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Abstract
In this work we discuss examples of infinite abstract argumentation frameworks (AFs). Our
focus is mainly on existence of extensions of semantics such as semi-stable and stage semantics,
as opposed to the collapse where some argumentation frameworks prevent any extension. We
visit known examples from the literature and present novel variants. Finally, we also give insights
into extension existence conditions.
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1 Introduction

In everyday life we hardly ever think of dealing with actually infinite structures. Our time on
earth may be complicated but it appears to be strictly finite, we deal with finite space, finite
distances and finite cardinalities, i.e. natural numbers. Computer scientists in particular,
tend to prefer working with finite structures, e.g. algorithms are supposed to terminate in a
finite amount of time. Often enough infinity introduces odd behaviour and exceptions to the
languages we use, and grew to love. For instance consider some countable language of finite
words over some finite alphabet (e.g. English or C++). Think about effectively spelling an
infinite word now. However, infinite structures actually are important even in our everyday
life, see [16] for a fabulous overview in that matter.

In abstract argumentation, as introduced by Dung in his seminal paper [9], we break
down the art of reaching consensus to abstract arguments and attacks. Due to the practical
nature of argumentation most work in the literature restricts itself to the case of only finitely
many arguments and attacks. Nonetheless already Dung discussed some non-finite cases and
helpful definitions. For abstract argumentation in particular, several commonly used ways
of instantiation naturally produce infinite structures [1, 7], and thus on the abstract level
provide reason to investigate infinite frameworks.

We focus on range-based semantics and discuss conditions for existence of extensions,
respectively examples where there is no extension. Section 2 can be seen as an introduction
into argumentation, Section 3 presents known and novel examples, Section 4 closes with a
final discussion.
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Figure 1 A simple AF as discussed in Examples 2 and 4.

2 Abstract Argumentation

Abstract Argumentation was introduced by Dung in [9], motivated by philosophical works,
such as [14, 19], and further on used in various fields, ranging from legal reasoning [4], to
non-monotonic logic [6], artificial intelligence [5] and others.

I Definition 1. An argumentation framework (AF) is an ordered pair F = (A,R) where A
is an arbitrary set of arguments and R ⊆ A×A is called the attack relation. For (a, b) ∈ R
we say that a attacks b, for (a, b), (b, c) ∈ R we say that a defends c against b. Furthermore,
for S ⊆ A and a ∈ A we say that a attacks S (or S attacks a) if for some b ∈ S we have a
attacks b (or b attacks a). We extend this notion also for S, T ⊆ A accordingly. Finally, for
S ⊆ A we call S+ = S ∪ {a ∈ A | S attacks a} the range of S in F .

AFs frequently are visualized as a graphs where nodes reflect arguments and directed
edges reflect attacks between arguments.

I Example 2. Consider the AF F = (A,R) depicted in Figure 1. We have A = {x, y, z}
and R = {(x, y), (y, x), (y, z), (z, y), (z, z)}. Here the arguments could for instance refer to
sentences such as x:(everything is finite), y:(infinity is real), z:(reality is finite infinity).

Investigating some arbitrary AF we will consider sets of arguments, and investigate
whether these sets appear to be justified under some principles, also called argumentation
semantics. For a comprehensive introduction into argumentation semantics see [2].

I Definition 3. An argumentation semantics is a mapping from AFs to sets of arguments,
where for any AF F = (A,R) and semantics σ we have that if S ∈ σ(F ) then S ⊆ A. The
members of σ(F ) are then called σ-extensions of F . By stating properties a specific extension
has to fulfill, we will now define the semantics of interest for this work.

A set of arguments S ⊆ A is called conflict-free (cf ) if no member attacks any other
member, i.e. S ∈ cf (F ) if for all a, b ∈ S we have (a, b) 6∈ R. S is further called admissible
(ad) if it defends itself against attacks from the outside, i.e. S ∈ ad(F ) if S ∈ cf (F ) and for
any a ∈ A such that a attacks S we have that also S attacks a. An extension S ⊆ A is called

naive (na), S ∈ na(F ) if S ∈ cf (F ) and there is no S′ ∈ cf (F ) with S ( S′,
preferred (pr), S ∈ pr(F ) if S ∈ ad(F ) and there is no S′ ∈ ad(F ) with S ( S′,
stage (sg), S ∈ sg(F ) if S ∈ cf (F ) and there is no S′ ∈ cf (F ) with S+ ( S′+,
semi-stable (sm), S ∈ sm(F ) if S ∈ ad(F ) and there is no S′ ∈ ad(F ) with S+ ( S′+.

I Example 4. Consider the AF F from Example 2. We have cf (F ) = ad(F ) = {∅, {x}, {y}},
na(F ) = pr(F ) = {{x}, {y}}, sg(F ) = sm(F ) = {{y}}. Observe that these equality relations
do not hold for arbitrary AFs. However, for general AFs by definition we always have
sg ⊆ na ⊆ cf and sm ⊆ pr ⊆ ad ⊆ cf .

I Definition 5. An AF F = (A,R) is called finite if |F | := |A| <∞, it is called infinite if it is
not finite. Regardless of whether F is finite or infinite it is called finitary [9] if each argument
has only finitely many attackers, i.e. for all a ∈ A we have |{b ∈ A | (b, a) ∈ R}| <∞.
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ā2,1

b2,0

b2,1

b̄2,1

b2,2

b̄2,2

c2,0

c2,1

c̄2,1

c2,2

c̄2,2

c2,3

c̄2,3
··

·

Figure 2 Transfinitely many steps might be necessary when constructing sg or sm extensions, cf.
Example 6.

For finite AFs and the given semantics it might be that we sometimes receive only empty
extensions (σ(F ) = {∅}), but for finite AFs at least there will always be extensions (σ(F ) 6= ∅).
If there are infinitely many arguments similar statements are not quite as obvious.

3 The infinite realm

In [17] it was shown that existence of na or pr extensions for arbitrary AFs is equivalent to
the axiom of choice. For this work we assume that the axiom of choice holds and thus na and
pr extensions exist for arbitrary AFs. Thus further on we will focus on sg and sm semantics.
For range-maximality we have that [18, 8] discusses cases where no sg or sm extension exists,
and [20, 3] discuss and prove existence conditions, including finitariness. In the following we
will review examples and discuss variations. Let us first take a look at difficulties we might
run into with naive approaches to constructing range-maximal sets.

I Example 6 (Forest of Arguments). Consider the AF F = (A,R) depicted in Figure 2,
where A = {ai,0, ai,1, āi,1, bi,0, bi,1, b̄i,1, bi,2, b̄i,2, ci,0, ci,1, c̄i,1, ci,2, c̄i,2, ci,3, c̄i,3, · · · | i ∈ N}and
R = {(xi,j , xi,k) | j 6= k} ∪ {(xi,j , x̄i,k), (x̄i,k, x̄i,k), (x̄i,k, xi,j) | k ≤ j}.

As in this AF all attacks are symmetric we have coinciding extension-sets of cf and ad,
of na and pr , and of sg and sm. Consider the na set S0 = {xi,0 | x ∈ {a, b, c, · · · }, i ∈ N}.
If we replace a0,0 with a0,1 we receive S1 = (S0 ∪ {a0,1}) \ {a0,0}. We further construct
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Figure 3 A first example without semi-stable or stage extensions, cf. Example 7.
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Figure 4 Minimal AF without stage extensions, cf. Example 8.

S2 = (S1 ∪ {b0,1}) \ {b0,0}, S3 = (S2 ∪ {c0,1}) \ {c0,0} and so on. We receive an infinite chain
S0, S1, S2, · · · of range increasing pr extensions Si. In this case the limit T0 = {a ∈ A |
a occurs infinitely often in Si} is a pr extension with S+

i ⊆ T
+
0 for all Si. However still T0

is no sm extension as for instance for T1 = (T0 ∪ {b0,2) \ {b0,1} we have T+
0 ( T+

1 .
Thus just picking random sets with greater range can result in the need of transfinitely

many steps, brute-force induction might not work. Observe that the given AF is finitary,
as each connected component consists of only finitely many arguments. We leave it as an
exercise for the interested reader to come up with a valid sm extension.

3.1 Preliminary Examples
We now discuss examples first introduced into abstract argumentation in [18] (Examples 7
and 8). We will use the term collapse to refer to some semantics not providing any extension
for a given AF, i.e. if σ(F ) = ∅ we say that σ collapses for F . The intuition of this wording
is that existence of such AFs is problematic for modular approaches, i.e. if F1 = (A1, R1)
and F2 = (A2, R2) do not share any arguments and σ collapses for F1, then σ also collapses
for F = F1 ∪ F2 = (A1 ∪A2, R1 ∪R2) regardless of possible σ-extensions for F2.

I Example 7. Consider the AF F = (A,R) illustrated in Figure 3 with A = {pi, qi, ri | i ∈ N}
and R = {(pi, qi), (qi, pi), (pi, ri), (ri, ri) | i ∈ N} ∪ {(pi, pj), (pi, rj) | j < i}. We have as only
pr and na extensions S = {qi | i ∈ N} and for n ∈ N the sets Sn = (S ∪ {pn}) \ {qn}, where
for i < j we have S+ ( S+

i ( S+
j . So in effect for any pr or na extension there is another

one of larger range and thus sm and sg collapse.

I Example 8. Contained as a subframework in Example 7 is the AF F = (A,R), as illustrated
in Figure 4, with A = {pi | i ∈ N} and R = {(pi, pj) | j < i}. Here the only admissible set
is the empty set and hence pr(F ) = sm(F ) = {∅}. The singletons pi, on the other hand,
are conflict-free and even serve as naive sets. For stage semantics, however, given Si = {pi}
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Figure 5 Avoiding self-attacks, no semi-stable but stage extensions, cf. Example 11.

we have that for instance Si+1 has larger range and thus sg collapses. So for this AF sg
collapses but sm does not.

We now discuss minor modifications of Example 7 and restrictions such as Example 8.

I Example 9. Consider the AF F = (A,R) from Example 7 and a symmetric version thereof
F ′ = (A,R′) where R′ = R ∪ {(b, a) | (a, b) ∈ R}. For this AF sg and sm still collapse.
However, observe that the restriction to the pi, F ′

p = F ′|{pi|i∈N} now represents an AF where
each {pi} is a sg and sm extension.

I Example 10. Consider the AF F = (A,R) from Example 7. We now reverse the attacks
between the pi, F ′ = (A,R′), R′ = R \ {(pi, pj) | j < i} ∪ {(pj , pi) | j < i}. Again for this
AF still sm and sg collapse. In other words the direction of the attacks between the pi does
not matter. Observe that the restriction F ′

p = F ′|{pi|i∈N} now represents an AF where {p0}
serves as sole sg and sm extension.

3.2 Further advancements
In this section we present novel examples and ideas. Reconsider that AFs that do not provide
any stage or semi-stable extension necessarily are non-finitary, i.e. there are arguments that
are attacked by an infinite amount of other arguments. In this section we approach to reduce
the amount of non-finitary arguments in such AFs.

I Example 11. Consider the AF F = (A,R) from Example 10, which is Example 7 with
reversed attacks between the pi. We replace the self-attacks as illustrated in Figure 5,
F ′ = (A ∪ {s}, R′) with R′ = R \ {(ri, ri) | i ∈ N} ∪ {(s, s), (s, ri) | i ∈ N}.

For admissibility based semantics it does not matter whether some argument is self-
attacking, or attacked by some other argument it can not be defended against. Thus, we still
have sm collapsing for F ′. However, for instance {ri, qi | i ∈ N} serves as stage extension.

In all the previous examples there were pairwise attacks between all pi, i.e. an infinite
clique of arguments. In the following two examples we will approach a maximum of letting
go of the infinitary components.
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Figure 6 Avoiding infinite cliques, no semi-stable or stage extensions, cf. Example 12.

I Example 12. Consider the AF F = (A,R) from Example 7. We replace the attacks
between the pi with an infinite chain of admissibility as illustrated in Figure 6, F ′ = (A∪{si |
i ∈ N}, R′) where R′ = R \ {(pi, pj)} ∪ {(qi, si), (si, pi+1), (si, qi+1) | i ∈ N}.

Now observe that the only preferred extensions are Sq = {qi | i ∈ N} and for each
n ∈ N the sets Sn = {qi, pn, sj | i < n, j ≥ n}. Here pn defends sn, and accepting sn for
admissibility reasons means that we will accept each sj for j > n. Again for i < j we have
S+

q ( S+
i ( S+

j , and hence the collapse of semi-stable semantics.
For stage semantics, on the other hand, we need to consider more candidates, as also

Sp = {pi | i ∈ N} and any feasible combination between pi, qj and sk serve as naive extensions.
Now take some S ∈ na(F ) as given. If there is a maximal n ∈ N with pi 6∈ S for i > n, then
Sn+1 as defined above has larger range than S. Hence assume that for each n ∈ N there is
some i > n with pi ∈ S. We conclude that for some m ∈ N we have both sm 6∈ S+ and one
of pm+1 ∈ S or qm+1 ∈ S. We construct S′ = {qj | j ≤ m} ∪ (S ∩ {pi, qi, si | i > m}). By
construction S+ ( S′+, and hence stage semantics collapses for this AF as well.

Now that we have seen a vast amount of examples illustrating how close we can get
to finitariness while keeping the collapse for stage semantics, we take one step further for
semi-stable semantics.

I Example 13. Consider AF F = (A,R) illustrated in Figure 7, with A = {xi, yi, zi | i ∈ N}
and R = {(zi, zi), (zi, yi), (xi, yi), (xi, z0), (yi, xi), (yi, zi+1) | i ∈ N}. Observe that only z0
violates the finitary condition here.

We have as only preferred extensions the set Sx = {xi | i ∈ N} and for each n ∈ N
the sets Sn = {xi, yj | j ≤ n, i > n}. Again for i < j we have S+

x ( S+
i ( S+

j and hence
semi-stable semantics collapses. For stage semantics, however, the set Sy = {yi | i ∈ N} is
maximal in range, as only z0 6∈ S+

y , but attacking z0 means including xj for some j and thus
not attacking zj+1.

For all known examples of AFs where stage semantics is collapsing we have that there is
an infinite amount of arguments with infinitely many attackers. For semi-stable semantics
one such argument suffices. It appears that the collapse of stage semantics requires naive
range-increasing extension chains that gradually loose arguments but keep attacking them
and their range.

Further for all known sg-collapsing examples we have that removal of a finite amount of
arguments does not affect the collapse. Further insight from techniques used in [3] appears
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Figure 7 Some minimal AF illustrating the collapse of semi-stable semantics, cf. Example 13.

to suggest that for sg this property in general holds. In more detail we claim that for any sg
extension in any AF each member of a certain class of smaller AFs contains a corresponding
extension. It is neither purpose nor objective of this paper to give a proof of this rather
technical claim. However especially in the context of collapsing semantics and the idea of
reducing non-finitary arguments in mind we present the following conjecture.

I Conjecture 14. If stage semantics collapses, then there is an infinite amount of arguments
with infinitely many attackers.

As suggested technique for proving Conjecture 14 we suggest standard induction over the
number of (non-finitary) arguments. Reconsider Example 13 and stage semantics. Starting
with e.g. S0 and clutching up the chain of the Si we receive as limit the set Sy = {yi | i ∈ N},
which is a stage extension not having z0 in range. Anyhow, as z0 6∈ S+

y , but z0 ∈ Si for all
i ∈ N we have a shift in range in the limit step. This is merely a hint on why Conjecture 14
is hard to prove.

4 Discussion and Future Work

We approached listing and classifying known and novel examples of AFs where stage or
semi-stable semantics collapse. As the only known guarantee of existence for both semantics is
an AF being finitary (see [20, 3]), the main effort was to reduce the impact of non-finitariness
to a minimum. In Example 13 there is only one argument with infinitely many attackers. In
this sense of minimizing non-finitary arguments, we completed the picture of collapse for
semi-stable semantics, and conjectured completion for stage semantics.

Intertranslatability [12, 11] and signature [10] have shown to be valuable instruments for
the investigation and comparison of (finite) AFs and semantics. In regards of infinite AFs
the possible collapse of semi-stable and stage semantics is of interest on its own. On the one
hand stage and stable semantics might produce the same extension-sets. On the other hand
the collapse of semi-stable semantics immediately distinguishes it from preferred semantics,
as opposed to the finite case. As infinite AFs have not been studied in the intertranslatability
or signature context yet, also a comparison of the discussed and other semantics might still
yield interesting results.

Immanent future work is further classification of conditions under which presented
semantics might collapse or are ensured not to collapse. Graph-theoretical properties (other
than symmetry, cf. Example 9) might be of interest. However, it seems to be more useful
to investigate properties naturally induced by environments making use of argumentation.
Promising candidates are any forms of instantiated argumentation, e.g. [13, 15] or [7].
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