
Bounded Treewidth as a Key to Tractability of
Knowledge Representation and Reasoning

Georg Gottlob and Reinhard Pichler and Fang Wei
Database and Artificial Intelligence Group

Technische Universität Wien

Abstract

Several forms of reasoning in AI – like abduction,
closed world reasoning, circumscription, and disjunc-
tive logic programming – are well known to be in-
tractable. In fact, many of the relevant problems are
on the second or third level of the polynomial hierar-
chy. In this paper, we show how the powerful notion of
treewidth can be fruitfully applied to this area. In partic-
ular, we show that all these problems become tractable
(actually, even solvable in linear time), if the treewidth
of the involved formulae (or of the disjunctive logic pro-
grams, resp.) is bounded by some constant. Experi-
ments with a prototype implementation prove the feasi-
bility of this new approach, in principle, and also give
us hints for necessary improvements.
In many areas of computer science, bounded treewidth
has been shown to be a realistic and practically relevant
restriction. We thus argue that bounded treewidth is a
key factor in the development of efficient algorithms
also in knowledge representation and reasoning – de-
spite the high worst case complexity of the problems of
interest.

Introduction
In the nineteen-nineties, several forms of reasoning in AI -
like abduction, closed world reasoning, circumscription, and
disjunctive logic programming - were shown to be highly in-
tractable, In fact, many relevant problems in this area are on
the second or even third level of the polynomial hierarchy,
see (Eiter & Gottlob 1993), (Eiter & Gottlob 1995a), (Eiter
& Gottlob 1995b).

In recent years, an interesting approach to dealing with in-
tractability has evolved, namely parameterized complexity,
see (Downey & Fellows 1999). It has turned out that many
hard problems become tractable if some problem parame-
ter is fixed or bounded by a fixed constant. Such problems
are called fixed-parameter tractable (FPT, for short). In the
arena of graph problems, an important parameter thus inves-
tigated is the so-called treewidth of a graph G – which is a
measure of the “tree-likeness” of G. If the treewidth of the
graphs under consideration is bounded by a fixed constant,
then many otherwise intractable problems become tractable,

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

e.g. 3-colorability, Hamiltonicity, etc. It is generally be-
lieved that many practically relevant problems actually do
have low treewidth, see e.g. the discussion of applications in
(Bodlaender 1993). Moreover, in (Downey & Fellows 1999)
it is noticed that many tractability results based on other in-
teresting parameters of graphs (like bandwidth, cutwidth, ra-
dius of planar graphs, etc.) are in fact subsumed by the more
general concept of treewidth. Treewidth has also been fruit-
fully applied to some areas of AI, notably to constraint sat-
isfaction, see (Arnborg 1985).

A deep result and mathematical tool for deriving new
FPT-results is Courcelle’s famous theorem, see (Courcelle
1990), which states that graph properties expressible by
Monadic Second Order (MSO, for short) sentences are
tractable (actually, even decidable in linear time) if the
treewidth of the graphs is bounded by a fixed constant.

In this paper, we revisit several intractable problems in
AI. Our goal is to harness the powerful machinery of Cour-
celle’s Theorem in the area of knowledge representation and
reasoning (KR & R, for short). Building upon the work of
(Szeider 2004) and (Gottlob, Scarcello, & Sideri 2002), we
first have to introduce the notion of treewidth to reasoning
problems. Then we show that virtually all relevant decision
problems in the area of abduction, closed world reasoning,
circumscription, and disjunctive logic programming become
tractable if the treewidth of the involved formulae (or of the
disjunctive logic programs, resp.) is bounded by some con-
stant. The central idea for deriving these FPT-results is to
encode the decision problems in terms of MSO sentences.

As usual, the benefit of FPT-results is twofold: First, they
give a better understanding of the computational nature and
of the real source of complexity of the problems under con-
sideration. Second, we believe that the FPT-results shown
here open the grounds for the development of smart param-
eterized algorithms for these problems. In this spirit, we
propose a new approach to building a general solver for the
KR & R problems studied here. Moreover, we have con-
structed a prototype implementation. Experiments with this
prototype clearly show the feasibility of our new approach in
principle. Moreover, they also show directions for necessary
improvements of this first implementation.

The rest of the paper is organized as follows. After recall-
ing some basic definitions and results, we prove the fixed-
parameter tractability of many relevant decision problems

arising in disjunctive logic programming, closed world rea-
soning, circumscription, and abduction, respectively. Fi-
nally, we report on a prototype implementation and draw
some conclusions for future work.

Preliminaries
A tree decomposition T of a graph G = (V, E) is a pair
(T, λ), where T is a tree and λ is a labeling function with
λ(N) ⊆V for every node N ∈ T , s.t. the following condi-
tions hold:

1. ∀v ∈ V , there exists a node N in T , s.t. v ∈ λ(N).
2. ∀e ∈ E, there exists a node N in T , s.t. e ⊆ λ(N).
3. ∀v ∈ V , the set of nodes {N | v ∈ λ(N)} induces a con-

nected subtree of T .

The width of a tree decomposition (T, λ) is defined as
max({|λ(N)| − 1 : N node in T }). The treewidth tw(G) is
the minimum width over all tree decompositions of G.

The notions of tree decomposition and treewidth can be
naturally generalized to arbitrary (finite) relational struc-
tures: The set U of values in the active domain corresponds
to the vertex set V and condition 2 above has to be replaced
in the sense that for all tuples (a1, . . . , an) in the database,
there exists a node N in T , s.t. {a1, . . . , an} ⊆ λ(N).

The Monadic Second Order (MSO, for short) formulae on
graphs considered here are made up of the logical connec-
tives ∨, ∧, and ¬, variables (for vertices and vertex sets), the
quantifiers ∃ and ∀ and the binary relations x ∈ Y , e(x, y),
and equality. It is common practice to denote vertex vari-
ables by lower-case letters and vertex set variables by upper-
case letters. Moreover, it is convenient to use symbols like
⊆, ⊂, ∩, ∪, and → with the obvious meaning as abbrevi-
ations. In case of MSO-formulae over arbitrary relational
structures, all relation symbols from the database (i.e., the
“extensional DB-predicates”) may also be used. The im-
portance of MSO formulae in the context of parameterized
complexity comes from the following result:

Theorem 1 (Courcelle 1990) Let ϕ be a fixed MSO-
sentence and let k be a fixed constant. Deciding whether
ϕ holds for an input graph G (more generally, for an input
structure A) can be done in linear time if the treewidth of
the graphs (resp. of the structures) under consideration is
bounded by k.

In general, we simply say that graphs (resp. structures) “have
bounded treewidth” without explicitly mentioning k.

Note that the fixed-parameter linearity according to The-
orem 1 only applies to the data complexity, i.e. the formula
ϕ is fixed. There is no such FPT-result, if we consider the
combined complexity instead (i.e. also ϕ is part of the in-
put). We shall come back to this point in the discussion of
our prototype implementation.

A propositional formula F is built up from propositional
variables (denoted as Var(F)) and the logical connectives
∨, ∧, and ¬. An interpretation of F is simply a subset X
of Var(F), i.e. the variables in X evaluate to true, while all
other variables evaluate to false. If F evaluates to true in X ,
then X is called a model of F , written as X |= F . Likewise,
we write F1 |= F2 if every model of F1 is also a model of

F2. Moreover, X is called a minimal model, if there exists
no model X ′ of F with X ′ ⊂ X . The following result is
folklore, see e.g. (Baaz, Egly, & Leitsch 2001).

Theorem 2 For every propositional formula F , there ex-
ists a formula F ′ in Conjunctive Normal Form (CNF), with
Var(F) ⊆ Var(F ′), s.t. the following properties hold:

1. ∀X with X |= F , there exists an interpretation Y with
X ⊆ Y and (Y \X) ⊆ (Var(F ′)\Var(F)), s.t. Y |= F ′.

2. ∀Y with Y |= F ′, the interpretation Y ∩ Var(F) is a
model of F .

Moreover, such an F ′ can always be found in linear time
and, therefore, also the size of F ′ is linearly bounded by the
size of F .

Proof. The negation normal form and a parse tree thereof
can be clearly obtained in linear time. The CNF can then be
constructed by a bottom-up traversal of the parse tree and by
successive applications of the rewrite rule (A ∧ B) ∨ C ⇒
(z ∨ A) ∧ (z ∨ B) ∧ (¬z ∨ C) for some fresh variable z.
Again this is feasible in linear time. �.

By slight abuse of notation, we shall refer to such an F ′

in CNF as the canonical CNF of F , even though it is not
unique. But, of course, it can be easily made unique by
fixing the order in which the above rewrite rule has to be
applied to subformulae of F .

For a propositional formula F in CNF, there are several
possibilities to define a corresponding graph. The most pow-
erful concept (cf. the discussion in (Szeider 2004)) is the in-
cidence graph I(F), which contains as vertices the clauses
and propositional variables of F ; two vertices c and x (cor-
responding to a clause c and a variable x) are connected
in I(F), iff x occurs (either negated or unnegated) in c.
More generally, we can represent F by a relational structure
A(F) based on the extensional DB predicates cl(.), var (.),
Pos(. , .), Neg(. , .) with the following intended meaning:
cl(c) (resp. var (x)) means that c is a clause (resp. a vari-
able) in F ; Pos(x, c) (resp. Neg(x, c)) means that x occurs
unnegated (resp. negated) in the clause c. Then we define the
treewidth of F as tw(F) = tw(I(F)) = tw(A(F)). For an
arbitrary propositional formula F , we set tw(F) = tw(F ′),
where F ′ is the canonical CNF of F .

Finally, the notion of the incidence graph I , the relational
structure A and the treewidth tw can be naturally extended
to more than one formula in CNF, e.g., let F1 and F2 be two
propositional formulae in CNF. Then the incidence graph of
(F1, F2) is simply I(F1∧F2). Again, (F1, F2) can be repre-
sented by a relational structure A(F1, F2), where A(F1, F2)
has the extensional DB predicates cl i(.), var i(.), Posi(. , .),
Negi(. , .) for i ∈ {1, 2} with the obvious meaning. For the
treewidth, we clearly get tw(A(F1, F2)) = tw(F1 ∧ F2).

From results in (Szeider 2004), the following relationship
between CNF-formulae and MSO can be easily derived:

Theorem 3 Let F be in CNF and X an interpretation, then
X |= F holds, iff the following MSO-sentence is valid:

MSO encoding of X |= F (with F in CNF)

(∀c)cl(c) → (∃z)[(Pos(z, c)∧z ∈ X)∨(Neg(z, c)∧z 6∈ X)]

Actually, even if F is not in CNF, the property “X |= F ”
can be encoded in terms of MSO:

Theorem 4 Let F be an arbitrary propositional formula
with canonical CNF F ′ and let X be an interpretation of
F . Then “X |= F” can be expressed by means of an MSO-
sentence.

Proof. Let F and F ′ be defined by the extensional DB pred-
icates var (.) (for the variables in F) plus cl ′(.), var ′(.),
Pos′(. , .), and Neg′(. , .) encoding F ′. Then we have:

MSO encoding of X |= F (with arbitrary F)

ExtF (X, X ′) ≡ X ⊆ X ′ ∧
(∀z)[(z ∈ X ′ ∧ z 6∈ X) → (var′(z) ∧ ¬var(z))]

X |= F ≡ (∃X ′)[ExtF (X, X ′) ∧ (X ′ |= F ′)]

The auxiliary predicate ExtF (X, X ′) means that X ′ is an
extension of the interpretation X to the variables in F ′.
Moreover, the subformula (X ′ |= F ′) is precisely the CNF-
evaluation from Theorem 3. �

Fixed-Parameter Linearity of DLPs

A disjunctive logic program (DLP, for short) P is a set of
DLP clauses a1 ∨ . . . ∨ an ← b1, . . . , bk,¬bk+1, . . . ,¬bm.
Let I be an interpretation. Then the Gelfond-Lifschitz reduct
P I of P w.r.t. I contains precisely the clauses a1∨. . .∨an ←
b1, . . . , bk, s.t. for all i ∈ {k + 1, . . . , m}, bi 6∈ I . An
interpretation I is called a disjunctive stable model (DSM,
for short), iff I is a minimal model of P I , see (Gelfond &
Lifschitz 1988) and (Przymusinski 1991).

Without any restrictions, the following problems are all
on the second level of the polynomial hierarchy, see (Eiter
& Gottlob 1995a):

• CONSISTENCY: Does P have a DSM?

• BRAVE REASONING: Is a propositional formula F true
in at least one DSM of P (written as P |=b F)?

• CAUTIOUS REASONING: Is a propositional formula F
true in all DSMs of P (written as P |=c F)?

In contrast, for bounded treewidth of P and F , the situation
changes dramatically. Suppose that a DLP P is given by
a database with the extensional DB predicates varP (.) and
clP (.) encoding the variables and clauses of P plus the addi-
tional predicates H(. , .), B+(. , .), and B−(. , .), s.t. H(x, c)
means that x occurs in the head of c and B+(x, c) (resp.
B−(x, c)) means that x occurs unnegated (resp. negated) in
the body of c. Then we have:

Theorem 5 The CONSISTENCY problem, the BRAVE REA-
SONING problem and the CAUTIOUS REASONING problem
of DLPs can be expressed by means of MSO sentences.

Proof. Recall from Theorem 4 that X |= F can be encoded
by an MSO-formula. In total, we thus have:

Figure 1: Incidence Graph and Tree Decomp. of Example 6

MSO Encoding of DLP-Reasoning

GL(X, Y) ≡ (∀c)clP (c) → (∃z)[(H(z, c) ∧ z ∈ X)∨
(B+(z, c) ∧ z 6∈ X) ∨ (B−(z, c) ∧ z ∈ Y)]

DSM(X) ≡ GL(X, X) ∧ (∀Z)[Z ⊂ X → ¬GL(Z, X)]

CONSISTENCY: (∃X)DSM(X)

BRAVE REASONING: (∃X)[DSM(X) ∧ X |= F]

CAUTIOUS REASONING: (∀X)[DSM(X) → X |= F]

The predicates defined above have the following meaning:

GL(X, Y) = “X is a model of the Gelfond-Lifschitz reduct
of the program P w.r.t. the interpretation Y ”.
DSM(X) = “X is a disjunctive stable model of P ”. �
Example 6 Consider the following DLP:
P = c1 : p∨ q ← ¬r, c2 : q ← ¬p∧¬s, c3 : s∨ t← q.
Clearly, P is consistent since, for instance, {p} is a DSM.

The incidence graph I(P) of P and a tree decomposition
T of I(P) are given in Figure 1. Note that T has width 2
(i.e., the maximum width of the labels of T minus 1). Actu-
ally, I(P) cannot have a tree decomposition of width 1 since
only trees have tw = 1. Hence, we have tw(P) = 2.

The structure A(P) is given by the following set of
ground atoms:
A(P) = {varP (p), varP (q), varP (r), varP (s), varP (t),

clP (c1), clP (c2), clP (c2),
H(p, c1), H(q, c1), H(q, c2), H(s, c3), H(t, c3),
B+(r, c1), B−(p, c2), B−(s, c2), B−(q, c3)}.

It can be easily checked that the tree decomposition T in
Figure 1 is also a tree decomposition ofA(P); in fact, every
tuple in A(P) is covered by the label of some node in T .

The MSO-formula GL(X, Y) from the proof of Theo-
rem 5 clearly evaluates to true over A(P) for X = {p} and
Y = {p}. Moreover, for X = {} and Y = {p}, it evaluates
to false. Hence, DSM(X) evaluates to true for X = {p}
and, therefore, the consistency of P is correctly established
via the MSO-formula (∃X)DSM(X).

Theorem 7 The CONSISTENCY problem of DLPs P is solv-
able in linear time, if the incidence graph of P has bounded
treewidth. Likewise, BRAVE REASONING P |=b F and
CAUTIOUS REASONING P |=c F are solvable in lin-
ear time, if the incidence graph of (P, F ′) has bounded
treewidth, where F ′ denotes the canonical CNF of F .

Proof. The treewidth of an input DB with the extensional
predicates varP (.), clP (.), H(., .), B+(., .), and B−(., .)
encoding P is identical to the treewidth of the incidence
graph I(P). Likewise, if the input DB additionally contains
the predicate var(.) for the variables of F and the predicates

cl ′(.), var ′(.), Pos′(. , .), and Neg′(. , .) encoding F ′, then
the treewidth coincides with the treewidth of the incidence
graph I(P, F ′). The rest follows immediately from Cour-
celle’s Theorem. �

Fixed-Parameter Linearity of CWR and
Circumscription

Several forms of closed world reasoning (CWR, for short)
are proposed in the literature, namely CWA (Closed World
Assumption), GCWA (Generalized CWA), EGCWA (Ex-
tended GCWA), CCWA (Careful CWA), and ECWA (Ex-
tended CWA). They are defined in terms of the following
terminology: Let T (a “theory”) and F be propositional for-
mulae and let 〈P ; Q; Z〉 be a partition of Var(T). Then we
write M(T) (resp. MM(T)) to denote the set of all mod-
els (resp. of all minimal models) of T . Moreover, we write
MM(T ; P ; Q; Z) to denote the set of 〈P ; Q; Z〉-minimal
models of T , i.e.: X ∈ MM(T ; P ; Q; Z), iff X |= T and
there exists no model Y of T with (Y ∩ P) ⊂ (X ∩ P) and
(Y ∩Q) = (X ∩Q).

In (Cadoli & Lenzerini 1990), several equivalent charac-
terizations of the closure of a theory T under the various
CWR rules are provided. Below, we recall those characteri-
zations which are best suited for our purposes here:

• CWA(T) = T ∪ {¬K |K positive literal s.t. T 6|= K}
• GCWA(T) = T ∪ {¬K |K positive literal and ∀X ∈

MM(T): X 6|= K}
• EGCWA(T) |= F iff ∀X ∈MM(T): X |= F
• CCWA(T ; P ; Q; Z) = T ∪ {¬K |K positive literal and
∀X ∈MM(T ; P ; Q; Z): X 6|= K}
• ECWA(T ; P ; Q; Z) |= F iff ∀X ∈ MM(T ; P ; Q; Z):

X |= F

The DEDUCTION problem of CWR-rule C with C∈ {CWA,
GCWA, EGCWA, CCWA, ECWA } is as follows: Given
T and F (and possibly P, Q, Z), does C(T) |= F (resp.
C(T ; P ; Q; Z) |= F) hold? In (Eiter & Gottlob 1993), this
problem is shown to be Πp

2-complete or even harder for all
rules C 6= CWA. Note that in the propositional case, CIR-
CUMSCRIPTION coincides with the ECWA-rule, see (Gel-
fond, Przymusinska, & Przymusinski 1989).

Again, for bounded treewidth, we get much better com-
plexity results. Let T and F be arbitrary propositional for-
mulae with canonical CNFs T ′ and F ′, respectively. Sup-
pose that the input DB contains the extensional predicates
varT (.) and varF (.) for the variables in the original formu-
lae T and F . Moreover, the CNFs are encoded as usual by
means of the predicates varT ′(.), varF ′(.), clT ′(.), clF ′(.),
etc. Finally, the partition 〈P ; Q; Z〉 of Var(T) is encoded in
the input DB via unary predicates P, Q, Z . Then we have:

Theorem 8 For all of the CWR-rules CWA, GCWA,
EGCWA, CCWA, ECWA, the DEDUCTION problem (and,
hence, also CIRCUMSCRIPTION) can be expressed by means
of MSO sentences.

Proof. The rules GCWA and EGCWA are special cases of
CCWA and ECWA, resp., with Q = Z = ∅. Moreover, as
mentioned above, CIRCUMSCRIPTION is equivalent to the
ECWA-rule. The remaining cases are encoded as follows:

MSO Encoding of CWR-Deduction

MM(X) ≡ X |= T ∧ ¬(∃Y)[(Y ∩ P) ⊂ (X ∩ P)∧
(Y ∩ Q) = (X ∩ Q) ∧ Y |= T]

var(z) ≡ varT (z) ∨ varF (z)
clo1(¬z) ≡ var(z) ∧ ¬(T |= z)
clo2(¬z) ≡ var(z) ∧ (∀Y)[MM(Y) → ¬(Y |= z)]

DEDUCTION with CWA-rule and CCWA-rule:
(∀X)[(X |= T ∧ (∀z)(cloi(¬z) → X |= ¬z))

→ (X |= F)]
DEDUCTION with ECWA-rule:

(∀X)[MM(X) → (X |= F)]

The above predicates have the following meaning:

cloi(¬z) with i ∈ {1, 2} means that z is in the closure of T
w.r.t. the CWA-rule (for i = 1) or CCWA-rule (for i = 2),
respectively. MM(X) means X ∈MM(T ; P ; Q; Z). �

Analogously to the previous section, we thus get the fol-
lowing FPT-results:

Theorem 9 Consider propositional formulae T and F with
canonical CNFs T ′ and F ′. Then for all of the CWR-rules
C ∈ {CWA, GCWA, EGCWA, CCWA, ECWA }, the corre-
sponding DEDUCTION problem T |=C F (and, hence, also
CIRCUMSCRIPTION) is solvable in linear time, if the inci-
dence graph of (T ′, F ′) has bounded treewidth.

Fixed-Parameter Linearity of Abduction

A propositional abduction problem (PAP, for short) is given
by a tuple P = 〈V, H, M, T 〉 where V is a set of proposi-
tional variables, H ⊆ V (the “hypotheses”), M ⊆ V (the
“manifestations”), and T is a consistent propositional for-
mula (the “theory”). A solution of P is a subset S ⊆ H , s.t.
T ∪ S is consistent and T ∪ S |= M . Given a PAP P , the
basic problems of propositional abduction are the following:

• SOLVABILITY: Does there exist a solution of P?

• RELEVANCE: Given h ∈ H , is h contained in at least one
solution of P?

• NECESSITY: Given h ∈ H , is h contained in every solu-
tion of P?

In (Eiter & Gottlob 1995b), the former two problems were
shown to be Σp

2-complete while the latter is Πp
2-complete.

However, for bounded treewidth of T , we can easily estab-
lish the fixed-parameter tractability: Let the input DB con-
tain the usual predicates varT (.), varT ′(.), clT ′(.), etc. en-
coding T and its canonical CNF T ′. Moreover, the DB con-
tains the unary predicates V , H , and M encoding the corre-
sponding variable sets. Then we have:

Theorem 10 The basic PAP-problems SOLVABILITY, REL-
EVANCE, and NECESSITY can be expressed by means of
MSO sentences.

Proof. The MSO encoding is straightforward:

MSO Encoding of the Basic Abduction Problems

Sol(S) ≡ S ⊆ H ∧ (∃X)[X |= T ∧ X ⊆ S]∧
(∀Y)[(Y |= T ∧ Y ⊆ S) → Y |= M]

SOLVABILITY: (∃S)Sol(S)

RELEVANCE: (∃S)[Sol(S) ∧ h ∈ S]

NECESSITY: (∀S)[Sol(S) → h ∈ S]

The predicate Sol(S) is a straightforward encoding of the
property “S is a solution of P”, namely (i) S is a subset of
the propositional variables in H , (ii) (T ∪S) has at least one
model X , and (iii) every model Y of (T ∪S) is also a model
of M . �
Usually, a refined version of the RELEVANCE (resp. NECES-
SITY) problem is considered. Rather than asking whether
h is contained in some (resp. every) solution, one is inter-
ested if h is contained in some (resp. every) acceptable so-
lution. In this context, “acceptable” means “minimal” w.r.t.
some preorder � on the powerset 2H . Consequently, one
speaks of�-RELEVANCE (resp. �-NECESSITY). The above
treated basic abduction problems RELEVANCE and NECES-
SITY correspond to the special case where� is equality. The
other preorders thus studied are the following:

• subset-minimality “⊆”
• prioritization “⊆P ” for a fixed number p of priorities: H

is partitioned into “priorities” H1, . . . , Hp. Then A ⊆P

B, iff A = B or there exists a k s.t. A∩Hi = B ∩Hi for
all i < k and A ∩Hk ⊂ B ∩Hk.
• minimum cardinality “≤”: A ≤ B iff |A| ≤ |B|.
• penalization “vp” (also referred to as “weighted abduc-

tion”): To each element h ∈ H , a weight w(h) is attached.
Then A ≤ B iff

∑
h∈A w(h) ≤

∑
h∈B w(h).

In all of these cases, the resulting �-RELEVANCE (resp. �-
NECESSITY) problem is on the second or third level of the
polynomial hierarchy, see (Eiter & Gottlob 1995b). The last
two cases turn out to be a bit tricky. Below, we establish the
desired FPT-result for the first two ones:

Theorem 11 For �∈ {⊆,⊆P}, both the �-RELEVANCE
problem and the �-NECESSITY problem can be expressed
by means of MSO sentences.

Proof. It suffices to provide an MSO encoding of the pred-
icates Acc⊆(S) and Acc⊆P (S), which mean that S is an
acceptable solution for the preorders⊆ and ⊆P , resp.

MSO Encoding of Acceptability w.r.t.⊆ and ⊆P

Acc⊆(S) ≡ Sol(S) ∧ (∀X)[(X ⊂ S) → ¬Sol(X)]

X ⊂P S ≡ (X ∩H1 ⊂ S)∨ (X ∩H1 ⊆ S ∧X ∩H2 ⊂ S)∨
(X ∩ H1 ⊆ S ∧ X ∩ H2 ⊆ S ∧ X ∩ H3 ⊂ S)

Acc⊆P (S) ≡ Sol(S) ∧ (∀X)[(X ⊂P S) → ¬Sol(X)]

By X ⊂P S we mean that X ⊆P S and X 6= S. Note that
we are only considering 3 priority levels H1, H2, and H3

above. However, the generalization to an arbitrary but fixed
number p of priority levels is clear. �

By Courcelle’s Theorem and Theorems 10 and 11 above,
we immediately get the following FPT-result:

Theorem 12 Consider PAP-problems 〈V, H, M, T 〉 where
T is a propositional formula with canonical CNF T ′. Then
all of the following problems are solvable in linear time, if
the incidence graph of T ′ has bounded treewidth: SOLV-
ABILITY, RELEVANCE, and NECESSITY as well as �-
RELEVANCE and �-NECESSITY with �∈ {⊆,⊆P}.

It remains to consider the cases �∈ {≤,vp}. Actually,
≤ is a special case ofvp, where every h ∈ H is assigned the
same weight. Unfortunately, MSO is not powerful enough
to express the cardinality-comparison≤ (cf. the discussion
in (Arnborg, Lagergren, & Seese 1991)). Nevertheless, also
for�∈ {≤,vp}, it is possible to establish the FPT-property
in case bounded treewidth. Due to space limitations, we can
only give a very rough sketch here:

In (Arnborg, Lagergren, & Seese 1991), so-called ex-
tended monadic second order problems (EMS, for short) are
defined, which – in addition to MSO – are allowed to use
weight functions, sums and minimum/maximum-functions.
This additional expressive power can be shown to suffice
for expressing the acceptability of PAP-solutions w.r.t. ≤
and vp. Moreover, in (Arnborg, Lagergren, & Seese 1991),
Theorem 5.4, it is shown that deciding EMS problems is
fixed-parameter tractable (though not necessarily solvable
in linear time) if the treewidth of the graphs considered is
bounded by some fixed constant.

Use and Implementation: Proof of Concept
System Description.

Practical work realizing Courcelle’s theorem was first pro-
posed in (Arnborg, Lagergren, & Seese 1991), which was
further developed in (Flum, Frick, & Grohe 2002). Our
implementation, which is based on (Flum, Frick, & Grohe
2002), has the following overall structure:

General Program for KR & R problems
Input: MSO-formula ϕ, treewidth w, structure A
Output: if tw(A) ≤ w then output “Yes” / “No”

else output “tw(A) > w”.

Transformation of the MSO-formula ϕ.
I. from ϕ and w, compute the MSO-formula ϕ∗;

Computation of a colored, binary tree T ∗.
II. compute a tree decomposition T of A with width w;

if tw(A) > w then HALT with result “tw(A) > w”;
III. fromA, compute a colored, binary tree T ∗;

MSO-model checking.
IV. check if ϕ∗ evaluates to true over T ∗;

The problem of evaluating an MSO formula ϕ over rela-
tional structures A is transformed into an equivalent prob-
lem of evaluating an MSO formula ϕ∗ over colored, binary
trees T ∗. Note that ϕ∗ (which depends on the original for-
mula ϕ and the fixed treewidth w), has to be computed only
once for every problem described in this paper. In contrast,
the computation of a tree decomposition T and the trans-
formation of T into T ∗ has to be done for every problem
instance. The final step is the the actual model-checking.

So far, we have only implemented the DLP-consistency
problem. The input MSO-formula ϕ from the proof of The-
orem 5 was transformed into ϕ∗ in an ad hoc manner – de-
pending on the chosen treewidth w. For the computation
of the tree decomposition T , we are planning to implement
Bodlaender’s algorithm, see (Bodlaender 1996). For the
time being, we are considering the tree decomposition as
an additional part of the input. Our transformation of T into
T ∗ essentially implements the algorithm from (Flum, Frick,
& Grohe 2002) – apart from some simplifications that are
possible here (e.g., due to the fact that we have no predi-
cates over sets of constants in the input database). For the
last step, we decided to take advantage of an existing MSO-
model checking tool. We have thus chosen MONA, see
(Klarlund, Møller, & Schwartzbach 2002). To the best of
our knowledge, MONA is the only existing such tool.

Practical Experience and Discussion.
We have experimented with our prototype implementations
on several instances of the DLP-consistency problem. Some
experimental results are reported in Table 1, where “tw”
means the treewidth, “# var.” (resp. “# cl.”) means the num-
ber of variables (resp. clauses), “# tn” refers to the num-
ber of nodes in the tree decomposition, and “# rel. ins.”
stands for the number of relational instances in the relational
structure. The computation time (in seconds) was measured
on a PC under Linux with an Intel Pentium M processor
1.60GHz.

So in principle, it has been proved that the reduction to a
model checking problem and the assembling of components
as described above is a viable way of solving the desired KR
& R problems. However, as far as the observed runtime is
concerned, the experimental results are far from the linear
time behavior according to the theoretical results shown in
the previous section. An analysis of the various components
of our program has revealed that MONA is the weak point of
the program. In fact, the way how MONA evaluates an MSO
formula ϕ∗ over a tree T ∗ is very problematical (and, in a
sense, contradicts the spirit of model checking). The correct
way of handling this model checking task would be as fol-
lows, see (Flum, Frick, & Grohe 2002): The MSO formula
ϕ∗ has to be compiled “once and for all” into a finite tree au-
tomaton (FTA, for short) and this FTA has to be run on any
input tree T ∗. Instead, MONA also considers the ground
atoms encoding T ∗ as part of the formula and then compiles
the resulting MSO-formula (consisting of ϕ∗ plus the encod-
ing of T ∗) into an FTA. In other words, the size of the FTA
grows (exponentially!) with the size of T ∗. Consequently,
on the one hand, the runtime needed by MONA is far from
linear. On the other hand – even worse – the state explosion
of the FTA for an increasing size of T ∗ led to runtime errors
of MONA caused by “memory leak”. In the experiments de-
scribed in Table 1, this negative effect already happened for
var. = 10 and # cl. = 7.

MONA undoubtedly has its merits in other areas, no-
tably in verification. However, with its current strategy of
considering the input structure as part of the formula (and,
therefore, mixing up data complexity and query complex-
ity), MONA is not suited for the KR & R problems studied

Figure 2: Proposed System Architecture

tw # var. # cl. # tn # rel. ins. time
4 4 1 2 8 0.10
4 5 2 4 12 0.17
4 6 3 6 16 0.52
4 7 4 8 20 0.65
4 8 5 10 24 1.27
4 9 6 12 28 3.54

Table 1: Experiments with the DLP-Reasoning Problem

here. Hence, in the long run, we either need a general model
checking tool that does distinguish between the formula and
the data (unfortunately, such a tool currently does not exit)
or we have to implement the model checking part (i.e., step
IV of our program) ourselves – based on the algorithm de-
scribed in (Flum, Frick, & Grohe 2002). The resulting sys-
tem architecture of our approach is depicted in Figure 2: The
steps I, II, and III are clear. However, it is crucial to divide
step IV into two substeps: Step IVa, which computes a finite
tree automaton from the MSO-formula ϕ∗, and Step IVb,
which runs the FTA on every tree T ∗. The important point
to notice is that steps I and IVa (depicted on the left-hand
side of Figure 2) are carried out once and for all while the
steps I, II, and III (shown on the right-hand side) have to be
repeated for every single input structure Ai.

Conclusions and Future Work
In this paper, we have introduced a new approach (based
on Courcelle’s Theorem) to solving a whole range of prob-
lems in knowledge representation and reasoning. Despite
the high worst case complexity of these problems, we have
thus managed to prove that they are all solvable in linear
time if the treewidth of the considered formulae (resp. of the
DLPs) is bounded by some constant. We have also experi-
mented with a prototype implementation based on the algo-
rithm of (Flum, Frick, & Grohe 2002) but using the general
tool MONA for the actual model checking part. The results
obtained by these experiments show the feasibility of our
approach in principle.

However, the experience with this prototype also clearly
suggests the need for a dedicated system that is built from
scratch. For the reasons explained in the previous section,
MONA is not suitable for our purposes. Hence, MONA
should be replaced in our program by an implementation of

the model checking algorithm from (Flum, Frick, & Grohe
2002). Only with the strict separation of data complexity and
query complexity guaranteed by the latter algorithm, we can
obtain the desired linear time behavior of the overall pro-
gram. Anyway, even then, searching for further optimiza-
tions is an important target of future research.

Note that a dedicated system has a further advantage: It
would allow us to implement extensions like the extended
monadic second order language from (Arnborg, Lagergren,
& Seese 1991), which is needed to encode several problems
in the context of abduction. With MONA used a black box,
such extensions are impossible.

As was mentioned in the previous section, we are cur-
rently considering the tree decomposition of the relational
structure as part of the input. In the future, we want to auto-
mate the computation of a tree decomposition of given width
w. Theoretically, this is a well-studied problem, which can
be solved in linear time for fixed w, see (Bodlaender 1996).
However, the large constant factor of Bodlaender’s algo-
rithm (i.e., exponential w.r.t. w3) may turn out to be prob-
lematical in practice. Hence, in order to cope not only with
really small values of w, we have to be careful with the se-
lection of an appropriate algorithm. In particular, there exist
quadratic time tree decomposition algorithms (Reed 1992)
which – depending on the concrete situation – may be prefer-
able to the linear one. Hence, extensive experimenting with
various tree decomposition algorithms is needed.

We have shown here one way how KR & R problems can
be represented as graphs and that the idea of graph decom-
positions and the notion of some width can be fruitfully ap-
plied to this area. However, also other mappings of the KR
& R problems to graphs – in particular, to directed graphs
– are conceivable. Moreover, recently, other interesting no-
tions of decompositions and width have been developed, see
e.g. (Berwanger & Grädel 2005),(Berwanger et al. 2006).
We are planning to investigate their applicability to the KR
& R problems studied here.

References
Arnborg, S.; Lagergren, J.; and Seese, D. 1991. Easy
Problems for Tree-Decomposable Graphs. J. Algorithms
12(2):308–340.
Arnborg, S. 1985. Efficient Algorithms for Combinatorial
Problems with Bounded Decomposability - A Survey. BIT
25(1):2–23.
Baaz, M.; Egly, U.; and Leitsch, A. 2001. Normal Form
Transformations. In Robinson, J. A., and Voronkov, A.,
eds., Handbook of Automated Reasoning, volume 1. Else-
vier Science. chapter 5, 273–333.
Berwanger, D., and Grädel, E. 2005. Entanglement - A
Measure for the Complexity of Directed Graphs with Ap-
plications to Logic and Games. In Proc. LPAR 2004, vol-
ume 3452 of LNCS, 209–223.
Berwanger, D.; Dawar, A.; Hunter, P.; and Kreutzer, S.
2006. DAG-Width and Parity Games. In Proc. STACS
2006, LNCS.
Bodlaender, H. L. 1993. A tourist guide through treewidth.
Acta Cybern. 11(1-2):1–22.

Bodlaender, H. L. 1996. A Linear-Time Algorithm for
Finding Tree-Decompositions of Small Treewidth. SIAM
J. Comput. 25(6):1305–1317.
Cadoli, M., and Lenzerini, M. 1990. The Complexity of
Closed World Reasoning and Circumscription. In Proc.
AAAI-90, 550–555.
Courcelle, B. 1990. Graph Rewriting: An Algebraic and
Logic Approach. In Handbook of Theoretical Computer
Science, Volume B. Elsevier Science Publishers. 193–242.
Downey, R. G., and Fellows, M. R. 1999. Parameterized
Complexity. New York: Springer.
Eiter, T., and Gottlob, G. 1993. Propositional Circum-
scription and Extended Closed World Reasoning are Πp

2-
complete. Theoretical Computer Science 114:231–245.
Eiter, T., and Gottlob, G. 1995a. On the Computational
Cost of Disjunctive Logic Programming: Propositional
Case. Annals of Math. and Artif. Intell. 15(3/4):289–323.
Eiter, T., and Gottlob, G. 1995b. The Complexity of Logic-
Based Abduction. J. ACM 42(1):3–42.
Flum, J.; Frick, M.; and Grohe, M. 2002. Query evaluation
via tree-decompositions. J. ACM 49(6):716–752.
Gelfond, M., and Lifschitz, V. 1988. The Stable Model
Semantics for Logic Programming. In Proc. ICLP/SLP,
1070–1080.
Gelfond, M.; Przymusinska, H.; and Przymusinski, T. C.
1989. On the Relationship Between Circumscription and
Negation as Failure. Artif. Intell. 38(1):75–94.
Gottlob, G.; Scarcello, F.; and Sideri, M. 2002. Fixed-
Parameter Complexity in AI and Nonmonotonic Reason-
ing. Artif. Intell. 138(1-2):55–86.
Klarlund, N.; Møller, A.; and Schwartzbach, M. I. 2002.
MONA Implementation Secrets. International Journal of
Foundations of Computer Science 13(4):571–586. World
Scientific Publishing Company. Earlier version in Proc.
CIAA ’00, LNCS vol. 2088.
Przymusinski, T. C. 1991. Stable Semantics for Disjunctive
Programs. New Generation Comput. 9(3/4):401–424.
Reed, B. 1992. Finding approximate separators and com-
puting treewdith quickly. In ACM Symposium on Theory
of Computing.
Szeider, S. 2004. On Fixed-Parameter Tractable Parame-
terizations of SAT. In Proc. 6th Int. Conf. SAT 2003, Se-
lected Revised Papers, volume 2919 of LNCS, 188–202.

