
Constraint-Based Scheduling for Paint Shops in the
Automotive Supply Industry

FELIX WINTER and NYSRET MUSLIU, Christian Doppler Laboratory for Artificial Intelligence and

Optimization for Planning and Scheduling, Institute for Logic and Computation, DBAI, TU Wien

Factories in the automotive supply industry paint a large number of items requested by car manufacturing

companies on a daily basis. As these factories face numerous constraints and optimization objectives, finding

a good schedule becomes a challenging task in practice, and full-time employees are expected to manually

create feasible production plans.

In this study, we propose novel constraint programmingmodels for a real-life paint shop scheduling problem.

We evaluate and compare our models experimentally by performing a series of benchmark experiments using

real-life instances in the industry. We also show that the decision variant of the paint shop scheduling problem

is NP-complete.
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1 INTRODUCTION
Paint shops belonging to the automotive supply industry produce a large number of items requested

by car manufacturing companies, on a daily basis. To ensure a cost efficient production, modern

factories adopt a high level of automation, including the use of multiple painting robots and

conveyor belt systems. This sophisticated production process calls for good painting schedules,

which are difficult to establish. Human planners are usually not able to identify optimized production

sequences. Therefore, the development of automated techniques for paint shop scheduling in the

automotive supply industry is urgently needed.

In the literature, related problems have been studied, and several publications have considered

the minimization of color changes for paint shop scheduling in the automotive industry (e.g. [6, 15,

21, 22]). Previously, we introduced a real-life paint shop scheduling problem that appears in the

automotive supply industry [26] which includes important practical features, such as the optimized

allocation of materials to carrying devices, and considers many sequence and resource constraints.

In addressing this problem, the goal is to find a production schedule that fulfills a large set of given
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0:2 Winter and Musliu

demands and to minimize the numbers of color changes and carrying devices that are used to

carry materials through the paint shop. Furthermore, the problem considers due date constraints.

Therefore, a feasible solution should be able to ensure that all products placed on the carriers are

scheduled on time. To solve the problem, we previously proposed a local-search based approach

and evaluated its performance on a set of practical benchmark instances that we made publicly

available in [26]. However, to the best of our knowledge, exact solution approaches have not

been investigated in the literature, and optimal solutions for many instances are not yet known.

Furthermore, a complexity analysis of the hardness of the problem has not been considered in the

literature.

In the current work, we introduce for the first time exact approaches based on constraint

programming (CP) to solve the paint shop scheduling problem. We propose two new CP models

that can be used to efficiently formulate the problem. One of them uses a direct modeling approach,

and the other one models the sequence constraints of the problem as deterministic finite automatons

(DFAs). Furthermore, we evaluate and compare our proposed modeling techniques by performing

a series of benchmark experiments using state-of-the-art solvers on known practical benchmark

instances of paint shop scheduling. Although the exact methods we describe cannot be used to solve

large practical instances, the proposed approaches can provide optimal solutions to nine benchmark

instances. Additionally, we analyze the complexity of the paint shop scheduling problem and show

that the decision variant of the problem is NP-complete.

In the next section, we provide a review of the related literature. In Section 3, we describe the

paint shop scheduling problem as it appears in practice. In Sections 4 and 5, we respectively provide

a formal description of the problem’s input and propose our modeling techniques. In Sections 6 and

Section 7, we present the NP-completeness proof and discuss the experimental results, respectively.

In the last section, we provide our concluding remarks.

2 RELATED LITERATURE
Automated solution methods for production scheduling and sequencing problems in the automotive

industry have been thoroughly studied. One of the earliest investigated problems from this area is

the so-called car sequencing problem, which was first described in [15]. The goal of the original

formulation of this sequencing problem is to find an optimized production sequence for a given

set of cars; the manufacturing process for each car may require different assembly operations

depending on the installation options ordered (e.g., sun roof, air conditioning). As each of these

options is installed at a different station, solutions to the car sequencing problem should ensure that

the capacity of these stations is never exceeded during production. These constraints are usually

expressed as ratio constraints that restrict the number of cars having a certain option appearing in

subsequences of the solution.

In [11] the car sequencing problem was identified as an NP-hard problem. Many heuristic

and exact solution approaches have been investigated to solve this problem. One of the earliest

exact approaches [3] successfully utilized a constraint logic programming approach to solve large

practical problem instances. Other exact approaches for car sequencing have since been proposed,

and they include mixed integer programming (e.g., [4]) and branch and bound algorithms (e.g., [5]).

Metaheuristic and hybrid approaches have also been investigated to tackle extremely large instances

for variants of the car sequencing problem (e.g., [13, 18]) in a reasonable runtime. In [21], the

authors provided an extensive survey of the solution approaches for the car sequencing problem

and described a widely investigated problem extension used in the ROADEF’2005 challenge. The

extended problem formulation used in this challenge additionally considers the painting process

and includes the minimization of the costs caused by necessary color changes in the car sequence.

The investigated solution methods for the ROADEF’2005 problem include exact approaches based
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on mixed integer programming (e.g., [17]) as well as metaheuristics such as ant colony optimization

and local search (e.g., [7, 17]).

Another sequencing problem originating from automotive paint shops focuses solely on the

minimization of costs induced by color changes [6]. The main goal of this paint shop problem is to

find an optimal coloring for a given sequence of jobs that minimizes the required color changes. An

NP-hardness proof and an exact approach using dynamic programming (under bounded instance

parameters) were investigated in [6]. Linear programming and local search based approaches to

tackling practically sized instances of the problem were studied in [12].

A sequential ordering problem in automotive paint shops was described in [22]. Similar to other

paint shop problems, this sequential ordering problem aims to find a production sequence that

minimizes the necessary color changes. However, this variant considers the utilization of so-called

selectivity banks, in which multiple cars are grouped together in banks, as is often the case in

automotive paint shops. The authors of [22] proposed a model as a sequential ordering problem

and introduced an exact method based on a branch and bound algorithm. Further studies on the

topic also investigated heuristic techniques to quickly produce efficient solutions (e.g., [23, 24]).

In [26], we proposed a novel paint shop scheduling problem occurring in paint shops of the auto-

motive supply industry. Similar to previous production scheduling problems from the automotive

area, our paint shop scheduling problem is aimed at creating an optimized schedule for a paint

shop that minimizes color changes in the production sequence. However, as the manufacturing

process of this particular problem produces car components that are placed on carrier devices,

novel carrier constraints need to be considered, and the number of carrier changes in the sched-

ule should be minimized. In contrast to previous automotive paint shop problems, the proposed

paint shop scheduling problem introduces due date constraints and therefore requires a prompt

scheduling of the required components. These unique properties make the proposed paint shop

scheduling problem considerably different from previous automotive sequencing problems. Hence,

we proposed a novel metaheuristic solution approach using simulated annealing in [26]. In the

experimental evaluation, the metaheuristic approach was able to produce feasible solutions for

large realistic problem instances within a reasonable runtime.

Another scheduling problem from the automotive supply industry deals with component primer

painting [20]. The problem was deemed to be NP-hard in [20], and the authors further proposed an

exact solution approach that uses mixed integer programming (MIP) and a metaheuristic approach

that uses tabu search. Similar to the paint shop scheduling problem, the component primer painting

problem deals with the placement of multiple automotive components on hanger devices. However,

solution methods for this problem cannot be compared with the methods we investigate in the

current work, as they do not consider due dates and they define different constraints and an

objective function that includes capacity loss, mixing costs (when different item categories are

placed on a hanger) and workload costs. Furthermore, the component primer painting problem

does not consider the minimization of color changes or carrier changes and related constraints, all

of which appear in the paint shop scheduling problem.

Table 1 presents an overview of the properties of the problems related to the paint shop scheduling

problem investigated herein.

Columns 1–5 display from left to right the name of the related problem, considered constraints,

considered solution objectives, example papers describing exact solution methods, and example

papers investigating heuristic solution methods. The final row of the table shows the properties of

the paint shop scheduling problem investigated in the current work.
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Problem Constraints Objective Function Exact Methods Heuristics

Car Sequencing [15, 21]

Capacity Constraints,

Color Batch Size

Color Changes,

Capacity Violations

[3–5, 17] [13, 17, 18]

Paint Shop Problem [6] None Color Changes [6, 12] [12]

Sequential Ordering
in Paint Shops [22] Precedence Constraints Color Changes [22] [23, 24]

Component Primer
Painting [20]

Hanger Eligibility,

Hanger Capacity

Capacity Loss,

Mixing Costs,

Workload

[20] [20]

Paint Shop
Scheduling [26]

Due Dates, Resource Capacity,

Forbidden Sequences

Color Changes,

Carrier Changes

– [26]

Table 1. An overview on the literature on related problems to the paint shop scheduling problem.

3 PAINT SHOP SCHEDULING PROBLEM
The aim of the paint shop scheduling problem we introduced in [26] is to determine an optimized

production schedule that organizes the painting for a large number of automotive components

within given due dates.

Twominimization criteria should be considered to reduce waste and save costs. First, the schedule

should minimize the required color changes in the production sequences whenever possible. Second,

the schedule should ensure the efficient utilization of the carrying devices used to transport the

raw material components through the paint shop.

All items scheduled for painting need to be placed on customized carrier devices that move

through the paint shop’s painting cabins on a conveyor system. In each cabin, several painting

robots apply paint on the carried automotive components. Carriers come in many different types,

each of which can transport certain configurations of demanded materials. Hence, different carrier

device types need to be used in production. Although combinations of different raw material items

may be transported by a single carrier, scheduling products that should be painted with different

colors on a single carrying device is impossible. Figure 1 shows a schematic of two carrier types and

three possible material configurations. The carrier shown on the left uses a material configuration

that transports two triangular and two square components, the middle carrier transports two

circular and two square components, and the carrier on the right side transports three circular

and three square components. The figure illustrates how the same carrier type (the left and middle

carriers are similar, whereas the right carrier is of a different type) can be used to transport different

material type combinations through the paint shop as long as all pieces on a single carrier are

painted with the same color (e.g., white, light-gray).

The paint shops of the automotive supply industry are designed to support an almost fully

automated production process. Therefore, any scheduled carrying devices are automatically moved

through the paint shop on a circular conveyor belt system. Carriers can be inserted into and removed

from the conveyor belt at two carrier gates. One of the gates is used to insert carrying devices

while the other one can be used to remove carriers from the circular conveyor belt system. Once

a carrier has been inserted, it moves through the cyclic paint shop system, wherein it repeatedly

passes by the painting cabins, the carrier gates, and a material gate until the schedule selects it

for ejection at the output gate. At the material gate, unpainted raw materials may be placed on
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Fig. 1. Schematic showing
three carriers of two differ-
ent carrier types. Material Gate

Carrier Gate (In)Carrier Gate (Out)

Carriers (Unpainted) Carriers (Painted)

Painting Cabins

Fig. 2. Schematic showing a paint shop layout that is commonly used
in the automotive supply industry.

any empty carrying device by paint shop employees. A loaded carrier then moves to the painting

cabins, where the scheduled color is applied on all carried items. Whenever a loaded carrier arrives

at the material gate after having completed a full round, another employee takes off the colored

material pieces and may place new uncolored raw materials onto the carrier for painting in the

succeeding round.

Figure 2 shows a schematic of a paint shop’s layout and visualizes the movement of carriers

through the paint shop. Carriers are displayed as circles in the figure, and some of them carry

unpainted automotive components, which are visualized as small white squares. Carrying devices

that have passed by the painting cabins are marked with black squares (which represent painted

materials) in the graphic.

As the paint shop maintains a circular layout, the painting schedule is organized in rounds that

are processed sequentially. Within each painting round, several carrier units are painted one after

the other in a sequence that is predetermined by the schedule. However, the number of processed

carriers per round and the exact sequence do not necessarily have to be equal for each round. A

schedule therefore sets the painting sequences for multiple rounds and determines the raw material

and color configurations for each scheduled carrying device. Note that in practice, the processing

of a single paint shop round takes a fixed amount of time that does not depend on the number

of carriers scheduled for the round (as long as the number of carriers per round stays within the

specified boundaries). Therefore, the scheduling horizon of a problem instance is specified as the

number of rounds to schedule, and due dates are expressed as due rounds in the problem input.

The planner then needs to schedule carrier configurations into rounds so that all components

are produced on time. In practice, schedules are usually planned weekly using a rolling horizon

approach.

We derive a table representing a candidate solution to the paint shop scheduling problem. In

this table, each column represents the scheduling sequence for a single round. Each table cell then

assigns the carrier type, material configuration, and color that should be scheduled in the associated

round sequence (from top to bottom). Figure 3 illustrates a toy problem solution for a scheduling

horizon of three rounds. In the schedule shown in the figure, the carrier sequence (A1, A1, A2, B1,

B2) scheduled for the first round (R1) includes five carriers. The first three carriers of this round

sequence use a type A carrier with item configurations 1 and 2 and should be painted in a light gray

color. Carriers 4 and 5 in R1 are of type B, and require a dark gray color and item configurations 1

and 2.

When all carrier configurations and colors that can be scheduled for production are considered,

a large number of different schedules can be created. However, numerous constraints imposing
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R1 R2 R3

1 a a a

2 a a a

3 a a a

4 a a a

5 a a

A1

A1

A2

B1

B2

A2

A2

C1

B2

C1

C2

C3

B1

B2

Fig. 3. Example of a painting schedule
with three rounds. Each column repre-
sents the scheduled carrier sequences
scheduled within a single round.

R1 R2

1 a a

2 a a

3 a a

A

B

C

C

A

B

Feasible

R1 R2

a a

a a

a a

A

B

C

C

A

B

Infeasible

R1 R2

a a

a a

a a

A

B

C

C

A

B

Optimal

Fig. 4. Three options to reuse carriers between two consecu-
tive rounds.

due dates and technical requirements regarding feasible carrier sequences (sequence constraints

also apply to round overlapping sequences) need to be fulfilled.

R.1 All material demands must be scheduled for production on time.
R.2 Carrier type availabilities should be considered in each round (e.g., if 10 physical instances of

carrier type A are available, then this carrier can never be scheduled more than 10 times in a single

round).

R.3 Minimum/maximum carrier capacities should be considered in each round: The number of

carriers scheduled for each round needs to fall within the minimum and maximum boundaries to ensure

an efficient production cycle (empty carriers may be scheduled if necessary).

R.4 Forbidden carrier type sequences must not appear in the schedule: For logistical reasons at
the material gate, certain carrier types are not allowed to directly follow another carrier type in the

production sequence (e.g. a type A carrier should never directly follow a type B carrier in the production

sequence).

R.5 Minimum and maximum carrier blocks should be considered: Similar to the consideration of

the forbidden carrier type sequence constraints, logistical restrictions impose minimum and maximum

block sequence constraints on scheduled carrier sequences.

In other words, whenever a carrier of type 𝑡 is scheduled, the same carrier type needs to or may be

used for the next consecutive carriers until the given minimum/maximum block length is reached (e.g.,

to illustrate the minimum block length, let the minimum block length for type 𝑡1 be three and let the

previously scheduled carrier type sequence be ⟨𝑡3, 𝑡3, 𝑡2, 𝑡1⟩; to satisfy the minimum block length, at

least the next two carriers in the sequence need to be of type 𝑡1).

R.6 Forbidden color sequences should be respected: For certain pairs of colors 𝑐1, 𝑐2, a number of

carriers need to be painted in a different color before a switch from color 𝑐1 to another color 𝑐2 is legal

in the production sequence.

For example, let this number for colors 𝑐1 and 𝑐2 be three. Then, the color sequences ⟨𝑐1, 𝑐2⟩ and
⟨𝑐1, 𝑦, 𝑐2⟩ would be illegal while the color sequence ⟨𝑐1, 𝑦,𝑦,𝑦, 𝑐2⟩ would be legal (assuming that 𝑦 ≠ 𝑐1
and 𝑦 ≠ 𝑐2).

Amultiobjective function further includes twominimization criteria for the paint shop scheduling

problem. The first optimization goal is to minimize color changes in the production sequence while

the second optimization goal is concerned with the efficient utilization of carrying devices. In the

following sections, we further explain the second minimization goal.

As a paint shop schedule usually does not use the same carrier type sequence in each round,

the carriers need to be removed from and inserted to the conveyor belt system between rounds.

However, if carriers of the same type are scheduled in two consecutive rounds some of them may

be reused as long as the sequence of the kept carriers is compatible with the scheduled carrier

sequence in the succeeding round. As the insertion and removal of carrier units to and from the

circular track might lead to delays and are general not doable in parallel, the number of such
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operations should be kept as low as possible. Note that for any given two consecutive rounds, the

minimum number of required carrier insertions and removals can be calculated by determining the

minimum string edit distance (ED) [25] between two carrier type round sequences.

Two consecutive rounds of carrier type sequences may be viewed as two strings: the minimum

number of required carrier changes corresponds to the ED with only the insertion and deletion

operations considered. Figure 4 visualizes three alternative ways to reuse carriers between two

consecutively scheduled round sequences, each of which uses three carriers (R1: A, B, C and R2: C,

A, B). The graphic shows how the ED determines the minimum number of required carrier changes.

The feasible option shown on the left side of the figure reuses only a single type C carrier and

requires a total of two carrier insertions and two carrier removals. The infeasible option shown in

the middle of the figure suggests retaining type B and C carriers between two consecutive rounds.

However, this is technically not possible as C cannot be placed on an earlier position than B in the

next round if it is reused (no edge crossings are allowed). The option shown on the right side of the

figure requires the fewest number of carrier insertions and removals, that is, one insertion and one

removal; this requirement corresponds to the minimum string ED in this case.

4 MODELING THE PROBLEMWITH CP
In this section, we briefly provide an overview on CP, prior to proposing a direct CP model for the

paint shop scheduling problem. In Section 5, we further propose an alternative model for some of

the problem’s constraints.

4.1 Preliminaries
CP is a paradigm for solving combinatorial search problems using a wide range of techniques

from areas such as artificial intelligence, computer science, and operations research. CP has been

successfully applied to solve problems from many domains, including scheduling, vehicle routing,

and planning.

In CP, users declaratively state the constraints that restrict feasible solutions to a search problem.

In the case of optimization problems, an associated objective function that determines the cost of a

solution is declared.

Formally, a constraint optimization problem is defined as follows:

Given a set 𝑋 of variables (𝑥1, 𝑥2, . . . , 𝑥𝑛), a set 𝐷 of domains for each variable (𝐷1, 𝐷2, . . . , 𝐷𝑛), a

set 𝐶 of constraints (𝑐𝑖 ⊆ (𝐷1 × 𝐷2 × · · · × 𝐷𝑛),∀𝑐𝑖 ∈ 𝐶), and an objective function 𝑓 : (𝐷1 ×
𝐷2 × · · · × 𝐷𝑛) → R, a constraint optimization problem is the problem of finding an assignment

𝑥𝑖 = 𝑑𝑖 ∈ 𝐷𝑖 ,∀𝑖 ∈ {1, 2, . . . , 𝑛} such that all constraints are satisfied and the cost function is

optimized.

In solving constraint optimization problems with CP, standard methods utilize a combination of

backtracking search and constraint propagation, in which users can specify customized problem-

specific branching strategies. Further information about CP is available in [19].

High-Level Modeling. In the following sections, we use a high-level CP modeling notation to

propose CP models for the paint shop scheduling problem. Most parts of the models are directly

solvable by CP. However, we implicitly make use of constraint reification to express conditional

sums and logical implications. To illustrate how logical implications can be translated into low-

level clauses, we consider a constraint of the form (𝑥1,1 = 0) ⇒ (𝑥1,2 = 0). We can translate this

constraint into the following clauses: 𝑏1 ⇔ (𝑥1,1 = 0), 𝑏2 ⇔ (𝑥1,2 = 0),¬𝑏1 ∨ 𝑏2, where 𝑏1, 𝑏2 are
Boolean variables.

We also implicitly make use of the element constraint to use variables as indices for array access

in our models.
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Further information on constraint reification and the element constraint is available in [19].

4.2 Input parameters
The following parameters describe instances of the problem:

Set of carrier configurations: 𝐾

Set of carrier types: 𝑇

Set of colors: 𝐶

Set of materials: 𝑀

Set of all rounds to schedule: 𝑅

Set of carrier positions per round (maximum number of positions per round): 𝑆

Minimum number of carriers that have to be scheduled in each round: 𝑞 ∈ N>0

Number of available carriers of type 𝑡 in round 𝑟 : 𝑎𝑟,𝑡 ∈ {1, . . . , |𝑆 |},∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇

Set of demands: 𝐷
Each demand will request a number 𝑎 of materials𝑚 in color 𝑐 that have to be scheduled until

round 𝑟 . The set of demands may contain optional demands that are due until future rounds (i.e.

rounds lying outside the scheduling horizon).

Number of requested items per demand: 𝑎𝑑 ∈ N>0,∀𝑑 ∈ 𝐷

Material type of demand: 𝑚𝑑 ∈ 𝑀,∀𝑑 ∈ 𝐷

Due round of demand: 𝑟𝑑 ∈ N>0,∀𝑑 ∈ 𝐷

Color of demand: 𝑐𝑑 ∈ 𝐶,∀𝑑 ∈ 𝐷

Number of pieces of material type𝑚 that can be placed on configuration 𝑘 : 𝑢𝑘,𝑚 ∈ N,∀𝑘 ∈ 𝐾,𝑚 ∈ 𝑀

Carrier type of each carrier configuration (𝑣0 will be set to 0): 𝑣𝑥 ∈ {0, . . . , |𝑇 |},∀𝑥 ∈ {0, . . . , |𝐾 |}

Number of carriers scheduled in the round previous to the scheduling horizon (history round): 𝑝 ∈ N
As already mentioned, production in the paint shop will process one round of carriers after the

other and therefore the conveyor belt system will never be empty. For this reason, whenever we

need to create a new paint shop schedule we are given the carriers and colors used in the latest

previous round of production as an input, so that the amount of carrier and color changes within

the first round of the scheduling horizon can be determined.

Carrier type of the scheduled carrier at position 𝑖 of the history round: 𝑝𝑡𝑖 ∈ 𝑇,∀𝑖 ∈ {1, . . . , 𝑝}

Used color at position 𝑖 of the history round: 𝑝𝑐𝑖 ∈ 𝐶,∀𝑖 ∈ {1, . . . , 𝑝}

Forbidden carrier type sequences: 𝐹

First carrier type of forbidden sequence 𝑓 : 𝑡1
𝑓
∈ 𝑇,∀𝑓 ∈ 𝐹

Second carrier type of forbidden sequence 𝑓 : 𝑡2
𝑓
∈ 𝑇,∀𝑓 ∈ 𝐹
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Minimum block size of consecutive carriers with type 𝑡 : 𝑏min

𝑡 ∈ N>0,∀𝑡 ∈ 𝑇
Whenever a carrier of type 𝑡 is scheduled, the same carrier type needs to be used for the next

consecutive carriers until the given minimum block length is reached. (e.g., let 𝑏min

𝑡1
= 3 and let the

previously scheduled carrier type sequence be ⟨𝑡3, 𝑡3, 𝑡2, 𝑡1⟩; to satisfy the minimum block length, at

least the next two carriers in the sequence need to be of type 𝑡1).

Maximum block size of consecutive carriers with type 𝑡 : 𝑏max

𝑡 ∈ N>0,∀𝑡 ∈ 𝑇

Set of forbidden color sequences: 𝑂

First color of forbidden color sequence 𝑜 : 𝑐1𝑜 ∈ 𝐶,∀𝑜 ∈ 𝑂

Second color of forbidden color sequence 𝑜 : 𝑐2𝑜 ∈ 𝐶,∀𝑜 ∈ 𝑂

The number of carriers that have to be painted in a different color before a switch from color 𝑐1 to
color 𝑐2 becomes legal for sequence 𝑜 : 𝑗𝑜 ∈ N>0,∀𝑜 ∈ 𝑂
For example let 𝑗𝑜 = 3 for colors 𝑐1𝑜 = 𝑣 and 𝑐2𝑜 = 𝑤 . Then the color sequences ⟨𝑣,𝑤⟩ and ⟨𝑣,𝑦,𝑤⟩
would be illegal while the color sequence ⟨𝑣,𝑦,𝑦,𝑦,𝑤⟩ would be legal (assuming that 𝑦 ≠ 𝑣 and

𝑦 ≠ 𝑤 ).

Color transition costs for all pairs of colors: 𝑓𝑐1,𝑐2 ∈ N,∀𝑐1, 𝑐2 ∈ 𝐶

4.3 Decision Variables
Scheduled carrier configuration in round 𝑖 and position 𝑗 : 𝑥𝑖, 𝑗 ∈ {0, . . . , |𝐾 |},∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝑆

If the value 0 is assigned, the position is empty and no carrier will be scheduled at the position.

Scheduled color configuration in round 𝑖 and position 𝑗 : 𝑦𝑖, 𝑗 ∈ {0, . . . , |𝐶 |},∀𝑖 ∈ {0, . . . , |𝑅 |}, 𝑗 ∈ 𝑆
If the value 0 is assigned, the position is empty and will not be painted.

4.4 Auxiliary Variables
Number of scheduled carriers per round: 𝑝𝑖 ∈ {0, . . . , |𝑆 |},∀𝑖 ∈ {0, . . . , |𝑅 |}

Number of totally scheduled carriers: 𝑝𝑠 ∈ {0, . . . , |𝑆 | · |𝑅 | + 𝑝}

Sequence variables that will convert a given round index 𝑖 and position index 𝑗 into a one dimensional
position index: 𝑠𝑒𝑞𝑖, 𝑗 ∈ {0, . . . , |𝑆 | · |𝑅 | + 𝑝},∀𝑖 ∈ {0, . . . , |𝑅 |}, 𝑗 ∈ 𝑆
For example let exactly 100 carriers be scheduled in round 1 and the length of the history round

𝑝 be 5, then 𝑠𝑒𝑞2,3 will be set to the value 108. 𝑠𝑒𝑞𝑖, 𝑗 will be set to 0 if and only if no carrier is

scheduled at position 𝑗 in round 𝑖 .

4.5 Hard Constraints
In the following we propose the set of hard constraints for our model. Note that all of them are

essential and that we do not use any redundant constraints in our formulation.

(a) Bind the correct number of scheduled carriers to the associated helper variables:

𝑝0 = 𝑝

𝑝𝑖 =
∑

{ 𝑗 ∈𝑆 |𝑥𝑟,𝑗≠0}
1 ∀𝑖 ∈ 𝑅

𝑝𝑠 =
∑

𝑖∈{0,..., |𝑅 | }
𝑝𝑖

(1)
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(b) Set correct values to sequence variables:

𝑠𝑒𝑞0, 𝑗 = 𝑗 ∀𝑗 ∈ {1, . . . , 𝑝}
𝑠𝑒𝑞0, 𝑗 = 0 ∀𝑗 ∈ {𝑝 + 1, . . . , |𝑆 |}

𝑠𝑒𝑞𝑖,1 = 𝑝 + 1 +
∑

𝑧∈{1,...,𝑖−1}
𝑝𝑧 ∀𝑖 ∈ 𝑅

𝑠𝑒𝑞𝑖, 𝑗 = 𝑠𝑒𝑞𝑖, 𝑗−1 + 1 ∀𝑖 ∈ 𝑅, 𝑗 ∈ {2, . . . , |𝑆 |} where 𝑥𝑖, 𝑗 ≠ 0

𝑠𝑒𝑞𝑖, 𝑗 = 0 ∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝑆 where 𝑥𝑖, 𝑗 = 0

(2)

(c) Unplanned carrier positions should always be scheduled last in a round
1
:

(𝑥𝑖, 𝑗 = 0) ⇒ (𝑥𝑖, 𝑗+1 = 0) ∀𝑖 ∈ 𝑅, 𝑗 ∈ {1, . . . , |𝑆 | − 1} (3)

(d) Any scheduled carrier position must also assign a color and any unscheduled position must

not assign a color:

(𝑥𝑖, 𝑗 ≠ 0) ⇔ (𝑐𝑖, 𝑗 ≠ 0) ∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝑆 (4)

(e) All demands must be satisfied in time, where overproduction is allowed (this constraints

models requirement R.1 from Section 3):∑
{𝑑∈𝐷 | 𝑚𝑑=𝑚∧𝑟𝑑<=𝑟∧𝑐𝑑=𝑐 }

𝑎𝑑 ≤
∑

{𝑥𝑖,𝑗 |𝑖∈{1,...,𝑟 }∧𝑗 ∈{1,..., |𝑆 | }∧𝑦𝑖,𝑗=𝑐 }
𝑢 (𝑥𝑖,𝑗 ),𝑚

∀𝑟 ∈ 𝑅,𝑚 ∈ 𝑀,𝑐 ∈ 𝐶
(5)

(f) Carrier availabilities must be respected in each round (models requirement R.2):∑
{ 𝑗 | 𝑗 ∈𝑆∧𝑣(𝑥𝑟,𝑗 )=𝑡 }

1 ≤ 𝑎𝑟,𝑡 ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (6)

(g) The minimum round capacity must be fulfilled in each round (models requirement R.3):

𝑝𝑟 >= 𝑞,∀𝑟 ∈ 𝑅 (7)

(h) Forbidden carrier type sequences must not appear in the schedule (models requirement R.4):

(𝑣 (𝑥𝑖,𝑗 ) ≠ 𝑡1𝑓 ) ∨ (𝑣 (𝑥𝑖,𝑗+1) ≠ 𝑡2𝑓 ) ∀𝑓 ∈ 𝐹, 𝑖 ∈ 𝑅, 𝑗 ∈ {1, . . . , |𝑆 | − 1} where 𝑗 < 𝑝𝑖
(𝑣 (𝑥𝑖,(𝑝𝑖 ) ) ≠ 𝑡

1

𝑓
) ∨ (𝑣 (𝑥𝑖+1,1) ≠ 𝑡2𝑓 ) ∀𝑓 ∈ 𝐹, 𝑖 ∈ {1, . . . , |𝑅 | − 1}
(𝑝𝑡 ≠ 𝑡1

𝑓
) ∨ (𝑣 (𝑥1,1) ≠ 𝑡2𝑓 ) ∀𝑓 ∈ 𝐹

(8)

(i) Minimum carrier type block size restrictions must be fulfilled (models requirement R.5)2:

1
This constraint breaks symmetric solutions that would be possible if unused carrier positions could appear anywhere in

the variable arrays. However, it is still not a redundant constraint, as other parts of the model rely on this restriction.

2
For simplicity, we omit an additional corner case that has to be regarded: The last carrier type and color that appears in

the history round also needs to be checked regarding the sequence constraints. This can simply be modeled by adding

additional constraints for the history round.
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∧
𝑧∈{ 𝑗+2,..., |𝑆 | }

(𝑠𝑒𝑞𝑖,𝑧 = 0 ∨ 𝑠𝑒𝑞𝑖,𝑧 ≥ 𝑠𝑒𝑞𝑖, 𝑗+1 + 𝑏min

𝑡 ∨ 𝑣 (𝑥𝑖,𝑧 ) = 𝑡)∧∧
𝑦∈{𝑖+1,..., |𝑅 | },𝑧∈𝑆

(𝑠𝑒𝑞𝑦,𝑧 = 0 ∨ 𝑠𝑒𝑞𝑦,𝑧 ≥ 𝑠𝑒𝑞𝑖, 𝑗+1 + 𝑏min

𝑡 ∨ 𝑣 (𝑥𝑦,𝑧 ) = 𝑡)∧

©­«
∨

𝑧∈{ 𝑗+1,..., |𝑆 | }
(𝑠𝑒𝑞𝑖,𝑧 = 𝑠𝑒𝑞𝑖, 𝑗 + 𝑏min

𝑡 ∧ 𝑣 (𝑥𝑖,𝑧 ) = 𝑡)∨

∨
𝑦∈{𝑖+1,..., |𝑅 | },𝑧∈𝑆

(𝑠𝑒𝑞𝑦,𝑧 = 𝑠𝑒𝑞𝑖, 𝑗 + 𝑏min

𝑡 ∧ 𝑣 (𝑥𝑦,𝑧 ) = 𝑡)
ª®¬

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑅, 𝑗 ∈ {1, . . . , |𝑆 | − 1} where 𝑗 < 𝑝𝑖 ∧ 𝑣 (𝑥𝑖,𝑗 ) ≠ 𝑡 ∧ 𝑣 (𝑥𝑖,𝑗+1) = 𝑡

(9)

∧
𝑧∈{2,..., |𝑆 | }

(𝑠𝑒𝑞𝑖+1,𝑧 = 0 ∨ 𝑠𝑒𝑞𝑖+1,𝑧 ≥ 𝑠𝑒𝑞𝑖+1,1 + 𝑏min

𝑡 ∨ 𝑣 (𝑥𝑖+1,𝑧 ) = 𝑡)∧∧
𝑦∈{𝑖+2,..., |𝑅 | },𝑧∈𝑆

(𝑠𝑒𝑞𝑦,𝑧 = 0 ∨ 𝑠𝑒𝑞𝑦,𝑧 ≥ 𝑠𝑒𝑞𝑖+1,1 + 𝑏min

𝑡 ∨ 𝑣 (𝑥𝑦,𝑧 ) = 𝑡)

©­«
∨

𝑧∈{1,..., |𝑆 | }
(𝑠𝑒𝑞𝑖+1,𝑧 = 𝑠𝑒𝑞𝑖+1,1 + 𝑏min

𝑡 − 1 ∧ 𝑣 (𝑥𝑖+1,𝑧 ) = 𝑡)∨

∨
𝑦∈{𝑖+2,..., |𝑅 | },𝑧∈𝑆

(𝑠𝑒𝑞𝑦,𝑧 = 𝑠𝑒𝑞𝑖+1,1 + 𝑏min

𝑡 − 1 ∧ 𝑣 (𝑥𝑦,𝑧 ) = 𝑡)
ª®¬

∀𝑡 ∈ 𝑇, 𝑖 ∈ {1, . . . , |𝑅 | − 1} where 𝑣 (𝑥𝑖,𝑝𝑖 ) ≠ 𝑡 ∧ 𝑣 (𝑥𝑖+1,1) = 𝑡

(10)

(j) Maximum carrier type block size restrictions must be fulfilled (models requirement R.5)2:∨
𝑧∈{ 𝑗+1,..., |𝑆 | }

(𝑠𝑒𝑞𝑖,𝑧 > 𝑠𝑒𝑞𝑖, 𝑗 ∧ 𝑠𝑒𝑞𝑖,𝑧 ≤ 𝑠𝑒𝑞𝑖, 𝑗 + 𝑏max

𝑡 ∧ 𝑣 (𝑥𝑖,𝑧 ) ≠ 𝑡)∨∨
𝑦∈{𝑖+1,..., |𝑅 | },𝑧∈𝑆

(𝑠𝑒𝑞𝑦,𝑧 > 𝑠𝑒𝑞𝑖, 𝑗 ∧ 𝑠𝑒𝑞𝑦,𝑧 ≤ 𝑠𝑒𝑞𝑖, 𝑗 + 𝑏max

𝑡 ∧ 𝑣 (𝑥𝑦,𝑧 ) ≠ 𝑡)

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑅, 𝑗 ∈ 𝑆, where 𝑗 ≤ 𝑝𝑖 ∧ 𝑣 (𝑥𝑖,𝑗 ) = 𝑡 ∧ 𝑠𝑒𝑞𝑖, 𝑗 =≤ 𝑝𝑠 − 𝑏max

𝑡

(11)

(k) No forbidden color sequences should occur in the schedule (models requirement R.6)2:∧
𝑧∈{ 𝑗+1,..., |𝑆 | }

(𝑠𝑒𝑞𝑖,𝑧 = 0 ∨ 𝑠𝑒𝑞𝑖,𝑧 > 𝑠𝑒𝑞𝑖, 𝑗 + 𝑗𝑜 ∨ 𝑦𝑖,𝑧 ≠ 𝑐2𝑜 )∧∧
𝑥 ∈{𝑖+1,..., |𝑅 | },𝑧∈𝑆

(𝑠𝑒𝑞𝑥,𝑧 = 0 ∨ 𝑠𝑒𝑞𝑥,𝑧 > 𝑠𝑒𝑞𝑖, 𝑗 + 𝑗𝑜 ∨ 𝑦𝑥,𝑧 ≠ 𝑐2𝑜 )

∀𝑜 ∈ 𝑂, 𝑖 ∈ 𝑅, 𝑗 ∈ 𝑆 where 𝑗 ≤ 𝑝𝑖 ∧ 𝑦𝑖, 𝑗 = 𝑐1𝑜

(12)

4.6 Auxiliary Variables for the Objective Function
The amount of color change costs occurring in round 𝑟 of the schedule:

𝑐𝑐𝑟 ∈ N,∀𝑟 ∈ 𝑅
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The number of required carrier type changes between round 𝑟 and 𝑟 + 1:

𝑠𝑐𝑟 ∈ {0, . . . , |𝑆 | · 2},∀𝑟 ∈ {0, . . . , |𝑅 | − 1}

The number of carriers that will be reused between round 𝑟 and round 𝑟 + 1:

𝑠𝑘𝑟 ∈ {0, . . . , |𝑆 |},∀𝑟 ∈ {0, . . . , |𝑅 | − 1}

Information on the position of the kept carrier sequence in the next/previous round:

𝑘𝑒𝑝𝑡1𝑖, 𝑗 ∈ {0, . . . , |𝑆 |},∀𝑖 ∈ {0, . . . , |𝑅 | − 1}, 𝑗 ∈ 𝑆
𝑘𝑒𝑝𝑡2𝑖, 𝑗 ∈ {0, . . . , |𝑆 |},∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝑆

4.7 Hard Constraints for Objective Function
Calculate color changes per round: 3

𝑐𝑐𝑖 =
∑

𝑗 ∈{1,..., |𝑆 |−1}
𝑓(𝑦𝑖,𝑗 ),(𝑦𝑖,𝑗+1) + 𝑓(𝑦𝑖−1,𝑝𝑖−1),(𝑦𝑖,1) ∀𝑖 ∈ 𝑅

(13)

All kept carrier type sequences between consecutive rounds have to be legal: 4

In Figure 4 in Section 3, we show which carrier types may be reused between two consecutive

rounds by drawing edges that connect the associated positions. We initially experimented with

a modeling approach that introduces variables for all possible edges and tries to maximize the

number of selected edges without causing any edge crossings to capture the ED between two

consecutive rounds. However, using this model in practical instances is not efficient. Therefore, we

propose a modeling approach that introduces variables to store the positions of all reused carriers

in equations 14, 15, and 16. For example, if the second reused carrier that is scheduled on position

four in the current round sequence should be reused in the next round sequence at position three,

the associated variables store the values three and four (𝑘𝑒𝑝𝑡1𝑖,2 = 3, 𝑘𝑒𝑝𝑡2𝑖,2 = 4, where 𝑖 could be

any round index). A value of zero is assigned to a 𝑘𝑒𝑝𝑡
𝑦

𝑖,𝑥
variable when less than 𝑥 carriers are kept

between the corresponding round (where 𝑦 ∈ {1, 2}). Table 2 shows example variable assignments

that correspond to the edge examples that are showcased in Figure 4.

𝑘𝑒𝑝𝑡1𝑖, 𝑗 > 𝑘𝑒𝑝𝑡
1

𝑖, 𝑗−1 ∀𝑖 ∈ {0, . . . , |𝑅 | − 1}, 𝑖 ∈ {2, . . . , |𝑆 |} where 𝑘𝑒𝑝𝑡1𝑖, 𝑗 ≠ 0

𝑘𝑒𝑝𝑡2𝑖, 𝑗 > 𝑘𝑒𝑝𝑡
2

𝑖, 𝑗−1 ∀𝑖 ∈ 𝑅, 𝑖 ∈ {2, . . . , |𝑆 |} where 𝑘𝑒𝑝𝑡2𝑖, 𝑗 ≠ 0

(14)

𝑘𝑒𝑝𝑡2
1, 𝑗 ≤ 𝑝 ∀𝑗 ∈ 𝑆 where 𝑘𝑒𝑝𝑡2

1, 𝑗 ≠ 0

𝑘𝑒𝑝𝑡1𝑖, 𝑗 ≤ 𝑝𝑖+1 ∀𝑖 ∈ {0, . . . , |𝑅 | − 1}, 𝑗 ∈ 𝑆 where 𝑘𝑒𝑝𝑡1
1, 𝑗 ≠ 0

𝑘𝑒𝑝𝑡2𝑖, 𝑗 ≤ 𝑝𝑖−1 ∀𝑖 ∈ {2, . . . , |𝑅 |}, 𝑗 ∈ 𝑆 where 𝑘𝑒𝑝𝑡2
1, 𝑗 ≠ 0

𝑘𝑒𝑝𝑡1
0, 𝑗 = 0 ∧ 𝑘𝑒𝑝𝑡2

1, 𝑗 = 0 ∀𝑗 ∈ {𝑝 + 1, . . . , |𝑆 |}
𝑘𝑒𝑝𝑡1𝑖, 𝑗 = 0 ∧ 𝑘𝑒𝑝𝑡2𝑖+1, 𝑗 = 0 ∀𝑖 ∈ {1, . . . , |𝑅 | − 1}, 𝑗 ∈ 𝑆 where 𝑗 > 𝑝𝑖

𝑘𝑒𝑝𝑡1𝑖, 𝑗 > 0 ∧ 𝑘𝑒𝑝𝑡2𝑖+1, 𝑗 > 0 ∀𝑖 ∈ {0, . . . , |𝑅 | − 1}, 𝑗 ∈ 𝑆

(15)

𝑝𝑡 (𝑘𝑒𝑝𝑡2
1, 𝑗
) = 𝑣 (𝑥

1,(𝑘𝑒𝑝𝑡1
0, 𝑗

) ) ∀𝑗 ∈ 𝑆 where 𝑘𝑒𝑝𝑡2
1, 𝑗 ≠ 0

𝑣 (𝑥
𝑖,(𝑘𝑒𝑝𝑡2

𝑖+1, 𝑗 )
) = 𝑣 (𝑥

𝑖+1,(𝑘𝑒𝑝𝑡1
𝑖,𝑗

) ) ∀𝑖 ∈ {1, . . . , |𝑅 | − 1}, 𝑗 ∈ 𝑆 where 𝑘𝑒𝑝𝑡1𝑖, 𝑗 ≠ 0

(16)

3
We assume that color costs from and to 0 will always be 0

4
For simplicity, we omit a special condition that handles the corner case of an empty history round. In this case one can

simply add a constraint that forces all carriers of round 1 to be inserted if 𝑝 = 0.
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Feasible

𝑥 𝑘𝑒𝑝𝑡1
1,𝑥

𝑘𝑒𝑝𝑡2
2,𝑥

1 1 3

2 0 0

3 0 0

Infeasible

𝑥 𝑘𝑒𝑝𝑡1
1,𝑥

𝑘𝑒𝑝𝑡2
2,𝑥

1 3 3

2 1 2

3 0 0

Optimal

𝑥 𝑘𝑒𝑝𝑡1
1,𝑥

𝑘𝑒𝑝𝑡2
2,𝑥

1 2 1

2 3 2

3 0 0

Table 2. Table shows the 𝑘𝑒𝑝𝑡1
𝑖, 𝑗
, 𝑘𝑒𝑝𝑡2

𝑖, 𝑗
variable values that correspond to the three options to reuse carriers

between two consecutive rounds as shown in Figure 4.

Calculate the number of reused carriers after each round:

𝑠𝑘𝑖 =
∑

{ 𝑗 | 𝑗 ∈𝑆∧𝑘𝑒𝑝𝑡1
𝑖,𝑗
≠0}

1 ∀𝑖 ∈ {0, . . . , |𝑅 | − 1} (17)

Count the total number of required carrier changes between two rounds:

𝑠𝑐𝑖 = 𝑝𝑖 − 𝑠𝑘𝑖 + 𝑝𝑖+1 − 𝑠𝑘𝑖 ∀𝑖 ∈ {0, . . . , |𝑅 | − 1} (18)

4.8 Objective Function
The objective function of the paint shop scheduling problem aims to minimize the number of carrier

changes (𝑠𝑐) and color change costs (𝑐𝑐) per round.

The sums are squared because the required changes should be distributed over the scheduling

horizon and peaks of many changes within single rounds should be avoided.

min

∑
𝑖∈𝑅

𝑐𝑐2𝑖 +
∑

𝑖∈{0,..., |𝑅 |−1}
𝑠𝑐2𝑖 (19)

Note that the objective function is essentially a multiobjective function that combines the color

change and carrier change objectives as a weighted sum of squared changes per round (using

identical weights of value 1). This function was formulated with support from expert-practitioners

to reasonably capture the cost factors in real-life automotive paint shop settings; thus, we do not

consider additional alternative multiobjective functions in the current work.

We want to point out that color change costs and the number of carrier changes are in similar

orders of magnitude for all practical problem instances used in our experimental evaluation.

Therefore, we do not discuss the normalization of the two objectives in this paper.

5 MODELING THE PROBLEMWITH DFAS
In this section, we propose a different way to model the sequence constraints (requirementsR.4,R.5,
andR.6 from Section 3) by using DFAs. For this variant of the model, we replace equations 8, 9, 10, 11,

and 12 with automaton formulations. All automatons process either the total sequence of scheduled

carrier types or the total sequence of scheduled colors. We can provide the total carrier type or color

sequence in our model by simply concatenating the values of all two indexed decision variables

(𝑥𝑖, 𝑗 or 𝑦𝑖, 𝑗 ,∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝑆) into a one-dimensional list. The automatons can then be used to check

whether or not the total color or carrier type sequence can be accepted. Automaton-based models

can be directly solved by CP using the regular constraint [16].

5.1 Forbidden carrier type sequences
For each forbidden carrier type sequence 𝑓 ∈ 𝐹 , we model an automaton that processes the

total sequence of scheduled carrier types (this model replaces Equation 8 from Section 4). One

state accepts all carrier types, whereas the second state does not accept any carrier type 𝑡2
𝑓
that
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q0start q1

t1f
any x 6= t1f

any x 6∈ {0, t1f , t2f}

t1f

0

Fig. 5. Automaton generated for each carrier type sequence to check the forbidden carrier type sequence
constraint.

q0start q1 . . . qbmin
t

t

any x 6= t

t

0

t

0

any x 6∈ {0, t}

0

t

Fig. 6. Automaton constructed for each carrier
type 𝑡 ∈ 𝑇 to check the minimum carrier block
type size constraint.

q0start q1 . . . qbmax
t

t

any x 6= t

t

0

t

0

any x 6∈ {0, t}

0

Fig. 7. Automaton generated for each carrier type
to check the maximum carrier block type size
constraint.

immediately follows a carrier of type 𝑡1
𝑓
. Figure 5 shows how automatons can be constructed to

check that no forbidden carrier type sequence occurs in the schedule.

The first state 𝑞0 in Figure 5 accepts any carrier type. State 𝑞1 is entered whenever the first carrier

type of the forbidden sequence (𝑡1
𝑓
) is encountered and does not accept the second type (𝑡2

𝑓
) before

any other type is encountered. Both states are legal final states.

5.2 Minimum carrier type block sizes
For each carrier type 𝑡 ∈ 𝑇 , we model an automaton that processes the total sequence of sched-

uled carrier types (this model replaces Equations 9 and 10 from Section 4). Figure 6 shows how

automatons can be constructed to check the minimum carrier type block size constraint.

The first state 𝑞0 of Figure 6 accepts any carrier type that is different from 𝑡 . States 𝑞1– 𝑞𝑏min

𝑡
are

used to count the consecutive assignments of carrier type 𝑡 . States 𝑞0 and 𝑞𝑏min

𝑡
are the only legal

final states.

5.3 Maximum carrier type block sizes
For each carrier type 𝑡 ∈ 𝑇 , we model an automaton that processes the total sequence of scheduled

carrier types (this model replaces Equation 11 from Section 4).

Figure 7 shows how automatons can be constructed to check the maximum carrier type block

size constraint.

The first state 𝑞0 in Figure 7 accepts any carrier type that is different from 𝑡 . States 𝑞1 – 𝑞𝑏max

𝑡
are

used to count the consecutive assignments of carrier type 𝑡 . All states are legal final states.

5.4 Forbidden color sequences
For each forbidden color sequence 𝑜 ∈ 𝑂 , we model an automaton that processes the total sequence

of scheduled colors (this model replaces Equation 12 from Section 4).

Figure 8 shows how automatons can be constructed to check the forbidden color sequence

constraint.
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q0start q1 . . . qjo
c1o

any x 6= c1o

any x 6∈ {c1o, c2o, 0}

0, c1o

any x 6∈ {c1o, c2o, 0}

0

c1o

any x 6∈ {c1o, c2o, 0}

0

Fig. 8. Automaton generated for each forbidden color sequence to check the forbidden color sequence
constraint.

The first state 𝑞0 in Figure 8 accepts any color assignment that is different from 𝑐1𝑜 . States 𝑞1– 𝑞 𝑗𝑜
are used to assert that an assignment of color 𝑐2𝑜 may only occur if color 𝑐1𝑜 has not been encountered

within the previous 𝑗 positions. All states are legal final states.

6 COMPLEXITY RESULTS
In this section, we show that the decision variant of the paint shop scheduling problem (which

asks whether or not a feasible schedule with an objective value ≤ 𝑡 can be found) is NP-complete.

We prove the following:

Theorem 6.1. The decision variant of the paint shop scheduling problem is NP-complete.

Proof. We provide a polynomial time reduction from the set cover problem [10] to the paint

shop scheduling problem.

Consider an arbitrary instance of the set cover problem consisting of the universe of elements

𝑈 = {1, . . . ,𝑤}, an integer 𝑘 , and a set 𝑆 that denotes the collection of 𝑧 sets. The union of all sets

in 𝑆 is equal to the universe𝑈 = {1, . . . ,𝑤}. The question is whether a set covering of size 𝑘 or less

is available or not.

We construct an instance of the paint shop scheduling problem as follows. We set the scheduling

horizon to a single round (𝑅 = {1}) and set𝐶 = {1} as only one color to be considered for scheduling.
The set of materials𝑀 is set to match all items of the universe𝑈 ,𝑀 = {1, . . . ,𝑤}. The maximum

number of allowed carrier devices per round is set to 𝑘 while the minimum number of required

carrier devices per round is set to 𝑞 = 1. We only consider a single carrier type and therefore set𝑇 =

{1}. The set of all demands 𝐷 that need to be scheduled is given as 𝐷 = {(1, 𝑖, 1, 1) |𝑖 ∈ {1, . . . ,𝑤}}
(we schedule each material exactly once until round 1). We further create 𝑧 carrier configurations,

each of which corresponds to a single set in 𝑆 : 𝐾 = {1, . . . , 𝑧}. All configurations belong to the same

carrier type. Therefore, we set 𝑣𝑘 = 1,∀𝑘 ∈ 𝐾 . The materials contained within each configuration

should be equal to all elements contained in the associated set. Hence, we set ∀𝑥 ∈ 𝐾,𝑚 ∈ 𝑀 :

𝑢𝑥,𝑚 =

{
1, if𝑚 is contained in the associated set of configuration 𝑥

0, otherwise

Furthermore, we set the number of carriers in the history round to 𝑝 = 0. Then, we set all color

costs to 0 and disable all sequence dependent hard constraints and the carrier availability constraint

by setting 𝑓𝑐 (1, 1) = 0, 𝑏min

1
= 1, 𝑏max

1
= 𝑘, 𝑜 = 0, 𝑓 = 0 and 𝑎1,1 = 𝑘 . Note that by setting color costs
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to 0 and not using sequence constraints, we do not interfere with the original specification but

instead, we simply build legal instances to the problem by modifying the input parameters.

We now prove the following:

Theorem 6.2. There exists a set cover of size 𝑘 or less if and only if there exists a feasible paint shop
schedule with total costs lower than or equal to 𝑘2.

Proof. As we set all color transition costs to 0 and the history round contains 0 carriers, the

objective function of the paint shop scheduling problem becomes equal to the squared number

of scheduled carriers in round 1 (any carrier needs to be inserted). As we have set the number of

maximum carriers per round to 𝑘 , any feasible paint shop schedule fulfilling the maximum round

capacity hard constraint will have an objective value ≤ 𝑘2. Furthermore, because we have disabled

all hard constraints, except the demand constraint, in the paint shop scheduling instance, any

schedule that satisfies all demands becomes a feasible schedule.

Let 𝑆 be a set cover using 𝑘 ′ sets (where 𝑘 ′ ≤ 𝑘). Then, all elements of the universe 𝑈 are

contained in at least one of the selected sets. Through our reduction, the paint shop scheduling

problem is constructed in such a way that each element of the universe has to be scheduled at least

once in round 1. For each set 𝑠 ∈ 𝑆 , there exists a carrier configuration that carries each element in

𝑠 exactly once. Therefore, there exists a set of 𝑘 ′ carrier configurations that can be scheduled in

any sequence to fulfill all demands.

At this point, we prove the opposite direction. Let 𝑃 be a feasible paint shop schedule. Then, any

material should be scheduled exactly once in round 1. Therefore, any repeatedly used configurations

can be removed from 𝑃 in such a way that each carrier configuration scheduled in 𝑃 is used exactly

once without violating the demand constraint. As we have set the maximum carriers per round to

𝑘 in our reduction, we have 𝑘 ′ (where 𝑘 ′ ≤ 𝑘) carriers in the schedule. Given such a schedule that

uses 𝑘 ′ carriers, we can construct a feasible set covering of size 𝑘 ′ by using the sets corresponding

to the configurations used in 𝑃 .

We then show that the decision variant of the paint shop scheduling problem is NP-complete.

Suppose that we have given a candidate solution 𝑃 . We show below that we can verify in polynomial

time whether or not 𝑃 is a feasible solution to the problem.

The number of carriers in 𝑃 cannot be larger than |𝑆 | · |𝑅 | (see input parameters in Section 4). We

can simply check the carrier availability and round capacity constraints by counting the number of

carriers in each round. Similarly, the sequence constraints (minimum/maximum block length of

consecutive carrier types, forbidden carrier types and color sequences) can be checked by iterating

over the scheduled sequence. Furthermore, we can check the demand constraint by verifying that

Equation 5 holds. We have to perform not more than |𝑅 | · |𝑀 | · |𝐶 | comparisons to check this

equation. For each comparison, we need to consider at most 𝑑 demands and |𝑆 | · |𝑅 | positions to
calculate the sums.

To calculate the total color change costs of 𝑃 , we iterate over the scheduled sequence, similar

to our approach to the sequence-dependent hard constraints. Finally, we need to determine the

maximum number of carriers that can be reused between any two consecutive rounds in the

schedule to calculate the total carrier change costs. As mentioned previously, we can establish this

number by solving the corresponding string ED problem for each pair of consecutive rounds (the

polynomial time algorithms for calculating the minimum ED were described in [25]). □
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7 EMPIRICAL EVALUATION
In this section, we provide a detailed description of the experimental evaluation of the CP models

proposed in this work. First, we briefly describe the experimental setup and computational envi-

ronment (Section 7.1). Second, we introduce the search strategies used to program the search for

the evaluated CP solvers (Section 7.2). Finally, we provide a summary of the experimental results

and discuss the evaluation of the proposed models (Section 7.3).

7.1 Experimental Environment
To evaluate our models, we implemented the direct model proposed in Section 4 and the model

using DFAs proposed in Section 5 by using the MiniZinc [14] modeling language, which provides

interfaces to state-of-the-art CP and MIP solvers. All experiments were conducted on a computing

cluster with 10 identical nodes, each having 24 cores, an Intel(R) Xeon(R) CPU E5–2650 v4 @ 2.20

GHz and 252 GB RAM.

We evaluated the proposed models by using the set of benchmark instances that we previously

introduced to evaluate metaheuristic approaches to the paint shop scheduling problem [26]
5
. This

collection of instances includes 24 instances based on real life planning scenarios. Instances 1–12

model problems for a small paint shop with a maximum capacity of 19 carriers per round. Instances

13–24 describe problems for large-scale paint shops that allow up to 480 carriers per round. The set

of small instances and the set of large instances describe six different planning horizons of 7, 20,

50, 70, 100, and 200 rounds (two instances for each horizon: one that does not include forbidden

carrier/color sequence constraints and another one that includes forbidden sequence constraints).

Table 3 presents an overview of the size parameters for all instances. The columns show from

left to right the instance ID, the number of rounds, the length of the planning horizon in days (in

the industry, about five rounds are usually processed within 24 hour shifts), the maximum carrier

capacity per round, whether or not forbidden sequence constraints are included, and the number

of generated variables and constraints (# vars and # cs, respectively). To determine the number of

generated variables and constraints, we analyzed the output of the MiniZinc compiler using the

direct model (direct) and the model using DFAs (regular). A – indicates that the compiler ran out of

memory on our benchmark machine or could not finish execution within 6 hours.

The size parameters displayed in Table 3 show that the model using DFAs generally leads to

a lower number of variables and constraints for instances 1–10 in comparison with the direct

model; hence, the model using DFAs has high efficiency. Furthermore, we can see that the MiniZinc

compiler was not able to encode the large instances 11–24 on our machine within 6 hours of

runtime, thereby indicating the tremendous size of the search space of large practical problem

instances.

We conducted a large number of experiments with two state-of-the-art CP solvers: Chuffed [1],

which uses lazy clause learning; and Gecode [8], which is a nonlearning solver. In Section 7.2, we

provide details about the 13 programmed search strategies that we evaluated for the CP solvers.

Both solvers were run on each of the instances using both proposed models and search strategies

within a runtime limit of 6 hours. Therefore, a total of 312 experiments were conducted for each

CP solver.

Using the MiniZinc compiler we were able to automatically translate the proposed CP models for

paint shop scheduling into MIP formulations. Therefore, we could also conduct experiments with

the two state-of-the-art MIP solvers Gurobi [9] and CPLEX [2] under the same runtime restrictions

we used for evaluating the CP solvers.

5
All instances, the MiniZinc code, and the solution validator are publicly available online: https://www.dbai.tuwien.ac.at/

staff/winter/.
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# rounds horizon days capacity forbidden seq direct # vars direct # cs regular # vars regular # cs

Instance 1 7 1.4 19 no 283845 289639 9237 12004

Instance 2 7 1.4 19 yes 399066 406964 9369 11499

Instance 3 20 4 19 no 3102108 3121429 25702 31801

Instance 4 20 4 19 yes 2891799 2912206 29312 37257

Instance 5 50 10 19 no 18374644 18435525 94066 124711

Instance 6 50 10 19 yes 19249180 19302056 66212 81411

Instance 7 70 14 19 no 42968894 43101797 210417 289019

Instance 8 70 14 19 yes 34183055 34258489 102820 129488

Instance 9 100 20 19 no 48323257 48439788 204091 282930

Instance 10 100 20 19 yes 84017220 84172576 232421 312301

Instance 11 200 40 19 no - - - -

Instance 12 200 40 19 yes - - - -

Instance 13 7 1.4 480 no - - - -

Instance 14 7 1.4 480 yes - - - -

Instance 15 20 4 480 no - - - -

Instance 16 20 4 480 yes - - - -

Instance 17 50 10 480 no - - - -

Instance 18 50 10 480 yes - - - -

Instance 19 70 14 480 no - - - -

Instance 20 70 14 480 yes - - - -

Instance 21 100 20 480 no - - - -

Instance 22 100 20 480 yes - - - -

Instance 23 200 40 480 no - - - -

Instance 24 200 40 480 yes - - - -

Table 3. An overview of the instance size parameters for the 24 instances that have been used for empirical
evaluation.

Furthermore, we conducted a set of experiments using the local search based solver we previously

proposed in [26] on our benchmark machine to compare the heuristic results with the results

produced by the proposed exact methods. As the local search solver randomly selects search moves,

we conducted 10 repeated runs for each instance and calculated the arithmetic mean solution costs

for our evaluation.

7.2 Programmed Search Strategies
We evaluated the performance of the CP solvers Chuffed and Gecode by using several programmed

search strategies, which are based on variable- and value selection heuristics. Such heuristics

determine the order of the explored variable and value assignments for a CP solver and can play

a critical role in reducing the search space that needs to be enumerated by the solver. For our

experiments, we implemented the search strategies directly in the MiniZinc modeling language

using search annotations.

7.2.1 Variable Selection. We defined the variable selection strategies for the decision variables

that capture the scheduled carrier configurations 𝑥𝑖, 𝑗 ,∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝑆 and the scheduled colors

𝑦𝑖, 𝑗 ,∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝑆 . Additionally, we investigated variable selection heuristics that set an order on the

assignment of auxiliary variables that capture the number of required carrier changes between two

rounds 𝑠𝑐𝑖 ,∀𝑖 ∈ {0, . . . , |𝑅 | − 1}. We also experimented with search strategies that focus on these 𝑠𝑐

variables as the calculation of the required carrier changes is one of the more complex parts of the

models. Any variables that we do not explicitly mention in the search strategies are selected on the

basis of the CP solvers’ default strategy after all the mentioned variables have been assigned.

• default: No variable and value selection is specified, and the solver uses its default strategy.

• custom1: All carrier configuration variables are selected first, followed by all color variables

(i.e., 𝑥1,1, 𝑥1,2, . . . , 𝑥𝑖, 𝑗 , 𝑦1,1, 𝑦1,2, . . . , 𝑦𝑖, 𝑗 ).
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• custom2: The carrier change auxiliary variables are selected before the carrier configurations and

colors are assigned

(i.e., 𝑠𝑐0, 𝑠𝑐1, . . . , 𝑠𝑐 |𝑅 |−1, 𝑥1,1, 𝑥1,2, . . . , 𝑥𝑖, 𝑗 , 𝑦1,1, 𝑦1,2, . . . , 𝑦𝑖, 𝑗 ).
• custom3: For each position in the schedule the associated carrier configuration variable is selected

first, followed by the associated color variable

(i.e., 𝑥1,1, 𝑦1,1, 𝑥1,2, 𝑦1,2, . . . , 𝑥𝑖, 𝑗 , 𝑦𝑖, 𝑗 ).

• custom4: The carrier change variables are selected first; then, the process continues with custom3
(i.e., 𝑠𝑐0, 𝑠𝑐1, . . . , 𝑠𝑐 |𝑅 |−1, 𝑥1,1, 𝑦1,1, 𝑥1,2, 𝑦1,2, . . . , 𝑥𝑖, 𝑗 , 𝑦𝑖, 𝑗 ).

• smallest: The variables with the smallest possible domain value are chosen first (ties are broken on

the basis of the order of custom1).
• first fail: The variables with the smallest domains are chosen first (ties are broken on the basis of the

order of custom1).

7.2.2 Value Selection. We experimented with two different value selection heuristics:

• min: The smallest value is first assigned from a variable domain.

• split: The variable domain is bisected to first exclude the upper half of the domain.

Using the seven different variable selection strategies together with the two value selection

heuristics we conducted experiments with a total of 13 search strategy configurations for each

instance (the default variable selection uses the solver’s default value selection).

7.3 Computational Results
In the following, we present the computational results for the paint shop scheduling problem that

we obtained using the evaluated CP and MIP solvers. First, we provide an overview of the detailed

CP results produced with Chuffed and Gecode. Second, we present the results produced by the MIP

solvers Gurobi and CPLEX in Section 7.3.2. Finally, we present an overall comparison of the best

results in Section 7.3.3.

7.3.1 CP Results. We conducted experiments for instances 1–24 by using the introduced search

strategies with Chuffed and Gecode (for Chuffed, we activated the free search parameter which

allows the solver to alternate between the given search strategy and its default one on each restart).

However, Gecode was not able to produce any feasible solution within the runtime limit. Thus, we

only discuss the results produced with Chuffed in this section.

Tables 4 and 5 display an overview of results achieved with Chuffed using the direct model and

the DFA model, respectively. Both tables present the summarized results for each of the evaluated

search strategies and time limit configurations in a single row. The first seven columns display from

left to right the used search strategy, the time limit, the number of best results achieved within its

group (”group” refers to runs using the same model and runtime), the number of fastest optimality

proofs in the group, the number of optimal solutions found, the number of proven optimal solutions,

and the number of instances where a feasible solution could be achieved. Columns 8–11 present

from left to right the average number of visited nodes in the search tree (only for instances that

could be solved to optimality), the average runtime needed for optimality proofs, the standard

deviation of visited nodes for proofs, and the standard deviation of the optimality proof time.

The results in both tables show that different search strategies do not exert a large effect on the

number of solved instances. Nevertheless, the default search strategy seems to be slightly weaker

than the other search strategies, and the smallest variable selection strategy leads the two models

to the largest number of best solutions and optimality proofs.

Table 6 displays the overall best costs achieved for instances 1–10 by using Chuffed with the

direct model (direct) and the DFA model (reg) (we omitted the results for instances 11–24 as the

solution process ran out of memory for these instances). The results formatted in bold face denote
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search time #best #fastest #opt #proof #solved avg nodes avg rt std nodes std rt

custom1 min 6h 2 0 2 2 4 287513.50 79.96 302407.65 73.54

custom1 split 6h 2 0 2 2 4 258341.00 68.06 260843.21 56.77

custom2 min 6h 3 0 3 3 4 972613.33 1547.57 1022208.46 2544.58

custom2 split 6h 3 0 3 3 4 1796283.33 2657.52 1146115.93 4176.63

custom3 min 6h 2 0 2 2 4 390482.00 78.61 237821.22 51.71

custom3 split 6h 2 0 2 2 4 520798.00 89.18 35434.54 20.68

custom4 min 6h 3 0 3 3 4 2033199.67 2092.07 1686560.49 3245.35

custom4 split 6h 3 0 3 3 4 2171945.33 4536.86 1933987.52 7501.61

default 6h 3 0 3 3 3 3221216.33 4856.34 4419678.13 6773.03

ff min 6h 2 0 2 2 4 2108669.00 470.00 608751.06 63.00

ff split 6h 2 0 2 2 4 2204912.00 481.15 472642.90 61.87

smallest min 6h 4 1 4 3 4 97822.67 45.25 157924.49 33.66

smallest split 6h 4 2 4 3 4 110939.00 43.81 182193.95 33.21

Table 4. Table summarizing the experimental results achieved with Chuffed and the direct model.

search time #best #fastest #opt #proof #solved avg nodes avg rt std nodes std rt

custom1 min 6h 9 1 9 9 10 3133111 1286.46 7235326.43 2274.45

custom1 split 6h 10 2 9 9 10 3481850.67 1109.3 6981431.78 1896.39

custom2 min 6h 9 0 8 8 10 1013865.75 709.87 1635642.59 1482.07

custom2 split 6h 7 0 7 7 10 9037592.57 1055.71 20273523.56 2518.71

custom3 min 6h 9 0 8 8 10 1013865.75 709.87 1635642.59 1482.07

custom3 split 6h 9 0 8 8 10 1246310.63 855.64 1966662.15 1929.19

custom4 min 6h 8 0 7 7 10 13717699.29 1177.45 29593979.97 2751.27

custom4 split 6h 8 0 7 7 9 21727481.14 1497.90 52229928.06 3715.43

default 6h 6 0 6 6 7 887576.83 226.43 1221199.62 458.27

ff min 6h 9 1 8 8 10 1025480.88 604.63 1841286.56 1314.26

ff split 6h 9 0 8 8 10 1608216.25 939.78 2789085.47 2002.13

smallest min 6h 10 2 9 9 10 3443121.67 1796.47 7117553.6 3624.84

smallest split 6h 9 3 9 9 10 2324348.44 1614.02 4194724.49 3787.35

Table 5. Table summarizing the experimental results achieved with Chuffed and the DFA model.

chuffed-6h proof time chuffed-reg-6h proof time

Instance 1 775* 80.96s 775* 3.10s

Instance 2 842* 29.33s 842* 0.70s

Instance 3 961* 256.95s 961* 1.84s

Instance 4 918 - 918* 26.27s

Instance 5 - - 530* 33.68s

Instance 6 - - 842* 9.78s

Instance 7 - - 844* 2410.03s

Instance 8 - - 1237* 572.40s

Instance 9 - - 975* 3622.07s

Instance 10 - - 964 -

Table 6. Table showing the best costs achieved for instances 1–10 using Chuffed.

the overall best results, a * indicates that the solver could prove optimal costs within the time limit,

and a – denotes the instances where no solution could be found.

We can clearly observe in Table 6 that the DFA-based model can solve more instances and prove

more optimality results within the runtime limit in comparison with the direct model. For instances

1–3, for which both models were able to prove optimality, the DFA-based model could provide a

much faster optimality proof, indicating that this model improves the performance of the solution

process.
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cplex-6h best bd proof t cplex-reg-6h best bd proof t

I 1 777 744 - 776 643 -

I 2 991 841 - 842 842 10992.47s

I 3 - - - 2761 961 -

I 4 - - - 12920 844 -

I 5 - - - 11085 225 -

I 6 - - - 1933 730 -

I 7 - - - - 187.4 -

I 8 - - - - 961 -

I 9 - - - - 280.25 -

I 10 - - - - 961 -

Table 7. Table showing the results achieved for instances 1–10 using CPLEX.

gurobi-6h best bd proof t gurobi-reg-6h best bd proof t

I 1 775 768 - 775 775 6637.99s

I 2 842 842 9444.53s 842 842 127.56s

I 3 - - - 961 961 282.80s

I 4 - - - 967 862.49 -

I 5 - - - 530 530 13398.48s

I 6 - - - - 842 -

I 7 - - - 904 841 -

I 8 - - - - 964 -

I 9 - - - - 582 -

I 10 - - - - 961 -

Table 8. Table showing the results achieved for instances 1–10 using Gurobi.

7.3.2 Integer Programming Results. As we implemented our models using the MiniZinc constraint

modeling language, we could directly use the MiniZinc compiler to convert the direct model and

the DFA-based model into MIP encodings. In the following, we present the experimental results

produced using these encodings together with the MIP solvers Gurobi and CPLEX.

Table 7 provides an overview of the best results for instances 1–10 with CPLEX (the solution

process with encodings for instances 11–24 ran out of memory on our benchmark machine before

any result could be produced). The columns on the left side of the table include the results achieved

using the direct formulation: the cost of the best solution found within the runtime limit of 6

hours (cplex-6h), the best bound achieved using the direct formulation (best bd), and the required

optimality proof time in seconds. The results in bold face denote the overall best results, and a

– indicates that no solution could be found within the runtime limit. The right side of the table

similarly shows the results achieved with CPLEX using the DFA formulation.

Table 7 shows that the direct formulation is only able produce solutions for the two smallest

instances within the time limit, whereas the formulation using DFAs seems to be more efficient as

it derived solutions for six instances and generated one optimality proof.

Table 8 provides the results achieved with Gurobi in our experiments. The results are presented

in the same way as that in Table 7: The left side shows the best cost solutions produced with

the direct model (gurobi-6h), followed by the best objective bound and the required optimality

proof time. The right side of the table shows the best results achieved with the DFA-based problem

formulation.
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solver # best # fastest # opt # proven # solved avg nodes avg rt std nodes std rt

chuffed-6h 4 0 4 3 4 96910 43.01 158722.61 32.53

chuffed-reg-6h 10 9 9 9 10 984148.89 735.66 1625073.26 1330.49

gecode-6h 0 0 0 0 0 - - - -

gecode-reg-6h 0 0 0 0 0 - - - -

cplex-6h 0 0 0 0 2 - - - -

cplex-reg-6h 1 0 1 1 6 14375 10981.08 - -

gurobi-6h 2 0 2 1 2 2149 9276.63 - -

gurobi-reg-6h 4 0 4 4 6 110315.25 5071.33 213079.3 6269.04

Table 9. Table summarizing the experimental results achieved with all evaluated CP and MIP solvers using
the proposed models.

The results presented in Table 8 show that Gurobi can reach improved results relative to CPLEX

for all instances, except instance 5. Moreover, Gurobi can provide optimality proofs for four

instances. The DFA-based model leads to improved results relative to the direct formulation of the

problem.

7.3.3 Comparison of Results. The summarized results of the experiments with the evaluated CP

and MIP solvers are shown in Table 9. From left to right, columns 1–5 show the solver configuration

(6h indicates the time limit of 6 hours, the DFA-based model is compared with the direct model

indicated by reg), the number of overall best cost solutions reached, the number of overall fastest

optimality proofs, the number of solutions solved to optimality, and the number of optimal cost

proofs. Columns 6–10 show the number of instances where a feasible solution could be obtained,

the number of average expanded nodes (only for optimally solved solutions), the average proof

time, the standard deviation of expanded nodes for optimally solved solutions, and the standard

deviation of proof times.

The results shown in Table 9 indicate that Chuffed based on the DFA formulation clearly produces

the best results for the most number of instances and provides the fastest optimality proofs in

our experiments. By contrast, the Gecode solver could not reach any feasible solution in our

experiments. Furthermore, the DFA formulation generally leads to improved results for the MIP

solvers as the number of solved instances is higher than that of the results of the direct model.

Table 10 compares the overall best cost solutions achieved by the solvers within the time limit

of 6 hours (6h). The table includes the results produced with the local search method proposed

in [26] (localsearch). For a fair comparison, we repeated the experiments with local search on our

benchmark machine and calculated the solution costs on the basis of the arithmetic mean of 10

repeated runs as this method depends on randomly generated moves. The results formatted in bold

face indicate the best results per instance, and a * denotes proven optimal solutions.

The results presented in Table 10 show that Chuffed produced the best results in our experiments

for instances 1–10 and that it can prove optimality for instances 1–9. By contrast, Gecode was not

able to solve a single instance. This result indicates that lazy clause learning is able to produce

improved results for these instances relative to a nonlearning solver. CPLEX was able to prove a

single optimal solution (instance 2), and Gurobi was able to prove three optimal solutions (instances

2, 3, and 5) in our evaluation. Large instances (instances 11–24) could only be solved by local search

in our experimental setting as the MiniZinc compiler ran out of memory due to the excessive

number of required variables and constraints. We further observed that local search failed to reach

any of the optimal solutions for instances 1–10. Therefore, the exact methods in this work are

highly effective for reaching optimal quality results for instances 1–10, which could not be reached
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chuffed-6h cplex-6h gurobi-6h localsearch-6h

I 1 775* 776 775* 930.9

I 2 842* 842* 842* 1015.5

I 3 961* 2761 961* 971.6

I 4 918* 12920 967 1100.8

I 5 530* 11085 530* 551.7

I 6 842* 1933 - 863.5

I 7 844* - 904 912.1

I 8 1237* - - 1529.5

I 9 975* - - 1406.3

I 10 964 - - 1029.9

I 11 - - - 4471.5
I 12 - - - 4917.9
I 13 - - - 62816.5
I 14 - - - 91587.3
I 15 - - - 136675.8
I 16 - - - 180608.1
I 17 - - - 297230.8
I 18 - - - 526878
I 19 - - - 460643.5
I 20 - - - 839361.1
I 21 - - - 841710.7
I 22 - - - 1524201.9
I 23 - - - 1641116.1
I 24 - - - 2542131.3

Table 10. Table showing the best results per instance produced by the exact methods proposed in this paper
and the state-of-the-art metaheuristic for paint shop scheduling.

by metaheuristic methods. However, local search was the only evaluated method that could solve

extremely large practical instances.

8 CONCLUSION
In this work, we proposed CP modeling techniques to solve a real-life paint shop scheduling

problem. Additionally, we analyzed the problem’s complexity and proved that the decision variant

is NP-complete.

Our experimental results showed that the exact methods investigated herein can be used suc-

cessfully to solve small- to medium-sized instances, which still entail a huge search space. The

advantage of these methods is that they could provide previously unknown optimal solutions

for some instances. Our experiments showed that the best results could be achieved using the

DFA-based model. Based on this model, Chuffed produced better results than Gurobi and CPLEX

for the majority of the benchmark instances.

In the future, we intend to consider the hybridization of the proposed modeling techniques

together with existing metaheuristic approaches within the framework of large neighborhood

search.
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