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no algorithm capable of deciding tR¥VV-theory of one step rewriting of an arbitrafipite linear
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1. INTRODUCTION

A finite term rewriting system R generates the binane step reducibility relatiofR on the set
of ground terms. Atheory of one step rewritingh R is the first-order theory of this binary relation
R formulated in the language of the predicate calcwlithout equalitycontaining theunique binary
predicatesymbolR interpreted af. The problem whether first-order theories of one step rewriting in
finite systems are decidable was suggested in [1, p. 331] and repeatedRievthiing Techniques and
Applications(RTA) lists of open problems; see [2, p. 473] and [3, p. 461].

The motivation for the problem is quite natural. For example,gland reducibilityof a term
t(X) and thestrong confluencef a system are expressible by the formwWady R(t(X), y) andvx, y,
zZAw(R(X, ¥) A R(X, 2) = R(Y, w) A R(z, w)), respectively. Note that both properties are known to be
decidable. Similarly, the decidability of properties liktecompassmerknown to be decidable [1, 4],
would follow from the general decidability of theories of one step rewriting. Recall also that the first-
order theories of one step rewriting finite groundsystems are decidable [5]. On the other hand, the
transitive closure of the one step reducibility relation seems to be inexpressible in the theories of one
step rewriting (the opposite would immediately lead to their undecidability). All these facts motivated
the quest for the solution to the above problem and for the general decision procedure applicable to all
rewrite systems. This would have allowed us to decide all properties of rewrite systems, like discussed
above, expressible in the language of one step rewritirifprmly.

Unfortunately, the problem was settled in the negative (undecidable). It was demonstrated in [6], by
reduction from the post correspondence problem, that there is no algorithm capable of deciding the
33v-theory of an arbitrary term rewriting system. This result, however, does not imply the existence
of any fixed rewrite systems with undecidable theories. Moreover, each particular rewrite system has
a decidablel3v-fragment (used in [6]). Actually, this holds for any other fragment with finitely many
guantifier prefixes, as explained in Section 5. On the other hand, [7] presented a fstegbtewrite
rule system with undecidable theory of one step rewriting, by using a reduction from the undecidable
theory of binary concatenation (or free semigroups); see [8]. We therefore distinguish betwseakhe

1To whom correspondence should be addressed. Fax: +46-18-51-19-25.

2 preliminary version with weaker results based on different ideas and proofs appeared in the Proceedings of the 8th International
Conference on Rewriting Techniques and Applications (RTA97), June 2-4, 1997, Sitges (Barcelona), Spain, Lecture Notes
in Computer Science, Vol. 1232, pp. 254-268. Preliminary version of this publication appeared as Research Report MPI-
1-98-009, Max-Planck Institutuf’ Informatik, Saarbu¢ken, Germany, May 1998ttp: /data.mpi-sb.mpg.de/internet/
reports.nsf/NumberView/.
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undecidability i.e., non-existence of a unique decision algorithm applicable to all systems uniformly,
andstrong undecidabilityi.e., undecidability of the theories of fixed systems.

It should be noted that both [6] and [7] constructed non-finitely terminating and non3lireserite
rules? Moreover, [6] directly used the rules of the fotm- t one hardly ever encounters in practice.
This somehow diminished the relevance of the obtained results and left a strong hope that the theories
of one step rewriting should be decidable for finitely terminating systems.

In these circumstances H. Ganzinger at RTA'96 (New Brunswick, NJ) suggested a problem whether
finite finitely terminating systems have (un)decidable theories of one step rewriting. Recall in this
connection that the confluence is undecidable, in general, but becomes decidable for finite finitely
terminating systems. The similar decidability problem was put forward for the subclass of linear systems.

The decidability conjecture was first dispelled in [10], where a fixed finite, simultaneously finitely
terminating and linear system with undecidable theory of one step rewriting was constructed. The
proof again was given by reduction from the undecidable theory of binary concatenation. As a partial
drawback compensating for the ease of reduction, the quantifier alternation of the sentences forming the
undecidable class was quite high. Then in [11] it was shown that no algorithm is capable of deciding the
I*v*-theory of one step rewriting of an arbitrary finite finitely terminating system (but again without
implying undecidability for any fixed systems; see Section 5). A similar result for terminating right-
ground but non-linear systems is also proved in [11].

In this paper we further improve and sharpen the ahegak undecidability results by showing
that no decision algorithm can decide tvV-theory of any given finite, simultaneously (1) finitely
terminating, (2) linear, and (3) confluent rewrite system. All the preceding proofs constnated
confluentsystems. For comparison, [11] proved an analogous result for non-confluent terminating
systems and3avvvvv-theories, and [6] for divergent non-confluent systems.

We also provestrong undecidabilitypby constructing dixed finite linear canonical system with
undecidabledv*-theory of one step rewriting. Recall that the weak undecidability results of [6] and
[11] do not imply existence of such systems (Section 5), whereas [7, 10] used much more complicated
quantifier prefixes andon-confluensystems. As a methodological advantage of the proof presented
here let us mention the use of reduction from the well-known undecidable halting problem for the two-
counter machines [12—14]. Note that [11] used a rather complicated specially tailored undecidability
problem in his proof (the details have not yet been published).

The main results of the paper are summarized in the following:

Main Theorem

(Part A: Weak undecidability). There is no algorithm deciding t@vv-theory of one step rewriting
for every finite linear canonical system.

(Part B: Strong undecidability). There exists a finite linear canonical rewrite system (explicitly
presented) with undecidable (actually, r.e.-complgt}theory of one step rewriting.

Note that Part A refers to a uniform algorithm that first reads a system R as a parameter and then
adjusts itself to decide its theofyhayyy(R).

We call Part A “weak undecidability” for three reasons:

(1) it has logical form—3AVR, weaker compared withRY A— of strong undecidability,
(2) itdoes notimply strong undecidability (see Section 5),

(3) for every finite term rewriting system and for every finite quantifier prefix Iikgv, 33v,
33vvvvy (but not forav*, which denotes an infinite set of quantifier prefixes) the corresponding theory of
one step rewriting with this finite prefix &ways decidablésee Section 5). This, somehow, diminishes
the practical value of Treinen—Marcinkowski’s results. Indeed, one almost never deals with all rewrite
systems altogether, but rather with one fixed given system at a time. But for any fixed system and any
finite quantifier prefixQ, the Q-theory of the system is always decidable. Thus weak undecidability is
immaterial for practical purposes.

3i.e., containing repeated variable occurrences on the left (or right) hand side.
4 Later this was improved in [9] to linear shallow systems, but still non-terminating with tules.
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Outline. The paper is organized as follows. After preliminaries in Sections 2—4, in Section 5 we
discuss and relatgeakandstrongundecidability. Section 7 introduces Minsky’s two register machines,
and Section 8 describes the idea of reduction from the halting problem for these machines, which we
employ in the proof. Sections 9-16 implement the reduction. Sections 17 and 18 summarize all rewrite
rules and formulas constructed. Section 19 is devoted to the correctness proof. Section 20 proves
undecidability of th&lvvv-theories for finite right-ground canonical systems, which improves (simpler
prefix, confluent systems) over [11]. In Section 21 we prsiveng undecidabilitfor 3v*-theories of
fixed linear canonical systems. Finally, in Section 22 we show strong undecidabiliy\fgrtheories,
when function symbols are allowed in formulas. We conclude in Section 23.

2. PRELIMINARIES

We suppose familiar use throughout the standard basic notions of term rewriting; see, e.g., [15, 16].
Specifically, byr[t] we denote a ternm containing a distinguished occurrence of a subtérBy
r[s/t] we denote the result of replacing this distinguished occurrence with $ekive freely speak
about reducibility in the outermost and inner positions, etc. We also expect some knowledge of finite
termination and the Knuth-Bendix critical pairs algorithm; see, e.g., [15-17].

A rewrite system iganonicalif it is simultaneously finitely terminating and confluent. A system is
linear if each term in its left- and right-hand sides is linear, i.e., contains at most one occurrence of
every variable.

In writing predicate formulas we omit parentheses assuming the usual priority precedence of boolean
connectives—, A, V, =.

3. THEORY OF ONE STEP REWRITING

Given a functional signaturE with constants and a finite rewrite rule system R, consider the rewrite
modelM = (T (X), R) induced by R, wher& (X) is the Herbrand universe ov&rand the relation

R={(st)|s,t e T(Z)AS—>Rt} CT(X) x T(X)

is the one step rewrite relation d(X) generated by the system R.

Let £ be the first-order language without equality containing the only binary predicate syRabol
The first-order theory of one step rewriting in R is the set of sentencéstiofe in the rewrite model
M, when the binary predicate symbRlis interpreted as the binary relatiéh This theory is denoted
Th(R).

Remark 1. Itis important to note that the only non-logical symbol used in formulas of the theory is
R, and the functional symbols of signatueare not allowed in formuladSometimes instead of strict
notationR(x, y) for atomic formulas of the theory we use more familiar and intuitive notaties y
(not to be confused with rewrite rules).

Remark 2. One can easily construct an infinite system with the undecidable existential theory of
one step rewriting. It suffices to represent the addition and multiplication tables by rewrite rules and use
Matiyasevich’s result on undecidability of Diophantine equations.

More explicitly, consider the system with the following rules for every natamah > 2, where
p, g, m, a are auxiliary binary symbols and- y, X + y denote the numerals equal to the producy
and the sunx + v: -

p(x, y) = p(X,y),
p(x, y) = a(x, y),
ax. y) = p(x,y),
ax, y) = x,
p(X,y) =Y.

5 We will relax this restriction in Section 22.
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a(xy) - - p(xy) =
X mxy) o a(x,y)
x*y x+y

FIG. 1. Possible rewrites in the system of Remark 2.

p(x.y) = m(x. y),
p(x, y) = a(x, y),
m(x, y) — a(x, y),
m(x,y) = X,
a(x,y) > x+y,

Xy =X,
X+y =y
Figure 1 shows the diagram of possible rewrites.

Now, instead of sayindu, v--- Au-v =w A ... (while expressing the existence of solutions to a
Diophantine equation; treating af+ v = w is completely analogous), one writes:

3P, Q, A, M, U,V, Xy.v, Yusv ...
P—->PAP->QAQ—-PAQAQAQ—->UAUAPA
P—->VAVAVAP->MAMAMAP—>AAAAL AA
M—>AAM— XyvAXyy >UAA—=>YyovAYyoy > Voo,

meaning thatP is a pair ofU, V, and Xy.v, Yusv (just variables with fancy subscripts) equal the
product and the sum & andV, respectively.

The assumptiom, n > 2 is made to keep the system reducing, except for the first two rules needed to
say “P is a pair.” Anyway, the Diophantine equations problem remains undecidable in natural numbers
>k (for any naturak). The reader will readily fill out the details and find possible simplifications after
reading the paper.

4. THEORIES OF ONE STEP REWRITING WITH RESTRICTIONS
ON QUANTIFIER PREFIXES

It is well known that each first-order sentence is equivalent to a sentencepretiex form
lel cee QanQD,

whereQ; € {3, V} are quantifiers and is a quantifier-free formula.



P1: GLD
PPXXX-IAC

INCO3151 May 23, 2002 9:55

UNDECIDABILITY OF ONE STEP REWRITING THEORIES 5

A quantifier prefix typds a regular expression over the alphafigty}; for example vy, 3*v*,
v U V3. Given a quantifier prefix typ&, let L(Q) be the language defined by the regular expression
Q according to the usual rules. This language may be finite, as in the c&3e-0fvVvV (one element),
or infinite, as in the case of) = 3*v*.

For a given quantifier prefix typ®, the Q-theory of one step rewriting iR is a subset oTh(R)
consisting of prenex sentences with quantifier prefixds({@). This theory is denoted byhg (R).

In the first part of this paper we will prove weak undecidability@ef/Vv-theories of one step rewriting
in linear canonical systems. For comparison, [11] proved weak undecidabiligvef/vV-theories for
linear terminating non-confluent systems, and [6] proved weak undecidabilityvstheories of one
step rewriting in non-terminating non-linear systems. In the second part of the paper, in Section 21, we
prove strong undecidability of th#v*-theory of a particular system.

5. WEAK VS. STRONG UNDECIDABILITY RESULTS

The results of [6, 11, 10] are sometimes misinterpreted or misunderstood, and some clarification is
necessary.

Let usfirst recall the statement of the problem, as given in the RTA'93, RTA'95 lists of open problems;
see [2, 3].

Problem 5.1 (RTA'93, RTA'95).For an arbitrary finite term rewriting system R the first-order
theory of one step rewriting>r decidable?. .

This informal statement allows for at least two different interpretations, depending on the order of
quantification (note that (2) = — (1)):

Problem 5.1 (Formalized). Prove or disprove that:

3 an algorithm AV systenR (A decides T{R)), (1)
V systenR 3 an algorithm A(A decides T{R)). (2)

Thus, [6, 11] disproved (1) by showing

(Weak undecidability). There is no algorithm that given a finite term rewriting system R decides its
theoryTh(R) of one step rewriting. Even stronger, there is no algorithm that:

(1) given afinite (but otherwise unrestricted) rewrite system R decid@3\tsheory of one step
rewriting Thsav(R), [6];

(2) given a finite linear finitely terminating system R decidesdd§VVvVvVv-theory of one step
rewriting Thaawwwwy (R), [11].

This settles Problem 5.1 in the form (1) in the negative.

However, it might happen (see below) that simultaneously one has

(Non-uniform decidability). For each finite rewrite rule system Bhe corresponding first-order
theoryTh(R;) of one step rewriting islecidableby some (non-uniform) algorithr .

And in this latter case one should admit that Problem 5.1 is settléte positive because it corre-
sponds more exactly (at least from the author’s point of view) to what is asked for in the statement of
Problem 5.1.

Although the results of [7, 10], exclude non-uniform decidability by disproving (2), the results of [6]
and [11] do not exclude it. This follows from the fact that both authors use only finite quantifier prefixes
and from the next easy

ProrosiTion3.  For every finite rewrite rule system and every quantifier prefix Qpmescribing a
finite language [(Q), theQ-theory of one step rewriting is decidable. In particul@gv- and33vvvvy-
theories of one step rewriting are decidable in every fixed finite rewrite system.
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Proof. Given a finite quantifier prefiQ; . . . Qn, the languagé& of the theory of one step rewriting
has (see Section 3):

(1) only finitely many different atoms with variablesf{iry, ..., X} (since there are no function
symbols inL);

(2) only finitely many literals and non-equivalent quantifier-free boolean formulas with variables
In {Xl9 e Xn},
(3) consequently, only finitely many non-equivalent sentences with quantifier @efix Qp.

Therefore, the; . .. Qn-theory contains only finitely many equivalence classes of sentences and con-
sequently is decidable, because every finite set is always decidable.

Although for a given finite rewrite rule system &nd a prefixQs . . . Qn, the corresponding individual
decision algorithm may be quite sophisticate@litays existsOne cannot collect all such algorithms
(parameterized by a system) in just one generic algorithm, because this would contradict the (weak
undecidability) proved in [6, 11].

On the other hand, [7, 10] showed

(Strong undecidability There exist finite term rewriting systems with undecidable theories of one
step rewriting.
This settles Problem 5.1 in the form (2) in the negative.

6. OUTLINE OF THE PAPER

In the first part of the paper (until Section 21) we improve the result of [11] on weak undecidability
by proving

TrHeoREM A (Weak undecidability ofivvV-theories for linear canonical systems)here is no de-
cision algorithm that given a finite linear canonical term rewriting system decidé®/itg-theory of
one step rewriting.

For comparison, [11] proved weak undecidability of #i#/VVvVvV-theories, for linear terminating
non-confluent systems. Hence our result gives an improvement both in terms of a simpler prefix and
interms of a more restrictive class of rewrite rules.

Theorem A establishes the strongest currently known weak undecidability result for the theories of
one step rewriting in Noetherian systems.

In the second part of the paper (Section 21) we improve the results of [7, 10] on strong undecidability
by proving.

THeoreM B (Strong undecidability ofiv*-theories for linear canonical systems)here existgand
can be explicitly present@a finite linear canonical term rewriting system with undecidaié-theory
of one step rewriting.

For comparison, [6] proved weak undecidability féi#V-theories in non-terminating, non-linear,
non-confluent systems, and [9] proved weak undecidabilit@#-theories in non-terminating (with
rulest — t) non-confluent but linear and shallow systems. Strong undecidability proofs appeared only
in[7, 10].

7. MINSKY'S TWO-REGISTER MACHINE

Our undecidability proof is by reduction from the well-knolwalting problem for the two-register
machine(2RM) [12-14] In the definition below we make several simplifying technical assumptions
discussed later in Remark 6.

Derinimion 4 (2RM). A 2RM is an automaton with a finite program and two unbounded counters
(called thdeft and theright registers) capable of storing arbitrary natural numbers. A 2RM-prodtam
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is a finite list of consecutively labeled commands
1:Commang; ...; p:Commang,

wherep > 2 is the number of commands ihand eaclfCommangis of one of the following five kinds:

Halt. By executing this command the 2RM halts. We assume that the last command in a program
is always Halt, and this is the unique Halt command in a program.

Add 1 to the left register. By executing the commanid: AL the 2RM increases the contents of
the first (left) register by one, leaves the second (right) register unchanged, and proceeds to the next
command + 1. We assume that the first command in a program is alwapd. 1 :

Add 1 to the right register. By executing the commanid AR the 2RM increases the contents of
the second (right) register by one, leaves the first (left) register unchanged, and proceeds to the next
command + 1.

Subtract 1 from the left register.By executing the commarid SL, j the 2RM does the following:

¢ if the contents of the first (left) register apesitive the 2RM decreases it by one, leaves the
second (right) register unchanged, and proceeds to the command lapeleere 2< | < p;

e otherwise, if the contents of the first (left) register asxq the 2RM leaves both registers
unchanged and proceeds to the next command..

Subtract 1 from the right register. The execution of : SR j is analogous to those of SL, j, with
the roles of the left and the right registers interchanged.

The 2RM-halting problem is undecidable [12—-14]. More precisely:

THeorem 5 (Inputless version). It is undecidable given a program P for the 2RMo say whether
the machine halts when started with the first instruction of P and both registers containing zeros.

We will also make use of a version of this theorem for the 2RM with input (see Theorem 21) to prove
strong decidability of thé@Vv*-theories of one step rewriting in Section 21.
We finish this section by giving explanations concerning the technical assumptions in Definition 7.

Remark 6.

(1) We assume that the numbeof commands in a 2RM program is greater than one, since for
the (unique) one-command program 1 : Halt termination is immediate.

(2) By always starting a program with AL; 2 :SL 3 we may assume that every program starts
with 1: AL and the control never returns to the command labeled 1. Indeed, given a prégra@ncan
write 1:AL; 2:SL 3 in front of it and then systematically change labels (by adding 2 to each one) in
P. The modified program halts iff the initial does. The role of these technical assumptions will become
clear later, in Sections 13, 19.5.

8. REDUCTION: PROOF IDEA

In the first part of the paper, until Section 21, we will:

(1) present afixedvvv-sentence (4), independent of a rewrite rule system, and
(2) show how, given a 2RM prograp, to effectively construct a finite linear canonical system R

such that the sentence (4) below is true in the th@®fR) of one step rewriting in R if and only if the
2RM executingP halts after a finite number of steps. Together with Theorem 5 this will immediately
imply Part A of our main theorem on weak undecidability.

In Section 21 we will show how to obtain fixed explicit examples of finite linear canonical rewrite
systems with undecidablév*-theories of one step rewriting. The 2RM will be modified to accept
inputs: in the initial state both registers will contain a natural numbgtre progranP will be fixed, but
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the 3v*-sentencesd,, expressing halting of the 2RM with inpatwill vary and form the undecidable
theory. This will prove Part B of the main theorem on strong undecidability.

9. SENTENCE EXPRESSING HALTING

A run of the 2RM executing a program is a finite sequence of instantaneous descriptions (IDs)
represented by triples of natural numbers

(XO’ yO’ ZO>’ L) (Xms yms Zm)» (m Z 1) (3)

wherex;’s are the left register contentg,s are the right register contents, ants are command labels.
The intuitive interpretation is thdk; 1, Yi.1, Z 1) is obtained fromx;, Vi, z ) as a result of execution
of the zth command ofP with the left- and right-register contents equalktcandy; respectively, as
defined in Section 7. Thiaitial ID (Xo, Yo, Zo) is (0, O, 1) and in thefinal ID z,, = p (recall thatp is the
number of commands iR). The formal definition of a run is straightforward from Definition 4 and we
omit it here.

To prove Part A of the main theorem, we will write a fixed sentence, independent of a prégram
expressing that the 2RM executifi) halts starting in the initial 1D(0, 0, 1). This sentence will be
written in the form

H =g 3Ir (Co(r) A Ca(r) A Cs(r) A E(r)), (4)

whereC; » 3(r) andE(r) are formally defined below in such a way that:

e Jr says “there existsanr,”

e Cy(r) A Cy(r) A Cs(r) says that is a structurally quasi-corrét{see Sections 13, 14, 15)
sequence of IDs of the 2RM executing a progrRmand the control flow im is correct according to
Definition 4,

e E(r) says that the registers are operated corretiyng the rurr, according to Definition 4,
andr starts with the initial ID(0, O, 1).

Thus the whole sentence (4) says that there exists a finite correct termingtingf the 2RM executing
the progranP.

10. HOW TO TRANSLATE MACHINE COMMANDS

Our aim in this section is to describe the intuition for writing the most sophisticatedeigrof the
sentence (4) and the corresponding part of the rewrite rule system.

Suppose we haveran candidatei.e., a sequenaeof the form (3) (in list representation described
below), inwhich the flow of control isorrect The latter means, informally, thats inr follow correctly;
e.g. ifi :ALisin P then(...,i), (..., j) with j #i + 1 does not appear in Such a correctness will
be guaranteed by the pa&i(r) of (4) (described in Sections 13, 14, 15) occurring conjunctively with
E(r) in (4). So, assuming this control flow correctness, we need to check, by using linear canonical
rules, whether the contents of registers are modified correctly along a run camdidate

The main idea is to construct rewrite rules in a way to simultaneously satisfy the following two
properties:

(1) everyadjacent pair of triplés;, Vi, z), (Xi+1, Yi+1, Z+1) inasequence (3) representing arun
candidate could be reduced to form the following rewrite diagram (no matter whether the transition

6 For example, does not contain ‘senseless’ things(like , ..., ... ) P ).
7 For example, ifP contains 9 AL then a run does not contain adjacent triples lkey, 9), (u, v, 8).
8 For example, if 7 AL is in P and a run contains the adjacent pair of triplesy, 7), (u, v, 8) thenu = x + 1 andv = y.
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from the ID(x;, Vi, z) to the ID (Xi 11, Yi+1, Z+1) IS correct or not):

<Xi ) yi » Zi )1 <Xi+17 yi+ls Zi+l) — w2
\ \ ®)

wo < w1

for somewg, w1, wp, and, moreover,
(2) the diagram (5) can bmmpletecby the / rewrite to the diagram

(Xi, ¥i,Z), (Xit1, Yig1s Zig1) —> w2
' (6)

Wo < W1

if and only if the register contents are operated correctly in the transition feamy;, z) to
(Xi+1s Yi+1, Zita)-

Therefore, the parE(r) of (4) can be expressed by thgv-formula
E(r) =arVwo, w1, wa(R(r, wo) A R(r, w2) A R(wz, w1) A R(w1, wo) = R(wz, wo))- (7)

This idea is implemented in Section 12.

The formula (7) looks more intuitive when written in the form

r — wy wo

Ywo, wi, wa| ¥ I = v
W <— W1 wo

11. SIGNATURE AND NOTATIONAL CONVENTIONS

The signatures we will use in constructing rewrite systems and formulas is as follows:

e aconstant to represent the empty list;

e aconstant 0 to represent the natural number zero;
e binary functionc(,) for the list constructor;

e unarys( ) for the successor on natural numbers;

e ternary(,,) for the triple constructor;

e constants, b, d, auxiliary;

e binary functionsh, f, auxiliary.

ConvenTion 1. In the following we will formally represent the run sequefi@gas a term(list)

[(XOv yOa ZO)v ) (Xm, Yma Zm)]» (m = 1) (8)

where as usual [ ] =¢ and[ep, €4, ..., €] = c(ep, [e1, ..., &)]), with the constant for the empty

list and the binary list constructor(¢). Thus (8) is aright-flattenedist of triples of natural numbers
built from the empty list by using the binary list constructor. Below we will freely switch between
the informal representation of a rui8) and its formal list representatio¢8), keeping in mind that the
relation between them is obvious.

Convention 2. Formally, a sequence of the for(3) is represented by a right-flattened lig) of
triples built using the list constructor c. Sometimessimplify readability we present rewrite rules in
the form[(...), (...)...] > tor (...}, (...) = t, instead of the less readablé(c..), c({...),u) -t
(where u is a fresh variab)elt will always be clear how to transform this shorthand into a formal long
form.
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ConvenTion 3. To improve readability we will often depict rewrite rules4 r in a slightly uncon-
ventional way with arrows going in different directionss in rules({}), (), (9) below.

Convention4. In the rules and formulas we write belowy, z, u, v, w are variableswhile i, j, k,
I, m, n are natural numbers. For a natural numbeii idenotes the terrm ). Sometimesvhen it does
not lead to confusiarwe use the usual decimal numbers instead of the formal numé¢ajsrsunary
notation. In writing terms with unary function symbols we usually omit parentheses.

12. TRANSLATING COMMANDS INTO REWRITE RULES

Assume thaP is an arbitranbutfixed 2RM program withp > 2 commands, starting with JAL. We
proceed to compilind® into a system of linear canonical rewrite rules R. Thus the system R depends
on a progranP, i.e., R= R(P); see Section 8.

12.1. Auxiliary (}) Rule
The following rule will be used to commute rewrite diagrams created by other rewrite rules, with the

intention to check properties of terms (as we described in Section 10).

h(u, v)
\ W)
f(u,v)

12.2. Shortcut RulesA1 2)
The following two rules will also be used to commute rewrite diagrams (cf. (5), (6) above) created
by other rewrite rules on terms satisfying certain properties:

[h((0, 0, SO}, (1, 0, v)), ...]
4 (/1)
[(0,0,s0),0,(1,0,v),0,...]

[u, h({X', y,sS2, (X,y,v)),...]
v (v2)
[u(X,¥,s52,0,(X,y,v),0,...]

These rules are, of course, more readable versions of the following two rules
c(h({0, 0, s0y, (1, 0, v)), w)

c((0, 0, s0), c(0, c({1, 0, v), c(0, w))))

c(u, c(h({x", ¥, 852, (X, ¥, v)), w))
v
c(u, c((x', y', 8532, ¢(0, c({X, ¥, v), c(0, w)))))

respectively, according to our Conventions 1, 2 on lists.
Remark 7. The difference betweenA;) and (/2) is crucial for our purposes: pay attentions®

in the rule (“1) andsszin the rule (",). Note that we do not introduce just one generic rule

c(h({x', ¥y, 52, (X, Y, v)), w)
v
C((X/7 y/ﬂ SZ), C(O, C((X9 y7 U), C(07 U)))))

instead of 1) and (/7). The reason is that we wish to distinguish between the cases for ‘sbje’ (
and ‘greater than ones§2. Note that (;) applies in theheadof a list, whereas(',) applies in the
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tail (second element) of a list. This complication is needed to ensure that avitmessing the validity
of (4) starts with thenitial ID (0, 0, 1), i.e., has formc({0, 0, 1), .. .); see below Section 19.5. Note
also that the form of the ruleA;) assumes that the first command in a program is alwayd_lsee
Remark 6.

ConvenTion 5. In all the rules and diagrams below the effect of commutatioy (1.2) will
be depicted agl, .~ respectively. In these contexs ,~ do not definenew rewrite rulesbut denote
rewrite steps made bif}), (.1.2) and are added as comments to clarify intuition.

12.3. Addition Commands
12.3.1.Left Addition Command

The command : AL is translated into three linear rewrite rules,, |, and < given below (recall
that|} is not a rule, but a rewrite step made by the ru¢ given above):

c({x, y, 1y, c((s(u), v, 2), w)) — ¢(h({u, v, ), (s(x), Y, 2)), w)
l 4 9)
c({x, y, 1), ¢(0, c({(s(u), v, 2), c(0, w)))) < c(f((u, v, 1}, (s(X), Y, 2), w)

Note that the— |} «<— combination in diagram (9) makes two swaps of variablesy, u, v +—
u,v, X,y — X, Y, U, v. Along both| and— || < paths in (9) nothing essential happens, except these
two variable swaps. Auxiliar, f (on the right) and intermediate 0’s (in the bottom left corner) are
added for finite termination, as discussed in Section 19.2.

It is crucial that diagram (9) can be completed with fHerewrite step by using one of the shortcut
rules (/1.2) (which do not make any variable swaps!) if and only if simultaneously:

(1) x=uandy = v, i.e., iff registers are operatedrrectlyin the transition from the IDx, vy, 1
to the ID (s(u), v, z) and
(2) (a) eitheti in (9) equalssO (in this casex = y = u = v = 0) and the rule 1) works,
(b) ori in (9) is greater than one (i.e., equalszfor somez), but the whole termt =
c((x, Yy, ), c((s(u), v, z), w)) in the upper left corner of (9) occuis the tail of some embedding ljst
i.e.,t occursinc(t’, t) for somet’, so that (») could apply.

Remark 8. This double trick is an example of how the commutation of rewrite diagrams is useful
to check the needed properties of terms. The first one shows how to check that registers are operated
correctly, and the second one ensures that a list starts with the initiéd,I@ 1) (otherwise, the
commutation by ¢/; ») in the head of the list is impossible).

Remark 9. Note that we add three rules of the form (9) for each comma#d. in the programP.

Remark 10. Note that rules (9) do not attempt to check the right succession of commands in the
transitions: the third argument in the second triple is a varialdeother group of rules, described in
Sections 13, 14, and 15, will be responsible for this control flow check.

This remark also applies to the analogous rules (9)—(14) below.

To give a better understanding of the above rules, consider two examples.

12.3.2.Example of a Correct Register Operation

If P contains the command &L then in the transition from the 106, 4, 8) to the ID (7, 4, 9) the
registers are operated correctly, and the following rewrite diagram takes place:

c(u, c((6, 4. 8). c((s(6). 4. 5(8)). w))) — ¢(u, c(h((6, 4, 8), (S(6). 4, 5(8))), w))

\ e U
c(u, c((6, 4. 8), c(0, c((s(6). 4. (8)). ¢(0, w))))) «— c(u, c(f((6. 4. 8), (s(6). 4. 5(8))). w))

Here the|l rewrite is possible by the auxiliary rul¢)f and the,~ rewrite by the shortcut ruleA>).
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12.3.3.Example of an Incorrect Register Operation

If P contains the command 1AL then in the transition from the 1I(6, 4, 11) to (9, 4, 12) the left
register is operated incorrectly, and the following rewrite diagram

c(u, c({6, 4, 11), c((s(8), 4, s(11)), w))) — ¢(u, c(h((8, 4, 11), (s(6), 4, s(11))), w))

| X 4
c(u, c((6, 4, 11), c(0, c({s(8), 4, s(11)), c(0, w))))) « c(u, c(f((8, 4, 11), (s(6), 4, S(11))), w))

cannotbe commuted any more by the diagopalrewrite using {»), nor by any other rewrite rule.

12.3.4.Right Addition Command

The command : ARis translated into the rules analogous to (9), w&ith shifted from the first to the
second argument in the secofid.) of each rule side, namely:

c((x, y. ), c({u. s(v). 2), w)) — c(h({u. v, 1}. (x, 8(y). 2)). w)
¢ 4 (10)
c((x, y, 1}, €0, c({u, s(v). 2), ¢(0, w)))) < c(f((u, v, D), (x,s(y). 2)). w)

The intuition behind these rules is clear from the definition of the 2RM and is similar to the rules for
the left addition.

12.4. Subtraction Commands
12.4.1. Left Subtraction

Quite similarly, acommanid: SL, j is translated into two groups of rules, the first three corresponding
to the nonzero left register

c({s(x), ¥, , c({u, v, 2), w)) — c(h({s(u), v, 1}, (X, ¥, 2)), w)
1 U (11)
c({s(x), y, 1, ¢(0, c({u, v, 2), ¢(0, w)))) < c(f((s(u), v, 1}, (X, Y, 2), w)

and the second three corresponding todhwmptyleft register

c((0,y, 1}, c({u, v, 2), w)) — ¢(h({u, v, 1}, (0, Yy, 2)), w)
) 4 (12)
c((0, y, 1}, ¢(0, c({u, v, z), ¢(0, w)))) < c(f((u, v, 1), (0, y, 2)), w)

12.4.2.Right Subtraction

An instructioni : SR j is translated analogously into six rules:

c((x, s(y), ), c({u, v, 2), w)) — c(h({u, s(v), 1}, (X, ¥, 2)), w)
) 4 (13)
c({x, s(y), ), ¢(0, c((u, v, 2), ¢(0, w)))) < c(f({u, s(v), 1}, (X, Y, 2)), w)

c((x, 0,1y, c({(u, v, 2), w)) — c(h({u, v, 1}, (X, 0, 2)), w)
) y (14)
c({x, 0,1, c(0, c({u, v, 2), c(0, w)))) < c(f((u, v, 1}, (X,0,2), w)

The intuition behind these rules is clear from the definition of the 2RM, as for the addition commands.
At this point the reader is invited to stop and get convinced that the rules introduced work exactly in
a way required by diagrams (5), (6) in Section 10.
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12.5. Checking Correctness of Register Manipulation

The intention behind the rules we constructed so far is better clarified by the following claim (we call
it a claim, because it depends on an incompletely defined rewrite rule system). It shows how rewrite
diagrams created by rules (9), (10), (11), (12), (13), (14), and commutef)bf.(), are used to check
whether 2RM's registers are operated correctly along a quasi-correct run (formally explained in the next
sections).

Claim 11. [Adequacy]

(1) Letr be a correct run (8) of the 2RM on a progrdnstarting with ID (0, 0, 1). Then the
following formula is true (where the predicais interpreted as a one step ground reducibility relation
in the rewrite rule system R R(P) we are constructing):

E(r) =at Ywo, w1, w2(R(r, wo) A R(r, w2) A R(wz, w1) A R(wi, wo) = R(w2, wo)). (7)

(2) Letr be a sequence (8) in whict)'s, yi's, z’s are natural numbers, the control flowrirbe
correct (see below Sections 13 and 14), &td) be true. Them represents a correct run of the 2RM
on P starting with ID(0, 0O, 1).

The validity of this claim, useful as a guideline for the further development, will be guaranteed by
the construction of the remaining part of the rewrite system. We return back to the formal proof of this
claim in Section 19. The reader is invited to check that the first part of the claim is true for the part of
the system we constructed so far.

Note that the formula (7) is uniform, it does not depend on a progPam

13. QUASI-CORRECT RUNS

We are looking for ground termiswitnessing the truth of the sentence (4) among terms of a special
structure, representing right-flattened lists of triples of natural numbers of the form (8). The construction
ofthe formulak(r) in (7) assumes that a temis quasi-correct. Otherwidg(r ) may be true for senseless
terms such as(c(a, b), c(e, h(a, b, d))). This is because the rewrite rules we defined sddamot apply
to such terms; hence, the premise of (7) is false. It is the role of the subfo@ylea C,(r) A Cs(r) of
(4) to detect such senseless cases and become false, so as not to admit false witnesses for (4) satisfying
E(r).

The next definition partially captures the idea of correctness.

Derinimion12.  Callaternn quasi-correcif and only ifit satisfies the following groups of constraints.
Structural constraints. The termr does not contain subterms of the form:

Q) h(u,v), f(u, ),

(2) s(F(...))with Fex\{s, 0},

() (F(...),u,v), (u, F(...),v), (u,v, F(...)) with F € \{0, s},

(4) c(F(...),x)with F € Z\{({, )},
(5) c(x, F(...))with F € Z\{c, &}.

(Reason: by definition, a run should be a right-flattened list of triples of natural numbers; thus all
subterms enumerated above make no sense in a valid run.)

Boundary constraints. The termr does not contain subterms of the form:

(1) c(x,y.D.e)forl<j<p
(Reason: a run should end witlx, y, p), &), i.e., after executing : Halt, the last command iR);

(2) c((x,y.sP(2)), c({u, v, w), w’))
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(Reason: in a correct run command numbers do not expeedmmand labeleg may (and by the
previous constraint should) occur only in the end of the run, i.e., in a sulg{grny, sP(0)), ¢));

() cl(x,y.2).c((u, v, 1), w))
(Reason: in a correct run the control never returns back to the first command; thus label 1 may occur
at most once in the beginning; recall Remark 6);

(4) (x.y,0)
(Reason: command numbers are positive.)

Control flow constraints. The termr does not contain adjacent tripfes

1) (x,y,D, (u,v,]) with j #i +1 whenP contains a commanid AL ori : AR
(Reason: addition transfers control to the next command.)

2) (x,y,D, (0, v, z) whenP contains : AL.

3) (x,y,D,(u,0, 2 whenP containd : AR
(Reason: addition cannot result with the empty register.)

4) (s(x),y,1), (u,v,]j) with j #i + 1 whenP contains the commarid SL, i + 1.

(B5) (x,s(y), ), (U, v, ) with j #i + 1 whenP contains the commarid SR i + 1.
(Reason: such subtractions, with nonzero registers, always transfer control to the next command.)

(6) (s(x),y,1), (u,v,]j)with j =i+ 1whenP contains instructiomn: SL, | with | £i + 1.

(™) (X, s(y), L, {(u, v, ) with j =i +1 whenP contains instruction: SR | with | #£i + 1.
(Reason: when the left (right) register is positive, such subtractions transfer control to the specified
command #i +1.)

(8) (0,vy,1),(u,v,])with j #i +1 whenP contains instruction: SL, | with | i + 1.

(9) (x,0,L), (u,v,])with j #i +1 whenP contains instruction: SR | with | #i + 1.
(Reason: when the left (right) register is zero, such subtractions transfer control to the succeeding
command.)

Remark 13. The Definition 12 of quasi-correctness does not exclude some degenerate cases.
Namely, a quasi-correct runmay have one of the forms (and these are all possible cases) enumerated
below:

(1) a,b,d,

2) e,

) O,

(4) r =s(r’) for somer’ built of 0 ands,

(5) r = (ry,rp, r3) for somery, ro, r3 built of 0 ands,

(6) r may be a right-flattened list of triples of natural humbers, with a correct flow control
(as defined by the control flow constraints), ending correctly, but possibly with incorrect register
manipulations.

Intermediate goal. In the following sections we first show how to determine whether a term is
quasi-correct and then proceed to excluding all (degenerate) cases, except the last one.

14. DETERMINING QUASI-CORRECT RUNS

We are going to introduce new rewrite rules that would allow us to reduce every non-quasi-correct
termr (see Definition 12) in the following specific way

9Say that in the list representation (8) of a run the triplgsy, i), (u, v, j) are adjacent iff they occur in a subterm
c({x, y. 1), c({u, v, j), w)).
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r
v\
wo —  wi, (15)
N
wy

which will be impossible for a quasi-correct term.
Consequently, quasi-correct termwill satisfy the following formula

Cl(r) =gt —~d wo, w1, wz(R(r, wo) VAN R(r, wl) A\ R(wo, wl) AN R(wo, w2) AN R(wl, wz)). (16)

Remark 14. Itis important to note that,(r) is equivalent to a universal formula with the quantifier
prefix VWV, which is essential for keeping the entire senteHcim (4) in the3vvv-form. We keep the
—333-form in (16) as being more intuitive.

Remark 15. The termsa, b, d, ¢, 0,s%(0), (s¥(0), §'(0), s™(0)) enumerated as degenerate cases 1-5
in Remark 13 also satisfy bo@y(r) in (16) andE(r) in (7). We exclude these terms by formu@ss(r)
in Section 16.

15. REWRITE RULES TO CHECK QUASI-CORRECTNESS

The key idea is to define, for each ground tdrthat cannot be a subterm of a quasi-correct term,
two rules:it — a,t — b, plus three (common) rules

a— b,
a—d, (17)
b— d.

Thus, every term that is not quasi-correct will form the above diamond-like rewrite diagram (15) and
will satisfy the formulaC,(r) defined by (16). Additional effort is needed to ensure that correct terms
cannot form the above diamond diagram and thus cannot s&igfy. Thus the diamond diagram
property (16) and the corresponding formd@g(r) given by (16) will be used as a quasi-correctness
criterion.

15.1. Rules for Structural Constraints

Byt — a, b we abbreviate two rulgs— a andt — b. We enumerate the rules for checking structural
constraints, corresponding to cases of Definition 12.

(1) A quasi-correct run cannot contain functional symbgls , thus:

h(x,y) - a,b (18)
f(x,y) - a,b. (29)

(2) s(F(...))— a,b forall F € £\{s, 0}.
e (Reason: terms constructed withare natural numbers and cannot contain subterms
starting with something except §.)
3) @(F(..),uv)y—ab forall F € £\{0, s},
(b) (u,F(...),v) > a,b forall F € £\{0, s},
©) (uv,F(...)) > a,b forall F € £\{0, s}.

e (Reason: the only meaningful function symbols in the argument positions to the triple
constructor, ,) are 0 ands.)
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@) @c(F(..),x)—>ab for everyF € Z\{(, ,)},
(b) c(x, F(...)) > a,b for everyF € Z\{c, ¢}.
e (Reason: runs are right-flattened lists (sequences) of triples.)

15.2. Rules for Boundary Constraints
1) @ c(x,y.p),e)—>ab foralll<j<p;
(b) c((x,y,sP(2), c((u, v, w), w)) — a,b.

e (Reason: the only command that may and should terminate a correct putdedt and
thus labelp cannot appear in the middle of a run; labels of commands do not excged
(Note: these two rewrite rules force every right-flattened list of triples of natural numbers to terminate
with c((u, v, sP(0)), ¢), i.e., withHalt, as needed.)

2) c((x,v,2),c({u,v,1),w)) - a,b

e (Reason: acommand with label 1 is executed only in the beginning of a run and the control
never returns back to this command; the shortcut with)(will guarantee that the initial ID of arunis
(0,0, 1); see Sections 12.3.1 and 19.)

3) x,y,00 —> a,b

e (Reason: command numbers are positive.)

15.3. Rules for Control Flow Constraints
Here we again use Convention 2 on mixing sequential and list notation:

Q) @,y D, {Uuvjp)—ab for all j satisfying 1< j #i +1 < p, wheni :ALori : AR
isinP.
e (Reason: addition transfers control to the next command.)
(b) (x,y,1),{0,v,2) > a,b wheni : AL occurs inP.
(c) (x,y,1),{u,0,2z) > a,b wheni : ARoccurs inP.
o (Reason: addition cannot result with the empty register.)

(2) (@) If P containg : SL, i + 1 add the rules
(x,y,1, (u, v,k - a,b

forallk e {1,..., p}\{i +1}.

o (Reason: such subtractioakvaystransfer control to the succeeding command.)
(b) If P containg :SL, j for j #i + 1, add the rules
(0, x,i),({y,z, k) — a,b
(s(x), ¥, i), {u,v, Iy - a,b

forallk e {1, ..., pI\{i + 1}, alll e {1, ..., p}\{j}.

e (Reason: such subtractions can only transfer control to the next command, when the
register is zero, or to theth command, when the register is positive.)

(3) (a) If Pcontaind :SRi + 1 add the rules
(X’ y’j‘)! <u1 Uv k-) - a-1 b

forallk e {1,..., p]\{i +1}.

e (Reason: such subtractioabvaystransfer control to the succeeding command.)
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(b) If P containd : SR j for j #i + 1, add the rules

(x,0,i),{y,z,k) - a,b
(x,s(y), i), (u,v,1) - a,b

forallke{d,..., p}\{i +1},alll {1, ..., p\{j}.

e (Reason: such subtractions can only transfer control to the next command, when the
register is zero, or to thith command, when the register is positive.)

16. EXCLUDING DEGENERATE CASES

We should exclude terms
a, b, d, e, 0,s40), (s(0), s (0), s"(0))

enumerated as degenerate cases 1-5 in Remark 13; see also Remark 15.

Recall that these terms satisfy both formuagr) in (16) andE(r) in (7), but they do not witness
correct successful terminating runs of the 2RM. We proceed to excluding them by giviny'the
formulaC,(r) A Cs(r) false for these terms but true for terms representing correct terminating runs of
the 2RM.

16.1. Excluding, b, d

It is easy to exclude the ternasb, d, because none of them satisfies the formula
Ca(r) =gt Ywo — R(wg, r), (20)

whereas each correct terminating run of the 2RM, if any, satisfies (20), by construction of the rewrite
system R. Indeed, b, d appear as right-hand sides in the rules of the previous section. At the same
time, all the rules we constructed have right-hand sides that cannot occur in a correct run.

The difficulty with the remaining terms 0, s¥(0), (s¥(0), ' (0), s™(0)) is as follows. Although they
do not represent correct terminating runs, they still satisfy the formula (20).

16.2. Excluding, 0,s%(0), (s(0), s'(0), s™(0))

Let us introduce additional rewrite rules:

e — d,
0 — d,
(21)
s(x) — d,
(x,y,2) -> d
and consider the followingVvv-formula
C3(r) =4t Ywg, w1, wz(R(wz, u)l) AN R(wl, u)o) AN R(u)z, wo)
= [R(r, wo) = R(r, w2) v R(r, wy))), (22)

which may be better understood in the diagram notation

r w2 r - wy r
Ywo, wi, w2 | | v | = VooN
wo < w1 w1
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This formula isfalsefor all termse, 0,s%(0), and(s¥(0), s'(0), s™(0)). Indeed, take, b, a for wo, w1, wy,
respectively. By rules (22), everyequal to one of, 0, s%(0), (s¢(0), s'(0), s™(0)) reduces tavy = d.
Thus all the premises in (22) are true, but none of the tern@ss*(0), (s¥(0), s'(0), s™(0)) reduce to
wy = anor tow; = b. Thus the conclusion of (22) is false and none d, s¥(0), (s*(0), s'(0), s™(0))
satisfy the formula (22). Consequenifis(r) excludes these terms, as needed.

At the same time, any correct run does satisfy the formula (22). In faat,deta correct run and
wa, w1, wo be such that

r w2

Vv (23)

Wo < w1

(i.e., all the premises of (22) are satisfied).

Sincer is correct, the only way to obtaimg as a result of one step rewriting franis to apply the
rule | from one of the groups (9)—(14). In fact, an alternative would be to apply thesui@m one of
the groups (9)—(14), but in this case it would be impossible to get sughas a result of two rewrites
(via w1) from anyws,. The straightforward case analysis shows that in the diagram (23):

(1) eitherw, results fronr by application of the rule> from the same group as used to get
fromr; in this case the atorR(r, w) in the conclusion of (22) is true;

(2) orw; coincides wittr; in this case the atorR(r, w1) in the conclusion of (22) is true.

Thus in both cases the formula (22) is true for a correctrrun

16.3. Excluding a One Element List

There remains one more degenerate case to be excluded. Consider a one-element list
r =c((i, j, k), &),

wherei, j, k are natural numbers. Obviously, such a list does not represent a correct terminating run of
the 2RM. Let us see what happens with the sentéhde this case.

If the numberk corresponding to the command label is different frpr{the number of commands
in the programP), then one of the rules (31), (32) applies and the forn@il@) becomes false. Thus
such a one-element list is correctly excluded.

However, in the case & = p neither rules (31) or (32) nor any other rules applg®, j, p), €) any
more. Consequently, the formula(r) A Ca(r) A Cs(r) is true. Moreover, the formulg(r) is also true,
because = c({i, j, p), ¢) is irreducible to satisfy the premisesB{r ), hence the premises &f(r) are
false. Thus the validity oH is withessed by a senseless tesfti, j, p), ¢) that does not represent a
correct terminating run of the 2RM.

To deal with this problem we make the list= c({i, j, p), ¢) reducible similarly to the case of any
two adjacent triples of natural numbers. This is achieved by introducing the following group of rules

c((x, Y, p), ) — ¢(h({x,y,p), (0,0,0)), ¢)
1 4 (24)
C((X’ y7_p)’ C(O’ C(<07 O’ 0>7 C(03 8)))) < C( f ((X? y’_p)f <07 01 0>)7 8)

similar to groups (9)—(14).
Now, the one-element list= c((i, j, p), €) creates the rewrite diagram

e G

oo

R S

satisfying the premises d(r). But the conclusion of(r) is not satisfied by, because the shortcut
rule (/2) does not apply to a one-element list.
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Thus the degenerate case of a one-element list is also excluded.

17. ALL IMPORTANT FORMULAS

Here we repeat verbatim the definition of the sentericéexpressing halting of the 2RM; see
Section 9) and its subformulds(r), Ci23(r). All of these formulas ardéixed and independermtf a
2RM programP.

H =qr 3r (Ca(r) A Cao(r) A Cs(r) A E(r)). (4)

E(r) =t Ywo, w1, wa(R(r, wo) A R(r, w2) A R(wz, w1) A R(wi, wo) = R(wa, wo)). ()
Ca(r) =ar —=Iwo, w1, w2(R(r, wo) A R(r, w1) A R(wo, w1) A R(wo, w2) A R(wi, ws)). (16)
Cy(r) =4t Ywo— R(wo, I). (20)

Ca(r) =at Ywo, w1, wa(R(w2, w1) A R(w1, wo) A R(wz, wo) = [R(r, wo) = R(r, wz) v R(r, wi)]).
(22)

HereRis the binary predicate symbol of the language for the one step rewriting relation (see Section 3).
Note that this is the only non-logical symbol in the above formulas.

Remark 16. Equation (4) is in thé@VVvV-form, after transformation of (16) into an equival&fiviv-
form and putting all universal quantifiers (which distribute oxgin the prefix.

18. ALL REWRITE RULES

Each programP determines its own rewrite rule system R, as contrasted with the fixed sentence
H (see the previous section). Here we summarize (repeat verbatim from the previous sections) all the
rewrite rules constructed from a given program.

Let P be an arbitrary but fixed program for the 2RM wiph> 2 instruction numbered consecutively
from 1 to p, with the first command 1AL and containing ho commandsSL 1 ori:SR 1 (see
Remark 6). Note that for a fixed 2RM-progra for eachi € {1, ..., p} the command labeledis
completely determined. Thus for evary= 1, ..., p — 1, we define the rewrite rules by case analysis
depending on the command type, i.e., left addition, right addition, left subtraction, right subtraction (the
first command being 1AL and the last commang: Halt).

Some of the rules below, like}], are fixed and do not depend & Others, like (10), are added to
R iff i : ARoccurs inP. The rewrite system R will contain as many groups of rules (9), as the program
P contains the left addition commands (one group with fixpeér command : AL with labeli). Two
groups of rules (11), (12) are added for eviesyich thatP containg : SL, j. (And analogously for right
addition/subtraction commands.)

Auxiliary rule.

h(u, v)

I )
f(u, v)

Rules for the left addition:iAL.
c((x, y, ), c((s(u), v, z), w)) — c(h({u, v, 1y, (s(x), Y, 2)), w)

¢ 4 9)
c((x, y, ), €(0, c({s(u), v, 2), ¢(0, w)))) « c(f({u, v, 1), (s(x), ¥ 2)), w)
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Rules for the right addition iAR.

c((x, y, ), c({u, s(v), z), w)) — c(h({u, v, ), (x, s(y), 2)), w)
l (3 (10)
c({x, y, 1}, ¢(0, c((u, s(v), 2), ¢(0, w)))) < c(f({u, v, 1}, (X, s(y), 2)), w)

Rules for the left subtraction:iSL, j (nonempty register

c((s(x). y. ), c({u, v, 2), w)) — c(h((s(u). v. 1), {x, y. 2)), w)
+ 4 (11)
c((s(x). y.1}. ¢(0. c((u, v, 2), ¢(0, w)))) « c(f({s(u), v. 1), (X, Y. 2)), w)

Rules for the left subtraction:iSL, j (empty registex.

c((0, y, 1}, c({u, v, 2), w)) — c(h({u, v, 1y, (0, , 2)), w)
\: U (12)
({0, y, 1, ¢(0, c({u, v, 2), ¢(0, w)))) < c(f((u, v, i}, (0,y,2), w)

Rules for the right subtraction:iSR j (nonempty register

c((x, s(y). 1}, c((u, v, 2), w)) — c(h((u, s(v), 1, (x, Y, 2)), w)
\ U (13)
c((x, s(y). 1}, c(0, c((u, v, 2), ¢(0, w)))) < c(f((u, s(v). ), (X, Y, 2)), w)

Rules for the right subtraction:iSR j (empty registex

c((x, 0,1y, c({(u, v, 2), w)) — c(h({u, v, 1}, (X, 0, 2)), w)

4 U (14)
c({x, 0, 1, ¢(0, c({u, v, Z), ¢(0, w)))) < c(f({u, v, 1, (X, 0, 2), w)

Shortcut rules (to check whether registers operated correctly).

[h((0, 0, 0), (1,0, v)), ...]

v (1)
[(0,0,s0),0,(1,0,v),0,...]

[u, h({X', y,sS2, (X,y,v)),...]
V4 (v2)
[u(X,y,ss2,0,(X,y,v),0,...]

These rules are abbreviations (using list notation) of the following two rules:
c(h({0, 0, s0), (1, 0, v)), w)

c({0, 0, s0), c(0, c({1, 0, v}, c(0, w))))

c(u, c(h((X', y', 882, (X, ¥, v)), w))
v
c(u, c({x', y', ss2, c(0, c({X, Y, v), (0, w)))))

Auxiliary quasi-correctness rules.
a— b,

a—d, (17)
b— d.
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h(x,y)—a,b
f(x,y)—a,b

Additional rules to exclude, s(0), (x, Y, z).

e — d,

0 — d,

s(x) — d,
(x,y,z2) - d

Additional rules to exclude one element lists.
c({x, ¥, ), €) — c(h({x, y,p), (0,0,0), ¢)

\ ¥
C(<X’ y’D)’ C(O’ C(<O’ 0’ O)’ C(07 8)))) <~ C(f((x7 y’D)’ <O’ 0’ O))’ 8)

Rules to check structural constraints.

s(F(...))—> a,b forall F € X\{s, 0}
(F(...),u,v) > a,b forall F € £\{0, s}
(u, F(...),v) > a,b forall F € £\{0, s}
(u,v, F(...)) > a,b forall F € £\{0, s}
c(F(...),x) > a,b for everyF € Z\{(, ,)}
cx,F(...)) > ab for everyF € Z\{c, ¢}

Rules to check boundary constraints.

c((X,¥,i),e) > a,b foralll<j<p
c((x, ¥, sP(2), c({u, v, w), w)) - a,b
c({x, Y, z),c({u, v, 1), w)) > a,b
(xX,y,0) > a,b

Rules to check control flow constraints.

1) @ &yb,(uv,))—>ab
for all j satisfying 1< j #i + 1 < p, provided that
i :ALori : ARisin P.
(b) (x,y,1},(0,v,2) - a,b
wheni : AL occurs inP.

(©) x,y,1),{u, 0,z > a,b
wheni : ARoccurs inP.

(2) (a) IfPcontaing :SL i + 1, then add the rules

(X, y,)(u,v, k) — a,b

forallke{1,..., p}\{i +1}.
(b) If P containg :SL j for j #i + 1, then add the rules
0,x,i)(y,z kK — a,b
(s(x), y, }{u,v,1) — a,b

forallke{d,..., pi\i + 1}, alll {1, ..., pI\{j}

21

(18)
(19)

(21)

(24)

(25)
(26)
(27)
(28)
(29)
(30)

(1)
(32)
(33)
(34)

(39)

(36)

(37)

(38)

(39)
(40)
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(3) (a) IfPcontaind :SRi + 1, then add the rules
(X, y,(u,v,k) — a,b (41)

forallke {1, ..., pi\{i +1}.
(b) If Pcontainsg : SR j for j #1i + 1, then add the rules

(x,0,}(y,z k) — a,b (42)
(x,s(y), i(u,v,) - a,b (43)

forallke{1,..., pi\{i +1},alll €{1,..., p}\{j}.
We conclude by a simple property of the constructed term rewriting system R, proved by inspection.

ProposiTioNL7. Letr be atermrepresenting a correctterminating run of2B. Then only rules>
and | from the groupg9)-(14) may be applied tor.

19. THE CORRECTNESS THEOREM

THeorem 18 (Correctness). For every 2RM-program P and the associated rewrite rule system
R = R(P) (as described in Sectiqi8)) the following four claims are true.

(1) The systerR is (left- and right) linear.

(2) The systerR is finitely terminating.

(3) The systerR is confluent.

(4) The following two statements are equivalent

(@) the2RM terminatesstarting to execute P with the I[®, O, 1);
(b) thesentence H given §)istruein the first-order theory of one step rewriting generated
byR.

Consequentlythere is no general algorithm deciding tB&VvV-theory of one step rewriting for every
finite linear canonical system. HencefartPart A of the main theorem on weak undecidability holds.

The proof of Theorem 18 occupies the rest of Section 19.

19.1. Proof of Linearity

By immediate inspection of the rules presented in Section 18.

19.2. Proof of Finite Termination
For a termt of signaturex denote by:

(1) #t, ()()) the number of different subterm occurrencestobf the form c((ty, to, ts),
c({ts, ts, t6), t7)) (two adjacent triples in a list) and of the fore((ty, tz, t3), €) (a triple adjacent t@)

aaaa

(2) #(t, F) the number of occurrences of the symbok {h, f, a, b, d} in the termt;
(3) #(t, X) the number of occurrencestrof the function symbols fronx\{a, b, d}.

For a termt of signatureX denote byj|t| the ordinal

A0 AL #.0)
w® +o®

Itl =ar o + o*F) 4 3. #(t, @) + 2 #(t, b) + #(t, d).
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By inspecting the rewrite rules from Section 18 it can be readily seen|that ||t’|| whenever a
termt reduces td’ by R. Since ordinals are well ordered, the system R is finitely terminating. Now
the role of separating zeros in the first argument positions to teastructor in all rules (9)—(14) and
(/1.2) becomes completely clear. They serve to separate adjacent triples and thus reduce the norms in
reductions.

Clearly, we could have used a less strong ordering, but the given proof is conceptually very simple,
self-contained, and completely satisfactory for our purposes.

19.3. Proof of Confluence

We assume the reader has basic knowledge about Knuth—Bendix critical pairs algorithm [15-17].
For a finite term rewriting system confluence is equivalent to local confluence, and local confluence
is always equivalent to joinability of the so-called critical pairs, easily computable from the so-called
superpositions of its left-hand sides.

Here we give a simple proof of the confluence of the constructed rewrite rule system R. Note that
the system is quite large (its size varies and depends on the input prérasn we need a kind of
meta-argument proving that the system is confluent for every input proBram

Happily, the rewrite rules we constructed possess (intentionally) the following remarkable property,
easily checkable by inspection:

Every superposition t between rules Rhalways produces a critical paitts, tz) such that bothit and % both
reduce to d.

Thus the confluence of R follows by the critical pairs test.

One of the anonymous referees suggested the following more direct and simple proof, without the
help of the critical pair lemma. The point is the following fact: every téroan be reduced td if t is
neither variable noc(xz, c(X2, C(Xs, ... C(Xn_1, Xnt1) . . . ), Wherex; is a variable. Seeing the right-hand
side of rewrite rules, we can easily show that any term obtained by one or more rewriting steps is neither
variable norc(xy, ¢(Xz, ¢(X3, . . . ¢(Xn—_1, Xnt1) - - - ). Thus, every non-trivial divergence can be joined to
d. In this way one does not need to study all the critical pairR.of

19.4. Proof of (4a)= (4b)

Let the 2RM terminate, starting to execute the progfain the initial ID (0, 0, 1). We must demon-
strate that the sententt given by (4) is true in the first-order theory of one step rewriting induced by
the corresponding system=RR(P).

Since the 2RM terminates, there exists a correct rofthe form (3) (represented as a right-flattened
list (8) using thec list constructor) starting witi0, 0, 1), ending with (m, n, p) (for some natural
numbersm, n, p, and p equal the number of commands R), and such that every transition from
the ID (X, Vi, z) to the ID (X1, Vi+1, Zi+1) inr is correct with respect to the semantics of the 2RM
executingP, as described by Definition 4.

We will now show that this satisfies the matriC,1(r) A Ca(r) A Cs(r) A E(r) of (4), which will
prove the claim.

Truth of G(r). Suppose, toward a contradiction, ti@g(r) is false. Then, by Definition (16) of
Ci(r), there existwg, w1, wy such thatR(r, wo) A R(r, w1) A R(wg, wi) A R(wg, w2) A R(wy, wy) is
true. Since is a correct run, only rewrite rules-, | from groups (9)—(14), and no other rules, apply
tor (see Proposition 7). Moreover,

(1) by construction of R, the only way to satigR(r, wo) A R(r, w1) A R(wg, wq) is thatr = r[t],
wo = r[to/t], w1 = r[ty/t] for some termg, to, t; such that

t—)to

!
t1

where the— and| rewrites are applications of the and| rules of one of the groups (9)—(14) in the
outermost position df, and the rewritevy — wy is done by one of the shortcut ruleg’( ») (either in
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a topmost position ofy by (1), or by application of ¢/5) to c(t’, to)). In fact, ifr is (quasi-)correct
and

r — w

¥

/
wy

one step rewrite inifferentoccurrences af then, by construction of the rewrite system R, there is no
way to shortcut

e

Wo

(2) to may be further reduced in one stepatoor tob (by (29)), or toc(f(...),...) (by |})), or
toc(h(...),...) by some rule applied in the second argument positidm of toc(a, .. .) by (18);

(3) t; may only be reduced in one step to terms of the foffn. .), .. .);

(4) it follows thatwg = r[tg/t] andw; = r[t;/t] cannot be rewritten in one step into the same
wp SO as to satisfR(wg, wy) A R(wy, wo), a contradiction.

Truth of G(r). The truth ofC,(r) defined by (20) follows by construction of the rewrite system R,
because a correct runcannot be obtained as a result of one step rewrite of any term.

Truth of Gg(r). Let us show the truth of3(r) defined by (22). Here we repeat the argument from
the end of Section 16.2.
Letr be a correct run and,, wq, wo be such that

r wy

e (44)

W < w1

(i.e., all the premises of (22) are satisfied).

Sincer is correct, the only way to obtaimg as a result of one step rewriting franis to apply the
rule | from one of the groups (9)—(14). In fact, an alternative (see Proposition 17) would be to apply
the rule— from one of the groups (9)-(14), but in this case it would be impossible to get sugh a
as a result of two rewrites (via;) from anyw,. The straightforward case analysis shows that in the
diagram (44):

(1) eitherw, results fronr by application of the rule> from the same group as used to ggt
fromr; in this case the atorR(r, wy) in the conclusion of (22) is true;
(2) orw; coincides withr; in this case the atorR(r, w1) in the conclusion of (22) is true.

Thus, in both cases the formula (22) is true for a correcttun

Truth of E(r). Assume, toward a contradiction, that for a correctriine formulaE(r) defined by
(7)isfalse. Then for someg ; » the formulaR(r, wo) A R(r, w2) A R(wz, wi) A R(wi, wo) A—=R(w2, wop)
istrue. Since isacorrectrun, only rewrite rules, | from groups (9)—(14), or (24) (see Proposition 17),
and no other rules apply to Moreover,

(1) by construction of the rewrite system R, the only way to satR{y, wo) A R(r, wz) A
R(w2, w1) A R(ws, wp) is that for some termss to, ty, t; one has = r[t], wo = r[to/t], w1 = rty/t],
Wy = r[tz/t], and

t—)tz

Pl

to (—tl
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where all the rewrites, except, are done at the topmost position by the rules of one of the groups
(9)-(14) or (24);

(2) sincer is a correct runw, rewrites towg by one of the shortcut ruleg Ay 2), i.e., R(wz, wo)
is necessarily true, and we get a contradiction with the assumptR{w,, wo).

19.5. Proof of (4b}= (4a)

Let the sentenckl defined by (4) be true in the first-order theory of one step rewriting induced by the
rewrite rule system R= R(P). We must show that in this case the 2RM terminates, starting to execute
P with the ID (0, 0, 1), i.e., that there exists a finite correct run of the 2RM execuling

Assumer is a term satisfying the matri€,(r) A Co(r) A Cs(r) A E(r) of H. We claim that thig
represents a correct terminating run of the 2RM execuBngtarting from the initial ID(0, 0, 1). In
fact, the truth ofC,(r) guarantees that does not contain subterms matching left-hand sides of rules
(18)—(19), (25)—(43) (for structural, boundary, control flow constraints).

(1) Therefore, the term (cf., Remark 13):

(a) eitheris one o4, b, d,

(b) oris the empty list,

(c) or belongs to the set of natural numbers constructed frasn O,

(d) or belongs to the set of triples of natural numbers,

(e) or belongs to the set of nonempty right-flattened lists of triples of natural numbers.
(2) The validity of the formulaC,(r) excludes the case (1a); see Section 16.1.
(3) The validity of the formulaCs(r) excludes the cases (1b)—(1d); see Section 16.2.

(4) In the remaining case 1(e)should be a right-flattened list of triples of natural numbers
ending with(i, j, p) and of length at least 2. In fact, every list satisfydgr) should end with(i, j, p)
(recall rules (31), (32)). By rules (24), such a list creates the rewrite diagram

e

Vool

Lo

But this diagram can be commuted by the diagonal rewritgo satisfyE(r)) using the rule ;) only
if the list has length> 2. This was our intention with introducing rules (24); see Section 16.3.

(5) By construction of the system R, all subtermsr adf the formc({(...), c({...),...)) (i.e.,
adjacent triples) reduce to form the diagram

P N

oo

Lo

which commutes by, since E(r) is true. This commutation guarantees (as we explained in
Sections 12.3, 12.5) thatall ID transitions in the quasi-correat ana correct. Recall that the correctness
of flow control inr is guaranteed by the validity &;(r).

(6) It remains to show that starts with the initial ID(0, O, 1). In fact, in the head reduction for
the first two triples in the list we have the rewrite diagram

e SN

Voo

S

Since it commutes by’ (in the head position), it should necessarily start with the t(ipl®, 1), because
only the list starting withc((0, O, 1), w) can be reduced that way; see rulgs;(;) in Section 12.2 and
the related discussion.
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(7) Thereforer is a correct finite successfully terminating run of the 2RM starting with the initial
ID (0, 0, 1). This finishes the proof of Theorem 18 and the proof of Part A of our main theorem (weak
undecidability).

20. RIGHT-GROUND SYSTEMS

In this section we trade linearity for right-groundedness by briefly sketching how the preceding proof
applies (with minor modifications) to show undecidability of #vé-theory of one step rewriting in (non-
linear) terminating right-ground systems. This was first proved by [11]. Our result is an improvement
because of a simpler quantifier prefi¥€, as compared witB?v°) and a more restricted class of rewrite
systems (canonical).

The main idea is as before. We introduce rules corresponding to all commands in the program.
Consider a structurally correct run candidate, as before. Assume that the 2RM program in question
contains command: AL. To check whether a transition between two adjacent IDs is correctly done by
i : AL, we have two rules (note that (45) is no longer linear).

c((x, ¥, 1}, e((s(x), ¥, 2), w)) — A, (45)
c({x, y, 1}, c({u, v, 2), w)) — B. (46)

Similar rules should be added for the right addition and the left and right subtraétiamg B are two
new constants not to be confused with the previous ones. We also add the rule

B A (47)

Consider what happens if a run candidateontains a correct ID transition usimgAL,; i.e.,r =
ric((x, y, ), c({(s(x), y, z), w))]. Thenr reduces both to[ A] and tor [ B] by (45), (46), and [ A] reduces
tor[B] by (47).

Meanwhile, an incorrect transition in= r [c((X, y, L), c((X', ¥', Z), w))] can be reduced only 1 B]
by (46) and not ta [ A] (note how non-linearity is useful to check correctness).

Therefore, to check whether a quasi-correct run is correct, write the following formula:

Ewg(r) = Vu, v(R(r, u) A R(u, v) = R(r, v)). (48)

This should be understood as follows. Suppose, a transition by coninsaradiucible irr by (46) (it
is always reducible this way!) to satis®(r, u). Thenu is reducible by (47) to satisfiR(u, v). Clearly,
if this may be done in one step then the transition reduced in the first step was correct. We leave the
straightforward analysis of the other possibilities to the reader.
To achieve confluence (to eliminate critical pairs) we add extra rules{ike y, u), A)— B and
c((x, y, u), B)— B.

21. STRONG UNDECIDABILITY: FIXED SYSTEMS WITH UNDECIDABLEVY*-THEORIES

We thus proved the weak undecidability (Part A) of our main theorem (cf. Sections 1, 5) Bf\ke
theories of one step rewriting. Thus, no algorithm is able to decidé\tk®-theory of anarbitrary
finite canonical linear system. On the other hand, whenawgrfinite rewriting systerns fixed its
3AvvVv-theory,33vvVvvy, etc. (for all quantifier prefixes expressed by regular expressions defining finite
languages; see Proposition 3) are decidable.

In this section we present a construction of the fixed canonical linear system with undeédable
theory of one step rewriting. This is currently the simplest quantifier prefix class for which the strong
undecidability of the theories of one step rewriting is known.

The development of this section reuses the machinery developed in the preceding sections and is
therefore more schematic, with some trivial and repeating parts left out. As a technical tool we use a
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reduction from a slightly different undecidable problem due to [12-14], fotwleeregister machines
with input

Treorem 19.  (Mersion with input [14, p. 59])There exist concrete examples of thumiversal
program P such that given a natural number n itis undeciddivere preciselyr.e.-completgwhether
or not the2RM halts when started with the first instruction of P and both registers containing the
number n.

Remark 20. The problem remains undecidable when in the statement of Theorem 19 the phrase
a natural number ris replaced witha natural number n- N (where N is any a priori fixed natural
numbey.

Technically, we need to say that a run candidate starts with an,IB, 1) (for any naturah > N,
whereN is some fixed bound), instead of saying that it starts \itt9, 1), as we did before. Thus, for
everyn > N we must construct a formul,(r) saying that = c({n, n, 1), w) for somew.

The overall sentence expressing halting of the universal 2RM-pro§ramthe numben will have
the form

Hn =g 3r(Ca(r) A Co(r) A C4(r) A E(r) A Si(r)), (49)

whereS§,(r) and slightly modified formula€5(r), C5(r) are described below.

Note again that unlike the previoudiixed sentence (4), now the sentenddésare not going to be
fixed any more, and the set of all quantifier prefixes of senteHgds going to banfinite (recall that
this is necessary by Proposition 3). Moreover, each such prefix will belofigto

21.1. Changes to the Rewrite System

Given a universal 2RM-prografA (as guaranteed by Theorem 19; we may still assumeRistarts
with 1:AL; 2:SL 3) we construct the corresponding rewrite system as before, with the following
modification.

Instead of the rule;) we introduce the modified shortcut rule

[h((X', ¥, S0), (X, y,v)),...]
v ()
[(X,y,s0),0,(x,y,v),0,...]

This is needed in order to check correctness of the register manipulation on the first step; recall that the
computations now start witin, n, 1) and not with(0, 0, 1) as before.

21.2. Saying that a Run Starts with, n, 1)

Suppose that the existentially quantified in (49) run candida&structurally correct, with all correct
transitions, correct flow control, and terminating correctly, as before, but we do not insist that it starts
with (0, 0, 1).

The general idea to express that it starts withn, 1), i.e., has formr = c((n, n, 1), w), is as follows.

We introduce new rewrite rules allowing for the rewrite chains of the form

h— -+ —Tg—T (50)

with the property that has formc((n, n, 1), w) if and only ifr, — ro. Note that in contrast with the
previous development we now allow a correct run to be obtained as a result of a sequence of rewrite
steps. This causes a slight change in the definition of the forn@sladelow in this section.
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First, we augment the rewrite system with the following rules

s(c({x. ¥, 8(2)), w)) — s(c((s(x). s(y). 2), w)), (51)
s(c({0, 0, s(2)), w)) — s(c((s(2), s(2), 0), w)), (52)
s(c((s(2). 5(2). 0). w)) — c((s(2). s(2). s(0)). w). (53)

where (53) provides for the last step in the chain (50), (51) allows for theafatgtps, and (52) shortcuts
rn — ro. We add the outermostin the above rules so as lacalizepossible application of the rules in
theheadof a term.

Take it another way: the rule (51) stepwise pumps the third argument into the first two treating them
equally, while (52) does the same in just one step, when started from zeros.

Now for everyn > 0 and every termn = c((s"(0), s"(0), s(0)), w) we have auniquechain (50),
where

r = s(c((s" (0), s"' (0), ' (0)), w)), (54)

and in this case, indeed, — rg in just one step by (52).
We use this property ascaaracteristicone to expresstarting with(n, n, 1) by the following formula
(where we use; — ry instead ofR(ri, r)):

S\(r) =dt Yrn,....To(fn = -+ —=>Tg—> T =Ty —> Iq). (55)

We are almost done. However, this does not work yet, because kkenor j <n the termr =
c((s4(0), si(0), s(0)), w) also satisfies (55). This is due to the fact thatridoackward rewrite steps
fromrg in (50) one needs at ledst> n andj > n. Consequently, the premise of (55) is always false
and thus (55) is true far = ¢((s*(0), s! (0), s(0)), w) whenevek < nor j < n.

Otherwise, the formula (55) is true for=c((s"(0), s"(0), s(0)), w), because the only possible sub-
stitutions for the universally quantified variables to satisfy the premise are given by (54) andg by
(52). Additionally, (55) perfectly excludes all terms= ¢((s¥(0), s (0), s(0)), w) with k, j > n. Thisis
because for every such term there is exactly one way to satisfy the premise of (55), but in this case the
conclusion of (55) fails.

To exclude the terms = ¢((s¥(0), s/ (0), s(0)), w) for k < nor j < n, not yet excluded by (55), we
introduce the following extra rules. Our intention is to get a fork whenever the backward applications
of the rule (51) while creating the chain (50) backwardly gets stuck (one or both arguments become
zero) before tha-step chairr, — --- — rq is created.

sHc((0, s(y), z), w)) — s(c({0, s(y), ), w)), (56)
ss<c((0, s(y), z), w)) — s(c({0, s(y), z), w)), (57)
ss<c((0, s(y), z), w)) — ss(c((0, s(y), z), w)), (58)
and, symmetrically,
ssc((s(x), 0, z), w)) — s(c({s(x), 0, z), w)), (59)
ssgc((s(x), 0, z), w)) — s(c((s(x), O, z), w)), (60)
ssgc((s(x), 0, z), w)) — sqc((s(x), 0, 2), w)), (61)

and, to cover the case when both arguments are exhausted simultaneously,

sqc((0, 0, ), w)) — s(c({0, 0, z), w)), (62)
ssgc((0, 0, z), w)) — s(c({0, O, z), w)), (63)
ssgc((0, 0, z), w)) — sHc((0, 0, z), w)). (64)
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Therefore, in the case when= c((sX(0), s! (0), s(0)), w) with k <n or j <n, either (56), (57), or
(59), (60), or (62), (63) backwardly apply making a fork at a distaace from rq. This fork com-
mutes by (58), or (61), or (63), respectively, and the following formula is satisfied for some
min(k, j) < n:

rl//
N
Qi(r) =g -3/ rl,r ... ro| L NN —---—=rg—rj. (65)

/!

r

Note that this formula is equivalent to a universal formula (important for our purposes), but we leave it
in a more intuitive form.
Now for everyn > 1 consider the following formula (also equivalent to a universal formula)

n-1
S(r) = /\ Qi(r). (66)
=1

which says that one can create a backward chain (50) of lengithout getting forks.
Finally, the needed formul&,(r) expressing the property thastarts with(n, n, 1) may be written
as follows

Si() =ar S) A K,

which is also equivalent to a universal formula, with the numbef gfowing withn.

21.3. Excluding, b, d

We need to slightly correct the formu@y(r), see (20), saying thatdiffers froma, b, d. This is
necessary because now, after introduction of the rule (53), a correcirube obtained as a result
of one step rewrite from another terithis was not possible before, and we u€gft ) = Ywo—R(wp, )
to exclude incorrect rung, b, d; see Section 16.1. If we stay with thB(r), it will exclude also the
correct runs, after introduction of the new rules in the previous section.

Still, with the new rules the incorrect ruasb, d are easily excluded, because none of them satisfy
the following formul&°

u u
v\ e
Co(r) =d¢f YU, Ua,Up,Ug | Ua — Up=>—|T — Up
N N
Ug Ug
u
N
A= | Uy — U [A= Uz — Up . (67)
v N/
r r

Intuitively this formula says whenever, u,, Uy, ug form a diamond diagram as in the premise, which
automatically means thatis incorrect andi; = a, up, = b, andug = d, thenr is neithera, norb, nor
c. This is exactly what we need.

10We use graphic diagrams here as more intuitive; they can be easily transformed into a strict notation by replacing every
diagram n [ ] with a conjunction of atom&(x, y) corresponding ta — .



P1: GLD
PPXXX-IAC

INCO3151

May 23, 2002 9:55

30 SERGEI VOROBYOV

Note thaiC5(r ) is one universal quantifier more expensive t@a(r). Now, as the number of universal
quantifiers in the sentencét, should necessarily (by Proposition 3) grow unboundedly, we can afford
being more wasteful than before.

21.4. Excluding:, s¥(0), (s¥(0), s'(0), s™(0))

We need to change the formula(r), because the analysis from Section 16ug ¢annot be obtained
from anyw; by two rewrite steps) does not work any more. Fortunately we can be more wasteful now
and use more universal quantifiers (namely, we need four instead of three).

u
v\

Ci(r) =af YU, Uag,Up,Ug | Ua — Uy = > Ug=>( = UaVTI = W) |. (68)
N

Ug

When the premise of this formula is satisfied, then necessariy a, u, = b, uy = d. Clearly, each of
e, sX(0), (s¥(0), s'(0), s™(0)) reduces tal, but none reduces eitheraoor tob. Thus, these terms violate
C;4(r). On the other hand, the straightforward analysis shows that all correct runs do €4(igty

This finishes the construction. One can easily check that all the rules we introduced are linear and do
not damage the canonicity of the rewrite system. We thus proved Part B of the main theorem on strong
undecidability.

22. STRONG UNDECIDABILITY OF THEEVVVY-THEORIES WHEN
FUNCTION SYMBOLS ARE ALLOWED

Recall that by definition of the theories of one step rewriting in Section 3 function symbols were
forbiddenin formulas. This added technical difficulties in expressing quite obvious things (very easy
in presence of function symbols) but has not prevented the theories of one step rewriting from being
undecidable. In fact, a more natural and liberal definition would have allowed for using function symbols
in formulas. In this case the complications we had to deal with in the previous sections disappear, and
we obtain the following strong undecidability result for theories of finite quantifier pa&fi (without
function symbols this is impossible by Proposition 3).

TrHeorem 21. If sighature function symbols are allowed in formul&isen there exist finite linear
canonical systems with r.e.-complete sets of true prenex sentences of the theory of one step rewriting of
the form

IrVwy, we, wz P(r, wi, wy, wa),

where®(r, w1, wo, w3) is quantifier-free.

Remark 22. Since the theory of one step rewriting is complete (i.e., every sentence is either true or
false), the set of true prenex sentences of the theory of one step rewriting of thérféum w,, w3®
(r, wy, wo, wsz), whered(r, wy, w, ws) is quantifier-free, igo-r.e.-completeAll the arithmetic hierar-
chy may now be constructed in the usual manner.

Proof. The sentencell, defined in (49) may now be defined in tBévv-form

Hy =g 3 E(c((s"(0), s"(0), s(0)), r)) A
T T\ G0, '), 80, 1))

where E(r), C,(r) areVvvv-formulas as before. Note that the additional formulas C; excluding
degenerate cases are not needed any more, due to the ability to use functional symbols.
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23. CONCLUSIONS

In this paper by using reductions from the halting problems for Minsky’s two-register machines
(inputless and with input) we proved the following undecidability results for the theories of one step
rewriting.

(Weak undecidability). There is no general algorithm capable of decidingvke-theory of
one step rewriting foeveryfinite linear canonical system (despite the fact that for each such system
this theory is decidable non-uniformly).
This improves over previously known results of the same kind due to the use of the simpler quantifier
prefix and simultaneously linear and canonical systems.

(Strong undecidability). There exikedfinite linear canonical systems with undecidable (r.e.-
complete)3v*-theories of one step rewriting. If function symbols are allowed in the formulas of the
theory, then even the finite prefix cla®dgvV is undecidable. This improves previous results of the author
and gives the strongest currently known undecidability result (as per simplicity of the quantifier prefix
and restrictedness of the class of rewrite systems).

It remains open whether positive quantified theories of one step rewriting are decidable. Note in this
respect that ground reducibility expressed by a postitidsentence is decidable for the usual rewrite
systems [18], but is undecidable for conditional systems, both in the weak sense [19] and in the strong
sense [20}*

Another problem worth investigating is the non-uniform decidability of theories of one step rewriting
with finite prefixes. Given any finite term rewriting system R and a regular expre§smvrer {3, V}
describing a finite set of quantifier prefixes, tDaheory of one step rewriting in R is always decidable
(Proposition 3). Develop decision algorithms and investigate inherent complexity.
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