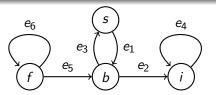
Trumpet Reincarnations: Proofs from the Book Intertranslatability Results for Abstract Argumentation Semantics

Christof Spanring


May 11, 2015

Christof Spanring Trumpet Reincarnations: Proofs from the Book

Which animals can share a pen?

 e_1 : $s \rightarrow b$, snakes eat birds, e_2 : $b \rightarrow i$, birds eat insects, e_3 : $b \rightarrow s$, birds eat snakes,

 e_4 : $i \rightarrow i$, insects eat insects, e_5 : $f \rightarrow b$, felines eat birds, e_6 : $f \rightarrow f$, felines eat felines.

Groups with biggest impact

 $stg(F) = \{\{b\}\}\$ $sem(F) = \{\{s\}\}\$ snakes defend themselves birds have biggest impact

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Argumentation Frameworks (AF) [Dung, 1995]

- An AF F = (A, R) is composed of a set A of arguments and a set R ⊆ A × A of directed conflicts.
- Extensions E ⊆ A are specified by conditions such as conflict-freeness and maximality, a semantics σ(F) is a specific collection of extensions.

Language in Use

- For a, b ∈ A, (a, b) ∈ R we say that a attacks b and write a → b.
- For E ⊆ A, a ∈ A we have E → a (resp. a → E) if there is some e ∈ E such that e → a (resp. a → e).
- For any set $E \subseteq A$ we call $E^+ = E \cup \{a \in A \mid E \rightarrow a\}$ the range of E.

э

Extension-Based Semantics

For any given AF F = (A, R) and some set $E \subseteq A$ we call E

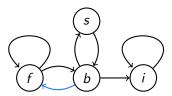
- conflict-free, iff there is no conflict between the arguments in E;
- admissible, iff *E* is conflict-free and defends itself against all attacks from the outside;
- a stage extension, iff *E* is conflict-free and maximal with respect to range;
- a semi-stable extension, iff *E* is admissible and maximal with respect to range.

For any given AF we call a collection of some specific extensions a semantics, e.g. for semi-stable semantics we write sem(F) for the collection of all semi-stable extensions (which is a set of sets).

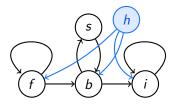
伺 ト イヨ ト イヨト

Definition

A Translation from some semantics σ to some semantics σ' is a function Tr mapping AFs to AFs, we call Tr


• exact:
$$\sigma(F) = \sigma(Tr(F))$$
,

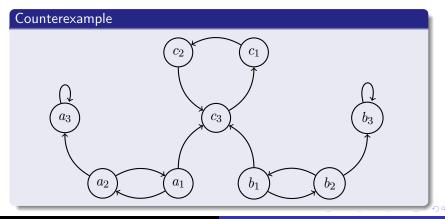
in words: the original extensions and the new extensions are exactly the same;


• faithful: $E \in \sigma(F)$ iff $\exists E', E \subseteq E', E' \in \sigma'(Tr(F))$ and $|\sigma(F)| = |\sigma'(Tr(F))|$, in words: we allow new arguments to expand the new extensions.

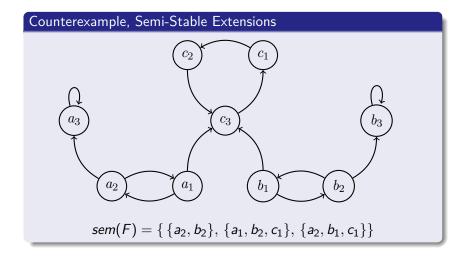
Sample Translations

exact $Tr: stg \Rightarrow sem$

 $stg(F) = \{\{b\}\}\$ $sem(Tr_1(F)) = \{\{b\}\}\$ faithful *Tr*: sem \Rightarrow stg

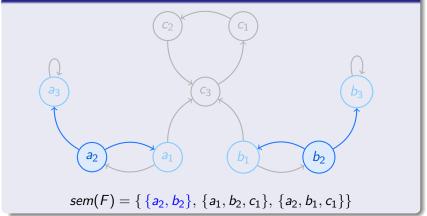


 $sem(F) = \{\{s\}\}\$ $stg(Tr_2(F)) = \{\{s, h\}\}\$

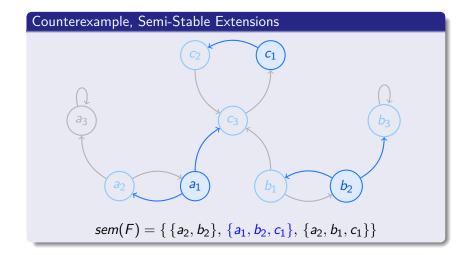

If birds can eat feline then stage becomes also semi-stable

If humans eat every animal but snakes then semi-stable becomes also stage.

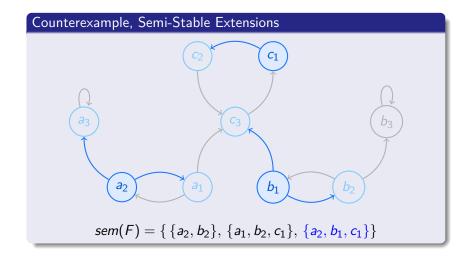
$$\begin{array}{lll} E \in stg(F) & \Longleftrightarrow & E \in cf(F) \land \not \supseteq B \in cf(F) : E^+ \subsetneq B^+ \\ E \in sem(F) & \Longleftrightarrow & E \in adm(F) \land \not \supseteq B \in adm(F) : E^+ \subsetneq B^+ \end{array}$$

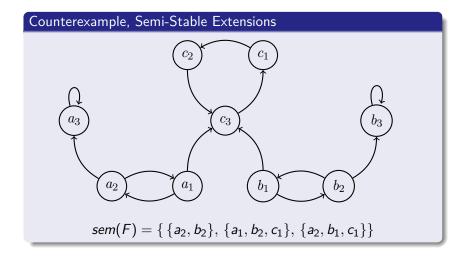


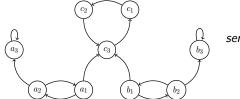
Christof Spanring Trumpet Reincarnations: Proofs from the Book



A B M A B M

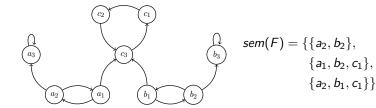



3.1


3 1 4

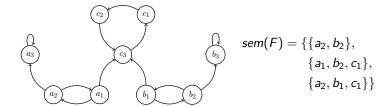
3 1 4

A B M A B M


$$sem(F) = \{\{a_2, b_2\}, \\ \{a_1, b_2, c_1\}, \\ \{a_2, b_1, c_1\}\}$$

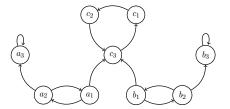
Proof

 Assume there is an exact translation *Tr*: sem ⇒ stg, then stg(*Tr*(*F*)) = sem(*F*).



★ ∃ ► < ∃ ►</p>

Proof


- Assume there is an exact translation *Tr*: sem ⇒ stg, then stg(*Tr*(*F*)) = sem(*F*).
- It follows that c₁ is not in conflict with neither a₂ nor b₂ in Tr(F).
- ۲
- ٥

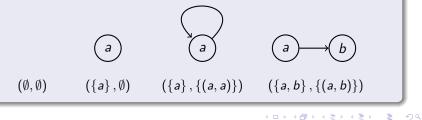
Proof

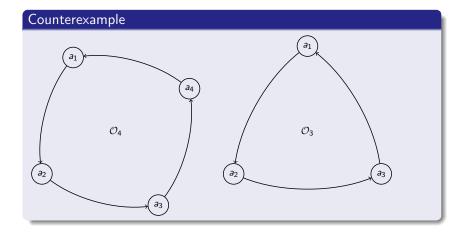
- Assume there is an exact translation *Tr*: sem ⇒ stg, then stg(*Tr*(*F*)) = sem(*F*).
- It follows that c_1 is not in conflict with neither a_2 nor b_2 in Tr(F).
- Now $\{a_2, b_2, c_1\}$ is conflict-free in Tr(F).

۲

$$sem(F) = \{\{a_2, b_2\}, \\ \{a_1, b_2, c_1\}, \\ \{a_2, b_1, c_1\}\}$$

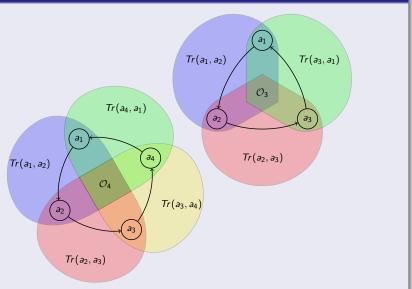
Proof

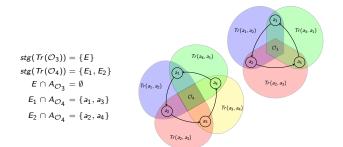

- Assume there is an exact translation *Tr*: sem ⇒ stg, then stg(*Tr*(*F*)) = sem(*F*).
- It follows that c_1 is not in conflict with neither a_2 nor b_2 in Tr(F).
- Now $\{a_2, b_2, c_1\}$ is conflict-free in Tr(F).
- But then $\{a_2, b_2\}^+_{Tr(F)} \subsetneq \{a_2, b_2, c_1\}^+_{Tr(F)}$, and thus $\{a_2, b_2\}$ can not be a stage extension in Tr(F), a contradiction.


Definition

A translation Tr is called *modular* iff from $F = F_1 \cup F_2$ it follows that also $Tr(F) = Tr(F_1) \cup Tr(F_2)$, in words if we can build the translated framework by translating arbitrary parts, which is useful for distributed computing.

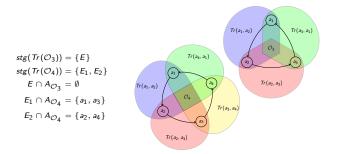
Observation


We observe that a translation is called modular iff it is fully defined by translating the following frameworks:

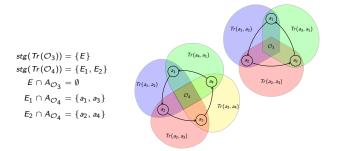


∃ ► < ∃ ►</p>

Counterexample



• • = • • = •


э

Proofsketch

We observe that E ∩ Tr (({a_i, a_j}, {(a_i, a_j)})) must be strictly isomorphic for all attacks (a_i, a_j) ∈ O₃. Simply because there is only one extension of Tr(O₃).

٥

Proofsketch

- We observe that E ∩ Tr (({a_i, a_j}, {(a_i, a_j)})) must be strictly isomorphic for all attacks (a_i, a_j) ∈ O₃. Simply because there is only one extension of Tr(O₃).
- But then we can move E in an isomorphic extending way to $Tr(\mathcal{O}_4)$ receiving an unwanted extension. Namely an extension that does not contain any of a_1, a_2, a_3, a_4 .

🔈 Dung, P. M. (1995).

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. *Artif. Intell.*, 77(2):321–358.

Dvořák, W. and Spanring, C. (2012).

Comparing the expressiveness of argumentation semantics.

In Verheij, B., Szeider, S., and Woltran, S., editors, *Proceedings of the 4th Conference on Computational Models of Argument (COMMA 2012)*, volume 245 of *Frontiers in Artificial Intelligence and Applications*, pages 261–272. IOS Press.

Dvořák, W. and Woltran, S. (2011).

On the intertranslatability of argumentation semantics.

J. Artif. Intell. Res. (JAIR), 41:445-475.

Spanring, C. (2013).

Intertranslatability results for abstract argumentation semantics.

Master's thesis, University of Vienna.