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Abstract
In this work we investigate infinite structures. We discuss the importance, meaning and tempta-
tion of the axiom of choice and equivalent formulations with respect to graph theory, abstract
argumentation and dialogue games. Emphasis is put on maximal independent sets in graph
theory as well as preferred semantics in abstract argumentation.
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1 Introduction

In everyday life we hardly ever think of dealing with actually infinite structures. Our time
on earth may be complicated but it appears to be strictly finite, we deal with finite space,
finite distances and finite numbers. Computer scientists in particular tend to prefer working
with finite structures, algorithms are supposed to terminate in a finite amount of time. Often
enough infinity introduces odd behaviour and exceptions to the languages we use, and grew
to love. Therefore in everyday life infinity seems to be ignored.

However infinite structures actually are important even in our everyday life, see [18] for a
fabulous overview in that matter. It might be pointed out that our concepts of economy and
wealth build upon the idea of possibly infinite growth. Leibniz and Newton independently
introduced infinitesimal calculus to a wider field of mathematics which nowadays plays major
roles in almost every application of calculus to everyday life. On a more abstract level the
failure of the halting problem is strongly related to a possible infinity. On the one hand it
might seem disappointing that we will never be able to list all the perfect algorithms, on the
other hand it comes as a relieve that we can always improve. Finally for security issues and
problems, often enough specific finite limits play a major role.

If for one reason or another we agree to consider arbitrarily infinite structures then at
some point we will also have to decide on what concept of infinity we take into account.
In this paper we work with Zermelo-Fraenkel Set Theory [7, 14] and focus on the most
controversial concept therein so far: The axiom of choice [13], the axiomatic existence of a
choice function selecting exactly one element from an arbitrary set of arbitrary sets.
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Gödel proved consistency of choice with axiomatic set theory in [11]. However a few years
later Cohen [6] showed that also its negation is relatively consistent. Which leaves us with
its independence and thus the painful choice of accepting it or not.

Focus of this paper is on abstract argumentation as introduced by Dung in his seminal
paper [8]. An abstract argumentation framework can be visualized as a graph where nodes
reflect arguments and directed edges reflect conflicts between arguments. An argumentation
semantics is a set of rules to declare sets of arguments as acceptable. Dialogue games are
often motivated by real-life arguments and thus naturally play an important role in the
motivation of some argumentation semantics.

In Section 2 we will introduce some basic concepts of set theory and infinity, and discuss
the axiom of choice, alternate forms and motivation. In Section 3 we will proceed to discuss
choice in the context of infinite graph theory [19]. It is known that the axiom of choice proves
equivalent to the existence of a spanning tree for connected graphs and also to the existence
of a maximal independent set [9]. We elaborate on the later result, and extend it to cover
also preferred semantics of abstract argumentation [8] in Section 4. Finally in Section 5 we
will introduce the axiom of determinacy, as used in dialogue games, we will discuss conflicts
between the introduced axioms, draw connections and point out difficulties.

2 Set Theory and the Axiom of Choice

In this section we present notions and conventions. As mathematical basis we choose Zermelo-
Fraenkel set theory [7, 14]. Observe that we make use of sets of sets, a differentiation between
sets and elements by the use of uppercase and lowercase letters is therefore not possible. We
will thus use the same lowercase letters to refer to sets as well as to elements.

I Definition 1 (ZF-Axioms). This is merely a selection of the axioms of interest. As an
extended introduction into the matter we can recommend [7].

Axiom schema of restricted comprehension (COMP): we can construct subsets of sets
obeying some appropriate formula.
Axiom of union (UN): The union over the elements of a set is a set.
Axiom schema of replacement (REP): The image of a set under any definable function
will also fall inside a set.
Axiom of power set (POW): For any set x, there is a set y containing every subset of x.

While there are about (depending on actual definitions) nine axioms in ZF we only gave
the above four, necessary here. Also some formalisms try to avoid one or the other of these
axioms, as the less axioms a theory needs the stronger it becomes.

Axiomatic set theory proves especially helpful when speaking about infinity, as concepts
that seem straightforward in the finite case often turn out to be of paradoxic nature in
the infinite case. Since [10] we know that incompleteness necessarily is an inherent feature
of reasonably strong formal systems, and thus independence [15] often enough the closest
statement to consistency we can actually achieve.

I Definition 2 (Choice). We present the one axiom in many costumes that gave rise to the
most objections, and is thus not a mandatory member of ZF. We choose two equivalent
definitions. In the literature ZF together with any of these is called ZFC, Zermelo-Fraenkel
set theory with choice.

Axiom of Choice (AC): For any set x of nonempty sets, there exists a choice function f
defined on x, i.e. ∀y ∈ x : f(y) ∈ y.
Zorn’s Lemma (ZL): In a partially ordered set where every chain has an upper bound
there is at least one maximal element.
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It is a well-known fact that in ZF we have that the extending assumptions (AC) and (ZL)
are equivalent, in that each implies the other. When dealing with discrete structures (ZL)
often comes in handy, (AC) on the other hand comes most often into play when there is no
intuitive understanding of underlying structures. However in ZF these two (and countless
others) can be used interchangeably. We would like to point out that countable choice (x
contains only countably many sets) and also finite choice (x contains only finite sets) are
substantially weaker than choice. An intuitive understanding of some structure might be
misleading as uncountable structures seem to lie beyond human comprehension.

3 Graph Theory

Graph Theory [3, 23] lies at the core of discrete mathematics, with a wide range of applications
such as shortest paths, and also with simple and clean definitions. Textbooks on algorithms
vastly refer to some graph like structure as their standard model.

I Definition 3 (Graph Theory). A graph G is a pair G = (V,E) where the set of vertices V
is an arbitrary set and the set of edges E is a collection of two-element subsets of V . For any
two vertices v1, v2 ∈ V with {v1, v2} ∈ E we say that v1 and v2 are adjacent. If on the other
hand {v1, v2} 6∈ E we say that v1 and v2 are independent. A set of vertices W ⊆ V is called
independent iff it does not contain any adjacent vertices, in other words iff all vertices in W
are pairwise independent. A set W ⊆ V is called a maximal independent set of vertices in G
iff it is independent and one of the following equivalent conditions holds:

W is adjacent to any vertices not being member of W , i.e. for v ∈ V \W there is some
w ∈W such that {v, w} ∈ E.
W is maximal, i.e. there is no independent set W ′ such that W (W ′.

3.1 Choice in Graph Theory
We now introduce the statement about the existence of maximal independent sets, which
will be shown to be another equivalent definition to (AC), the axiom of choice.1

I Definition 4 (Existence of Maximal Independent Sets (MIS)).
For any graph G there exists a maximal independent set MG.

I Theorem 5 ((AC) =⇒ (MIS)). Assuming Zermelo-Fraenkel Set Theory with Choice
(ZFC) every graph has a maximal independent set.

We take some graph G = (V,E) as given. Now the objective is to construct some maximal
independent set M ⊆ V such that
1. M is independent, i.e. there are no v, w ∈M such that {v, w} ∈ E and even
2. M is maximal independent, i.e. for any v ∈ V \M there is some m ∈ M such that
{v,m} ∈ E.

I Remark (Proof using (ZL)). We observe that sets of nodes represent a partially ordered
set using the subset relation. Now for chains of independent sets (Mi)i, where Mi ⊆ Mj

for i ≤ j, we have that
⋃
iMi is a natural upper bound for Mi. Using (ZL) we conclude

that there has to be a maximum, i.e. a maximal independent set in G. We still present the
following proof to highlight respective constructiveness.

1 As pointed out by an anonymous reviewer this result is not exactly novel. In fact the proof for
Theorem 2.4 in [9] follows the same ideas, although it uses an alternate form of (AC) and it provides
one not too many, i.e. x, y should be adjacent iff they are R-equivalent.
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Selecting Nodes/Elements: a choice function

Figure 1 Illustration of the construction used for (MIS) ⇒ (AC) as hinted to in Example 6.

I Remark (Cardinality and Ordinal Numbers). In axiomatic set theory ordinal numbers are an
extension of natural numbers, a tool for counting infinities. For a given set x we call the
smallest ordinal α for which there is a bijection between x and α its cardinality, |x| = α.
Observe that cardinality actually is strongly linked to (AC).

Proof. Observe that the empty set ∅ ⊆ V is an independent set of G. We use transfinite
recursion to construct a maximal independent set and thus start with M0 = ∅.

For any ordinal i either Mi is already maximal independent or there is some v ∈ V \Mi

with Mi ∪ {v} still being independent, we then use Mi+1 = Mi ∪ {v}.
For limit ordinals α we use Mα =

⋃
i∈αMi. Observe that for this step we might need the

choice function for the possibly infinitely many choices being necessary to receive Mα.
Since the Axiom of Choice holds and V is a set (using (AC) every set has a cardinality,

i.e. transfinite recursion has to come to an end) this process will eventually stop, i.e. there
is some M =

⋃
iMi. We have that M ⊆ V and therefore M is a set. Furthermore since

dependence is a finite condition M has to be independent. J

We can thus use any independent set and any node to start the construction of a maximal
independent set. But what about the other direction. Assume (MIS), does this tell us
something about (AC)?

I Example 6 (Graph-Theoretical Motivation). We interpret a set of sets as an independent
collection of cliques (subgraphs where any two vertices are adjacent). In other words for a
given set of sets X we have that any y ∈ Y ∈ X represents a distinct vertex and any two
vertices are adjacent iff they originate from the same set Y ∈ X. Now (MIS) delivers a
maximal independent set M where exactly one vertex for each clique and thus exactly one
member for each set is fixed. An illustration of the resulting graph can be found in Figure 1.

I Theorem 7 ((MIS) =⇒ (AC)). Assuming Zermelo-Fraenkel Set Theory without Choice
(ZF) and the existence of a maximal independent set for arbitrary graphs (MIS) we can derive
the axiom of choice (AC).

We take some set of nonempty sets X as given. Now the objective is to find a choice
function f : X →

⋃
X such that for any set Y ∈ X we have f(Y ) ∈ Y . Observe that in

mathematical terms a function actually is just a specific kind of relation and can thus be
defined as a set of pairs.
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Proof. We start by constructing a graph G = (V,E), where V consists of all the pairs (Y, y)
such that Y ∈ X and y ∈ Y , and adjacency in E is defined by belonging to the same set Y
and being different, i.e. {(Y1, y1), (Y2, y2)} ∈ E iff Y1 = Y2 and y1 6= y2.

The above steps in more detail:
We use (REP) to create a set X ′ such that Y ′ ∈ X ′ iff any y′ ∈ Y ′ is of the form (Y, y)
where Y ∈ X and y ∈ Y .
We use (UN) to create V =

⋃
Y ′.

We use (REP), (POW), (COMP) and (UN) to create E. I.e. E is constructed by replacing
each member of Y ′ with its size two suitable subsets {{x, y} |x 6= y ∈ Y ′} ⊆ P(Y ′) and
finally we collect all of those in one single set E by using (UN).

Now assuming (MIS) we conclude that G provides a maximal independent set M ⊆ V . By
construction M consists of pairs of the form (Y, y) where y ∈ Y ∈ X. It remains to show
that M already serves the purpose of being a choice function for X, mapping Y to y.

We observe that for v = (Y1, y1) and w = (Y2, y2) such that v 6= w ∈ V we have v being
adjacent to w iff Y1 = Y2 and v being independent from w iff Y1 6= Y2.

M is independent. For each Y ∈ X there is thus at most one y ∈ Y such that (Y, y) ∈M ,
since M is maximal independent there is furthermore at least and thus exactly one y ∈ Y
such that (Y, y) ∈M . J

I Remark (Directed Graphs). A directed graph is a pair D = (V,E), where V is an arbitrary
set of vertices but this time the set of edges E ⊆ V × V is a set of pairs. Observe that this
allows edges also from one node to itself. The definition of independent sets and proofs for
equivalence with axiom of choice carry on also for the directed case.

4 Abstract Argumentation

Abstract argumentation can be seen as applied directed graph theory. It was introduced by
Dung in [8] and motivated by philosophical works [12, 20] and non-monotonic logic [4]. In
this work we also want to highlight the interplay of argumentation and dialogue games [21].

I Definition 8. An argumentation framework (AF) is an ordered pair F = (A,R) where
A is an arbitrary set of arguments and R ⊆ A× A is called the attack or conflict relation.
For (a, b) ∈ R we also write a �R b and say that a attacks b in R. Furthermore for
(a, b), (b, c) ∈ R we say that a defends c against b in R.

If clear from context we might omit the referencing R or other redundant information. If
not otherwise stated we will also assume some AF F = (A,R) as given.

Furthermore for B ⊆ A and a ∈ A we say that a� B or B � a iff for some b ∈ B we
have a� b or b� a respectively. We extend this notion also for B,C ⊆ A accordingly.

I Remark (Directed Graphs and Argumentation Frameworks). Observe that so far abstract
argumentation frameworks and directed graphs are formally equivalent, except for names.
The main difference being one of intended meaning. In graph theory we think of nodes
being near to each other if they are connected by an edge, or even connected via a path of
several nodes and edges. Furthermore if two nodes do not cooperate we could reflect this
only indirectly by not having any connection between them. In argumentation theory on the
other hand nearness is expressed only indirectly via the notion of defense, while an attack
represents a conflict between two arguments.

What follows is the notion of semantics as used in abstract argumentation, an attempt
of solving the question of acceptability. Investigating some arbitrary AF we might want to

ICCSW’14
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consider some sets of arguments, for instance an argument line of defense. A good line of
defense of course is a line of attack. Truth in the argumentation sense is thus a notion of
acceptability. For a comprehensive introduction into argumentation semantics see [1].

I Definition 9. An argumentation semantics is a mapping from AFs to sets of arguments
where for any AF F = (A,R) and semantics σ we have σ(F ) ⊆ P(A). The members of σ(F )
are then called σ-extensions of F . The other way around we will define semantics by stating
properties an extension has to fulfill. We sometimes call an argument that is member of
every σ-extension sceptically accepted and an argument that is member of some σ-extension
credulously accepted.

A set of arguments E ⊆ A is called
conflict-free (cf ) or a conflict-free extension iff there is no conflict in E, (E ×E)∩R = ∅,
admissible (adm ) or an admissible extension iff it is cf and defends itself against any
attacks, E ∈ cf (F ) and for any a� E we also have E � a,
a preferred (prf ) extension iff it is maximal admissible, E ∈ adm(F ) and there is no
E′ ∈ adm(F ) with E ( E′.

4.1 Choice in Argumentation
The remainder of this section is a brief summary of implied (AC)-results for abstract
argumentation. The first part of this theorem has already been discussed in the literature
(see [8, 5]) although with use of (ZL). The second part however is a novel result and might
still come as a surprise to some. Preferred Extensions are one of the most basic concepts
in abstract argumentation and the necessary definitions seem to be rather intuitive and
straightforward. It is not obvious that this concept of discrete structures carries over to e.g.
existence of a base in the vector space of all continuous functions.

I Definition 10 (Existence of Preferred Extensions (PE)).
For any AF F there exists a preferred extension prf (F ) 6= ∅.

I Theorem 11 ((AC) ⇐⇒ (PE)). In ZF, the axiom of choice is equivalent to the existence
of preferred extensions in arbitrary AFs.

Proof Part 1, =⇒: Very similar to (MIS) we use transfinite recursion and observe that the
empty set is an admissible extension. If some admissible set is not maximal then there
is a bigger one. And finally for any chain of admissible sets E1 ( E2 ( . . . it holds that
E =

⋃
iEi also is an admissible set. Conflict is a finite condition and any argument a ∈ E

that is not defended by E was first introduced for some Ei and thus already Ei would not
have been able to defend a. J

Proof Part 2, ⇐=: Observe that the construction from the proof for Theorem 7 can be
seen as an argumentation framework by the natural transformation from undirected to
directed graphs, where for the graph G = (V,E) we use an AF F = (V,E′) where E′ =
{(a, b) | {a, b} ∈ E}. Then obviously X is a preferred extension of F iff X is a maximal
independent set of G iff X is a choice function for the originating set of sets. J

5 Discussion and Dialogue Games

When thinking about AFs we think about some mode of argumentation, with every argument
being some sort of statement and the conflict relation being naturally induced by the origin
of the arguments. We might acquire arguments (and implicit conflicts) from logical formulas



C. Spanring 97

or programs or from some natural language dialogue. A major source of motivation for
abstract argumentation also are dialogue games [16, 22].

From the very beginning of argumentation it seems that dialogue games played an
important motivational role, see [2, 8]. For a nice introduction into the use of dialogue
games to reason about credulous and skeptical preferred acceptability also see [21]. We
sometimes think of argumentation as an interpretation of dialogue games on an attack graph.
A move can be seen as the act of claiming an argument, where Opponent selects attacking
arguments and Proponent selects defending arguments. Observe that credulous acceptance
of an argument for preferred semantics can be implemented with the idea of Proponent
indefinitely being able to defend his selected arguments.

I Definition 12 (Dialogue Games). A dialogue game is a two-player game, with alternating
moves. In the case of perfect information we assume that consequences of any move are
known in advance by both players and that both players are aware of all possible states. A
winning strategy for one of the players is a function mapping game states into a set of moves
such that the resulting sequence indicates a win by the respective player. We call the player
to start the game Proponent and the player to answer first Opponent.

When digging into game theory and reflecting the axiom of choice one sooner or later
stumbles upon determinacy, the question of whether winning strategies do exist and whether
a game is decided before it actually started. For games on fixed AFs we would expect
determinacy and we would also hope for a one-to-one relation between abstract argumentation
and dialogue games. However sometimes what we hope for is not what we get.

I Example 13 (The number game S). Take some arbitrary set S ⊆ NN. We define a dialogue
game of length |N| where moves are natural numbers, i.e. possible game sequences are of the
form (n1, n2, · · · ). Proponent wins iff the played sequence is an element of S.

I Definition 14 (Axiom of Determinacy (AD)).
Every number game S is predetermined, i.e. one of the players has a winning strategy.

We now want to highlight a quite interesting result [17]: the axioms of choice and of
determinacy are incompatible, i.e. (AC) implies not (AD), in other words choice attacks
determinacy. The proof idea here is a classical diagonal argument. Now take into account the
above result that existence of a preferred extension and the axiom of choice are equivalent.
It follows that the idea of determinacy, allowing winning strategies in perfect information
games and existence of preferred extensions for arbitrary AFs are incompatible as well.

Once more we point out that most of computer science takes place in the finite or
countably infinite case. As (AD) implies countable choice the stated conflict in most cases
will not be of immediate relevance. From time to time we should just remind ourselves that
a vast generalization of techniques and results might not be possible. In this context the
really interesting question will be which axiom to trust in the arbitrarily infinite case. Do
we prefer every graph to contain a maximal clique and every argumentation framework to
contain at least one preferred extension, or do we prefer every dialogue game with perfect
information to be predetermined? What other results can we gain distinguishing these cases?
Are there for instance argumentation semantics that rely on existence of winning strategies?
For which AFs and which games can we find transformations/mappings such that winning
strategies and some semantics correlate?

Acknowledgements. We would like to thank the anonymous reviewers for their helpful and
constructive comments.

ICCSW’14



98 Axiom of Choice, Maximal Independent Sets, Argumentation and Dialogue Games

References
1 Pietro Baroni and Massimiliano Giacomin. Semantics of abstract argument systems. In Iyad

Rahwan and Guillermo Ricardo Simari, editors, Argumentation in Artificial Intelligence,
chapter 2, pages 25–44. Springer, 2009.

2 Trevor J. M. Bench-Capon, Sylvie Doutre, and Paul E. Dunne. Asking the right question:
forcing commitment in examination dialogues. In Philippe Besnard, Sylvie Doutre, and
Anthony Hunter, editors, Proceedings of the 2nd Conference on Computational Models of
Argument (COMMA 2008), volume 172, pages 49–60. IOS Press, 2008.

3 Béla Bollobás. Modern graph theory, volume 184. Springer, 1998.
4 Martin Caminada and Dov M. Gabbay. A logical account of formal argumentation. Studia

Logica, 93(2):109–145, 2009.
5 Martin Caminada and Bart Verheij. On the existence of semi-stable extensions. In Pro-

ceedings of the 22nd Benelux Conference on Artificial Intelligence, 2010.
6 Paul J Cohen. The independence of the continuum hypothesis. Proceedings of the National

Academy of Sciences of the United States of America, 50(6):1143, 1963.
7 Keith Devlin. The Joy of Sets: Fundamentals of Contemporary Set Theory. Undergraduate

Texts in Mathematics. Springer, Springer-Verlag 175 Fifth Avenue, New York, New York
10010, U.S.A., 2nd edition, 1994.

8 Phan Minh Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358,
1995.

9 Harvey M. Friedman. Invariant maximal cliques and incompleteness, 2011.
10 Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter

Systeme I. Monatsh. Math. Phys., 38(1):173–198, 1931.
11 Kurt Gödel and George William Brown. The consistency of the axiom of choice and of the

generalized continuum-hypothesis with the axioms of set theory. Princeton University Press,
1940.

12 Charles Leonard Hamblin. Fallacies. Methuen London, 1970.
13 Thomas Jech. About the axiom of choice. Handbook of mathematical logic, 90:345–370,

1977.
14 Thomas Jech. Set Theory. Springer, 3rd edition, 2006.
15 Kenneth Kunen. Set Theory An Introduction To Independence Proofs (Studies in Logic

and the Foundations of Mathematics). North Holland, 1983.
16 Peter McBurney and Simon Parsons. Dialogue games for agent argumentation. In Argu-

mentation in artificial intelligence, pages 261–280. Springer, 2009.
17 Jan Mycielski. On the axiom of determinacy. Fund. Math, 53:205–224II, 1964.
18 Rudy Rucker. Infinity and the Mind: The Science and Philosophy of the Infinite (Princeton

Science Library). Princeton University Press, 2004.
19 Lajos Soukup. Infinite combinatorics: from finite to infinite. In Horizons of combinatorics,

pages 189–213. Springer, 2008.
20 Stephen Toulmin. The Uses of Argument. Cambridge University Press, 2003.
21 Gerard AW Vreeswik and Henry Prakken. Credulous and sceptical argument games for

preferred semantics. In Logics in Artificial Intelligence, pages 239–253. Springer, 2000.
22 Douglas N Walton. Logical Dialogue-Games. University Press of America, Lanham, Mary-

land, 1984.
23 Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper

Saddle River, 2001.


	Introduction
	Set Theory and the Axiom of Choice
	Graph Theory
	Choice in Graph Theory

	Abstract Argumentation
	Choice in Argumentation

	Discussion and Dialogue Games

