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Building a Zoo

Which animals can share a pen?
e1: s � b, snakes eat birds, e2: b � i , birds eat insects,
e3: b � s, birds eat snakes, e4: i � i , insects eat insects,
e5: f � b, felines eat birds, e6: f � f , felines eat felines.

s

b if

e1e3
e2

e4

e5

e6

Groups with biggest impact
sem(F ) = {{s}} stg(F ) = {{b}}

snakes defend themselves birds have biggest impact

Christof Spanring Trumpet Reincarnations: Proofs from the Book



Abstract Argumentation

Argumentation Frameworks (AF) [Dung, 1995]
An AF F = (A,R) is composed of a set A of arguments and a
set R ⊆ A× A of directed conflicts.
Extensions E ⊆ A are specified by conditions such as
conflict-freeness and maximality, a semantics σ(F ) is a specific
collection of extensions.

Language in Use
For a, b ∈ A, (a, b) ∈ R we say that a attacks b and write
a � b.
For E ⊆ A, a ∈ A we have E � a (resp. a � E ) if there is
some e ∈ E such that e � a (resp. a � e).
For any set E ⊆ A we call E+ = E ∪ {a ∈ A | E � a} the
range of E .
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Argumentation Semantics

Extension-Based Semantics
For any given AF F = (A,R) and some set E ⊆ A we call E

conflict-free, iff there is no conflict between the arguments in E ;
admissible, iff E is conflict-free and defends itself against all
attacks from the outside;
a stage extension, iff E is conflict-free and maximal with
respect to range;
a semi-stable extension, iff E is admissible and maximal with
respect to range.

For any given AF we call a collection of some specific extensions a
semantics, e.g. for semi-stable semantics we write sem(F ) for the
collection of all semi-stable extensions (which is a set of sets).
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Intertranslatability

Definition
A Translation from some semantics σ to some semantics σ′ is a
function Tr mapping AFs to AFs, we call Tr

exact: σ(F ) = σ(Tr (F )),
in words: the original extensions and the new extensions are
exactly the same;
faithful: E ∈ σ(F ) iff ∃E ′, E ⊆ E ′, E ′ ∈ σ′(Tr (F )) and
|σ(F )| = |σ′(Tr (F ))|,
in words: we allow new arguments to expand the new
extensions.
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Sample Translations

s

exact Tr : stg ⇒ sem

b if

s

faithful Tr : sem ⇒ stg

bf i

h

stg(F ) = {{b}} sem(F ) = {{s}}
sem(Tr 1(F )) = {{b}} stg(Tr 2(F )) = {{s, h}}

If birds can eat feline then If humans eat every animal
stage becomes also semi-stable but snakes then semi-stable

becomes also stage.
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There is no Exact Translation for sem⇒ stg

E ∈ stg(F ) ⇐⇒ E ∈ cf (F )∧ 6 ∃B ∈ cf (F ) : E+ ( B+

E ∈ sem(F ) ⇐⇒ E ∈ adm(F )∧ 6 ∃B ∈ adm(F ) : E+ ( B+

Counterexample

a3

a2 a1

c3

c1c2

b1 b2

b3
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There is no Exact Translation for sem⇒ stg

Counterexample, Semi-Stable Extensions

a3

a2 a1

c3

c1c2

b1 b2

b3

sem(F ) = { {a2, b2}, {a1, b2, c1}, {a2, b1, c1}}
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There is no Exact Translation for sem⇒ stg

Counterexample, Semi-Stable Extensions

a3

a2 a1

c3

c1c2

b1 b2

b3

sem(F ) = { {a2, b2}, {a1, b2, c1}, {a2, b1, c1}}
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There is no Exact Translation for sem⇒ stg

Counterexample, Semi-Stable Extensions
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c3
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b1 b2
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sem(F ) = { {a2, b2}, {a1, b2, c1}, {a2, b1, c1}}
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There is no Exact Translation for sem⇒ stg

Counterexample, Semi-Stable Extensions
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c1c2

b1 b2
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sem(F ) = { {a2, b2}, {a1, b2, c1}, {a2, b1, c1}}
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There is no Exact Translation for sem⇒ stg

Counterexample, Semi-Stable Extensions

a3

a2 a1

c3

c1c2

b1 b2

b3

sem(F ) = { {a2, b2}, {a1, b2, c1}, {a2, b1, c1}}
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There is no Exact Translation for sem⇒ stg

a3

a2 a1

c3

c1c2

b1 b2

b3
sem(F ) = {{a2, b2},

{a1, b2, c1},
{a2, b1, c1}}

Proof
Assume there is an exact translation Tr : sem⇒ stg , then
stg(Tr (F )) = sem(F ).
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There is no Exact Translation for sem⇒ stg

a3

a2 a1

c3

c1c2

b1 b2

b3
sem(F ) = {{a2, b2},

{a1, b2, c1},
{a2, b1, c1}}

Proof
Assume there is an exact translation Tr : sem⇒ stg , then
stg(Tr (F )) = sem(F ).
It follows that c1 is not in conflict with neither a2 nor b2 in
Tr (F ).
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There is no Exact Translation for sem⇒ stg

a3

a2 a1

c3

c1c2

b1 b2

b3
sem(F ) = {{a2, b2},

{a1, b2, c1},
{a2, b1, c1}}

Proof
Assume there is an exact translation Tr : sem⇒ stg , then
stg(Tr (F )) = sem(F ).
It follows that c1 is not in conflict with neither a2 nor b2 in
Tr (F ).
Now {a2, b2, c1} is conflict-free in Tr (F ).
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There is no Exact Translation for sem⇒ stg

a3

a2 a1

c3

c1c2

b1 b2

b3
sem(F ) = {{a2, b2},

{a1, b2, c1},
{a2, b1, c1}}

Proof
Assume there is an exact translation Tr : sem⇒ stg , then
stg(Tr (F )) = sem(F ).
It follows that c1 is not in conflict with neither a2 nor b2 in
Tr (F ).
Now {a2, b2, c1} is conflict-free in Tr (F ).
But then {a2, b2}+Tr (F ) ( {a2, b2, c1}+Tr (F ), and thus {a2, b2}
can not be a stage extension in Tr (F ), a contradiction.
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There is no modular faithful translation for sem⇒ stg

Definition
A translation Tr is called modular iff from F = F1 ∪ F2 it follows
that also Tr (F ) = Tr (F1) ∪ Tr (F2), in words if we can build the
translated framework by translating arbitrary parts, which is useful
for distributed computing.

Observation
We observe that a translation is called modular iff it is fully defined
by translating the following frameworks:

(∅, ∅) ({a} , ∅)

a

({a} , {(a, a)})

a

({a, b} , {(a, b)})

a b
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There is no modular faithful translation for sem⇒ stg

Counterexample

O4

a1

a2

a3

a4

O3

a1

a2 a3
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There is no modular faithful translation for sem⇒ stg

Counterexample

Tr (a1, a2)

Tr (a2, a3)

Tr (a3, a4)

Tr (a4, a1)

O4

a1

a2

a3

a4

Tr (a1, a2)

Tr (a2, a3)

Tr (a3, a1)

O3

a1

a2 a3
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There is no modular faithful translation for sem⇒ stg

stg(Tr (O3)) = {E}
stg(Tr (O4)) = {E1, E2}

E ∩ AO3 = ∅

E1 ∩ AO4 = {a1, a3}

E2 ∩ AO4 = {a2, a4}

Tr (a1, a2)

Tr (a2, a3)

Tr (a3, a4)

Tr (a4, a1)

O4

a1

a2

a3

a4

Tr (a1, a2)

Tr (a2, a3)

Tr (a3, a1)

O3

a1

a2 a3

Proofsketch
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There is no modular faithful translation for sem⇒ stg

stg(Tr (O3)) = {E}
stg(Tr (O4)) = {E1, E2}

E ∩ AO3 = ∅

E1 ∩ AO4 = {a1, a3}

E2 ∩ AO4 = {a2, a4}

Tr (a1, a2)

Tr (a2, a3)

Tr (a3, a4)

Tr (a4, a1)

O4

a1

a2

a3

a4

Tr (a1, a2)

Tr (a2, a3)

Tr (a3, a1)

O3

a1

a2 a3

Proofsketch
We observe that E ∩ Tr (({ai , aj} , {(ai , aj)})) must be strictly
isomorphic for all attacks (ai , aj) ∈ O3. Simply because there
is only one extension of Tr (O3).
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There is no modular faithful translation for sem⇒ stg

stg(Tr (O3)) = {E}
stg(Tr (O4)) = {E1, E2}

E ∩ AO3 = ∅

E1 ∩ AO4 = {a1, a3}

E2 ∩ AO4 = {a2, a4}

Tr (a1, a2)

Tr (a2, a3)

Tr (a3, a4)

Tr (a4, a1)

O4

a1

a2

a3

a4

Tr (a1, a2)

Tr (a2, a3)

Tr (a3, a1)

O3

a1

a2 a3

Proofsketch
We observe that E ∩ Tr (({ai , aj} , {(ai , aj)})) must be strictly
isomorphic for all attacks (ai , aj) ∈ O3. Simply because there
is only one extension of Tr (O3).
But then we can move E in an isomorphic extending way to
Tr (O4) receiving an unwanted extension. Namely an extension
that does not contain any of a1, a2, a3, a4.
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