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Abstract. Abstract argumentation plays an important role in many
advanced AI formalisms. It is thus vital to understand the strengths and
limits of the different semantics available. In this work, we contribute
to this line of research and investigate two recently proposed properties:
rejected arguments and implicit conflicts. Given an argumentation frame-
work F , the former refers to arguments in F which do not occur in any
extension of F ; the latter refers to pairs of arguments which do not occur
together in any extension of F despite not being linked in F ’s attack
relation. We consider four prominent semantics, viz. stable, preferred,
semi-stable and stage and show that their expressive power relies on both
properties. Among our results, we refute a recent conjecture by Baumann
et al. on implicit conflicts.

1 Introduction

In recent years argumentation has emerged to become one of the major fields of
research in Artificial Intelligence [15, 5]. In particular, Dung’s well-studied abstract
argumentation frameworks (AFs) [10] are a simple, yet powerful formalism
for modeling and deciding argumentation problems that are integral to many
advanced argumentation systems, see e.g. [6]. The evaluation of AFs in terms
of finding reasonable positions with respect to a given framework is defined via
so-called argumentation semantics (cf. [1] for a recent overview). Given an AF F ,
an argumentation semantics σ returns acceptable sets of arguments σ(F ), the
extensions of F . Several semantics have been introduced over the years [10, 17, 7,
2] with motivations ranging from the desired treatment of specific examples to
fulfilling certain abstract principles. One important line of research in abstract
argumentation is thus the systematic comparison of the different semantics
available. Hereby, the behaviour of extensions with respect to certain properties
[3] has been analyzed and the expressive power of semantics [13, 11, 14, 16] has
been studied by identifying the set of extension-sets achievable under certain
semantics. In this work we extend this analysis by investigating two fundamental
properties which we describe next: implicit conflicts and rejected arguments.

An attack between arguments represents an explicit conflict. By the nature
of most argumentation semantics, conflicts can also be implicit in the sense
that some arguments do not occur together in any extension, although there is
no attack between them. Given an AF, a natural question is, whether it can



be transformed to an equivalent (under a semantics at hand) AF where every
conflict is explicit (we will call these AFs analytic). In case the answer is no for a
particular semantics σ, we can ascribe additional (“hidden”) power to σ, since
σ-extensions can deliver sets of conflicts which cannot be represented solely by
attacks. A similar role can be played by rejected arguments, i.e. arguments that
do not occur in any σ-extension. Hereby, it is of interest to understand in which
ways rejected arguments contribute to the “strength” of a particular semantics. In
other words, assume an AF delivers a set of σ-extensions S, but some arguments
are not member of any extension of S. In case S cannot be expressed by an AF
which is given only over arguments from S, the rejected arguments (i.e. those in
the AF which do no appear in S) clearly contribute to the power of the semantics.

Not all semantics show the sort of “hidden power” we have outlined above.
Let us consider the naive semantics which is defined as maximal conflict-free
sets. Here, an argument is rejected if and only if it is self-attacking. In terms
of expressiveness, this means that the same outcome can be achieved by just
deleting the rejected arguments. Concerning implicit conflicts, two arguments
occur together in a naive extension if and only if there is no attack between them
and they are not self-attacking. Moreover, conflicts with self-attacking arguments
can easily be made explicit, therefore a translation to an AF (given over the
same arguments) with explicit conflicts only is always possible. In [4], the authors
conjectured that such a translation also exists in the case of stable semantics.

In the present paper, we refute this conjecture and show that for all σ among
stable, preferred, semi-stable and stage semantics, there exist AFs such that
there is no AF equivalent under σ that contains solely explicit conflicts. This
shows that under these semantics implicit conflicts allow to model scenarios that
cannot be achieved by explicit conflicts alone. In addition, we give conditions
guaranteeing translations to analytic AFs.

As a second main contribution, we study the role of rejected arguments by
comparing the expressiveness of stable, preferred, semi-stable and stage semantics
in the setting of compact AFs (i.e. AFs not containing rejected arguments).
We show that the range of extension-sets one can get under stage and semi-
stable semantics in this setting is strictly larger than under stable semantics, but
all other combinations of semantics have incomparable expressiveness, hereby
complementing recent results from [4].

2 Background

We assume a countably infinite domain A of arguments. An argumentation
framework (AF) is a pair F = (A,R), where A ⊆ A is non-empty and finite, and
R ⊆ A×A represents the attack relation. The collection of all AFs is given as
AFA. Given an AF F = (A,R), we write a �F b for (a, b) ∈ R, and S �F a
(resp. a�F S) if ∃s ∈ S such that s�F a (resp. a�F s). Symmetric attacks
{(a, b), (b, a)} ⊆ R are denoted by a, b ∈ R. For S ⊆ A, the range of S (wrt.
F ), denoted S+

F , is the set S ∪ {b | S �F b}. We drop the subscript F in �F

or S+
F if there is no ambiguity. For an AF F = (B,Q) we use AF and RF



to refer to B and Q, respectively. The composition of AFs F,G is defined as
F ∪G = (AF ∪AG, RF ∪RG).

Given F = (A,R), an argument a ∈ A is defended (in F ) by a set S ⊆ A if
for each b ∈ A, such that b�F a, also S �F b. A set T of arguments is defended
(in F ) by S if each a ∈ T is defended by S (in F ). A set S ⊆ A is conflict-free
(in F ), if there are no a, b ∈ S, such that (a, b) ∈ R. We denote the set of all
conflict-free sets in F as cf(F ). A set S ∈ cf(F ) is called admissible (in F ) if S
defends itself. We denote the set of admissible sets in F as adm(F ).

The semantics we focus on in this work are the naive, stable, preferred, stage,
and semi-stable extensions. Given F = (A,R) they are defined as:

– S ∈ naive(F ), if S ∈ cf(F ) and @T ∈ cf(F ) s.t. T ⊃ S;
– S ∈ stb(F ), if S ∈ cf(F ) and S+

F = A;
– S ∈ prf(F ), if S ∈ adm(F ) and @T ∈ adm(F ) s.t. T ⊃ S;
– S ∈ stage(F ), if S ∈ cf(F ) and @T ∈ cf(F ) s.t. T+

F ⊃ S
+
F ;

– S ∈ sem(F ), if S∈adm(F ) and @T ∈ adm(F ) s.t. T+
F ⊃ S

+
F .

3 Implicit Conflicts

The first property we investigate are implicit conflicts in an AF for a given
semantics. We differentiate between the concept of an attack (as a syntactical
element) and the concept of a conflict (with respect to the evaluation under a
given semantics). Based on this notion, we define three classes of AFs.

Definition 1. Given some AF F , a semantics σ and arguments a, b ∈ AF . If
for any S ∈ σ(F ), a ∈ S implies b 6∈ S, we say that a and b are in conflict in F
for σ. If (a, b) ∈ RF or (b, a) ∈ RF we say that the conflict between a and b is
explicit (in F ), otherwise the conflict is called implicit (in F ). An AF F is called
analytic for σ (or σ-analytic) if all conflicts of σ(F ) are explicit in F . F is called
quasi-analytic for σ if there is an AF G such that AF = AG, σ(F ) = σ(G) and G
is analytic for σ. Finally F is called non-analytic for σ if it is not quasi-analytic.

For S ⊆ 2A and some semantics σ we say that S is an analytic extension-set
for σ if there is some σ-analytic AF F with σ(F ) = S. If there is some AF F with
σ(F ) = S but any such AF is non-analytic for σ, then S is called a non-analytic
extension-set for σ.

Example 1. Let us now consider a set of natural language arguments that might
or might not be fictional. We have two researchers, one (A) specialising in applied
theory of social networking, the other (B) in uncountable graph theory. After
quite a few beers we have A claiming A1: “every single theory that is relevant
today was invented less than ten years ago”, somewhat unrelated to that B throws
in his inner truth B1: “my research can be justified by its purely theoretical beauty
alone”. Now A however objects with A2: “research must always be motivated by
practical applications”, to which B replies B2: “many nowadays widely applied
theories were considered useless in practice for decades or even centuries”.

Here naturally A2 attacks B1 and is in a mutual attack relationship with B2,
which additionally attacks A1. The resulting AF F is also depicted in Figure 1.
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Fig. 1. Quasi-analytic AF for {stb,prf,sem,stage}, cf. Example 1.

For σ ∈ {stb, prf, sem, stage} we have σ(F ) = {{A1, A2}, {B1, B2}}, and thus
there is an implicit conflict between A1 and B1, which means that F is not
analytic. Now, adding e.g. (B1, A1) we obtain an equivalent (under σ) AF F ′,
where all conflicts are explicit. Thus on a theoretical level F is quasi-analytic for
σ and {{A1, A2}, {B1, B2}} is an analytic extension-set.

However, observe that an interpretation of our set of arguments with an
explicit conflict between A1 and B1 might not be practically justified, as these
arguments seem rather unrelated with respect to their actual meaning.

Intuitively, an AF F is quasi-analytic if it can be translated to an AF G
which has the same arguments as F and where all conflicts are explicit. It was
conjectured in [4] that every AF containing implicit conflicts for stable semantics
is quasi-analytic, in the sense that all implicit conflicts can be made explicit
without adding further arguments. In line with the following definition, [4] claimed
that ECC holds for stable semantics.

Definition 2. We say that the Explicit Conflict Conjecture (ECC) holds for
semantics σ if every AF is quasi-analytic for σ.

While ECC holds for naive semantics as previously discussed, we will refute
ECC for all semantics in {stb, prf, sem, stage} by providing non-analytic AFs.

Example 2. Take into account the AF F = (A,R) depicted in Figure 2 which
features an implicit conflict for stable semantics between a and b:

A ={a, b, c} ∪ {ui, vi, xi, yi | i ∈ {1, 2}}
R ={ a, c , b, c } ∪ { αi, βi | i ∈ {1, 2}, α ∈ {x, y}, β ∈ {u, v}}

∪ {(ui, a), (a, xi), (vi, b), (b, yi), ui, vi | i ∈ {1, 2}}

In the following we refer to Mi1 = {vi},Mi2 = {ui},Mi3 = {xi, yi}. The
stable extensions of F can be separated into extensions containing c and others.
For i, j ∈ {1, 2, 3} the former are given as:

Sij = {c} ∪M1i ∪M2j

If on the other hand c 6∈ S one of a, b will be a member of S and thus:

S1 = {a, v1, v2} S3 = {a, v1, y2} S5 = {b, u1, x2}
S2 = {b, u1, u2} S4 = {a, y1, v2} S6 = {b, x1, u2}

Now clearly a and b share an implicit conflict, as one cannot be defended without
the other being attacked. However observe that all the other conflicts implicitly
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Fig. 2. Illustration of the AF from Example 2.

defined by the extension-set S = {S1, S2 . . . S6}∪{Sij | i, j ∈ {1, 2, 3}} are already
given explicitly in F . Furthermore the remaining (implicit or explicit) maximal
conflict-free sets Sa = {a, y1, y2} and Sb = {b, x1, x2} neither attack b nor a
respectively and thus are not stable extensions of F .

We now proceed by showing that Example 2 serves as a counter-example for
ECC for stable semantics.

Theorem 1. There are non-analytic AFs for stable semantics.

Proof. Consider the stable extension-set S from Example 2. We will show that
there is no AF F = (A,R) with A =

⋃
S, stb(F ) = S and (a, b) ∈ R. (Observe

that due to symmetry reasons we need not consider (b, a) ∈ R and (a, b) 6∈ R.)
For a contradiction take such an AF as given.

The extensions containing c ensure that there is no conflict between arguments
c and αi for α ∈ {x, u, v, y} and i ∈ {1, 2}. By definition any stable extension
S ∈ S attacks all outside arguments, S � α for α ∈ A \ S. Hence from S3 =
{a, v1, y2} being a stable extension we conclude a � c and {a, y2} � α2 for
α ∈ {x, u, v}. Similarly due to S4 = {a, y1, v2} we conclude that {a, y1} � α1

for α ∈ {x, u, v}. But now by assumption a � b and thus for Sa = {a, y1, y2}
we acquire full range, Sa � α for any α ∈ A \ Sa, i.e. Sa becomes an unwanted
stable extension. Therefore F is non-analytic. ut

We observe that in this counter-example for ECC for stable semantics the
stable extensions coincide with semi-stable, preferred and stage extensions. With
the following lemma this leads to some straight-forward generalizations.

Lemma 1. Take some AF F = (A,R) with prf(F ) = stb(F ) (resp. sem(F ) =
stb(F )) as given. If F is quasi-analytic for preferred (resp. semi-stable) semantics,
then it is also quasi-analytic for stable semantics.

Proof. By assumption for σ ∈ {prf, sem} there is a σ-analytic AF G = (A,RG)
such that σ(F ) = σ(G). We want to show that stb(G) = σ(G). Using the general
relation stb ⊆ σ, it remains to show that σ(G) ⊆ stb(G). To this end observe
that any attack of F still represents an explicit conflict in G. Now for S ∈ stb(F )
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Fig. 3. A non-analytic AF for prf as used in Example 3.

we know that for all a ∈ A \ S we have S �F a. Since by assumption also
S ∈ σ(F ) this immediately implies an explicit conflict between S and a in G.
Due to admissibility of σ-extensions we now have S �G a for all a ∈ A \ S.
Considering σ ⊆ cf hence S ∈ stb(G), resulting in σ(G) = stb(G) and thus G
being stb-analytic and also F being stb-quasi-analytic. ut

Using the AF F from Example 2 and the contraposition of Lemma 1 yields
the following result, refuting ECC for preferred and semi-stable semantics.

Corollary 1. There are non-analytic AFs for preferred and semi-stable seman-
tics, respectively.

The next example shows that some AFs proof to be non-analytic for pre-
ferred semantics while being quasi-analytic for all the other semantics under
consideration.

Example 3. Take into account the AF F as depicted in Figure 3. In the following
we show that F is non-analytic for preferred semantics. For a contradiction
we assume that there exists an analytic AF G with AF = AG and prf(F ) =
prf(G). We now investigate this hypothetical AF G. Observe that due to Sb =
{b1, b2, b3, u1, u2, u3} ∈ prf(F ) there is no conflict between ui and bj for i, j ∈
{1, 2, 3}. Due to A1 = {a2, a3, b1, x2, u1, u3} ∈ prf(F ) and symmetric versions
thereof there is no conflict between ui and aj for i, j ∈ {1, 2, 3}, and for i 6= j
there is no conflict between xi and uj . In other words in G the ui are in conflict
only with the xi for i ∈ {1, 2, 3}.

Furthermore we have an implicit conflict between a1 and x2, as accepting
a1 means rejecting b1 and thus x2 can be defended against x1 only by x3 which
however is attacked by x2. Due to Sa = {a1, a2, a3} ∈ prf(F ) being admissible
and G being analytic now Sa �G x2. But then Sa defends u2 and thus can not
be a preferred extension in G. For symmetry reasons it follows that the implicit
conflicts (ai, xj) of F cannot be made explicit for preferred semantics.

On the other hand for stable (or stage or semi-stable) semantics we observe
that Sa is not an extension. Although the overall conflicts remain the same, this
allows us to include conflicts (xj , ai) without any harm for the other extensions.
As there are no more implicit conflicts, thus for stable, semi-stable and stage
semantics this AF is quasi-analytic.
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Fig. 4. Analytic AF for stage semantics, cf. Example 2.

Observe that for the AF F in Example 3 allowing additional self-attacking
arguments would not alter the non-analytic nature of this example for preferred
semantics, as in the hypothetical analytic AF G we have that Sa naturally is in
conflict with any rejected argument and thus due to admissibility needs to attack
all of these rejected arguments. Thus any AF realizing the extension-set prf(F )
is non-analytic for preferred semantics.

As shown in [13, 11] the set of realizable extension-sets coincides for preferred
and semi-stable semantics. We recall admissibility of semi-stable semantics and
consider that any semi-stable extension is a preferred extension as well. As
discussed above, we only make use of necessary explicit conflicts, admissibility
and maximality of extensions. Thus also semi-stable semantics non-analytically
realizes the extension-set prf(F ). We collect our observations in the following
result which generalizes Corollary 1.

Theorem 2. There are non-analytic extension-sets for preferred and semi-stable
semantics, respectively.

We still have not answered the question whether stage semantics possesses
non-analytic AFs. The AF F from Example 2 does not work. In fact, the
analytic AF G depicted in Figure 4 has the same stage extensions as F , stb(F ) =
stage(F ) = stage(G). However, the following slightly more involved example
yields a non-analytic AF for stage (and stable) semantics.

Example 4. Take into account the AF F = (A,R) depicted in Figure 5 with:

A = {a, b, c} ∪ {ui, vi, xi, yi, ri, si | i ∈ {1, 2}}
R = { a, c , b, c } ∪ { ri, xi , si, yi | i ∈ {1, 2}}
∪ { αi, βi | i ∈ {1, 2}, α ∈ {x, y}, β ∈ {u, v}}
∪ {(ui, a), (a, xi), (vi, b), (b, yi), {ui, vi} | i ∈ {1, 2}}

In the following we will refer to Mi1 = {ri, vi, si},Mi2 = {ri, ui, si},Mi3 =
{ri, yi},Mi4 = {xi, si},Mi5 = {xi, yi}. The stable extensions of F can be sepa-
rated into extensions containing c and others. For i, j ∈ {1 . . . 5} the former are
given as:

Sij = {c} ∪M1i ∪M2j
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Fig. 5. Illustration of the AF from Example 4.

If, on the other hand, c 6∈ S, one of a, b will be a member of S:

S1 = {a, r1, r2, v1, v2, s1, s2} S4 = {a, r1, r2, y1, v2, s2}
S2 = {b, r1, r2, u1, u2, s1, s2} S5 = {b, r1, u1, x2, s1, s2}
S3 = {a, r1, r2, v1, y2, s1} S6 = {b, r2, x1, u2, s1, s2}

Similarly to Example 2 we have that a and b share an implicit conflict for
stable and thus stage semantics, as stb(F ) = stage(F ) = S = {S1 . . . S6} ∪ {Sij |
i, j ∈ {1 . . . 5}}. Again except for the implicit conflict between a and b all
conflicts in F already are explicit, and the only other maximal conflict-free sets
Sa = {a, r1, r2, y1, y2} and Sb = {b, x1, x2, s1, s2} are not stable extensions here.

Theorem 3. There are non-analytic AFs for stage semantics.

Proof. Consider the AF F = (A,R) from Example 4. We first show that F is
non-analytic for stable semantics by assuming a contradicting analytic AF of the
same arguments and extensions. We will then use this observation to proceed
similarly for stage semantics. For a hypothetical analytic AF G = (A,RG) with
stage(F ) = stage(G) we show that stb(G) 6= ∅, implying stb(G) = stage(G) and
thus G being analytic also for stable semantics. For symmetry reasons, wlog.
we assume (a, b) ∈ RG. In what follows, we use the same naming schema for
extensions as in Example 4.

For stable semantics we need a� c, since e.g. S1 has to be a stable extension.
From S33 ∈ stb(G), a � b by assumption and as observed a � c we conclude
Sa ∈ stb(G), as c ∈ S33 is allowed to attack only a and b. Thus if G is analytic
for stable semantics then stb(F ) 6= stb(G).

We now turn to stage semantics and have the following observations:

– Due to conflict-explicitness we need s1 � y1, since otherwise S+
55 ⊂ S+

45;
similarly we conclude si � yi and ri � xi;

– Furthermore necessarily c� a, since otherwise S+
11 ⊂ S+

a ;
– Now since ui and vi need to be in conflict we need c 6� b, because otherwise

at least one of Sij for i, j ∈ {1, 2} becomes a stable extension. By conflict-
implicitness hence b� c.



– From c� a, r1 � x1 and s1 � y1 we conclude u1 � v1 due to the danger
of S+

21 ⊂ S
+
11. Similarly u2 � v2.

– Since c � a furthermore we need xi � ri, xi � ui and xi � vi, due to
range comparison of Mi4 and Mi2.

– By previous range observations we have to assume b 6� a and ui 6� a, since
otherwise S2 becomes a stable extension.

– But now S+
2 ⊆ S

+
b , i.e. either we gain the unwanted extension Sb or we loose

the desired extension S2. ut

Thus we have shown that for each semantics there exist non-analytic AFs.
We now turn to positive results in the sense of making implicit conflicts explicit.
Recall that for quasi-analytic AFs we require the set of arguments to remain
unchanged in this context. This restriction indeed plays a vital role as shown
next for the case of stable semantics.

Proposition 1. For stable semantics and some AF F , if there is an implicit
conflict between a and b then there is an AF G with stb(G) = stb(F ), |AG| =
|AF |+ 1, RG ⊇ RF , (a, b) ∈ RG and each implicit conflict for stb in G is implicit
for stb in F as well.

Proof. Let F be an arbitrary AF with an implicit conflict between two arguments
a and b. We define R′ = RF ∪ {(a, b)}. Observe that F ′ = (A,R′) has the same
and probably more stable extensions as compared to F . By construction of F ′,
any unwanted stable extension of F ′ must contain a. We collect the arguments
of the unwanted extensions in Aa =

⋃
(stb(F ′) \ stb(F )). Now define the AF G

with AG = AF ∪ {x} and

RG = R′ ∪ {(x, x)} ∪ {(x, v) | v ∈ Aa} ∪ {(u, x) | u ∈ AF \Aa}.

Now for S ∈ stb(F ) due to stability either b ∈ S or for some c ∈ S we have
c�F b. As by assumption b and a do not occur in the same extensions for the
first case we know b�G x and thus S ∈ stb(G). As (a, b) is key to the unwanted
extensions we furthermore know that for S′ ∈ stb(F ′) \ stb(F ) we have S′ 6�F b
and thus c 6∈ S′, and subsequently S ∈ stb(G). For S′ ∈ stb(F ′) \ stb(F ) however
by construction we have S′ 6�G x and hence indeed stb(F ) = stb(G). ut

In contrast to preferred and semi-stable semantics (cf. Theorem 2) we observe
the following interesting difference for stable and stage semantics when abstaining
from a condition on the set of arguments.

Theorem 4. All extension-sets for stable and stage semantics are analytic.

Proof. Note that for any AF F there is an AF G such that stb(G) = stage(F ) [13]
and the fact that stb(F ) ⊆ stage(F ). Further as by definition any AF F is finite
we can have at most finitely many implicit conflicts for semantics σ ∈ {stb, stage},
each of which can be removed by repeated application of Proposition 1. ut

To conclude this section we investigate the question of conditions such that
ECC holds. We have mentioned in the introduction that every AF is quasi-analytic
for naive semantics. This insight can be generalized as follows.



Proposition 2. Let σ ∈ {stage, stb, sem, prf}. If for some AF F there exists an
AF G such that σ(F ) = naive(G), then F is quasi-analytic for σ.

Proof. Let F,G be AFs with σ(F ) = naive(G). We define the AF H with
AH = AF and RH = { a, b | (a, b) ∈ RG, a, b ∈

⋃
σ(F )} ∪ { a, x , (x, x) | a ∈

AF , x 6∈
⋃
σ(F )}. As this AF G provides the same conflicts as the AF F for

naive semantics, we deduce that also the maximal conflict-free sets are the same,
naive(H) = naive(G). By definition of H, for any S ∈ naive(H) and a ∈ AF \ S
we have S �H a and hence S is a stable extension of H. Finally observe that
stb(H) ⊆ σ(H) ⊆ naive(H) for any AF H, hence the result follows. ut

Another property which guarantees that ECC holds relies on the existence of
what we call “identifying arguments”. We say that an AF F is determined for
semantics σ if for every S ∈ σ(F ) there exists an a ∈ S such that for S′ ∈ σ(F )
we have that a ∈ S′ implies S′ = S. In other words, every σ-extension contains an
identifying argument in the sense that it does not occur in any other σ-extension.

Proposition 3. Let σ ∈ {stb, prf, sem, stage}. Then, any AF F determined for
σ is quasi-analytic for σ.

Proof. Consider an AF F determined for σ and for each S ∈ σ(F ) let aS be
some fixed identifying argument. Now take into account the sets I = {aS | S ∈
σ(F )} and RI = { aS , aS′ | S, S′ ∈ σ(F ), S 6= S′}, clearly σ(I,RI) = {{aS} |
S ∈ σ(F )}. Furthermore let O = AF \ I be the remaining arguments of F
and RO = { a, b | a, b ∈ O, a is in conflict with b in F}. We now define G as
AG = AF = O ∪ I and RG = I ∪ RO ∪ {(aS , b) | S ∈ σ(F ), b ∈ O}. Due to
directionality of the considered semantics we have that for each aS ∈ I there is
at least one T ∈ σ(G) with aS ∈ T , and as aS attacks all arguments b 6∈ S in G
even T = S, hence σ(F ) = σ(G). Finally observe that all conflicts in G for σ
(among I, among O or between I and O) are explicit by definition. ut

4 Rejected Arguments

In this section we analyze the impact of rejected arguments on the expressiveness
of semantics. We do so by determining the limits of AFs without rejected
arguments. We first recall some concepts introduced in [4].

Definition 3. An AF F is called compact under semantics σ if AF =
⋃
σ(F ).

A set S ⊆ 2A is called compactly realizable under σ if there is an AF F that is
compact under σ and realizes S, i.e. AF =

⋃
σ(F ) and σ(F ) = S. The c-signature

Σc
σ of σ is defined as set of all extension-sets compactly realizable under σ:

Σc
σ = {σ(F ) | F ∈ AFA, AF =

⋃
σ(F )}.

The following results put in relation the c-signatures of the semantics under
consideration.
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Fig. 6. A Venn-Diagram illustrating compact signatures of stable, semi-stable, stage
and preferred semantics.

Theorem 5. In accordance with Figure 6, it holds that:

– Σc
stb ⊆ Σc

σ for σ ∈ {stage, sem};
– Σc

prf \ (Σc
stb ∪Σc

sem ∪Σc
stage) 6= ∅;

– Σc
stage \ (Σc

stb ∪Σc
prf ∪Σc

sem) 6= ∅;
– Σc

stb \Σc
prf 6= ∅;

– (Σc
prf ∩Σc

sem) \ (Σc
stb ∪Σc

sem) 6= ∅;
– Σc

sem \ (Σc
stb ∪Σc

prf ∪Σc
stage) 6= ∅.

Proof. The first two statements were shown in [4]. In the following we provide,
as part of the proof, examples witnessing the remaining statements. The general
procedure looks as follows: Let σ1, . . . , σn and τ1, . . . , τm be semantics. To show

that
(⋂

1≤i≤nΣ
c
σi

)
\
(⋃

1≤j≤mΣ
c
τj

)
6= ∅ holds, we fix some extension-set S,

provide an AF F with σi(F ) = S for all i ∈ {1, . . . , n}, and show that S is not
compactly realizable under any of the semantics τ1, . . . , τm.

We begin by showing Σc
stage \ (Σc

stb ∪Σc
prf ∪Σc

sem) 6= ∅.

Example 5. Let ⊕ such that a ⊕ b = (a + b) mod 9. Consider the AF F =
({a0, . . . , a8}, {(ai, aj) | 0 ≤ i < 9, j = i ⊕ 1}), i.e. the directed cycle of nine
arguments. We get stage(F ) = {{ai, ai⊕2, ai⊕4, ai⊕6} | 0 ≤ i < 9}. Now assume
this extension-set is compactly realizable under stable, preferred or semi-stable
semantics, i.e. there is some G with σ(G) = stage(F ) (σ ∈ {stb, prf, sem}) and
AG = AF . Since ai and aj occur together in some stage extension of F for all
i, j with i ⊕ 1 6= j and i 6= j ⊕ 1, the only possible attacks in G are (ai, aj)
with i⊕ 1 = j or i = j ⊕ 1. Now let Si = {ai, ai⊕2, ai⊕4, ai⊕6}. In order to have
Si ∈ σ(G), ai has to attack ai⊕8 and ai⊕6 has to attack ai⊕7, first for Si to be
maximal and second to be defended. Hence RG = { ai, aj | 0 ≤ i < 9, j = i⊕ 1}
and σ(G) = stage(F ) ∪ {ai, ai⊕3, ai⊕6 | 0 ≤ i < 3}, showing that there is no
compact AF realizing stage(F ) under σ.

The following example witnesses that Σc
stb \Σc

prf 6= ∅.
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x1 x2 y1 y2 z1 z2
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Fig. 7. AF showing Σc
stb \Σc

prf 6= ∅.

Example 6. Consider stable semantics for the AF F depicted in Figure 7 and let
S = stb(F ) be its extension-set. Observe that neither {a, b, c} nor any superset is
a stable extension.

Assume there exists some AF G compactly realizing S under preferred seman-
tics, i.e. prf(G) = S and AG =

⋃
S. One can check that F is analytic for stable

semantics, i.e. for the AF G there can only be attacks between arguments being
linked in Figure 7.

Consider the extension S = {b, c, x1, s1} ∈ stb(F ). For S ∈ prf(G) there are
two possible reasons for a /∈ S. Either a is in conflict with S or a is not defended
by S. Assume a not to be defended by S. Then x2 � a and x1 6� x2 and
s1 6� x2. But then x2 /∈ S defends itself, and in G either S is not a maximal
admissible set or S is not an admissible set. It follows that a is in conflict with
S, the only possibility being a conflict with x1, hence x1 � a (a � x1 is not
sufficient since no other argument in S can defend x1 against a). Considering
{a, y1, z1, s2} ∈ stb(F ), only a can defend itself against x1, hence a� x1.

Similarly, one can justify the existence of symmetric attacks between a and
x2, b and yi, and c and zi (i ∈ {1, 2}). Therefore the set {a, b, c} is admissible in
G, hence there must be some S′ ∈ prf(G) with S′ ⊇ {a, b, c}, a contradiction to
S being realizable under the preferred semantics.

We proceed with an example showing that (Σc
prf ∩Σc

sem) \ (Σc
stb ∪Σc

stage) 6= ∅.

Example 7. Consider the AF F from Figure 8. We have S = sem(F ) = prf(F ) =
{{vi, yj , ri, sj} | 1 ≤ i, j ≤ 3} ∪ {{wi, xj , ti, sj} | 1 ≤ i, j ≤ 3} ∪ {{vi, wj , ri, tj} |
1 ≤ i, j ≤ 3}. For σ = stage or σ = stb, assume there is an AF G with
σ(G) = S and AG =

⋃
S. First note that for all i, j ∈ {1, 2, 3} each pair

{vi, sj}, {wi, sj}, {ri, sj}, {ti, sj} is contained in some element of S, hence there
cannot be an attack between any of these pairs in G. Now let S = {vi, wj , ri, tj}
for some i, j ∈ {1, . . . , 3}. We have S+

G ⊆ AG \ {s1, s2, s3}, hence S cannot be a
stable extension of G. Moreover, since G must be self-loop-free, S ∪ {sk} with
1 ≤ k ≤ 3 is conflict-free and obviously has a larger range than S. Therefore S
cannot be a stage extension in G.
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Fig. 8. AF showing (Σc
prf ∩Σc

sem) \ (Σc
stb ∪Σc

stage) 6= ∅.

For the final result we will make use of the following lemma, which might be
of interest on its own.

Lemma 2. Let σ, τ ∈ {stb, prf, sem, stage} and F,G be τ -compact AFs such that
τ(F ) /∈ Σc

σ and AF ∩AG = ∅. It holds that τ(F ∪G) /∈ Σc
σ.

Proof. Assume there is some compact AF H such that σ(H) = τ(F ∪G). Since
AF ∩ AG = ∅, it follows that τ(F ∪ G) = τ(F ) × τ(G). Due to compactness
every argument a ∈ AF occurs together with every argument b ∈ AG in some
τ -extension of F ∪G, meaning that H cannot contain any attack between a and b.
Hence σ(H) = σ(H1)×σ(H2) with AH1 = AF and AH2 = AG. Therefore it must
hold that σ(H1) = τ(F ), a contradiction to the assumption that τ(F ) /∈ Σc

σ. ut

Now we get Σc
sem \ (Σc

stb ∪ Σc
prf ∪ Σc

stage) 6= ∅ as follows: Let F = F1 ∪ F2

where F1 is the AF in Figure 7 and F2 is the AF in Figure 8 (observe that for
AF1
∩AF2

= ∅ some renaming is necessary). From sem(F1) /∈ Σc
prf (see Example 6)

we get sem(F ) = (sem(F1) × sem(F2)) /∈ Σc
prf by Lemma 2. In the same way

sem(F ) /∈ Σc
stb ∪Σc

stage follows from sem(F2) /∈ Σc
stb ∪Σc

stage (see Example 7).

This concludes the proof of Theorem 5. ut

Comparing the insights obtained from Theorem 5 with the results on expres-
siveness of semantics in [11] we observe notable differences depending on whether
rejected arguments are allowed or not. When allowing rejected arguments (as
utilised in [11]), the set of possible outcomes (i.e. the expressiveness) coincides
for preferred and semi-stable semantics. At the same time they are both strictly
more expressive than stable and stage semantics. As we have seen, this does not
carry over to the compact setting where, with the exception of Σc

stb ⊂ Σc
sem and

Σc
stb ⊂ Σc

stage, signatures become incomparable.
What remains an open issue is the existence of extension-sets lying in the

intersection between Σc
prf (resp. Σc

sem) and Σc
stage but outside of Σc

stb (see Venn-
diagram in Figure 6). We approach this issue in the remainder of this section.

Lemma 3. In self-attack free AFs every stage extension that is admissible is
also stable.



Proof. Take some AF F and some admissible stage extension S, S ∈ stage(F ),
S ∈ adm(F ) as given. Suppose there is some argument that is not in the range of
S, i.e. a ∈ AF \ S+

F . Then by admissibility a cannot attack S, by assumption S
does not attack a. Thus for a 6∈ S we in fact would need (a, a) ∈ RF . It follows
that there is no such argument a and thus S+

F = AF . Hence S ∈ stb(F ). ut

Proposition 4. Let σ ∈ {sem, prf} and F,G be compact AFs with stage(F ) =
σ(G). If stage(F ) /∈ Σc

stb then it holds that F 6= G and G is non-analytic.

Proof. Assume that F = G. Then stage(F ) = σ(F ). But then by Lemma 3
also σ(F ) = stb(F ), a contradiction to the assumption that stage(F ) /∈ Σc

stb.
Therefore F 6= G. For a contradiction, wlog. assume G to be analytic (for any
quasi-analytic H there is some corresponding analytic G). Observe that for stage
extensions S ∈ stage(F ) and any argument a ∈ A \ S it holds that either there is
an explicit conflict between S and a in F , or a is self-attacking in F , since S+

F

would not be maximal otherwise. With stage(F ) = σ(G) and G being analytic for
the admissibility based semantics σ this means that S �G a, i.e. S+

G = A. With
all σ-extensions becoming stb-extensions and stb ⊆ σ we derive a contradiction
to the initial statement: stb(G) = stage(F ). ut

Assume that for σ ∈ {prf, stage} there exists an extension-set S ∈ (Σc
σ ∩

Σc
stage) \Σc

stb, Proposition 4 says that S is compactly realized by different AFs
under σ and stage, i.e. stage(F ) = S and σ(G) = S with F 6= G. Moreover, G is
non-analytic. Recent investigations encourage us to conjecture the following:

Conjecture 1. It holds that (Σc
prf ∩Σc

stage) \Σc
stb = (Σc

sem ∩Σc
stage) \Σc

stb = ∅.

5 Discussion

In this paper, we have analyzed the roles the concepts of implicit conflicts
and rejected arguments play when it comes to comparing the expressiveness of
prominent argumentation semantics like preferred, stable, semi-stable and stage
semantics. Our first family of results show that implicit conflicts do play a role for
the power of the semantics under consideration, thus rejecting a recent conjecture
brought up in [4]. In the second part we have complemented results on compact
signatures. Our findings show that it is the rejected arguments which, for instance,
make semi-stable and preferred semantics equally powerful (as shown in [11]).
Disallowing rejected arguments has in turn different effects for these semantics.

The study of implicit conflicts and rejected arguments not only contributes to
the theoretical understanding of argumentation semantics. It can also give valuable
insights for systems implementing reasoning tasks of abstract argumentation (e.g.
[12, 9]). Knowledge about the existence of certain implicit conflicts can be used
by solvers to reduce the search-space of their algorithms.

The obvious open questions include the above conjecture as well as research
on the exact relations between AFs, semantics, rejected arguments and implicit
conflicts. For future work, we want to extend our investigations to further



extension-based semantics as well as to labelling-based semantics [8]. The latter
setting provides a richer and more fine-grained hierarchy of the concepts we
have used here. For instance, an argument might be rejected since it is always
out, always undecided, or never in. Finally, we want to study how our findings
contribute to the analysis of semantics in the context of instantiation [6].
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