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By reduction from the halting problem for Minsky’s two-register machines we prove that there is
no algorithm capable of deciding the∃∀∀∀-theory of one step rewriting of an arbitraryfinite linear
confluent finitely terminatingterm rewriting system (weak undecidability). We also present afixedsuch
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1. INTRODUCTION

A finite term rewriting system R generates the binaryone step reducibility relationR on the set
of ground terms. Atheory of one step rewritingin R is the first-order theory of this binary relation
R formulated in the language of the predicate calculuswithout equalitycontaining theunique binary
predicatesymbolR interpreted asR. The problem whether first-order theories of one step rewriting in
finite systems are decidable was suggested in [1, p. 331] and repeated in theRewriting Techniques and
Applications(RTA) lists of open problems; see [2, p. 473] and [3, p. 461].

The motivation for the problem is quite natural. For example, theground reducibilityof a term
t(x̄) and thestrong confluenceof a system are expressible by the formulas∀x̄∃yR(t(x̄), y) and∀x, y,
z∃w(R(x, y)∧ R(x, z)⇒ R(y, w)∧ R(z, w)), respectively. Note that both properties are known to be
decidable. Similarly, the decidability of properties likeencompassment, known to be decidable [1, 4],
would follow from the general decidability of theories of one step rewriting. Recall also that the first-
order theories of one step rewriting infinite groundsystems are decidable [5]. On the other hand, the
transitive closure of the one step reducibility relation seems to be inexpressible in the theories of one
step rewriting (the opposite would immediately lead to their undecidability). All these facts motivated
the quest for the solution to the above problem and for the general decision procedure applicable to all
rewrite systems. This would have allowed us to decide all properties of rewrite systems, like discussed
above, expressible in the language of one step rewritinguniformly.

Unfortunately, the problem was settled in the negative (undecidable). It was demonstrated in [6], by
reduction from the post correspondence problem, that there is no algorithm capable of deciding the
∃∃∀-theory of an arbitrary term rewriting system. This result, however, does not imply the existence
of any fixed rewrite systems with undecidable theories. Moreover, each particular rewrite system has
a decidable∃∃∀-fragment (used in [6]). Actually, this holds for any other fragment with finitely many
quantifier prefixes, as explained in Section 5. On the other hand, [7] presented a simplefixed rewrite
rule system with undecidable theory of one step rewriting, by using a reduction from the undecidable
theory of binary concatenation (or free semigroups); see [8]. We therefore distinguish between theweak
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undecidability, i.e., non-existence of a unique decision algorithm applicable to all systems uniformly,
andstrong undecidability, i.e., undecidability of the theories of fixed systems.

It should be noted that both [6] and [7] constructed non-finitely terminating and non-linear3 rewrite
rules.4 Moreover, [6] directly used the rules of the formt → t one hardly ever encounters in practice.
This somehow diminished the relevance of the obtained results and left a strong hope that the theories
of one step rewriting should be decidable for finitely terminating systems.

In these circumstances H. Ganzinger at RTA’96 (New Brunswick, NJ) suggested a problem whether
finite finitely terminating systems have (un)decidable theories of one step rewriting. Recall in this
connection that the confluence is undecidable, in general, but becomes decidable for finite finitely
terminating systems. The similar decidability problem was put forward for the subclass of linear systems.

The decidability conjecture was first dispelled in [10], where a fixed finite, simultaneously finitely
terminating and linear system with undecidable theory of one step rewriting was constructed. The
proof again was given by reduction from the undecidable theory of binary concatenation. As a partial
drawback compensating for the ease of reduction, the quantifier alternation of the sentences forming the
undecidable class was quite high. Then in [11] it was shown that no algorithm is capable of deciding the
∃∗∀∗-theory of one step rewriting of an arbitrary finite finitely terminating system (but again without
implying undecidability for any fixed systems; see Section 5). A similar result for terminating right-
ground but non-linear systems is also proved in [11].

In this paper we further improve and sharpen the aboveweakundecidability results by showing
that no decision algorithm can decide the∃∀∀∀-theory of any given finite, simultaneously (1) finitely
terminating, (2) linear, and (3) confluent rewrite system. All the preceding proofs constructednon-
confluentsystems. For comparison, [11] proved an analogous result for non-confluent terminating
systems and∃∃∀∀∀∀∀-theories, and [6] for divergent non-confluent systems.

We also provestrong undecidabilityby constructing afixed finite linear canonical system with
undecidable∃∀∗-theory of one step rewriting. Recall that the weak undecidability results of [6] and
[11] do not imply existence of such systems (Section 5), whereas [7, 10] used much more complicated
quantifier prefixes andnon-confluentsystems. As a methodological advantage of the proof presented
here let us mention the use of reduction from the well-known undecidable halting problem for the two-
counter machines [12–14]. Note that [11] used a rather complicated specially tailored undecidability
problem in his proof (the details have not yet been published).

The main results of the paper are summarized in the following:

Main Theorem

(Part A: Weak undecidability). There is no algorithm deciding the∃∀∀∀-theory of one step rewriting
for every finite linear canonical system.

(Part B: Strong undecidability). There exists a finite linear canonical rewrite system (explicitly
presented) with undecidable (actually, r.e.-complete)∃∀∗-theory of one step rewriting.

Note that Part A refers to a uniform algorithm that first reads a system R as a parameter and then
adjusts itself to decide its theoryT h∃∀∀∀(R).

We call Part A “weak undecidability” for three reasons:

(1) it has logical form¬∃A∀R, weaker compared with∃R∀A¬ of strong undecidability,

(2) it does not imply strong undecidability (see Section 5),

(3) for every finite term rewriting system and for every finite quantifier prefix like∃∀∀∀, ∃∃∀,
∃∃∀∀∀∀∀ (but not for∃∀∗, which denotes an infinite set of quantifier prefixes) the corresponding theory of
one step rewriting with this finite prefix isalways decidable(see Section 5). This, somehow, diminishes
the practical value of Treinen–Marcinkowski’s results. Indeed, one almost never deals with all rewrite
systems altogether, but rather with one fixed given system at a time. But for any fixed system and any
finite quantifier prefixQ, theQ-theory of the system is always decidable. Thus weak undecidability is
immaterial for practical purposes.

3 i.e., containing repeated variable occurrences on the left (or right) hand side.
4 Later this was improved in [9] to linear shallow systems, but still non-terminating with rulest → t .
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Outline. The paper is organized as follows. After preliminaries in Sections 2–4, in Section 5 we
discuss and relateweakandstrongundecidability. Section 7 introduces Minsky’s two register machines,
and Section 8 describes the idea of reduction from the halting problem for these machines, which we
employ in the proof. Sections 9–16 implement the reduction. Sections 17 and 18 summarize all rewrite
rules and formulas constructed. Section 19 is devoted to the correctness proof. Section 20 proves
undecidability of the∃∀∀∀-theories for finite right-ground canonical systems, which improves (simpler
prefix, confluent systems) over [11]. In Section 21 we provestrong undecidabilityfor ∃∀∗-theories of
fixed linear canonical systems. Finally, in Section 22 we show strong undecidability for∃∀∀∀-theories,
when function symbols are allowed in formulas. We conclude in Section 23.

2. PRELIMINARIES

We suppose familiar use throughout the standard basic notions of term rewriting; see, e.g., [15, 16].
Specifically, byr [t ] we denote a termr containing a distinguished occurrence of a subtermt . By
r [s/t ] we denote the result of replacing this distinguished occurrence with terms. We freely speak
about reducibility in the outermost and inner positions, etc. We also expect some knowledge of finite
termination and the Knuth-Bendix critical pairs algorithm; see, e.g., [15–17].

A rewrite system iscanonicalif it is simultaneously finitely terminating and confluent. A system is
linear if each term in its left- and right-hand sides is linear, i.e., contains at most one occurrence of
every variable.

In writing predicate formulas we omit parentheses assuming the usual priority precedence of boolean
connectives:¬, ∧, ∨,⇒.

3. THEORY OF ONE STEP REWRITING

Given a functional signature6 with constants and a finite rewrite rule system R, consider the rewrite
modelM =〈T(6),R〉 induced by R, whereT(6) is the Herbrand universe over6 and the relation

R = {〈s, t〉 | s, t ∈ T(6) ∧ s→R t} ⊆ T(6)× T(6)

is the one step rewrite relation onT(6) generated by the system R.
Let L be the first-order language without equality containing the only binary predicate symbolR.

The first-order theory of one step rewriting in R is the set of sentences ofL true in the rewrite model
M , when the binary predicate symbolR is interpreted as the binary relationR. This theory is denoted
Th(R).

Remark 1. It is important to note that the only non-logical symbol used in formulas of the theory is
R, and the functional symbols of signature6 are not allowed in formulas.5 Sometimes instead of strict
notationR(x, y) for atomic formulas of the theory we use more familiar and intuitive notationx→ y
(not to be confused with rewrite rules).

Remark 2. One can easily construct an infinite system with the undecidable existential theory of
one step rewriting. It suffices to represent the addition and multiplication tables by rewrite rules and use
Matiyasevich’s result on undecidability of Diophantine equations.

More explicitly, consider the system with the following rules for every naturalm, n> 2, where
p,q,m,a are auxiliary binary symbols andx · y, x + y denote the numerals equal to the productx · y
and the sumx + y:

p(x, y)→ p(x, y),

p(x, y)→ q(x, y),

q(x, y)→ p(x, y),

q(x, y)→ x,

p(x, y)→ y,

5 We will relax this restriction in Section 22.
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FIG. 1. Possible rewrites in the system of Remark 2.

p(x, y)→ m(x, y),

p(x, y)→ a(x, y),

m(x, y)→ a(x, y),

m(x, y)→ x · y,
a(x, y)→ x + y,

x · y→ x,

x + y→ y.

Figure 1 shows the diagram of possible rewrites.
Now, instead of saying∃u, v · · · ∧ u · v = w ∧ . . . (while expressing the existence of solutions to a

Diophantine equation; treating ofu+ v = w is completely analogous), one writes:

∃P, Q, A,M,U,V, XU ·V ,YU+V . . .

P→ P ∧ P→ Q ∧ Q→ P ∧ Q 6→ Q ∧ Q→ U ∧U 6→ P ∧
P→ V ∧ V 6→ V ∧ P→ M ∧ M 6→ M ∧ P→ A∧ A 6→ A∧
M → A∧ M → XU ·V ∧ XU ·V → U ∧ A→ YU+V ∧ YU+V → V . . . ,

meaning thatP is a pair ofU , V , and XU ·V , YU+V ( just variables with fancy subscripts) equal the
product and the sum ofU andV , respectively.

The assumptionm, n > 2 is made to keep the system reducing, except for the first two rules needed to
say “P is a pair.” Anyway, the Diophantine equations problem remains undecidable in natural numbers
>k (for any naturalk). The reader will readily fill out the details and find possible simplifications after
reading the paper.

4. THEORIES OF ONE STEP REWRITING WITH RESTRICTIONS
ON QUANTIFIER PREFIXES

It is well known that each first-order sentence is equivalent to a sentence in theprenex form

Q1x1 . . . Qnxn8,

whereQi ∈ {∃, ∀} are quantifiers and8 is a quantifier-free formula.
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A quantifier prefix typeis a regular expression over the alphabet{∃, ∀}; for example,∃∀∀, ∃∗∀∗,
∃∀ ∪ ∀∃. Given a quantifier prefix typeQ, let L(Q) be the language defined by the regular expression
Q according to the usual rules. This language may be finite, as in the case ofQ = ∃∀∀∀ (one element),
or infinite, as in the case ofQ = ∃∗∀∗.

For a given quantifier prefix typeQ, the Q-theory of one step rewriting inR is a subset ofTh(R)
consisting of prenex sentences with quantifier prefixes inL(Q). This theory is denoted byThQ(R).

In the first part of this paper we will prove weak undecidability of∃∀∀∀-theories of one step rewriting
in linear canonical systems. For comparison, [11] proved weak undecidability of∃∃∀∀∀∀∀-theories for
linear terminating non-confluent systems, and [6] proved weak undecidability of∃∃∀-theories of one
step rewriting in non-terminating non-linear systems. In the second part of the paper, in Section 21, we
prove strong undecidability of the∃∀∗-theory of a particular system.

5. WEAK VS. STRONG UNDECIDABILITY RESULTS

The results of [6, 11, 10] are sometimes misinterpreted or misunderstood, and some clarification is
necessary.

Let us first recall the statement of the problem, as given in the RTA’93, RTA’95 lists of open problems;
see [2, 3].

Problem 5.1 (RTA’93, RTA’95).For an arbitrary finite term rewriting system R, is the first-order
theory of one step rewriting→R decidable?. . .

This informal statement allows for at least two different interpretations, depending on the order of
quantification (note that¬ (2)⇒ ¬ (1)):

Problem 5.1 (Formalized). Prove or disprove that:

∃ an algorithm A∀ systemR (A decides Th(R)), (1)

∀ systemR ∃ an algorithm A(A decides Th(R)). (2)

Thus, [6, 11] disproved (1) by showing

(Weak undecidability). There is no algorithm that given a finite term rewriting system R decides its
theoryTh(R) of one step rewriting. Even stronger, there is no algorithm that:

(1) given a finite (but otherwise unrestricted) rewrite system R decides its∃∃∀-theory of one step
rewritingTh∃∃∀(R), [6];

(2) given a finite linear finitely terminating system R decides its∃∃∀∀∀∀∀-theory of one step
rewritingTh∃∃∀∀∀∀∀(R), [11].

This settles Problem 5.1 in the form (1) in the negative.

However, it might happen (see below) that simultaneously one has

(Non-uniform decidability). For each finite rewrite rule system Ri the corresponding first-order
theoryTh(Ri ) of one step rewriting isdecidableby some (non-uniform) algorithmAi .

And in this latter case one should admit that Problem 5.1 is settledin the positive, because it corre-
sponds more exactly (at least from the author’s point of view) to what is asked for in the statement of
Problem 5.1.

Although the results of [7, 10], exclude non-uniform decidability by disproving (2), the results of [6]
and [11] do not exclude it. This follows from the fact that both authors use only finite quantifier prefixes
and from the next easy

PROPOSITION3. For every finite rewrite rule system and every quantifier prefix typeQ describing a
finite language L(Q), theQ-theory of one step rewriting is decidable. In particular, ∃∃∀- and∃∃∀∀∀∀∀-
theories of one step rewriting are decidable in every fixed finite rewrite system.
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Proof. Given a finite quantifier prefixQ1 . . . Qn, the languageL of the theory of one step rewriting
has (see Section 3):

(1) only finitely many different atoms with variables in{x1, . . . , xn} (since there are no function
symbols inL);

(2) only finitely many literals and non-equivalent quantifier-free boolean formulas with variables
in {x1, . . . , xn};

(3) consequently, only finitely many non-equivalent sentences with quantifier prefixQ1 . . . Qn.

Therefore, theQ1 . . . Qn-theory contains only finitely many equivalence classes of sentences and con-
sequently is decidable, because every finite set is always decidable.

Although for a given finite rewrite rule system Ri and a prefixQ1 . . . Qn the corresponding individual
decision algorithm may be quite sophisticated, italways exists. One cannot collect all such algorithms
(parameterized by a system) in just one generic algorithm, because this would contradict the (weak
undecidability) proved in [6, 11].

On the other hand, [7, 10] showed

(Strong undecidability). There exist finite term rewriting systems with undecidable theories of one
step rewriting.

This settles Problem 5.1 in the form (2) in the negative.

6. OUTLINE OF THE PAPER

In the first part of the paper (until Section 21) we improve the result of [11] on weak undecidability
by proving

THEOREM A (Weak undecidability of∃∀∀∀-theories for linear canonical systems).There is no de-
cision algorithm that given a finite linear canonical term rewriting system decides its∃∀∀∀-theory of
one step rewriting.

For comparison, [11] proved weak undecidability of the∃∃∀∀∀∀∀-theories, for linear terminating
non-confluent systems. Hence our result gives an improvement both in terms of a simpler prefix and
interms of a more restrictive class of rewrite rules.

Theorem A establishes the strongest currently known weak undecidability result for the theories of
one step rewriting in Noetherian systems.

In the second part of the paper (Section 21) we improve the results of [7, 10] on strong undecidability
by proving.

THEOREM B (Strong undecidability of∃∀∗-theories for linear canonical systems).There exists(and
can be explicitly presented) a finite linear canonical term rewriting system with undecidable∃∀∗-theory
of one step rewriting.

For comparison, [6] proved weak undecidability for∃∃∀-theories in non-terminating, non-linear,
non-confluent systems, and [9] proved weak undecidability for∃∃∀-theories in non-terminating (with
rulest→ t) non-confluent but linear and shallow systems. Strong undecidability proofs appeared only
in [7, 10].

7. MINSKY’S TWO-REGISTER MACHINE

Our undecidability proof is by reduction from the well-knownhalting problem for the two-register
machine(2RM) [12–14] In the definition below we make several simplifying technical assumptions
discussed later in Remark 6.

DEFINITION 4 (2RM). A 2RM is an automaton with a finite program and two unbounded counters
(called theleft and theright registers) capable of storing arbitrary natural numbers. A 2RM-programP
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is a finite list of consecutively labeled commands

1 :Command1; . . . ; p : Commandp,

wherep ≥ 2 is the number of commands inP and eachCommandi is of one of the following five kinds:

Halt. By executing this command the 2RM halts. We assume that the last command in a program
is always Halt, and this is the unique Halt command in a program.

Add 1 to the left register. By executing the commandi : AL the 2RM increases the contents of
the first (left) register by one, leaves the second (right) register unchanged, and proceeds to the next
commandi + 1. We assume that the first command in a program is always 1 :AL.

Add 1 to the right register. By executing the commandi : AR the 2RM increases the contents of
the second (right) register by one, leaves the first (left) register unchanged, and proceeds to the next
commandi + 1.

Subtract 1 from the left register.By executing the commandi : SL, j the 2RM does the following:

• if the contents of the first (left) register arepositive, the 2RM decreases it by one, leaves the
second (right) register unchanged, and proceeds to the command labeledj , where 2≤ j ≤ p;

• otherwise, if the contents of the first (left) register arezero, the 2RM leaves both registers
unchanged and proceeds to the next commandi + 1.

Subtract 1 from the right register.The execution ofi : SR, j is analogous to those ofi : SL, j , with
the roles of the left and the right registers interchanged.

The 2RM-halting problem is undecidable [12–14]. More precisely:

THEOREM 5 (Inputless version). It is undecidable, given a program P for the 2RM, to say whether
the machine halts when started with the first instruction of P and both registers containing zeros.

We will also make use of a version of this theorem for the 2RM with input (see Theorem 21) to prove
strong decidability of the∃∀∗-theories of one step rewriting in Section 21.

We finish this section by giving explanations concerning the technical assumptions in Definition 7.

Remark 6.

(1) We assume that the numberp of commands in a 2RM program is greater than one, since for
the (unique) one-command program 1 : Halt termination is immediate.

(2) By always starting a program with 1 :AL; 2 :SL, 3 we may assume that every program starts
with 1 :AL and the control never returns to the command labeled 1. Indeed, given a programP we can
write 1 :AL; 2 :SL, 3 in front of it and then systematically change labels (by adding 2 to each one) in
P. The modified program halts iff the initial does. The role of these technical assumptions will become
clear later, in Sections 13, 19.5.

8. REDUCTION: PROOF IDEA

In the first part of the paper, until Section 21, we will:

(1) present a fixed∃∀∀∀-sentence (4), independent of a rewrite rule system, and

(2) show how, given a 2RM programP, to effectively construct a finite linear canonical system R

such that the sentence (4) below is true in the theoryTh(R) of one step rewriting in R if and only if the
2RM executingP halts after a finite number of steps. Together with Theorem 5 this will immediately
imply Part A of our main theorem on weak undecidability.

In Section 21 we will show how to obtain fixed explicit examples of finite linear canonical rewrite
systems with undecidable∃∀∗-theories of one step rewriting. The 2RM will be modified to accept
inputs: in the initial state both registers will contain a natural numbern, the programP will be fixed, but
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the∃∀∗-sentencesHn expressing halting of the 2RM with inputn will vary and form the undecidable
theory. This will prove Part B of the main theorem on strong undecidability.

9. SENTENCE EXPRESSING HALTING

A run of the 2RM executing a programP is a finite sequence of instantaneous descriptions (IDs)
represented by triples of natural numbers

〈x0, y0, z0〉, . . . , 〈xm, ym, zm〉, (m≥ 1) (3)

wherexi ’s are the left register contents,yi ’s are the right register contents, andzi ’s are command labels.
The intuitive interpretation is that〈xi+1, yi+1, zi+1〉 is obtained from〈xi , yi , zi 〉 as a result of execution
of thezi th command ofP with the left- and right-register contents equal toxi andyi respectively, as
defined in Section 7. Theinitial ID 〈x0, y0, z0〉 is 〈0, 0, 1〉 and in thefinal ID zm= p (recall thatp is the
number of commands inP). The formal definition of a run is straightforward from Definition 4 and we
omit it here.

To prove Part A of the main theorem, we will write a fixed sentence, independent of a programP,
expressing that the 2RM executingP halts starting in the initial ID〈0, 0, 1〉. This sentence will be
written in the form

H ≡df ∃r (C1(r ) ∧ C2(r ) ∧ C3(r ) ∧ E(r )), (4)

whereC1,2,3(r ) andE(r ) are formally defined below in such a way that:

• ∃r says “there exists arun r ,”

• C1(r ) ∧ C2(r ) ∧ C3(r ) says thatr is a structurally quasi-correct6 (see Sections 13, 14, 15)
sequence of IDs of the 2RM executing a programP, and the control flow inr is correct7 according to
Definition 4,

• E(r ) says that the registers are operated correctly8 along the runr , according to Definition 4,
andr starts with the initial ID〈0, 0, 1〉.
Thus the whole sentence (4) says that there exists a finite correct terminatingrun r of the 2RM executing
the programP.

10. HOW TO TRANSLATE MACHINE COMMANDS

Our aim in this section is to describe the intuition for writing the most sophisticated partE(r ) of the
sentence (4) and the corresponding part of the rewrite rule system.

Suppose we have arun candidate, i.e., a sequencer of the form (3) (in list representation described
below), in which the flow of control iscorrect. The latter means, informally, thatzi ’s in r follow correctly;
e.g., if i : AL is in P then〈. . . , i 〉, 〈. . . , j 〉 with j 6= i + 1 does not appear inr . Such a correctness will
be guaranteed by the partC1(r ) of (4) (described in Sections 13, 14, 15) occurring conjunctively with
E(r ) in (4). So, assuming this control flow correctness, we need to check, by using linear canonical
rules, whether the contents of registers are modified correctly along a run candidater .

The main idea is to construct rewrite rules in a way to simultaneously satisfy the following two
properties:

(1) every adjacent pair of triples〈xi , yi , zi 〉, 〈xi+1, yi+1, zi+1〉 in a sequence (3) representing a run
candidater could be reduced to form the following rewrite diagram (no matter whether the transition

6 For example, does not contain ‘senseless’ things like〈〈. . . , . . . , . . .〉, . . . , . . .〉.
7 For example, ifP contains 9 :AL then a run does not contain adjacent triples like〈x, y, 9〉, 〈u, v,8〉.
8 For example, if 7 :AL is in P and a run contains the adjacent pair of triples〈x, y, 7〉, 〈u, v,8〉 thenu = x + 1 andv = y.
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from the ID〈xi , yi , zi 〉 to the ID〈xi+1, yi+1, zi+1〉 is correct or not):

〈xi , yi , zi 〉, 〈xi+1, yi+1, zi+1〉 → w2

↓ ↓
w0 ← w1

(5)

for somew0, w1, w2, and, moreover,

(2) the diagram (5) can becompletedby the↙ rewrite to the diagram

〈xi , yi , zi 〉, 〈xi+1, yi+1, zi+1〉 → w2

↓ ↙ ↓
w0← w1

(6)

if and only if the register contents are operated correctly in the transition from〈xi , yi , zi 〉 to
〈xi+1, yi+1, zi+1〉.
Therefore, the partE(r ) of (4) can be expressed by the∀∀∀-formula

E(r )≡df ∀w0, w1, w2(R(r, w0) ∧ R(r, w2) ∧ R(w2, w1) ∧ R(w1, w0)⇒ R(w2, w0)). (7)

This idea is implemented in Section 12.

The formula (7) looks more intuitive when written in the form

∀w0, w1, w2

 r → w2

↓ ↓
w0← w1

⇒
w2

↙
w0

.

11. SIGNATURE AND NOTATIONAL CONVENTIONS

The signature6 we will use in constructing rewrite systems and formulas is as follows:

• a constantε to represent the empty list;

• a constant 0 to represent the natural number zero;

• binary functionc(,) for the list constructor;

• unarys( ) for the successor on natural numbers;

• ternary〈, ,〉 for the triple constructor;

• constantsa, b, d, auxiliary;

• binary functionsh, f , auxiliary.

CONVENTION 1. In the following we will formally represent the run sequence(3) as a term(list)

[〈x0, y0, z0〉, . . . , 〈xm, ym, zm〉], (m≥ 1) (8)

where, as usual, [ ] = ε and [e0, e1, . . . ,en] = c(e0, [e1, . . . ,en]), with the constantε for the empty
list and the binary list constructor c(,). Thus, (8) is a right-flattenedlist of triples of natural numbers
built from the empty listε by using the binary list constructor. Below we will freely switch between
the informal representation of a run(3) and its formal list representation(8), keeping in mind that the
relation between them is obvious.

CONVENTION 2. Formally, a sequence of the form(3) is represented by a right-flattened list(8) of
triples built using the list constructor c. Sometimes, to simplify readability we present rewrite rules in
the form[〈. . .〉, 〈. . .〉 . . . ] → t or 〈. . .〉, 〈. . .〉 → t, instead of the less readable c(〈. . .〉, c(〈. . .〉, u)→ t
(where u is a fresh variable). It will always be clear how to transform this shorthand into a formal long
form.
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CONVENTION 3. To improve readability we will often depict rewrite rules l→ r in a slightly uncon-
ventional way, with arrows going in different directions, as in rules(⇓), (↙), (9) below.

CONVENTION 4. In the rules and formulas we write below x, y, z, u, v, w are variables,while i, j, k,
l ,m, n are natural numbers. For a natural number i, i denotes the term si (0). Sometimes, when it does
not lead to confusion, we use the usual decimal numbers instead of the formal numerals si (0) in unary
notation. In writing terms with unary function symbols we usually omit parentheses.

12. TRANSLATING COMMANDS INTO REWRITE RULES

Assume thatP is an arbitrarybutfixed 2RM program withp≥ 2 commands, starting with 1 :AL. We
proceed to compilingP into a system of linear canonical rewrite rules R. Thus the system R depends
on a programP, i.e., R≡ R(P); see Section 8.

12.1. Auxiliary (⇓) Rule

The following rule will be used to commute rewrite diagrams created by other rewrite rules, with the
intention to check properties of terms (as we described in Section 10).

h(u, v)
↓

f (u, v)
(⇓)

12.2. Shortcut Rules (↙1,2)

The following two rules will also be used to commute rewrite diagrams (cf. (5), (6) above) created
by other rewrite rules on terms satisfying certain properties:

[h(〈0, 0, s0〉, 〈1, 0, v〉), . . . ]
↙

[〈0, 0, s0〉, 0, 〈1, 0, v〉, 0, . . . ]
(↙1)

[u, h(〈x′, y′, ssz〉, 〈x, y, v〉), . . . ]
↙

[u,〈x′, y′, ssz〉, 0, 〈x, y, v〉, 0, . . . ]
(↙2)

These rules are, of course, more readable versions of the following two rules

c(h(〈0, 0, s0〉, 〈1, 0, v〉), w)
↙

c(〈0, 0, s0〉, c(0, c(〈1, 0, v〉, c(0, w))))

c(u, c(h(〈x′, y′, ssz〉, 〈x, y, v〉), w))
↙

c(u, c(〈x′, y′, ssz〉, c(0, c(〈x, y, v〉, c(0, w)))))

respectively, according to our Conventions 1, 2 on lists.

Remark 7. The difference between (↙1) and (↙2) is crucial for our purposes: pay attention tos0
in the rule (↙1) andsszin the rule (↙2). Note that we do not introduce just one generic rule

c(h(〈x′, y′, sz〉, 〈x, y, v〉), w)
↙

c(〈x′, y′, sz〉, c(0, c(〈x, y, v〉, c(0, w))))

instead of (↙1) and (↙2). The reason is that we wish to distinguish between the cases for ‘one’ (s0)
and ‘greater than one’ (ssz). Note that (↙1) applies in theheadof a list, whereas (↙2) applies in the
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tail (second element) of a list. This complication is needed to ensure that a runr witnessing the validity
of (4) starts with theinitial ID 〈0, 0, 1〉, i.e., has formc(〈0, 0, 1〉, . . .); see below Section 19.5. Note
also that the form of the rule (↙1) assumes that the first command in a program is always 1 :AL; see
Remark 6.

CONVENTION 5. In all the rules and diagrams below the effect of commutation by(⇓), (↙1,2) will
be depicted as⇓,↙ respectively. In these contexts⇓,↙ do not definenew rewrite rules, but denote
rewrite steps made by(⇓), (↙1,2) and are added as comments to clarify intuition.

12.3. Addition Commands

12.3.1.Left Addition Command

The commandi : AL is translated into three linear rewrite rules,→, ↓, and← given below (recall
that⇓ is not a rule, but a rewrite step made by the rule (⇓) given above):

c(〈x, y, i〉̄, c(〈s(u), v, z〉, w)) → c(h(〈u, v, i 〉̄, 〈s(x), y, z〉), w)
↓ ⇓

c(〈x, y, i 〉̄, c(0, c(〈s(u), v, z〉, c(0, w))))← c( f (〈u, v, i 〉̄, 〈s(x), y, z〉), w)
(9)

Note that the→⇓← combination in diagram (9) makes two swaps of variables:x, y, u, v 7→
u, v, x, y 7→ x, y, u, v. Along both↓ and→⇓← paths in (9) nothing essential happens, except these
two variable swaps. Auxiliaryh, f (on the right) and intermediate 0’s (in the bottom left corner) are
added for finite termination, as discussed in Section 19.2.

It is crucial that diagram (9) can be completed with the↙ rewrite step by using one of the shortcut
rules (↙1,2) (which do not make any variable swaps!) if and only if simultaneously:

(1) x = u andy = v, i.e., iff registers are operatedcorrectlyin the transition from the ID〈x, y, i 〉̄
to the ID〈s(u), v, z〉 and

(2) (a) eitheri in (9) equalss0 (in this casex = y = u = v = 0) and the rule (↙1) works,
(b) or i in (9) is greater than one (i.e., equalsssz for somez), but the whole termt ≡

c(〈x, y, i 〉̄, c(〈s(u), v, z〉, w)) in the upper left corner of (9) occursin the tail of some embedding list,
i.e., t occurs inc(t ′, t) for somet ′, so that (↙2) could apply.

Remark 8. This double trick is an example of how the commutation of rewrite diagrams is useful
to check the needed properties of terms. The first one shows how to check that registers are operated
correctly, and the second one ensures that a list starts with the initial ID〈0, 0, 1〉 (otherwise, the
commutation by (↙1,2) in the head of the list is impossible).

Remark 9. Note that we add three rules of the form (9) for each commandi : AL in the programP.

Remark 10. Note that rules (9) do not attempt to check the right succession of commands in the
transitions: the third argument in the second triple is a variablez. Another group of rules, described in
Sections 13, 14, and 15, will be responsible for this control flow check.

This remark also applies to the analogous rules (9)–(14) below.
To give a better understanding of the above rules, consider two examples.

12.3.2.Example of a Correct Register Operation

If P contains the command 8 :AL then in the transition from the ID〈6, 4, 8〉 to the ID 〈7, 4, 9〉 the
registers are operated correctly, and the following rewrite diagram takes place:

c(u, c(〈6, 4, 8〉, c(〈s(6), 4, s(8)〉, w))) → c(u, c(h(〈6, 4, 8〉, 〈s(6), 4, s(8)〉), w))
↓ ↙ ⇓

c(u, c(〈6, 4, 8〉, c(0, c(〈s(6), 4, s(8)〉, c(0, w)))))← c(u, c( f (〈6, 4, 8〉, 〈s(6), 4, s(8)〉), w))

Here the⇓ rewrite is possible by the auxiliary rule (⇓) and the↙ rewrite by the shortcut rule (↙2).
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12.3.3.Example of an Incorrect Register Operation

If P contains the command 11 :AL then in the transition from the ID〈6, 4, 11〉 to 〈9, 4, 12〉 the left
register is operated incorrectly, and the following rewrite diagram

c(u, c(〈6, 4, 11〉, c(〈s(8), 4, s(11)〉, w))) → c(u, c(h(〈8, 4, 11〉, 〈s(6), 4, s(11)〉), w))
↓ \↙ ⇓

c(u, c(〈6, 4, 11〉, c(0, c(〈s(8), 4, s(11)〉, c(0, w)))))← c(u, c( f (〈8, 4, 11〉, 〈s(6), 4, s(11)〉), w))

cannotbe commuted any more by the diagonal↙ rewrite using (↙2), nor by any other rewrite rule.

12.3.4.Right Addition Command

The commandi : ARis translated into the rules analogous to (9), withs( ) shifted from the first to the
second argument in the second〈. . .〉 of each rule side, namely:

c(〈x, y, i 〉̄, c(〈u, s(v), z〉, w)) → c(h(〈u, v, i 〉̄, 〈x, s(y), z〉), w)
↓ ⇓

c(〈x, y, i 〉̄, c(0, c(〈u, s(v), z〉, c(0, w))))← c( f (〈u, v, i 〉̄, 〈x, s(y), z〉), w)
(10)

The intuition behind these rules is clear from the definition of the 2RM and is similar to the rules for
the left addition.

12.4. Subtraction Commands

12.4.1.Left Subtraction

Quite similarly, a commandi : SL, j is translated into two groups of rules, the first three corresponding
to the nonzero left register

c(〈s(x), y, i 〉̄, c(〈u, v, z〉, w)) → c(h(〈s(u), v, i 〉̄, 〈x, y, z〉), w)
↓ ⇓

c(〈s(x), y, i〉̄, c(0, c(〈u, v, z〉, c(0, w))))← c( f (〈s(u), v, i〉̄, 〈x, y, z〉), w)
(11)

and the second three corresponding to theemptyleft register

c(〈0, y, i 〉̄, c(〈u, v, z〉, w)) → c(h(〈u, v, i 〉̄, 〈0, y, z〉), w)
↓ ⇓

c(〈0, y, i〉̄, c(0, c(〈u, v, z〉, c(0, w))))← c( f (〈u, v, i 〉̄, 〈0, y, z〉), w)
(12)

12.4.2.Right Subtraction

An instructioni : SR, j is translated analogously into six rules:

c(〈x, s(y), i 〉̄, c(〈u, v, z〉, w)) → c(h(〈u, s(v), i 〉̄, 〈x, y, z〉), w)
↓ ⇓

c(〈x, s(y), i〉̄, c(0, c(〈u, v, z〉, c(0, w))))← c( f (〈u, s(v), i〉̄, 〈x, y, z〉), w)
(13)

c(〈x, 0, i 〉̄, c(〈u, v, z〉, w)) → c(h(〈u, v, i 〉̄, 〈x, 0, z〉), w)
↓ ⇓

c(〈x, 0, i〉̄, c(0, c(〈u, v, z〉, c(0, w))))← c( f (〈u, v, i 〉̄, 〈x, 0, z〉), w)
(14)

The intuition behind these rules is clear from the definition of the 2RM, as for the addition commands.
At this point the reader is invited to stop and get convinced that the rules introduced work exactly in

a way required by diagrams (5), (6) in Section 10.
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12.5. Checking Correctness of Register Manipulation

The intention behind the rules we constructed so far is better clarified by the following claim (we call
it a claim, because it depends on an incompletely defined rewrite rule system). It shows how rewrite
diagrams created by rules (9), (10), (11), (12), (13), (14), and commuted by (⇓), (↙), are used to check
whether 2RM’s registers are operated correctly along a quasi-correct run (formally explained in the next
sections).

Claim 11. [Adequacy]

(1) Let r be a correct run (8) of the 2RM on a programP starting with ID〈0, 0, 1〉. Then the
following formula is true (where the predicateR is interpreted as a one step ground reducibility relation
in the rewrite rule system R= R(P) we are constructing):

E(r ) ≡df ∀w0, w1, w2(R(r, w0) ∧ R(r, w2) ∧ R(w2, w1) ∧ R(w1, w0)⇒ R(w2, w0)). (7)

(2) Let r be a sequence (8) in whichxi ’s, yi ’s, zi ’s are natural numbers, the control flow inr be
correct (see below Sections 13 and 14), andE(r ) be true. Thenr represents a correct run of the 2RM
on P starting with ID〈0, 0, 1〉.

The validity of this claim, useful as a guideline for the further development, will be guaranteed by
the construction of the remaining part of the rewrite system. We return back to the formal proof of this
claim in Section 19. The reader is invited to check that the first part of the claim is true for the part of
the system we constructed so far.

Note that the formula (7) is uniform, it does not depend on a programP.

13. QUASI-CORRECT RUNS

We are looking for ground termsr witnessing the truth of the sentence (4) among terms of a special
structure, representing right-flattened lists of triples of natural numbers of the form (8). The construction
of the formulaE(r ) in (7) assumes that a termr is quasi-correct. OtherwiseE(r ) may be true for senseless
terms such asc(c(a, b), c(ε, h(a, b, d))). This is because the rewrite rules we defined so fardo not apply
to such terms; hence, the premise of (7) is false. It is the role of the subformulaC1(r )∧C2(r )∧C3(r ) of
(4) to detect such senseless cases and become false, so as not to admit false witnesses for (4) satisfying
E(r ).

The next definition partially captures the idea of correctness.

DEFINITION 12. Call a termr quasi-correctif and only if it satisfies the following groups of constraints.

Structural constraints. The termr does not contain subterms of the form:

(1) h(u, v), f (u, v),

(2) s(F(. . . )) with F ∈6\{s, 0},
(3) 〈F(. . . ), u, v〉, 〈u, F(. . . ), v〉, 〈u, v, F(. . . )〉 with F ∈6\{0, s},
(4) c(F(. . . ), x) with F ∈6\{〈, ,〉},
(5) c(x, F(. . . )) with F ∈6\{c, ε}.

(Reason: by definition, a run should be a right-flattened list of triples of natural numbers; thus all
subterms enumerated above make no sense in a valid run.)

Boundary constraints. The termr does not contain subterms of the form:

(1) c(〈x, y, j
¯
〉, ε) for 1≤ j < p

(Reason: a run should end withc(〈x, y, p
¯
〉, ε), i.e., after executingp : Halt, the last command inP);

(2) c(〈x, y, sp(z)〉, c(〈u, v, w〉, w′))
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(Reason: in a correct run command numbers do not exceedp, command labeledp may (and by the
previous constraint should) occur only in the end of the run, i.e., in a subtermc(〈x, y, sp(0)〉, ε));

(3) c(〈x, y, z〉, c(〈u, v,1〉̄, w))
(Reason: in a correct run the control never returns back to the first command; thus label 1 may occur

at most once in the beginning; recall Remark 6);

(4) 〈x, y, 0〉
(Reason: command numbers are positive.)

Control flow constraints. The termr does not contain adjacent triples9:

(1) 〈x, y, i 〉̄, 〈u, v, j
¯
〉 with j 6= i + 1 whenP contains a commandi : AL or i : AR.

(Reason: addition transfers control to the next command.)

(2) 〈x, y, i 〉̄, 〈0, v, z〉 whenP containsi : AL.

(3) 〈x, y, i 〉̄, 〈u, 0, z〉 whenP containsi : AR.
(Reason: addition cannot result with the empty register.)

(4) 〈s(x), y, i〉̄, 〈u, v, j
¯
〉 with j 6= i + 1 whenP contains the commandi : SL, i + 1.

(5) 〈x, s(y), i〉̄, 〈u, v, j
¯
〉 with j 6= i + 1 whenP contains the commandi : SR, i + 1.

(Reason: such subtractions, with nonzero registers, always transfer control to the next command.)

(6) 〈s(x), y, i〉̄, 〈u, v, j
¯
〉 with j = i + 1 whenP contains instructioni : SL, l with l 6= i + 1.

(7) 〈x, s(y), i〉̄, 〈u, v, j
¯
〉 with j = i + 1 whenP contains instructioni : SR, l with l 6= i + 1.

(Reason: when the left (right) register is positive, such subtractions transfer control to the specified
commandl 6= i + 1.)

(8) 〈0, y, i 〉̄, 〈u, v, j
¯
〉 with j 6= i + 1 whenP contains instructioni : SL, l with l 6= i + 1.

(9) 〈x, 0, i 〉̄, 〈u, v, j
¯
〉 with j 6= i + 1 whenP contains instructioni : SR, l with l 6= i + 1.

(Reason: when the left (right) register is zero, such subtractions transfer control to the succeeding
command.)

Remark 13. The Definition 12 of quasi-correctness does not exclude some degenerate cases.
Namely, a quasi-correct runr may have one of the forms (and these are all possible cases) enumerated
below:

(1) a, b, d,

(2) ε,

(3) 0,

(4) r ≡ s(r ′) for somer ′ built of 0 ands,

(5) r ≡ 〈r1, r2, r3〉 for somer1, r2, r3 built of 0 ands,

(6) r may be a right-flattened list of triples of natural numbers, with a correct flow control
(as defined by the control flow constraints), ending correctly, but possibly with incorrect register
manipulations.

Intermediate goal. In the following sections we first show how to determine whether a term is
quasi-correct and then proceed to excluding all (degenerate) cases, except the last one.

14. DETERMINING QUASI-CORRECT RUNS

We are going to introduce new rewrite rules that would allow us to reduce every non-quasi-correct
termr (see Definition 12) in the following specific way

9 Say that in the list representation (8) of a run the triples〈x, y, i 〉, 〈u, v, j 〉 are adjacent iff they occur in a subterm
c(〈x, y, i 〉, c(〈u, v, j 〉, w)).
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r
↙ ↘

w0 → w1

↘ ↙
w2

, (15)

which will be impossible for a quasi-correct term.
Consequently, quasi-correct termsr will satisfy the following formula

C1(r ) ≡df ¬∃w0, w1, w2(R(r, w0) ∧ R(r, w1) ∧ R(w0, w1) ∧ R(w0, w2) ∧ R(w1, w2)). (16)

Remark 14. It is important to note thatC1(r ) is equivalent to a universal formula with the quantifier
prefix∀∀∀, which is essential for keeping the entire sentenceH in (4) in the∃∀∀∀-form. We keep the
¬∃∃∃-form in (16) as being more intuitive.

Remark 15. The termsa, b, d, ε, 0,sk(0), 〈sk(0), sl (0), sm(0)〉 enumerated as degenerate cases 1–5
in Remark 13 also satisfy bothC1(r ) in (16) andE(r ) in (7). We exclude these terms by formulasC2,3(r )
in Section 16.

15. REWRITE RULES TO CHECK QUASI-CORRECTNESS

The key idea is to define, for each ground termt that cannot be a subterm of a quasi-correct term,
two rules:t → a, t → b, plus three (common) rules

a→ b,
a→ d,
b→ d.

(17)

Thus, every termr that is not quasi-correct will form the above diamond-like rewrite diagram (15) and
will satisfy the formulaC1(r ) defined by (16). Additional effort is needed to ensure that correct terms
cannot form the above diamond diagram and thus cannot satisfyC1(r ). Thus the diamond diagram
property (16) and the corresponding formulaC1(r ) given by (16) will be used as a quasi-correctness
criterion.

15.1. Rules for Structural Constraints

By t→a, b we abbreviate two rulest→a andt→ b. We enumerate the rules for checking structural
constraints, corresponding to cases of Definition 12.

(1) A quasi-correct run cannot contain functional symbolsh, f , thus:

h(x, y)→ a, b (18)

f (x, y)→ a, b. (19)

(2) s(F(. . . ))→ a, b for all F ∈ 6\{s, 0}.
• (Reason: terms constructed with 0,s are natural numbers and cannot contain subterms

starting with something except 0,s.)

(3) (a) 〈F(. . . ), u, v〉 → a, b for all F ∈ 6\{0, s},
(b) 〈u, F(. . . ), v〉 → a, b for all F ∈ 6\{0, s},
(c) 〈u, v, F(. . . )〉 → a, b for all F ∈ 6\{0, s}.
• (Reason: the only meaningful function symbols in the argument positions to the triple

constructor〈, ,〉 are 0 ands.)
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(4) (a) c(F(. . . ), x)→ a, b for everyF ∈ 6\{〈, ,〉},
(b) c(x, F(. . . ))→ a, b for everyF ∈ 6\{c, ε}.
• (Reason: runs are right-flattened lists (sequences) of triples.)

15.2. Rules for Boundary Constraints

(1) (a) c(〈x, y, j
¯
〉, ε)→ a, b for all 1≤ j < p;

(b) c(〈x, y, sp(z)〉, c(〈u, v, w〉, w′))→ a, b.

• (Reason: the only command that may and should terminate a correct run isp : Halt and
thus labelp cannot appear in the middle of a run; labels of commands do not exceedp.)

(Note: these two rewrite rules force every right-flattened list of triples of natural numbers to terminate
with c(〈u, v, sp(0)〉, ε), i.e., withHalt, as needed.)

(2) c(〈x, y, z〉, c(〈u, v,1〉, w))→ a, b

• (Reason: a command with label 1 is executed only in the beginning of a run and the control
never returns back to this command; the shortcut with (↙1) will guarantee that the initial ID of a run is
〈0, 0, 1〉; see Sections 12.3.1 and 19.)

(3) 〈x, y, 0〉 → a, b

• (Reason: command numbers are positive.)

15.3. Rules for Control Flow Constraints

Here we again use Convention 2 on mixing sequential and list notation:

(1) (a) 〈x, y, i〉̄, 〈u, v, j
¯
〉→a, b for all j satisfying 1≤ j 6= i + 1≤ p, wheni : AL or i : AR

is in P.

• (Reason: addition transfers control to the next command.)

(b) 〈x, y, i 〉̄, 〈0, v, z〉 → a, b wheni : AL occurs inP.

(c) 〈x, y, i 〉̄, 〈u, 0, z〉 → a, b wheni : ARoccurs inP.

• (Reason: addition cannot result with the empty register.)

(2) (a) If P containsi : SL, i + 1 add the rules

〈x, y, i 〉̄, 〈u, v, k〉̄ → a, b

for all k ∈ {1, . . . , p}\{i + 1}.
• (Reason: such subtractionsalwaystransfer control to the succeeding command.)

(b) If P containsi : SL, j for j 6= i + 1, add the rules

〈0, x, i 〉, 〈y, z, k〉 → a, b

〈s(x), y, i 〉, 〈u, v, l 〉 → a, b

for all k ∈ {1, . . . , p}\{i + 1}, all l ∈ {1, . . . , p}\{ j }.
• (Reason: such subtractions can only transfer control to the next command, when the

register is zero, or to thej th command, when the register is positive.)

(3) (a) If P containsi : SR, i + 1 add the rules

〈x, y, i〉̄, 〈u, v, k〉̄ → a, b

for all k ∈ {1, . . . , p}\{i + 1}.
• (Reason: such subtractionsalwaystransfer control to the succeeding command.)
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(b) If P containsi : SR, j for j 6= i + 1, add the rules

〈x, 0, i 〉, 〈y, z, k〉 → a, b

〈x, s(y), i 〉, 〈u, v, l 〉 → a, b

for all k∈ {1, . . . , p}\{i + 1}, all l ∈ {1, . . . , p}\{ j }.
• (Reason: such subtractions can only transfer control to the next command, when the

register is zero, or to thej th command, when the register is positive.)

16. EXCLUDING DEGENERATE CASES

We should exclude terms

a, b, d, ε,0, sk(0), 〈sk(0), sl (0), sm(0)〉

enumerated as degenerate cases 1–5 in Remark 13; see also Remark 15.
Recall that these terms satisfy both formulasC1(r ) in (16) andE(r ) in (7), but they do not witness

correct successful terminating runs of the 2RM. We proceed to excluding them by giving the∀∀∀-
formulaC2(r ) ∧ C3(r ) false for these terms but true for terms representing correct terminating runs of
the 2RM.

16.1. Excludinga, b, d

It is easy to exclude the termsa, b, d, because none of them satisfies the formula

C2(r ) ≡df ∀w0¬ R(w0, r ), (20)

whereas each correct terminating run of the 2RM, if any, satisfies (20), by construction of the rewrite
system R. Indeed,a, b, d appear as right-hand sides in the rules of the previous section. At the same
time, all the rules we constructed have right-hand sides that cannot occur in a correct run.

The difficulty with the remaining termsε, 0, sk(0), 〈sk(0), sl (0), sm(0)〉 is as follows. Although they
do not represent correct terminating runs, they still satisfy the formula (20).

16.2. Excludingε, 0,sk(0), 〈sk(0), sl (0), sm(0)〉
Let us introduce additional rewrite rules:

ε → d,

0 → d,
(21)

s(x) → d,

〈x, y, z〉 → d

and consider the following∀∀∀-formula

C3(r ) ≡df ∀w0, w1, w2(R(w2, w1) ∧ R(w1, w0) ∧ R(w2, w0)

⇒ [R(r, w0)⇒ R(r, w2) ∨ R(r, w1)]), (22)

which may be better understood in the diagram notation

∀w0, w1, w2

 r w2

↓ ↙ ↓
w0← w1

⇒
r → w2

∨
r
↘
w1

.
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This formula isfalsefor all termsε, 0,sk(0), and〈sk(0), sl (0), sm(0)〉. Indeed, taked, b, a forw0,w1,w2,
respectively. By rules (22), everyr equal to one ofε, 0, sk(0), 〈sk(0), sl (0), sm(0)〉 reduces tow0 ≡ d.
Thus all the premises in (22) are true, but none of the termsε, 0, sk(0), 〈sk(0), sl (0), sm(0)〉 reduce to
w2 ≡ a nor tow1 ≡ b. Thus the conclusion of (22) is false and none ofε, 0,sk(0), 〈sk(0), sl (0), sm(0)〉
satisfy the formula (22). Consequently,C3(r ) excludes these terms, as needed.

At the same time, any correct run does satisfy the formula (22). In fact, letr be a correct run and
w2, w1, w0 be such that

r w2

↓ ↙ ↓
w0← w1

(23)

(i.e., all the premises of (22) are satisfied).
Sincer is correct, the only way to obtainw0 as a result of one step rewriting fromr is to apply the

rule↓ from one of the groups (9)–(14). In fact, an alternative would be to apply the rule→ from one of
the groups (9)–(14), but in this case it would be impossible to get such aw0 as a result of two rewrites
(viaw1) from anyw2. The straightforward case analysis shows that in the diagram (23):

(1) eitherw2 results fromr by application of the rule→ from the same group as used to getw0

from r ; in this case the atomR(r, w2) in the conclusion of (22) is true;

(2) orw2 coincides withr ; in this case the atomR(r, w1) in the conclusion of (22) is true.

Thus in both cases the formula (22) is true for a correct runr .

16.3. Excluding a One Element List

There remains one more degenerate case to be excluded. Consider a one-element list

r ≡ c(〈i, j, k〉, ε),

wherei, j, k are natural numbers. Obviously, such a list does not represent a correct terminating run of
the 2RM. Let us see what happens with the sentenceH in this case.

If the numberk corresponding to the command label is different fromp (the number of commands
in the programP), then one of the rules (31), (32) applies and the formulaC1(r ) becomes false. Thus
such a one-element list is correctly excluded.

However, in the case ofk = p neither rules (31) or (32) nor any other rules apply toc(〈i, j, p〉, ε) any
more. Consequently, the formulaC1(r )∧C2(r )∧C3(r ) is true. Moreover, the formulaE(r ) is also true,
becauser ≡ c(〈i, j, p〉, ε) is irreducible to satisfy the premises ofE(r ), hence the premises ofE(r ) are
false. Thus the validity ofH is witnessed by a senseless termc(〈i, j, p〉, ε) that does not represent a
correct terminating run of the 2RM.

To deal with this problem we make the listr ≡ c(〈i, j, p〉, ε) reducible similarly to the case of any
two adjacent triples of natural numbers. This is achieved by introducing the following group of rules

c(〈x, y, p
¯
〉, ε) → c(h(〈x, y, p

¯
〉, 〈0, 0, 0〉), ε)

↓ ⇓
c(〈x, y, p

¯
〉, c(0, c(〈0, 0, 0〉, c(0, ε))))← c( f (〈x, y, p

¯
〉, 〈0, 0, 0〉), ε)

(24)

similar to groups (9)–(14).
Now, the one-element listr ≡ c(〈i, j, p〉, ε) creates the rewrite diagram

. → .

↓ ↓
. ← .

satisfying the premises ofE(r ). But the conclusion ofE(r ) is not satisfied byr , because the shortcut
rule (↙2) does not apply to a one-element list.



P1: GLD

PPXXX-IAC INCO3151 May 23, 2002 9:55

UNDECIDABILITY OF ONE STEP REWRITING THEORIES 19

Thus the degenerate case of a one-element list is also excluded.

17. ALL IMPORTANT FORMULAS

Here we repeat verbatim the definition of the sentenceH (expressing halting of the 2RM; see
Section 9) and its subformulasE(r ), C1,2,3(r ). All of these formulas arefixed and independentof a
2RM programP.

H ≡df ∃r (C1(r ) ∧ C2(r ) ∧ C3(r ) ∧ E(r )). (4)

E(r ) ≡df ∀w0, w1, w2(R(r, w0) ∧ R(r, w2) ∧ R(w2, w1) ∧ R(w1, w0)⇒ R(w2, w0)). (7)

C1(r ) ≡df ¬∃w0, w1, w2(R(r, w0) ∧ R(r, w1) ∧ R(w0, w1) ∧ R(w0, w2) ∧ R(w1, w2)). (16)

C2(r )≡df ∀w0¬R(w0, r ). (20)

C3(r ) ≡df ∀w0, w1, w2(R(w2, w1) ∧ R(w1, w0) ∧ R(w2, w0)⇒ [R(r, w0)⇒ R(r, w2) ∨ R(r, w1)]).

(22)

HereR is the binary predicate symbol of the language for the one step rewriting relation (see Section 3).
Note that this is the only non-logical symbol in the above formulas.

Remark 16. Equation (4) is in the∃∀∀∀-form, after transformation of (16) into an equivalent∀∀∀-
form and putting all universal quantifiers (which distribute over∧) in the prefix.

18. ALL REWRITE RULES

Each programP determines its own rewrite rule system R, as contrasted with the fixed sentence
H (see the previous section). Here we summarize (repeat verbatim from the previous sections) all the
rewrite rules constructed from a given program.

Let P be an arbitrary but fixed program for the 2RM withp ≥ 2 instruction numbered consecutively
from 1 to p, with the first command 1 :AL and containing no commandsi : SL, 1 or i : SR, 1 (see
Remark 6). Note that for a fixed 2RM-programP, for eachi ∈ {1, . . . , p} the command labeledi is
completely determined. Thus for everyi = 1, . . . , p− 1, we define the rewrite rules by case analysis
depending on the command type, i.e., left addition, right addition, left subtraction, right subtraction (the
first command being 1 :AL and the last commandp : Halt).

Some of the rules below, like (⇓), are fixed and do not depend onP. Others, like (10), are added to
R iff i : ARoccurs inP. The rewrite system R will contain as many groups of rules (9), as the program
P contains the left addition commands (one group with fixedi per commandi : AL with label i ). Two
groups of rules (11), (12) are added for everyi such thatP containsi : SL, j . (And analogously for right
addition/subtraction commands.)

Auxiliary rule.

h(u, v)
↓

f (u, v)
(⇓)

Rules for the left addition i: AL.

c(〈x, y, i〉̄, c(〈s(u), v, z〉, w)) → c(h(〈u, v, i 〉̄, 〈s(x), y, z〉), w)
↓ ⇓

c(〈x, y, i 〉̄, c(0, c(〈s(u), v, z〉, c(0, w))))← c( f (〈u, v, i 〉̄, 〈s(x), y, z〉), w)
(9)
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Rules for the right addition i: AR.

c(〈x, y, i 〉̄, c(〈u, s(v), z〉, w)) → c(h(〈u, v, i 〉̄, 〈x, s(y), z〉), w)
↓ ⇓

c(〈x, y, i 〉̄, c(0, c(〈u, s(v), z〉, c(0, w))))← c( f (〈u, v, i 〉̄, 〈x, s(y), z〉), w)
(10)

Rules for the left subtraction i: SL, j (nonempty register).

c(〈s(x), y, i 〉̄, c(〈u, v, z〉, w)) → c(h(〈s(u), v, i 〉̄, 〈x, y, z〉), w)
↓ ⇓

c(〈s(x), y, i〉̄, c(0, c(〈u, v, z〉, c(0, w))))← c( f (〈s(u), v, i〉̄, 〈x, y, z〉), w)
(11)

Rules for the left subtraction i: SL, j (empty register).

c(〈0, y, i 〉̄, c(〈u, v, z〉, w)) → c(h(〈u, v, i 〉̄, 〈0, y, z〉), w)
↓ ⇓

c(〈0, y, i〉̄, c(0, c(〈u, v, z〉, c(0, w))))← c( f (〈u, v, i 〉̄, 〈0, y, z〉), w)
(12)

Rules for the right subtraction i: SR, j (nonempty register).

c(〈x, s(y), i 〉̄, c(〈u, v, z〉, w)) → c(h(〈u, s(v), i 〉̄, 〈x, y, z〉), w)
↓ ⇓

c(〈x, s(y), i〉̄, c(0, c(〈u, v, z〉, c(0, w))))← c( f (〈u, s(v), i〉̄, 〈x, y, z〉), w)
(13)

Rules for the right subtraction i: SR, j (empty register).

c(〈x, 0, i 〉̄, c(〈u, v, z〉, w)) → c(h(〈u, v, i 〉̄, 〈x, 0, z〉), w)
↓ ⇓

c(〈x, 0, i〉̄, c(0, c(〈u, v, z〉, c(0, w))))← c( f (〈u, v, i 〉̄, 〈x, 0, z〉), w)
(14)

Shortcut rules (to check whether registers operated correctly).

[h(〈0, 0, s0〉, 〈1, 0, v〉), . . . ]
↙

[〈0, 0, s0〉, 0, 〈1, 0, v〉, 0, . . . ]
(↙1)

[u, h(〈x′, y′, ssz〉, 〈x, y, v〉), . . . ]
↙

[u,〈x′, y′, ssz〉, 0, 〈x, y, v〉, 0, . . . ]
(↙2)

These rules are abbreviations (using list notation) of the following two rules:

c(h(〈0, 0, s0〉, 〈1, 0, v〉), w)
↙

c(〈0, 0, s0〉, c(0, c(〈1, 0, v〉, c(0, w))))

c(u, c(h(〈x′, y′, ssz〉, 〈x, y, v〉), w))
↙

c(u, c(〈x′, y′, ssz〉, c(0, c(〈x, y, v〉, c(0, w)))))

Auxiliary quasi-correctness rules.

a→ b,
a→ d,
b→ d.

(17)



P1: GLD

PPXXX-IAC INCO3151 May 23, 2002 9:55

UNDECIDABILITY OF ONE STEP REWRITING THEORIES 21

h(x, y)→a, b (18)

f (x, y)→a, b (19)

Additional rules to excludeε, sk(0), 〈x, y, z〉.
ε → d,
0 → d,

s(x) → d,
〈x, y, z〉 → d

(21)

Additional rules to exclude one element lists.

c(〈x, y, p
¯
〉, ε) → c(h(〈x, y, p

¯
〉, 〈0, 0, 0〉), ε)

↓ ⇓
c(〈x, y, p

¯
〉, c(0, c(〈0, 0, 0〉, c(0, ε))))← c( f (〈x, y, p

¯
〉, 〈0, 0, 0〉), ε)

(24)

Rules to check structural constraints.

s(F(. . . ))→ a, b for all F ∈6\{s, 0} (25)

〈F(. . . ), u, v〉 → a, b for all F ∈ 6\{0, s} (26)

〈u, F(. . . ), v〉 → a, b for all F ∈ 6\{0, s} (27)

〈u, v, F(. . . )〉 → a, b for all F ∈ 6\{0, s} (28)

c(F(. . . ), x)→ a, b for everyF ∈6\{〈, ,〉} (29)

c(x, F(. . . ))→ a, b for everyF ∈6\{c, ε} (30)

Rules to check boundary constraints.

c(〈x, y, j
¯
〉, ε)→ a, b for all 1≤ j < p (31)

c(〈x, y, sp(z)〉, c(〈u, v, w〉, w′))→ a, b (32)

c(〈x, y, z〉, c(〈u, v,1〉, w))→ a, b (33)

〈x, y, 0〉 → a, b (34)

Rules to check control flow constraints.

(1) (a) 〈x, y, i〉̄, 〈u, v, j
¯
〉 → a, b (35)

for all j satisfying 1≤ j 6= i + 1≤ p, provided that
i : AL or i : AR is in P.

(b) 〈x, y, i〉̄, 〈0, v, z〉 → a, b (36)
wheni : AL occurs inP.

(c) 〈x, y, i 〉̄, 〈u, 0, z〉 → a, b (37)
wheni : ARoccurs inP.

(2) (a) If P containsi : SL, i + 1, then add the rules

〈x, y, i 〉̄〈u, v, k〉̄ → a, b (38)

for all k∈ {1, . . . , p}\{i + 1}.
(b) If P containsi : SL, j for j 6= i + 1, then add the rules

〈0, x, i 〉̄〈y, z, k〉̄ → a, b (39)

〈s(x), y, i 〉̄〈u, v, l 〉 → a, b (40)

for all k∈ {1, . . . , p}\{i + 1}, all l ∈ {1, . . . , p}\{ j }.
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(3) (a) If P containsi : SR, i + 1, then add the rules

〈x, y, i 〉̄〈u, v, k〉̄ → a, b (41)

for all k∈ {1, . . . , p}\{i + 1}.
(b) If P containsi : SR, j for j 6= i + 1, then add the rules

〈x, 0, i〉̄〈y, z, k〉̄ → a, b (42)

〈x, s(y), i〉̄〈u, v, l 〉̄ → a, b (43)

for all k∈ {1, . . . , p}\{i + 1}, all l ∈ {1, . . . , p}\{ j }.
We conclude by a simple property of the constructed term rewriting system R, proved by inspection.

PROPOSITION17. Let r be a term representing a correct terminating run of the2RM. Then only rules→
and↓ from the groups(9)–(14)may be applied to r.

19. THE CORRECTNESS THEOREM

THEOREM 18 (Correctness). For every2RM-program P and the associated rewrite rule system
R≡ R(P) (as described in Section(18)) the following four claims are true.

(1) The systemR is (left- and right-) linear.

(2) The systemR is finitely terminating.

(3) The systemR is confluent.

(4) The following two statements are equivalent:

(a) the2RM terminates, starting to execute P with the ID〈0, 0, 1〉;
(b) the sentence H given by(4) is true in the first-order theory of one step rewriting generated

byR.

Consequently, there is no general algorithm deciding the∃∀∀∀-theory of one step rewriting for every
finite linear canonical system. Henceforth, Part A of the main theorem on weak undecidability holds.

The proof of Theorem 18 occupies the rest of Section 19.

19.1. Proof of Linearity

By immediate inspection of the rules presented in Section 18.

19.2. Proof of Finite Termination

For a termt of signature6 denote by:

(1) #(t, 〈 〉〈 〉) the number of different subterm occurrences oft of the form c(〈t1, t2, t3〉,
c(〈t4, t5, t6〉, t7)) (two adjacent triples in a list) and of the formc(〈t1, t2, t3〉, ε) (a triple adjacent toε)
for some termst1,2,3,4,5,6,7;

(2) #(t, F) the number of occurrences of the symbolF ∈ {h, f,a, b, d} in the termt ;

(3) #(t, 6) the number of occurrences int of the function symbols from6\{a, b, d}.
For a termt of signature6 denote by‖t‖ the ordinal

‖t‖ ≡df ω
ωω

ω#(t,〈〉〈〉)
+ ωωω#(t,h) + ωω#(t, f ) + ω#(t,6) + 3 · #(t,a)+ 2 · #(t, b)+ #(t, d).
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By inspecting the rewrite rules from Section 18 it can be readily seen that‖t‖ > ‖t ′‖ whenever a
term t reduces tot ′ by R. Since ordinals are well ordered, the system R is finitely terminating. Now
the role of separating zeros in the first argument positions to thec constructor in all rules (9)–(14) and
(↙1,2) becomes completely clear. They serve to separate adjacent triples and thus reduce the norms in
reductions.

Clearly, we could have used a less strong ordering, but the given proof is conceptually very simple,
self-contained, and completely satisfactory for our purposes.

19.3. Proof of Confluence

We assume the reader has basic knowledge about Knuth–Bendix critical pairs algorithm [15–17].
For a finite term rewriting system confluence is equivalent to local confluence, and local confluence
is always equivalent to joinability of the so-called critical pairs, easily computable from the so-called
superpositions of its left-hand sides.

Here we give a simple proof of the confluence of the constructed rewrite rule system R. Note that
the system is quite large (its size varies and depends on the input programP), so we need a kind of
meta-argument proving that the system is confluent for every input programP.

Happily, the rewrite rules we constructed possess (intentionally) the following remarkable property,
easily checkable by inspection:

Every superposition t between rules inR always produces a critical pair〈t1, t2〉 such that both t1 and t2 both
reduce to d.

Thus the confluence of R follows by the critical pairs test.
One of the anonymous referees suggested the following more direct and simple proof, without the

help of the critical pair lemma. The point is the following fact: every termt can be reduced tod if t is
neither variable norc(x1, c(x2, c(x3, . . . c(xn−1, xn+1) . . . ), wherexi is a variable. Seeing the right-hand
side of rewrite rules, we can easily show that any term obtained by one or more rewriting steps is neither
variable norc(x1, c(x2, c(x3, . . . c(xn−1, xn+1) . . . ). Thus, every non-trivial divergence can be joined to
d. In this way one does not need to study all the critical pairs ofR.

19.4. Proof of (4a)⇒ (4b)

Let the 2RM terminate, starting to execute the programP in the initial ID 〈0, 0, 1〉. We must demon-
strate that the sentenceH given by (4) is true in the first-order theory of one step rewriting induced by
the corresponding system R≡ R(P).

Since the 2RM terminates, there exists a correct runr of the form (3) (represented as a right-flattened
list (8) using thec list constructor) starting with〈0, 0, 1〉, ending with〈m

¯
, n

¯
, p
¯
〉 (for some natural

numbersm, n, p, and p equal the number of commands inP), and such that every transition from
the ID 〈xi , yi , zi 〉 to the ID 〈xi+1, yi+1, zi+1〉 in r is correct with respect to the semantics of the 2RM
executingP, as described by Definition 4.

We will now show that thisr satisfies the matrixC1(r ) ∧ C2(r ) ∧ C3(r ) ∧ E(r ) of (4), which will
prove the claim.

Truth of C1(r ). Suppose, toward a contradiction, thatC1(r ) is false. Then, by Definition (16) of
C1(r ), there existw0, w1, w2 such thatR(r, w0) ∧ R(r, w1) ∧ R(w0, w1) ∧ R(w0, w2) ∧ R(w1, w2) is
true. Sincer is a correct run, only rewrite rules→, ↓ from groups (9)–(14), and no other rules, apply
to r (see Proposition 7). Moreover,

(1) by construction of R, the only way to satisfyR(r, w0)∧R(r, w1)∧R(w0, w1) is thatr ≡ r [t ],
w0 ≡ r [t0/t ], w1 ≡ r [t1/t ] for some termst , t0, t1 such that

t → t0
↓
t1

where the→ and↓ rewrites are applications of the→ and↓ rules of one of the groups (9)–(14) in the
outermost position oft , and the rewritew0→ w1 is done by one of the shortcut rules (↙1,2) (either in
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a topmost position oft0 by (↙1), or by application of (↙2) to c(t ′, t0)). In fact, if r is (quasi-)correct
and

r → w′0
↓
w′1

one step rewrite indifferentoccurrences ofr then, by construction of the rewrite system R, there is no
way to shortcut

w′1
↙

w′0

(2) t0 may be further reduced in one step toa, or tob (by (29)), or toc( f (. . . ), . . . ) (by⇓)), or
to c(h(. . . ), . . . ) by some rule applied in the second argument position ofh, or toc(a, . . . ) by (18);

(3) t1 may only be reduced in one step to terms of the formc(〈. . .〉, . . .);
(4) it follows thatw0 ≡ r [t0/t ] andw1 ≡ r [t1/t ] cannot be rewritten in one step into the same

w2 so as to satisfyR(w0, w2) ∧ R(w1, w2), a contradiction.

Truth of C2(r ). The truth ofC2(r ) defined by (20) follows by construction of the rewrite system R,
because a correct runr cannot be obtained as a result of one step rewrite of any term.

Truth of C3(r ). Let us show the truth ofC3(r ) defined by (22). Here we repeat the argument from
the end of Section 16.2.

Let r be a correct run andw2, w1, w0 be such that

r w2

↓ ↙ ↓
w0← w1

(44)

(i.e., all the premises of (22) are satisfied).
Sincer is correct, the only way to obtainw0 as a result of one step rewriting fromr is to apply the

rule↓ from one of the groups (9)–(14). In fact, an alternative (see Proposition 17) would be to apply
the rule→ from one of the groups (9)–(14), but in this case it would be impossible to get such aw0

as a result of two rewrites (viaw1) from anyw2. The straightforward case analysis shows that in the
diagram (44):

(1) eitherw2 results fromr by application of the rule→ from the same group as used to getw0

from r ; in this case the atomR(r, w2) in the conclusion of (22) is true;

(2) orw2 coincides withr ; in this case the atomR(r, w1) in the conclusion of (22) is true.

Thus, in both cases the formula (22) is true for a correct runr .

Truth of E(r ). Assume, toward a contradiction, that for a correct runr the formulaE(r ) defined by
(7) is false. Then for somew0,1,2 the formulaR(r, w0)∧R(r, w2)∧R(w2, w1)∧R(w1, w0)∧¬R(w2, w0)
is true. Sincer is a correct run, only rewrite rules→,↓ from groups (9)–(14), or (24) (see Proposition 17),
and no other rules apply tor . Moreover,

(1) by construction of the rewrite system R, the only way to satisfyR(r, w0) ∧ R(r, w2) ∧
R(w2, w1)∧ R(w1, w0) is that for some termst , t0, t1, t2 one hasr ≡ r [t ], w0 ≡ r [t0/t ], w1 ≡ r [t1/t ],
w2 ≡ r [t2/t ], and

t → t2
↓ ⇓
t0← t1
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where all the rewrites, except⇓, are done at the topmost position by the rules of one of the groups
(9)–(14) or (24);

(2) sincer is a correct run,w2 rewrites tow0 by one of the shortcut rules (↙1,2), i.e., R(w2, w0)
is necessarily true, and we get a contradiction with the assumption¬R(w2, w0).

19.5. Proof of (4b)⇒ (4a)

Let the sentenceH defined by (4) be true in the first-order theory of one step rewriting induced by the
rewrite rule system R≡ R(P). We must show that in this case the 2RM terminates, starting to execute
P with the ID 〈0, 0, 1〉, i.e., that there exists a finite correct run of the 2RM executingP.

Assumer is a term satisfying the matrixC1(r ) ∧ C2(r ) ∧ C3(r ) ∧ E(r ) of H . We claim that thisr
represents a correct terminating run of the 2RM executingP starting from the initial ID〈0, 0, 1〉. In
fact, the truth ofC1(r ) guarantees thatr does not contain subterms matching left-hand sides of rules
(18)–(19), (25)–(43) (for structural, boundary, control flow constraints).

(1) Therefore, the termr (cf., Remark 13):

(a) either is one ofa, b, d,

(b) or is the empty listε,

(c) or belongs to the set of natural numbers constructed from 0,s,

(d) or belongs to the set of triples of natural numbers,

(e) or belongs to the set of nonempty right-flattened lists of triples of natural numbers.

(2) The validity of the formulaC2(r ) excludes the case (1a); see Section 16.1.

(3) The validity of the formulaC3(r ) excludes the cases (1b)–(1d); see Section 16.2.

(4) In the remaining case 1(e)r should be a right-flattened list of triples of natural numbers
ending with〈i, j, p

¯
〉 and of length at least 2. In fact, every list satisfyingC1(r ) should end with〈i, j, p〉

(recall rules (31), (32)). By rules (24), such a list creates the rewrite diagram

. → .

↓ ↓
. ← .

But this diagram can be commuted by the diagonal rewrite↙ (to satisfyE(r )) using the rule (↙2) only
if the list has length≥2. This was our intention with introducing rules (24); see Section 16.3.

(5) By construction of the system R, all subterms ofr of the formc(〈. . .〉, c(〈. . .〉, . . .)) (i.e.,
adjacent triples) reduce to form the diagram

. → .

↓ ↓
. ← .

which commutes by↙ since E(r ) is true. This commutation guarantees (as we explained in
Sections 12.3, 12.5) that all ID transitions in the quasi-correct runr are correct. Recall that the correctness
of flow control inr is guaranteed by the validity ofC1(r ).

(6) It remains to show thatr starts with the initial ID〈0, 0, 1〉. In fact, in the head reduction for
the first two triples in the listr we have the rewrite diagram

. → .

↓ ↓
. ← .

Since it commutes by↙ (in the head position), it should necessarily start with the triple〈0, 0, 1〉, because
only the list starting withc(〈0, 0, 1〉, w) can be reduced that way; see rules (↙1,2) in Section 12.2 and
the related discussion.
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(7) Therefore,r is a correct finite successfully terminating run of the 2RM starting with the initial
ID 〈0, 0, 1〉. This finishes the proof of Theorem 18 and the proof of Part A of our main theorem (weak
undecidability).

20. RIGHT-GROUND SYSTEMS

In this section we trade linearity for right-groundedness by briefly sketching how the preceding proof
applies (with minor modifications) to show undecidability of the∃∀3-theory of one step rewriting in (non-
linear) terminating right-ground systems. This was first proved by [11]. Our result is an improvement
because of a simpler quantifier prefix (∃∀3, as compared with∃2∀5) and a more restricted class of rewrite
systems (canonical).

The main idea is as before. We introduce rules corresponding to all commands in the program.
Consider a structurally correct run candidate, as before. Assume that the 2RM program in question
contains commandi : AL. To check whether a transition between two adjacent IDs is correctly done by
i : AL, we have two rules (note that (45) is no longer linear).

c(〈x, y, i〉̄, c(〈s(x), y, z〉, w)) → A, (45)

c(〈x, y, i 〉̄, c(〈u, v, z〉, w)) → B. (46)

Similar rules should be added for the right addition and the left and right subtraction;A andB are two
new constants not to be confused with the previous ones. We also add the rule

B → A. (47)

Consider what happens if a run candidater contains a correct ID transition usingi : AL; i.e., r ≡
r [c(〈x, y, i 〉̄, c(〈s(x), y, z〉, w))]. Thenr reduces both tor [ A] and tor [B] by (45), (46), andr [ A] reduces
to r [B] by (47).

Meanwhile, an incorrect transition inr ≡ r [c(〈x, y, i 〉̄, c(〈x′, y′, z〉, w))] can be reduced only tor [B]
by (46) and not tor [ A] (note how non-linearity is useful to check correctness).

Therefore, to check whether a quasi-correct run is correct, write the following formula:

Erg(r ) ≡ ∀u, v(R(r, u) ∧ R(u, v)⇒ R(r, v)). (48)

This should be understood as follows. Suppose, a transition by commandi is reducible inr by (46) (it
is always reducible this way!) to satisfyR(r, u). Thenu is reducible by (47) to satisfyR(u, v). Clearly,
if this may be done in one step then the transition reduced in the first step was correct. We leave the
straightforward analysis of the other possibilities to the reader.

To achieve confluence (to eliminate critical pairs) we add extra rules likec(〈x, y, u〉, A)→ B and
c(〈x, y, u〉, B)→ B.

21. STRONG UNDECIDABILITY: FIXED SYSTEMS WITH UNDECIDABLE∃∀∗-THEORIES

We thus proved the weak undecidability (Part A) of our main theorem (cf. Sections 1, 5) for the∃∀∀∀-
theories of one step rewriting. Thus, no algorithm is able to decide the∃∀∀∀-theory of anarbitrary
finite canonical linear system. On the other hand, wheneverany finite rewriting systemis fixed, its
∃∀∀∀-theory,∃∃∀∀∀∀∀, etc. (for all quantifier prefixes expressed by regular expressions defining finite
languages; see Proposition 3) are decidable.

In this section we present a construction of the fixed canonical linear system with undecidable∃∀∗-
theory of one step rewriting. This is currently the simplest quantifier prefix class for which the strong
undecidability of the theories of one step rewriting is known.

The development of this section reuses the machinery developed in the preceding sections and is
therefore more schematic, with some trivial and repeating parts left out. As a technical tool we use a
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reduction from a slightly different undecidable problem due to [12–14], for thetwo-register machines
with input.

THEOREM 19. (Version with input [14, p. 59]). There exist concrete examples of the“universal”
program P such that given a natural number n it is undecidable(more precisely, r.e.-complete) whether
or not the2RM halts when started with the first instruction of P and both registers containing the
number n.

Remark 20. The problem remains undecidable when in the statement of Theorem 19 the phrase
a natural number nis replaced witha natural number n> N (where N is any a priori fixed natural
number).

Technically, we need to say that a run candidate starts with an ID〈n, n, 1〉 (for any naturaln > N,
whereN is some fixed bound), instead of saying that it starts with〈0, 0, 1〉, as we did before. Thus, for
everyn> N we must construct a formulaSn(r ) saying thatr ≡ c(〈n, n, 1〉, w) for somew.

The overall sentence expressing halting of the universal 2RM-programP on the numbern will have
the form

Hn ≡df ∃r (C1(r ) ∧ C′2(r ) ∧ C′3(r ) ∧ E(r ) ∧ Sn(r )), (49)

whereSn(r ) and slightly modified formulasC′2(r ), C′3(r ) are described below.
Note again that unlike the previouslyfixedsentence (4), now the sentencesHn are not going to be

fixed any more, and the set of all quantifier prefixes of sentencesHn is going to beinfinite (recall that
this is necessary by Proposition 3). Moreover, each such prefix will belong to∃∀∗.

21.1. Changes to the Rewrite System

Given a universal 2RM-programP (as guaranteed by Theorem 19; we may still assume thatP starts
with 1 :AL; 2 :SL, 3) we construct the corresponding rewrite system as before, with the following
modification.

Instead of the rule (↙1) we introduce the modified shortcut rule

[h(〈x′, y′, s0〉, 〈x, y, v〉), . . . ]
↙

[〈x′, y′, s0〉, 0, 〈x, y, v〉, 0, . . . ]
(↙′1)

This is needed in order to check correctness of the register manipulation on the first step; recall that the
computations now start with〈n, n, 1〉 and not with〈0, 0, 1〉 as before.

21.2. Saying that a Run Starts with〈n, n, 1〉
Suppose that the existentially quantified in (49) run candidater is structurally correct, with all correct

transitions, correct flow control, and terminating correctly, as before, but we do not insist that it starts
with 〈0, 0, 1〉.

The general idea to express that it starts with〈n, n, 1〉, i.e., has formr ≡ c(〈n, n, 1〉, w), is as follows.
We introduce new rewrite rules allowing for the rewrite chains of the form

rn→ · · · → r0→ r (50)

with the property thatr has formc(〈n, n, 1〉, w) if and only if rn → r0. Note that in contrast with the
previous development we now allow a correct run to be obtained as a result of a sequence of rewrite
steps. This causes a slight change in the definition of the formulasC2,3 below in this section.
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First, we augment the rewrite system with the following rules

s(c(〈x, y, s(z)〉, w)) → s(c(〈s(x), s(y), z〉, w)), (51)

s(c(〈0, 0, s(z)〉, w)) → s(c(〈s(z), s(z), 0〉, w)), (52)

s(c(〈s(z), s(z), 0〉, w)) → c(〈s(z), s(z), s(0)〉, w), (53)

where (53) provides for the last step in the chain (50), (51) allows for the firstn steps, and (52) shortcuts
rn→ r0. We add the outermosts in the above rules so as tolocalizepossible application of the rules in
theheadof a term.

Take it another way: the rule (51) stepwise pumps the third argument into the first two treating them
equally, while (52) does the same in just one step, when started from zeros.

Now for everyn > 0 and every termr ≡ c(〈sn(0), sn(0), s(0)〉, w) we have auniquechain (50),
where

ri ≡ s(c(〈sn−i (0), sn−i (0), si (0)〉, w)), (54)

and in this case, indeed,rn→ r0 in just one step by (52).
We use this property as acharacteristicone to expressstarting with〈n, n, 1〉 by the following formula

(where we useri → rk instead ofR(ri , rk)):

S′n(r ) ≡df ∀rn, . . . , r0(rn→ · · · → r0→ r ⇒ rn→ r0). (55)

We are almost done. However, this does not work yet, because whenk< n or j < n the termr =
c(〈sk(0), sj (0), s(0)〉, w) also satisfies (55). This is due to the fact that forn backward rewrite steps
from r0 in (50) one needs at leastk ≥ n and j ≥ n. Consequently, the premise of (55) is always false
and thus (55) is true forr = c(〈sk(0), sj (0), s(0)〉, w) wheneverk < n or j < n.

Otherwise, the formula (55) is true forr = c(〈sn(0), sn(0), s(0)〉, w), because the only possible sub-
stitutions for the universally quantified variables to satisfy the premise are given by (54) andrn→ r0 by
(52). Additionally, (55) perfectly excludes all termsr = c(〈sk(0), sj (0), s(0)〉, w) with k, j > n. This is
because for every such term there is exactly one way to satisfy the premise of (55), but in this case the
conclusion of (55) fails.

To exclude the termsr = c(〈sk(0), sj (0), s(0)〉, w) for k < n or j < n, not yet excluded by (55), we
introduce the following extra rules. Our intention is to get a fork whenever the backward applications
of the rule (51) while creating the chain (50) backwardly gets stuck (one or both arguments become
zero) before then-step chainrn→ · · · → r0 is created.

ss(c(〈0, s(y), z〉, w)) → s(c(〈0, s(y), z〉, w)), (56)

sss(c(〈0, s(y), z〉, w)) → s(c(〈0, s(y), z〉, w)), (57)

sss(c(〈0, s(y), z〉, w)) → ss(c(〈0, s(y), z〉, w)), (58)

and, symmetrically,

ss(c(〈s(x), 0, z〉, w)) → s(c(〈s(x), 0, z〉, w)), (59)

sss(c(〈s(x), 0, z〉, w)) → s(c(〈s(x), 0, z〉, w)), (60)

sss(c(〈s(x), 0, z〉, w)) → ss(c(〈s(x), 0, z〉, w)), (61)

and, to cover the case when both arguments are exhausted simultaneously,

ss(c(〈0, 0, z〉, w)) → s(c(〈0, 0, z〉, w)), (62)

sss(c(〈0, 0, z〉, w)) → s(c(〈0, 0, z〉, w)), (63)

sss(c(〈0, 0, z〉, w)) → ss(c(〈0, 0, z〉, w)). (64)
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Therefore, in the case whenr = c(〈sk(0), sj (0), s(0)〉, w) with k< n or j < n, either (56), (57), or
(59), (60), or (62), (63) backwardly apply making a fork at a distance< n from r0. This fork com-
mutes by (58), or (61), or (63), respectively, and the following formula is satisfied for somel =
min(k, j ) < n:

Ql (r ) ≡df ¬∃r ′′l , r ′l , rl , . . . , r0


r ′′l
↘
↓ rl

↗
r ′l

→ · · · → r0→ r

 . (65)

Note that this formula is equivalent to a universal formula (important for our purposes), but we leave it
in a more intuitive form.

Now for everyn > 1 consider the following formula (also equivalent to a universal formula)

S′′n(r ) ≡df

n−1∧
l=1

Ql (r ), (66)

which says that one can create a backward chain (50) of lengthn without getting forks.
Finally, the needed formulaSn(r ) expressing the property thatr starts with〈n, n, 1〉 may be written

as follows

Sn(r ) ≡df S′n(r ) ∧ S′′n(r ),

which is also equivalent to a universal formula, with the number of∀ growing withn.

21.3. Excludinga, b, d

We need to slightly correct the formulaC2(r ), see (20), saying thatr differs from a, b, d. This is
necessary because now, after introduction of the rule (53), a correct runcan be obtained as a result
of one step rewrite from another term. This was not possible before, and we usedC2(r ) ≡ ∀w0¬R(w0, r )
to exclude incorrect runsa, b, d; see Section 16.1. If we stay with thisC2(r ), it will exclude also the
correct runs, after introduction of the new rules in the previous section.

Still, with the new rules the incorrect runsa, b, d are easily excluded, because none of them satisfy
the following formula10

C′2(r ) ≡df ∀u, ua, ub, ud


u

↙ ↘
ua → ub

↘ ↙
ud

⇒ ¬


u

↙
r → ub

↘
ud



∧¬


u
↘

ua → ub

↙
r

 ∧ ¬
ua → ub

↘ ↙
r


 . (67)

Intuitively this formula says wheneveru, ua, ub, ud form a diamond diagram as in the premise, which
automatically means thatu is incorrect andua = a, ub = b, andud = d, thenr is neithera, norb, nor
c. This is exactly what we need.

10 We use graphic diagrams here as more intuitive; they can be easily transformed into a strict notation by replacing every
diagram in [ ] with a conjunction of atomsR(x, y) corresponding tox→ y.
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Note thatC′2(r ) is one universal quantifier more expensive thanC2(r ). Now, as the number of universal
quantifiers in the sentencesHn should necessarily (by Proposition 3) grow unboundedly, we can afford
being more wasteful than before.

21.4. Excludingε, sk(0), 〈sk(0), sl (0), sm(0)〉
We need to change the formulaC3(r ), because the analysis from Section 16.2 (w0 cannot be obtained

from anyw2 by two rewrite steps) does not work any more. Fortunately we can be more wasteful now
and use more universal quantifiers (namely, we need four instead of three).

C′3(r ) ≡df ∀u, ua, ub, ud


u

↙ ↘
ua → ub

↘ ↙
ud

⇒ (r → ud ⇒ (r → ua ∨ r → ub))

 . (68)

When the premise of this formula is satisfied, then necessarilyua = a, ub = b, ud = d. Clearly, each of
ε, sk(0), 〈sk(0), sl (0), sm(0)〉 reduces tod, but none reduces either toa, or tob. Thus, these terms violate
C′3(r ). On the other hand, the straightforward analysis shows that all correct runs do satisfyC′3(r ).

This finishes the construction. One can easily check that all the rules we introduced are linear and do
not damage the canonicity of the rewrite system. We thus proved Part B of the main theorem on strong
undecidability.

22. STRONG UNDECIDABILITY OF THE∃∀∀∀-THEORIES WHEN
FUNCTION SYMBOLS ARE ALLOWED

Recall that by definition of the theories of one step rewriting in Section 3 function symbols were
forbiddenin formulas. This added technical difficulties in expressing quite obvious things (very easy
in presence of function symbols) but has not prevented the theories of one step rewriting from being
undecidable. In fact, a more natural and liberal definition would have allowed for using function symbols
in formulas. In this case the complications we had to deal with in the previous sections disappear, and
we obtain the following strong undecidability result for theories of finite quantifier prefix∃∀∀∀ (without
function symbols this is impossible by Proposition 3).

THEOREM 21. If signature function symbols are allowed in formulas, then there exist finite linear
canonical systems with r.e.-complete sets of true prenex sentences of the theory of one step rewriting of
the form

∃r∀w1, w2, w3 8(r, w1, w2, w3),

where8(r, w1, w2, w3) is quantifier-free.

Remark 22. Since the theory of one step rewriting is complete (i.e., every sentence is either true or
false), the set of true prenex sentences of the theory of one step rewriting of the form∀r ∃w1, w2, w38

(r, w1, w2, w3), where8(r, w1, w2, w3) is quantifier-free, isco-r.e.-complete. All the arithmetic hierar-
chy may now be constructed in the usual manner.

Proof. The sentencesHn defined in (49) may now be defined in the∃∀∀∀-form

Hn ≡df ∃r
(

E(c(〈sn(0), sn(0), s(0)〉, r )) ∧
C1(c(〈sn(0), sn(0), s(0)〉, r ))

)
,

where E(r ), C1(r ) are∀∀∀-formulas as before. Note that the additional formulasC2, C3 excluding
degenerate cases are not needed any more, due to the ability to use functional symbols.
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23. CONCLUSIONS

In this paper by using reductions from the halting problems for Minsky’s two-register machines
(inputless and with input) we proved the following undecidability results for the theories of one step
rewriting.

(Weak undecidability). There is no general algorithm capable of deciding the∃∀∀∀-theory of
one step rewriting foreveryfinite linear canonical system (despite the fact that for each such system
this theory is decidable non-uniformly).

This improves over previously known results of the same kind due to the use of the simpler quantifier
prefix and simultaneously linear and canonical systems.

(Strong undecidability). There existfixedfinite linear canonical systems with undecidable (r.e.-
complete)∃∀∗-theories of one step rewriting. If function symbols are allowed in the formulas of the
theory, then even the finite prefix class∃∀∀∀ is undecidable. This improves previous results of the author
and gives the strongest currently known undecidability result (as per simplicity of the quantifier prefix
and restrictedness of the class of rewrite systems).

It remains open whether positive quantified theories of one step rewriting are decidable. Note in this
respect that ground reducibility expressed by a positive∀∗∃-sentence is decidable for the usual rewrite
systems [18], but is undecidable for conditional systems, both in the weak sense [19] and in the strong
sense [20].11

Another problem worth investigating is the non-uniform decidability of theories of one step rewriting
with finite prefixes. Given any finite term rewriting system R and a regular expressionQ over {∃, ∀}
describing a finite set of quantifier prefixes, theQ-theory of one step rewriting in R is always decidable
(Proposition 3). Develop decision algorithms and investigate inherent complexity.
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