor belt system between rounds. However, if carriers of the same type are
scheduled in two consecutive rounds it may be possible to reuse some of them
as long as the sequence of kept carriers is compatible with the scheduled carrier
sequence in the succeeding round. Since the insertion and removal of carrier
units from the circular track might lead to delays and can in general not be
done in parallel, it is desired to keep the number of such operations as low as
possible. Note that for any given two consecutive rounds, the minimal amount
of required carrier insertions and removals can be calculated by determining the
longest common subsequence (LCS) [10] of the two carrier type round sequences.
Figure 2 visualizes three alternative ways how carriers may be reused between
consecutive rounds.

3 Modeling the Problem with Constraint Programming

In this section we describe the problem's input parameters and afterwards pro-
pose a CP model for the paint shop scheduling problem.

3.1 Input parameters

The following parameters describe instances of the problem:

Number of carrier con�gurations: k ∈ N

Set of carrier con�gurations: K = {1, . . . , k}

Number of carrier types: t ∈ N

Set of carrier types: T = {1, . . . , t}

Number of colors: c ∈ N

Set of colors: C = {1, . . . , c}

Number of materials: m ∈ N

Set of materials: M = {1, . . . ,m}

Number of rounds to schedule: r ∈ N

Set of all rounds to schedule: R = {1, . . . , r}

Maximum number of carrier positions per round: s ∈ N
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Set of carrier positions per round: S = {1, . . . , s}

Minimum number of carriers that have to be scheduled in each round: q ∈ N>0

Number of available carriers of type t in round r:

ar,t ∈ {1, . . . , s}, ∀r ∈ R, t ∈ T

Number of demands: d ∈ N

Set of demands: D = {1, . . . , d}

Number of requested items per demand: ad ∈ N>0, ∀d ∈ D

Material type of demand: md ∈M,∀d ∈ D

Due round of demand: rd ∈ N>0, ∀d ∈ D

Color of demand: cd ∈ C,∀d ∈ D

Number of pieces of material type m that can be placed on con�guration k:

uk,m ∈ N,∀k ∈ K,m ∈M

Carrier type of each carrier con�guration (v0 will be set to 0):

vx ∈ {0, . . . , t}, ∀x ∈ {0, . . . , k}

Number of skids scheduled in the round previous to the scheduling horizon (his-
tory round): p ∈ N

Carrier type of the scheduled carrier at position i of the history round:

pti ∈ T,∀i ∈ {1, . . . , p}

Used color at position i of the history round: pci ∈ C∀i ∈ {1, . . . , p}

Number of forbidden carrier type sequences of length two: f ∈ N

Forbidden carrier type sequences: F = {1, . . . , f}

First carrier type of forbidden sequence f : t1f ∈ T, ∀f ∈ F

Second carrier type of forbidden sequence f : t2f ∈ T,∀f ∈ F

Minimum block size of consecutive carriers with type t:

bmin
t ∈ N>0, ∀t ∈ T

Whenever a carrier of type t is scheduled, the same carrier type has to be used for
the next consecutive carriers until the given minimum block length is reached.
(For example let bmin

t1 = 3 and the previously scheduled carrier type sequence
be 〈t3, t3, t2, t1〉, then to satisfy the minimum block length at least the next two
carriers in the sequence have to be t1).
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Maximum block size of consecutive carriers with type t:

bmax
t ∈ N>0, ∀t ∈ T

Number of forbidden color sequences: o ∈ N

Set of forbidden color sequences: O = {1, . . . , o}

First color of forbidden color sequence o: c1o ∈ C,∀o ∈ O

Second color of forbidden color sequence o: c2o ∈ C,∀o ∈ O

The number of carriers that have to be painted in a di�erent color before a switch
from color c1 to color c2 becomes legal for sequence o:

jo ∈ N>0,∀o ∈ O

For example let ov,w = 3 for colors v and w. Then the color sequences 〈v, w〉 and
〈v, y, w〉 would be illegal while the color sequence 〈v, y, y, y, w〉 would be legal
(assuming that y 6= v and y 6= w).

Color transition costs for all pairs of colors: fc1,c2 ∈ N, ∀c1, c2 ∈ C

3.2 Decision Variables

Scheduled carrier con�guration in round i and position j:

xi,j ∈ {0, . . . , k}, ∀i ∈ R, j ∈ S

If the value 0 is assigned, the position is empty and no carrier will be scheduled
at the position.

Scheduled color con�guration in round i and position j:

yi,j ∈ {0, . . . , c},∀i ∈ {0, . . . , r}, j ∈ S

If the value 0 is assigned, the position is empty and will not be painted.

3.3 Helper Variables

Number of scheduled carriers per round: pi ∈ {0, . . . , s}, ∀i ∈ {0, . . . , r}

Number of totally scheduled carriers: ps ∈ {0, . . . , s · r + p}

Sequence variables that will convert a given round index i and position index j
into a one dimensional position index:

seqi,j ∈ {0, . . . , s · r + p}, ∀i ∈ {0, . . . , r}, j ∈ S

For example let exactly 100 carriers be scheduled in round 1 and the length of
the history round p be 5, then seq2,3 will be set to the value 108. seqi,j will be
set to 0 if and only if no carrier is scheduled at position j in round i.
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3.4 Hard Constraints

1. Bind the correct number of scheduled skids to the associated helper variables:

p0 = p

pi =
∑

{j∈S|xr,j 6=0}
1 ∀i ∈ R

ps =
∑

i∈{0,...,r}
pi

(1)

2. Set correct values to sequence variables:

seq0,j = j ∀j ∈ {1, . . . , p}
seq0,j = 0 ∀j ∈ {p+ 1, . . . , s}

seqi,1 = p+
∑

z∈{2,...,i}
pz−1 ∀i ∈ R

seqi,j = seqi,j−1 + 1 ∀i ∈ R, j ∈ {2, . . . , s} where xi,j 6= 0

seqi,j = 0 ∀i ∈ R, j ∈ S where xi,j = 0

(2)

3. Unplanned carrier positions should always be scheduled last in a round:

(xi,j = 0)⇒ (xi,j+1 = 0) ∀i ∈ R, j ∈ {1, . . . , s− 1} (3)

4. Any scheduled carrier position must also assign a color and any unscheduled
position must not assign a color:

(xi,j 6= 0)⇔ (ci,j 6= 0) ∀i ∈ R, j ∈ S (4)

5. All demands must be satis�ed in time (overproduction is allowed):∑
{d∈D| md=m∧rd<=r∧cd=c}

ad ≤
∑

{xi,j |i∈{1,...,r}∧j∈{1,...,s}∧yi,j=c}
u(xi,j),m

∀r ∈ R,m ∈M, c ∈ C

(5)

6. Carrier availabilities must be respected in each round:∑
{j|j∈S∧v(xr,j)

=t}
1 ≤ ar,t ∀r ∈ R, t ∈ T (6)

7. The minimum round capacity must be ful�lled in each round:

pr >= q,∀r ∈ R (7)

8. Forbidden carrier type sequences must not appear in the schedule:

(v(xi,j)
6= t1f ) ∨ (v(xi,j+1)

6= t2f ) ∀f ∈ F, i ∈ R, j ∈ {1, . . . , s− 1} where j < pi

(v(xi,(pi)
) 6= t1f ) ∨ (v(xi+1,1)

6= t2f ) ∀f ∈ F, i ∈ {1, . . . , r − 1}

(pt 6= t1f ) ∨ (v(x1,1) 6= t2f ) ∀f ∈ F

(8)

9. Minimum carrier type block size restrictions must be ful�lled1:

1 For simplicity we omit an additional corner case that has to be regarded: The last
carrier type and color that appears in the history round also needs to be checked
regarding the sequence constraints. This can simply be modeled by adding additional
constraints for the history round.
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∧
z∈{j+2,...,s}

(seqi,z = 0 ∨ seqi,z ≥ seqi,j+1 + bmin
t ∨ v(xi,z)

= t)∧

∧
y∈{i+1,...,r},z∈S

(seqy,z = 0 ∨ seqy,z ≥ seqi,j+1 + bmin
t ∨ v(xy,z) = t)∧

 ∨
z∈{j+1,...,s}

(seqi,z = seqi,j + bmin
t ∧ v(xi,z)

= t)∨

∨
y∈{i+1,...,r},z∈S

(seqy,z = seqi,j + bmin
t ∧ v(xy,z) = t)


∀t ∈ T, i ∈ R, j ∈ {1, . . . , s− 1} where j < pi ∧ v(xi,j)

6= t ∧ v(xi,j+1)
= t

(9)

∧
z∈{2,...,s}

(seqi+1,z = 0 ∨ seqi+1,z ≥ seqi+1,1 + bmin
t ∨ v(xi+1,z)

= t)∧

∧
y∈{i+2,...,r},z∈S

(seqy,z = 0 ∨ seqy,z ≥ seqi+1,1 + bmin
t ∨ v(xy,z) = t)

 ∨
z∈{1,...,s}

(seqi+1,z = seqi+1,1 + bmin
t − 1 ∧ v(xi+1,z)

= t)∨

∨
y∈{i+2,...,r},z∈S

(seqy,z = seqi+1,1 + bmin
t − 1 ∧ v(xy,z) = t)


∀t ∈ T, i ∈ {1, . . . , r − 1} where v(xi,pi

) 6= t ∧ v(xi+1,1)
= t

(10)

10. Maximum carrier type block size restrictions must be ful�lled1:∨
z∈{j+1,...,s}

(seqi,z > seqi,j ∧ seqi,z ≤ seqi,j + bmax
t ∧ v(xi,z)

6= t)∨

∨
y∈{i+1,...,r},z∈S

(seqy,z > seqi,j ∧ seqy,z ≤ seqi,j + bmax
t ∧ v(xy,z) 6= t)

∀t ∈ T, i ∈ R, j ∈ S, where j ≤ pi ∧ v(xi,j)
= t ∧ seqi,j =≤ ps− bmax

t

(11)

11. No forbidden color sequences should occur in the schedule1:∧
z∈{j+1,...,s}

(seqi,z = 0 ∨ seqi,z > seqi,j + jo ∨ yi,z 6= c2o)∧

∧
x∈{i+1,...,r},z∈S

(seqx,z = 0 ∨ seqx,z > seqi,j + jo ∨ yx,z 6= c2o)

∀o ∈ O, i ∈ R, j ∈ S where j ≤ pi ∧ yi,j = c1o

(12)

3.5 Helper Variables for the Objective Function

The amount of color change costs occurring in round r of the schedule:

ccr ∈ N,∀r ∈ R

The number of required carrier type changes between round r and r + 1:

scr ∈ {0, . . . , s · 2}, ∀r ∈ {0, . . . , n− 1}
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The number of carriers that will be reused between round r and round r + 1:

skr ∈ {0, . . . , s}, ∀r ∈ {0, . . . , n− 1}

Information on the position of the kept carrier sequence in the next/previous
round:

kept1i,j ∈ {0, . . . , s}, ∀i ∈ {0, . . . , r − 1}, j ∈ S

kept2i,j ∈ {0, . . . , s},∀i ∈ R, j ∈ S

3.6 Hard Constraints for Objective Function

Calculate color changes per round: 2

cci =
∑

j∈{1,...,s−1}
f(yi,j),(yi,j+1)

+ f(yi−1,pi−1),(yi,1)
∀i ∈ R

(13)

All kept carrier type sequences between consecutive rounds have to be legal: 3

In Section 2 we have described that one can visualize which carrier types will
be reused between two consecutive rounds by drawing edges that connect the
associated positions. We initially experimented with a modeling approach that
introduces variables for all possible edges and tries to maximize the number of
selected edges without causing any edge crossings. However, using this model it
was not possible to �nd the optimal number of edges for two given rounds of
practical size within a time limit of one hour. Therefore, we instead propose a
modeling approach that introduces variables that store the positions of all reused
carriers.

kept1i,j > kept1i,j−1 ∀i ∈ {0, . . . , r − 1}, i ∈ {2, . . . , s} where kept1i,j 6= 0

kept2i,j > kept2i,j−1 ∀i ∈ R, i ∈ {2, . . . , s} where kept2i,j 6= 0
(14)

kept21,j ≤ p ∀j ∈ S where kept21,j 6= 0

kept1i,j ≤ pi+1 ∀i ∈ {0, . . . , r − 1}, j ∈ S where kept11,j 6= 0

kept2i,j ≤ pi−1 ∀i ∈ {2, . . . , r}, j ∈ S where kept21,j 6= 0

kept10,j = 0 ∧ kept21,j = 0 ∀j ∈ {p+ 1, . . . , s}

kept1i,j = 0 ∧ kept2i+1,j = 0 ∀i ∈ {1, . . . , r − 1}, j ∈ S where j > pi

kept1i,j > 0 ∧ kept2i+1,j > 0 ∀i ∈ {0, . . . , r − 1}, j ∈ S

(15)

pt(kept21,j)
= v(x

1,(kept1
0,j

)
) ∀j ∈ S where kept21,j 6= 0

v(x
i,(kept2

i+1,j
)
) = v(x

i+1,(kept1
i,j

)
) ∀i ∈ {1, . . . , r − 1}, j ∈ S where kept1i,j 6= 0

(16)

2 We assume that color costs from and to 0 will always be 0
3 For simplicity we omit a special condition that handles the corner case of an empty
history round. In this case one can simply add a constraint that forces all carriers
of round 1 to be inserted if p = 0.



Constraint Based Modeling for Scheduling Paint Shops 11

Calculate the number of reused carriers after each round:

ski =
∑

{j|j∈S∧kept1i,j 6=0}

1 ∀i ∈ {0, . . . , r − 1} (17)

Count the total number of required carrier changes between two rounds:

sci = pi − ski + pi+1 − ski ∀i ∈ {0, . . . , r − 1} (18)

3.7 Objective Function

The objective function of the paint shop scheduling problem aims to minimize
the number of carrier changes (sc) and color change costs (cc) per round. The
sums are squared, since it is preferable to distribute the required changes over
the scheduling horizon and to avoid peaks of many changes within single rounds.

min
∑
i∈R

cc2i +
∑

i∈{0,...,r−1}
sc2i (19)

4 Modeling the Problem with DFAs

In this section, we propose a di�erent way to model the sequence constraints by
using DFAs. All automatons will process either the total sequence of scheduled
carrier types or the total sequence of scheduled colors. We can provide the total
carrier type or color sequence in our model by simply concatenating the values
of all two indexed decision variables (xi,j or yi,j ,∀i ∈ R, j ∈ S) into a one
dimensional list. The automatons can then be used to check whether or not the
total color or carrier type sequence can be accepted.

Forbidden carrier type sequences: For each forbidden carrier type sequence
f ∈ F we model an automaton that processes the total sequence of scheduled
carrier types. Figure 3 shows how automatons can be constructed to check that
no forbidden carrier type sequence occur in the schedule.

Minimum carrier type block sizes: For each carrier type t ∈ T we model an
automaton that processes the total sequence of scheduled carrier types. Figure 4
shows how automatons can be constructed to check the minimum carrier type
block size constraint.

Maximum carrier type block sizes: For each carrier type t ∈ T we model an
automaton that processes the total sequence of scheduled carrier types. Figure 5
shows how automatons can be constructed to check the maximum carrier type
block size constraint.
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q0start q1

t1f
any x 6= t1f

any x 6∈ {0, t1f , t2f}

t1f

0

Fig. 3: Automaton that will be gen-
erated for each carrier type sequence
f ∈ F to check the forbidden carrier
type sequence constraint. q0 will accept
any carrier type. State q1 will be en-
tered whenever the �rst carrier type of
the forbidden sequence (t1f ) is encoun-
tered and will not accept the second
type (t2f ) before any other type is en-
countered. Both states will be legal �-
nal states.

q0start q1 . . . qbmin
t

t

any x 6= t

t

0

t

0

any x 6∈ {0, t}

0

t

Fig. 4: Automaton that will be con-
structed for each carrier type t ∈ T to
check the minimum carrier block type
size constraint. q0 will accept any car-
rier type that is di�erent to t. States
q1� qbmin

t
will be used to count con-

secutive assignments of carrier type t.
States q0 and qbmin

t
are the only legal

�nal states.

q0start q1 . . . qbmax
t

t

any x 6= t

t

0

t

0

any x 6∈ {0, t}

0

Fig. 5: Automaton that will be generated for each carrier type t ∈ T to check the
maximum carrier block type size constraint. q0 will accept any carrier type that is
di�erent to t. States q1� qbmax

t
will be used to count consecutive assignments of carrier

type t. All states will be legal �nal states.

q0start q1 . . . qjo
c1o

any x 6= c1o

any x 6∈ {c1o, c2o, 0}

0, c1o

any x 6∈ {c1o, c2o, 0}

0

c1o

any x 6∈ {c1o, c2o, 0}

0

Fig. 6: Automaton that will be generated for each forbidden color sequence o ∈ O to
check the forbidden color sequence constraint. q0 will accept any color assignment that
is di�erent to c1o. States q1� qjo will be used to assert that an assignment of color c2o
may only occur if color c1o has not been encountered within the previous j positions.
All states will be legal �nal states.
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Forbidden color sequences: For each forbidden color sequence o ∈ O we
model an automaton that processes the total sequence of scheduled colors. Fig-
ure 6 shows how automatons can be constructed to check the forbidden color
sequences constraint.

5 Complexity Results

In this section we show that the decision variant of the paint shop scheduling
problem (which asks whether or not a feasible schedule with an objective value
≤ t can be found) is NP-complete. We prove the following:

Theorem 1. The decision variant of the paint shop scheduling problem is NP-
complete.

Proof. Firstly, we provide a polynomial time reduction from the set cover prob-
lem [4] to the paint shop scheduling problem.

Let we have given an arbitrary instance of set cover problem consisting of the
universe of elements U = {1, . . . , w}, an integer k, and a set S that denotes the
collection of z sets. The union of all sets in S is equal the universe U = {1, . . . , w}.
The question is whether there is a set covering of size k or less.

We construct an instance of the paint shop scheduling problem can then be
constructed as follows: We set the scheduling horizon to a single round (r = 1)
and set C = {1} as only one color should be considered for scheduling. The set
of materials M will be set to match all items of the universe M = {1, . . . , w}.
The maximum number of allowed carrier devices per round will be set to s = k,
while the minimum number of required carrier devices per round will be set to
q = 1. We only consider a single carrier type and therefore set T = {1}. The set
of all demands D that need to be scheduled will be set to D = {(1, i, 1, 1)|i ∈
{1, . . . , w}} (we want to schedule each material exactly once until round 1). We
further create z carrier con�gurations, each one corresponding to a single set in
S: K = {1, . . . , z}. All con�gurations will belong to the same carrier type and we
therefore set vk = 1,∀k ∈ K. The materials contained within each con�guration
should equal all elements contained in the associated set and we therefore set
∀x ∈ K,m ∈M :

ux,m =

{
1, if m is contained in the associated set of con�guration x

0, otherwise

Furthermore, we set the number of carriers in the history round to p = 0.
Finally, we set all color costs to 0 and disable all sequence dependent hard
constraints as well as the carrier availability constraint by setting fc(1, 1) =
0, bmin

1 = 1, bmax
1 = s, o = 0, f = 0 and a1,1 = s.

We now prove the following:

Claim. There exists a set cover of size k or less if and only if there exists a
feasible paint shop schedule with total costs lower or equal to k2.
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Since we set all color transition costs to 0 and the history round contains
0 carriers, the objective function of the paint shop scheduling problem will be
equal to the squared number of scheduled carriers in round 1 (any carrier has to
be inserted). As we have set s = k, it is easy to see that any feasible paint shop
schedule which ful�lls the maximum round capacity hard constraint will have an
objective value ≤ k2. Furthermore, since we have disabled all hard constraints
except the demand constraint in the paint shop scheduling instance, any schedule
that satis�es all demands will be a feasible schedule.

Let S be a set cover using k′ sets (where k′ ≤ k), we then know that all
elements of the universe U are contained in at least one of selected the sets.
The demand constraint was constructed in such a way that each element of the
universe has to be scheduled at least once in round 1 and we also know that for
each set s ∈ S there exists a carrier con�guration that carries each element in
s exactly once. Therefore, there exists a set of k′ carrier con�gurations that can
be scheduled in any sequence to ful�ll all demands.

Now we prove the opposite direction. Let P be a feasible paint shop schedule.
We know that any material is demanded to be scheduled exactly once in round 1.
Therefore, it must be possible to remove any repeatedly used con�gurations from
P in such a way that each carrier con�guration which is scheduled in P is used
exactly once without violating the demand constraint. As in our reduction we
set s = k, we know that we have k′ (where k′ ≤ k) carriers in the schedule. Given
such a schedule that uses k′ carriers, we can construct a feasible set covering of
size k′ by using the sets which correspond to the con�gurations used in P .

Finally we show that the decision variant of the paint shop scheduling prob-
lem is in NP. Suppose that we have given a candidate solution P . We show below
that we can verify in polynomial time if P is a feasible solution to the problem.

The number of carriers in P cannot be larger than s ·r (see input parameters
in Section 3) and we can simply check the carrier availability and round capacity
constraints by counting the number of carriers in each round. Similarly, the
sequence constraints (minimum/maximum block length of consecutive carrier
types, forbidden carrier type and color sequences) can be checked by iterating
over the scheduled sequence. Furthermore, we can check the demand constraint
by verifying that Equation 5 holds. We have to perform not more than r ·m · c
comparisons to check this equation. For each comparison we have to consider at
most d demands and s · r positions to calculate the sums.

To calculate the total color change costs of P we iterate over the scheduled
sequence, similar as we did for the sequence dependent hard constraints. Finally,
we have to determine the maximum number of carriers that can be reused be-
tween any two consecutive rounds in the schedule to calculate the total carrier
change costs. As already mentioned in an earlier section, this can be achieved by
solving the corresponding longest common subsequence problem for each pair of
consecutive rounds (polynomial time algorithms to solve the LCS problem have
been described in [10]). ut
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6 Empirical Evaluation

We evaluated our models using the set of benchmark instances that we have
previously provided in [11]. This collection of benchmark instances includes 24
instances that are based on real life planning scenarios. Instances 1�12 include
small to medium sized instances, whereas instances 13�24 describe very large
problems. Both, the set of small to medium instances as well as the set of very
large instances describe six di�erent planning horizons of 7, 20, 50, 70, 100 and
200 rounds (two instances for each horizon). We could not solve any of the
very large instances using the exact approaches described in this paper, since all
used solvers went out of memory before any feasible solution could be achieved.
Therefore, in the following we describe our experiments with instances 1�12.

We implemented the models proposed in this paper using the MiniZinc [6]
modeling language together with current versions of Chu�ed [1], Gurobi [5] and
Cplex [3]. Initially we performed benchmark experiments under a time limit of
one hour on an Intel Core i7-8550U 1.80 Ghz CPU with 16 GB RAM to com-
pare the results produced by the direct modeling approach and the DFA model.
Our initial experiments showed that the DFA based model produced the best
results for all instances. Therefore, we decided to further investigate di�erent
search strategies with the DFA model and evaluated several combinations of
variable and value selection strategies by setting the associated MiniZinc anno-
tations (we considered �rst fail, smallest, and input order for variable selection
and indomain min as well as indomain split for value selection). For Chu�ed
we additionally activated the free search parameter which allows the solver to
alternate between the given search strategy and its default one on each restart.
Our �nal experiments have been conducted using an Intel Xeon E5345 2.33 GHz
CPU with 48 GB RAM under a time limit of one hour.

Results achieved using Chu�ed in our initial experiments are shown in Ta-
ble 1. The best results achieved in our �nal experiments are shown in Table 2.
The �nal results show that Chu�ed was able to produce the best results for 10
of the instances and prove optimal solutions for 7 instances. Gurobi and Cplex
could not provide any additional best results but could also prove optimal so-
lutions for instances 4 instances within the time limit. As we mentioned, the
benchmark instances were previously solved in [11] with a metaheuristic ap-
proach. This metaheuristic approach produced better results than our initial
exact method for most of the instances. However, the current exact approach
that uses DFAs provides 7 previously unknown optimal solutions. Therefore,
these two approaches complement each other.
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Chu�ed Chu�ed DFA

I1 775* 775*

I2 842* 842*

I3 56550 961*

I4 NA 918*

I5 17880 17880

I6 842* 842*

I7 NA NA
I8 NA NA
I9 NA NA
I10 NA NA
I11 NA NA
I12 NA NA

Table 1: Results of our initial exper-
iments with Chu�ed using default
parameters. The �rst column shows
the best solution costs produced
with the direct model, while the sec-
ond column shows the best results
achieved with the DFA model.

Chu�ed Gurobi Cplex LS

I1 775* 775* 775* 806
I2 842* 842* 842* 868
I3 961* 961* 961* 990
I4 918* NA 1160 975
I5 530* 17880 17880 593
I6 842* 842* 842* 887
I7 1046 NA NA 1084
I8 1237* NA NA 1834
I9 1006 NA NA 1735
I10 973 NA NA 1180
I11 NA NA NA 5476

I12 NA NA NA 5723

Table 2: The �nal best results
achieved for instances 1�12 using
Chu�ed, Gurobi and Cplex com-
pared with the best known upper
bounds from [11](LS). The best re-
sult within each line is formatted in
bold face. Results marked with a *
denote proven optimal solutions.

7 Conclusion

In this paper we have proposed CP modeling techniques to solve a real life paint
shop scheduling problem. Additionally, we analyzed the problem's complexity
and have proven that the decision variant is NP-complete.

Our experimental results show that the exact methods investigated in this
paper can be used successfully to solve small to medium sized instances which
still have a huge search space. The advantage of these methods is that they
could provide previously unknown optimal solutions for some instances. Our
experiments show that the best results could be achieved by using the DFA
based model. Based on this model Chu�ed produced better results than Gurobi
and Cplex for the majority of the benchmark instances.

In the future we plan to consider the hybridization of the proposed modeling
techniques together with existing metaheuristic approaches within the frame-
work of large neighborhood search.
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