
On the Expressive Power of Logics on Finite Models

Phokion G. Kolaitis∗

Computer Science Department
University of California, Santa Cruz

Santa Cruz, CA 95064, USA
kolaitis@cs.ucsc.edu

August 1, 2003

∗Partially supported by NSF Grant IIS-9907419

1

Contents

1 Introduction 3

2 Basic Concepts 3

3 Ehrenfeucht-Fräıssé Games for First-Order Logic 9

4 Computational Complexity 22

4.1 Complexity Classes . 22
4.2 The Complexity of Logic . 23

5 Ehrenfeucht-Fräıssé Games for Existential Second-Order Logic 26

6 Logics with Fixed-Point Operators 30

6.1 Operators and Fixed-Points . 30
6.2 Least Fixed-Point Logic . 33
6.3 Datalog and Datalog(6=) . 42
6.4 The Complementation Problem for LFP1 and a Normal Form for LFP 46
6.5 Partial Fixed-Point Logic . 49

7 Infinitary Logics with Finitely Many Variables 52

7.1 The Infinitary Logic Lω∞ω . 52
7.2 Pebble Games and Lω∞ω-Definability . 54
7.3 0-1 Laws for Lω∞ω . 61
7.4 Definability and Complexity of Lk∞ω-Equivalence . 63
7.5 Least Fixed-Point Logic vs. Partial Fixed-Point Logic on Finite Structures 67

8 Existential Infinitary Logics with Finitely Many Variables 69

8.1 The infinitary logics ∃Lk∞ω and ∃Lk∞ω(6=) . 69
8.2 Existential Pebble Games . 71
8.3 Descriptive Complexity of Fixed Subgraph Homeomorphism Queries 77

9 References 79

2

1 Introduction

Finite model theory can be succintly described as the study of logics on classes of finite structures.
In addition to first-order logic, various other logics have been explored in the context of finite model
theory, including fragments of second-order logic, logics with fixed-point operators, infinitary logics,
and logics with generalized quantifiers. Typical classes of finite structures on which these logics
have been investigated are the class of all finite graphs, the class of all finite ordered graphs, the
class of all finite planar graphs, the class of all finite strings, and the class of all finite trees.

Finite model theory provides a conceptual and methodological framework for exploring the
connections between logic and several key areas of computer science, such as database theory,
computational complexity, and computer-aided verification. This is perhaps the primary motivation
for developing finite model theory. As its development progressed, however, it became clear that
finite model theory is an area of research that deserves to be studied in its own right. While the
traditional focus of mathematical logic has been on fixed infinite structures or on classes of finite
and infinite structures, it turned out that new phenomena emerge, when one focuses on classes of
finite structures. These phenomena give finite model theory its own distinctive character and set
it apart from other areas of mathematical logic.

There are three main areas of reseach in finite model theory: the study of the expressive power of
logics on finite structures; the study of the connections between logic and computational complexity,
an area which is also known as descriptive complexity; and the study of the connections between
logic and asymptotic probabilities. The first of these three areas is the focus of the present chapter.

2 Basic Concepts

A vocabulary is a finite set σ = {R1, . . . , Rm, c1, . . . , cs} of relation symbols of specified arities and
constant symbols. A σ-structure is a tuple A = (A,RA

1 , . . . , R
A
m, c

A
1 , . . . , c

A
s) such that A is a a non-

empty set, called the universe of A, each RA
i is a relations on A such that arity(RA

i) = arity(Ri),
1 ≤ i ≤ m, and each cAj is a distinguished element of A, 1 ≤ j ≤ s. A finite σ-structure is a
σ-structure A whose universe A is a finite set. If the vocabulary is understood from the context,
we simply use the terms “structure” and “finite structure”. Also, whenever no confusion arises and
in order to simplify the notation, we will use the same symbol for both a relation (constant) symbol
and the relation (distinguished element) interpreting it on a structure.

Let A = (A,RA
1 , . . . , R

A
m, c

A
1 , . . . , c

A
s) and B = (B,RB

1 , . . . , R
B
m, c

B
1 , . . . , c

B
s) be two σ-structures.

An isomorphism between A to B is a mapping h : A→ B that satisfies the following conditions:

• h is a one-to-one and onto function.

• For every constant symbol cj , 1 ≤ j ≤ s, we have that h(cAj) = cBj .

• For every relation symbol Ri, 1 ≤ i ≤ m, of arity t and for every t-tuple (a1, . . . , at) from A,
we have that RA

i (a1, . . . , at) if and only if RB
i (h(a1), . . . , h(at)).

A structure B = (B,RB
1 , . . . , R

B
m, c

B
1 , . . . , c

B
s) is a substructure of A if B ⊆ A, each RB

i is the
restriction of RB

i to B (which means that RB
i = RA

i ∩ Bt, where t is the arity of Ri), 1 ≤ i ≤ m,
and cBj = cAj , 1 ≤ j ≤ s. If A is a σ-structure and D is a subset of A, then the substructure of A

generated by D is the structure A � D having the set D ∪ {cA1 , . . . , c
A
s } as its universe and having

the restrictions of the relations RA
i on D ∪ {cA1 , . . . , c

A
s } as its relations.

3

A partial isomorphism from A to B is an isomorphism from a substructure of A to a substructure
of B. From the preceding definitions, it follows that every partial isomorphism from A to B must
map each constant cAj of A to the constant cBj , 1 ≤ j ≤ s.

The following examples illustrate some of these concepts. A graph is a structure G = (V,E),
where E is a binary relation on V . The subgraph of G induced by a set D of nodes is precisely
the substructure of G generated by D. A graph with two distinguished nodes s and t is a structure
G = (V,E, s, t). An ordered graph is a structure G = (V,E,≤), where E is a binary relation on V
and ≤ is a linear order on V . A k-colored graph is a structure G = (V,E, P1, . . . , Pk), where E is a
binary relation on V and each Pi is a unary relation on V consisting of all nodes of color i, 1 ≤ i ≤ k.
Finally, a binary string of length n can be thought of as a structure S = ({1, 2, . . . , n}, P), where
P is a unary relation on {1, . . . , n} such that i ∈ P if and only if the i-th bit of the string is equal
to 1, where 1 ≤ i ≤ n. For instance, the string 10001 can be identified with the finite structure
({1, 2, 3, 4, 5}, {1, 5}).

The concept of a query , which originated in database theory, is one of the most fundamental
concepts in finite model theory. We now give the precise definition and present several examples.

Definition 2.1: Let σ be a vocabulary and k a positive integer.

• A class of σ-structures is a collection C of σ-structures that is closed under isomorphisms,
which means that if A ∈ C and B is a structure that is isomorphic to A, then B ∈ C.

• A k-ary query on a class C is a mapping Q with domain C and such that

– Q(A) is a k-ary relation on A, for A ∈ C;

– Q is preserved under isomorphisms, which means that if h : A → B is an isomorphism,
then Q(B) = h(Q(A)).

• A Boolean query on a class C is a mapping Q : C → {0, 1} that is preserved under isomor-
phisms i.e., if A is isomorphic to B, then Q(A) = Q(B). Consequently, Q can be identified
with the subclass C ′ = {A ∈ C : Q(A) = 1} of C.

Example 2.2: Consider the following queries on graphs G = (V,E).

• The Transitive Closure query TC is the binary query such that

TC(G) = {(a, b) ∈ V 2: there is a path from a to b}.

• The 2-Disjoint Paths query is the 4-ary query 2DP such that

2DP (G) = {(a, b, c, d) ∈ V 4: there are two node-disjoint paths path from a to b and from c to d}.

• The Articulation Point query is the unary query AP such that

AP (G) = {a ∈ V : a is an articulation point of G}.

• The Even Cardinality query EV EN is the Boolean query such that

EV EN(G) =

{

1 if G has an even number of nodes
0 otherwise.

4

• The Connectivity query CN is the Boolean query such that

CN(G) =

{

1 if G is connected
0 otherwise.

• The Boolean queries Eulerian, Acyclicity, k-Colorability, and Hamiltonian Path
are defined in an analogous way.

Queries are mathematical objects that formalize the concept of a “property” of structures and
elements of structures. This formalization makes it possible to define and study what it means for
such a “property” to be expressible in some logic. In other words, we will use logic as a specification
language of “properties” of structures and elements of structures.

Definition 2.3: Let L be a logic and C a class of σ-structures

• A k-ary query Q on C is L-definable if there is an L-formula ϕ(x1, . . . , xk) with x1, . . . , xk as
free variables and such that for every A ∈ C

Q(A) = {(a1, . . . , ak) ∈ Ak : A |= ϕ(a1, . . . , ak)}.

• A Boolean query Q on C is L-definable if there is an L-sentence ψ such that for every A ∈ C

Q(A) = 1 ⇐⇒ A |= ψ.

• L(C) denotes the collection of all L-definable queries on C.

Two remarks are in order now. First, it should be emphasized that the concept of an L-definable
query Q on a class C of σ-structures is a uniform definability concept. This means the same L-
formula serves as a specification of the query on every structure in C, which is entirely analogous to
the requirement that an algorithm for a problem must produce the correct answer on every instance
of the problem. Along these lines, note that if a query Q is L-definable on C and C ′ is a subclass of
C, then the restriction of Q on C ′ is also L-definable using the formula that defines it on C. Second,
the concept of an L-definable query on a class C makes sense for an arbitrary class of σ-structures
that may very well consist of both finite and infinite structures, or only infinite structures, or only
finite structures. In particular, this concept contains the following important cases as special cases:

1. C is the class S of all (finite and infinite) σ-structures.

This is the primary case of uniform definability studied in classical model theory.

2. C consists of a single infinite structure A (and all its isomorphic copies).

This is the case of local definability on a fixed structure. The two primary examples are the
structure N = (N,+,×) of arithmetic and the structure R = (R,+,×) of analysis, where N
is the set of all natural numbers and R is the set of all real numbers.

3. C is the class F of finite σ-structures.

This is the primary case of uniform definability studied in finite model theory.

5

We now present several examples of queries that are definable in first-order logic or in fragments
of second-order logic. We assume familiarity with the syntax and the semantics of first-order logic
and second-order logic (see [End72] for the precise definitions). Informally, first-order logic FO over
a vocabulary σ has (first-order) variables that are interpreted by elements of the structure at hand,
has atomic formulas of the form s1 = s2 and Ri(s1, . . . , st), where Ri is a relation symbol and each
sj is a variable or a constant symbol, has the standard propositional connectives ¬, ∨, ∧, →, and,
finally, has first-order quantifiers ∀x and ∃x, for each variable x, that range over elements of the
universe of the structure at hand.

Example 2.4: The following queries are first-order definable on the class of all (finite or infinite)
graphs.

• The Boolean query “the graph G has an isolated node” is definable by the first-order formula

(∃x)(∀y)(¬E(x, y) ∧ ¬E(y, x)).

• The unary query “the node x has at least two distinct neighbors” is definable by the first-order
formula:

(∃y)(∃z)(¬(y = z) ∧E(x, y) ∧E(x, z)).

Similarly, for each fixed k, the Boolean query “G is a k-regular graph” (i.e., each node has
exactly k neighbors) is first-order definable.

• The binary query “there is a path of length 3 from x to y” is definable by the first-order
formula

(∃z1)(∃z2)(E(x, z1) ∧E(z1, z2) ∧E(z2, y)).

The syntax of second-order logic SO is obtained by augmenting the syntax of first-order logic
with second-order variables X,Y, . . . and second-order quantifiers ∃X,∃Y, . . . ,∀X,∀Y, . . . that are
interpreted by relations of fixed arities over the universe of the structure at hand. Existential second-
order logic ESO and universal second-order logic USO are the syntactically simplest fragments of
second-order logic. Specifically, ESO consists of all second-order formulas of the form

(∃S1) · · · (∃Sm)ϕ(x, S1, . . . , Sm),

where each Si is a second-order variable, 1 ≤ i ≤ m, and ϕ(x, S1, . . . , Sm) is a first-order formula.
In a dual manner, USO consists of all second-order formulas of the form

(∀S1) · · · (∀Sm)ϕ(x, S1, . . . , Sm),

where each Si is a second-order variable, 1 ≤ i ≤ m, and ϕ(x, S1, . . . , Sm) is a first-order for-
mula. Monadic Second-Order Logic MSO is the fragment of second-order logic consisting of all
second-order formulas in which every second-order quantifier is applied to a unary second-order
variable, which means that all second-order quantifiers in the formula range over subsets of the
universes of structures. Existential monadic second-order logic consists of all formulas that are
both ESO-formulas and monadic second-order formulas. Similarly, universal monadic second-order
logic consists of all formulas that are both USO-formulas and monadic second-order formulas.

6

Example 2.5: The following queries are definable in existential monadic second-order logic on the
class of all (finite or infinite) graphs:

1. The Boolean query Disconnectivity is definable by the formula

(∃S)((∃x)S(x) ∧ (∃y)¬S(y) ∧ (∀z)(∀w)(S(z) ∧ ¬S(w) → ¬E(z, w))).

Intutively, this sentence asserts that there are two disjoint, non-empty sets of nodes with no
edge between them.

2. The Boolean query 2-Colorability is definable by the formula

(∃R)(∀x)(∀y)(E(x, y) → (R(x) ↔ ¬R(y))).

Intutively, the two colors are encoded by R and the complement of R.

3. For every k ≥ 3, the Boolean query k-Colorability is definable by a formula of existential
monadic second-order logic with k− 1 existential monadic quantifiers. The formula is similar
to the one above used to define 2-Colorability: each of the k − 1 monadic second order
variables encodes a different color, while the k-th color is encoded by the complement of the
union of these k − 1 colors.

Example 2.6: The Well-Foundedness Boolean query is definable on the class of all linear
orders (V,≤) by the following formula of universal monadic second-order logic:

(∀S)((∃x)S(x) → (∃y)(S(y) ∧ (∀z)(S(z) → y ≤ z))).

Example 2.7: The Boolean query Hamiltonian Path is definable on the class of all finite graphs
G = (V,E) by an existential second-order formula that asserts that

(∃T)((“T is a linear order on V ”) ∧ (∀x)(∀y)(“y is the successor of x in T” → E(x, y))),

where T is a second-order variable of arity 2. In the above formula, the properties “T is a linear
order on V ” and “y is the successor of x in T” are clearly expressible in first-order logic.

Example 2.8: The Boolean query Rigidity (i.e., given a graph G = (V,E), is the identity function
its only automorphism?) is definable on the class of all finite graphs by a universal second-order
formula that asserts that

(∀S)(“S encodes an automorphism of G” → (∀x)S(x, x)),

where S is a binary relation symbol.

The expressive power of a logic L on a class C of finite structures is measured by the collection
L(C) of L-definable queries on C. As a general rule, the expressive power of a logic L is context-
dependent , that it to say, L(C) depends on the class C on which the logic L is studied. For instance,
first-order logic has very high expressive power on the structure N = (N,+,×) of arithmetic, since
every recursively enumerable relation is first-order definable on N. In contrast, first-order logic

7

has limited expressive power on the class of all (finite or infinite) graphs, since properties as basic
as Connectivity and Acyclicity are not first-order definable. First-order logic has limited ex-
pressive power on the class of all finite graphs as well. In particular, none of the following queries
is first-order definable on finite graphs: Even Cardinality, Connectivity, Acyclicity, Pla-
narity, Eulerian, k-Colorability, for each fixed k ≥ 2, and Hamiltonian Path. Actually, it
is fair to say that no property of finite graphs that requires recursion is first-order definable.

The central question about the expressive power of a logic L on a class C of structures is to
determine which queries on C are L-definable and which are not. Clearly, to show that a query Q
on C is L-definable, it suffices to find some L-formula that defines it on every structure in C. In
contrast, showing that Q is not L-definable is in principle a more challenging task, since it entails
showing that no formula of L defines the property. In many respects, this is analogous to the
difference between establishing upper and lower bounds on the computational complexity of an
algorithmic problem. For this reason, much of the investigation of the expressive power of a logic
centers on the development of techniques for showing that queries are not definable in that logic.

There are three main tools for investigating the expressive power of first-order logic:

• The Compactness Theorem;

• The method of Ultraproducts;

• The method of Ehrenfeucht-Fräıssé Games.

The compactness theorem and the method of ultraproducts are direct and effective tools for
analyzing the expressive power of first-order logic on the class of all (finite or infinite) structures over
a given vocabulary. To illustrate this point, let us recall the standard proof that Connectivity
is not first-order definable on the class of all graphs. Towards a contradiction, assume that there
is a first-order sentence ψ such that for every graph G = (V,E) we have that G |= ψ if and only
if G is connected. Let c′, d′ be two constant symbols and, for every n ≥ 1, let ϕn be a first-order
sentence asserting that there is no path of length n from c to d. Then every finite subset of the set

T = {ϕn : n ≥ 1} ∪ {ψ}

has a model (for instance, a sufficiently long path with c and d as its endpoints). Consequently, the
compactness theorem implies that T has a model G = (V,E, c, d). This, however, gives rise to a
contradiction. Indeed, on the one hand G is connected, since G |= ψ; in particular, there is a path
from (the distinguished element interpreting) c to (the distinguished element interpreting) d in G.
On the other hand, however, there is no path from c to d in G, since G |= ϕn, for every n ≥ 1.

Although the above proof establishes that Connectivity is not first-order definable on the
class of all graphs, it does not establish that this property is not first-order definable on the class
of all finite graphs. The reason is that the model of T guaranteed to exist by the compactness
theorem need not be finite. In general, it may very well be the case that every finite subset of a
set T of first-order sentences has a finite model, but T itself has only infinite models. Therefore,
a proof that uses the compactness theorem to show that a query is not first-order definable on all
structures does not automatically translate to a proof that the query is not first-order definable
on all finite structures. Similar obstacles arise when using the method of ultraproducts. While
it is still possible to use the compactness theorem and the methods of ultraproducts to study the
expressive power of first-order logic on finite structures [GV85], the use of these tools is often
somewhat cumbersome or not intuitive. In contrast, the method of Ehrenfeucht-Fräıssé games is
a tool that has been successfully applied to the study of first-order logic in finite model theory.

8

Furthermore, it is a flexible and extendible tool, since variants of Ehrenfeucht-Fräıssé games can
be formulated and used to study the expressive power of logics that are stronger than first-order
logic and do not possess the compactness theorem.

3 Ehrenfeucht-Fräıssé Games for First-Order Logic

This section is devoted to a presentation of the Ehrenfeucht-Fräıssé games and their applications
to the analysis of the expressive power of first-order logic on finite structures.

Definition 3.1: Let r be a positive integer, σ a vocabulary, and A and B two σ-structures.
The r-move Ehrenfeucht-Fräıssé game on A and B is played between two players, called the

Spoiler and the Duplicator , according to the following rules:
Each run of the game has r moves. In each move, the Spoiler plays first and picks an element

from the universe A of A or from the universe B of B; the Duplicator then responds by picking an
element from the universe of the other structure (i.e., if the Spoiler has picked an element from A,
then the Duplicator picks an element from B, and vice versa). Let ai ∈ A and bi ∈ B be the two
elements picked by the Spoiler and the Duplicator in their i-th move, 1 ≤ i ≤ r.

• The Duplicator wins the run (a1, b1), . . . , (ar, br) if the mapping

ai 7→ bi, 1 ≤ i ≤ r, and cAi 7→ cBj , 1 ≤ j ≤ s,

is a partial isomorphism from A to B, which means that it is an isomorphism between
the substructure A � {a1, . . . , ar} of A generated by {a1, . . . , ar} and the substructure B �

{b1, . . . , br} of B generated by {b1, . . . , br}.

Otherwise, the Spoiler wins the run (a1, b1), . . . , (ar, br).

• The Duplicator wins the r-move Ehrenfeucht-Fräıssé game on A and B if the Duplicator
can win every run of the game, i.e., if (s)he has a winning strategy for the Ehrenfeucht-
Fräıssé game.

Otherwise, the Spoiler wins the r-move Ehrenfeucht-Fräıssé game on A and B.

• We write A ∼r B to denote that the Duplicator wins the r-move Ehrenfeucht-Fräıssé game
on A and B.

Spoiler a1 ∈ A b2 ∈ B b3 ∈ B . . . ar ∈ A
l l l . . . l

Duplicator b1 ∈ B a2 ∈ A a3 ∈ A . . . br ∈ B

Figure 1: A typical run of the r-move Ehrenfeucht-Fräıssé-game

The next proposition follows immediately from Definition 3.1.

Proposition 3.2: ∼r is an equivalence relation on the class S of all σ-structures.

Example 3.3: Let A and B be the graphs depicted in Figure 2. Then

• A ∼2 B, i.e., the Duplicator wins the 2-move Ehrenfeucht-Fräıssé game on A, B;

9

v

vv

v

v

vv

v

v

vv

v

A B

Figure 2: A difference between the 2-move and the 3-move Ehrenfeucht-Fräıssé game

• A 6∼3 B, i.e., the Spoiler wins the 3-move Ehrenfeucht-Fräıssé game on A, B.

The Duplicator can win the 2-move game by playing in such a way that there is an edge between
a1 and a2 if and only if there is an edge between b1 and b2. In contrast, the Spoiler can win the
3-move game by picking three elements in B with no edge between any two of them.

Note that the description of a winning strategy for the Duplicator in the Ehrenfeucht-Fräıssé-
game, as presented in Definition 3.1, is rather informal. The concept of a winning strategy for
the Duplicator can be made precise, however, in terms of families of partial isomorphisms with
appropriate extension properties.

Definition 3.4: A winning strategy for the Duplicator in the r-move Ehrenfeucht-Fräıssé-game on
A and B is a sequence I0, I1, . . . , Ir of non-empty sets of partial isomorphims from A to B such
that

• The sequence I0, I1, . . . , Ir has the forth property :

For every i < r, every f ∈ Ii, and every a ∈ A, there is a g ∈ Ii+1 such that a ∈ dom(g) and
f ⊆ g.

• The sequence I0, I1, . . . , Ir has the back property :

For every i < r, every f ∈ Ii, and every b ∈ B, there is a g ∈ Ii+1 such that b ∈ rng(g) and
f ⊆ g.

In effect, the forth property provides the Duplicator with a good move when the Spoiler picks
an element of A, while the back property provides the Duplicator with a good move when the
Spoiler picks an element of B.

The key feature of Ehrenfeucht-Fräıssé games is that they capture the combinatorial content
of first-order quantification; for this reason, Ehrenfeucht-Fräıssé games can be used to characterize
definability in first-order logic on an arbitrary class of σ-structures. To describe the precise con-
nection between first-order logic and Ehrenfeucht-Fräıssé games, we need to bring into the picture
a well-known concept from mathematical logic.

Definition 3.5: Let ϕ be a first-order formula over a vocabulary σ. The quantifier rank of ϕ,
denoted by qr(ϕ), is the depth of quantifier nesting in ϕ. More formally, qr(ϕ) is defined by the
following induction on the construction of ϕ:

10

• If ϕ is atomic, then qr(ϕ) = 0.

• If ϕ is of the form ¬ψ, then qr(ϕ) = qr(ψ).

• If ϕ is of the form ψ1 ∧ ψ2 or of the form ψ1 ∨ ψ2, then qr(ϕ) = max{qr(ψ1), qr(ψ2)}.

• If ϕ is of the form ∃xψ or of the form ∀xψ, then qr(ϕ) = qr(ψ) + 1.

Note that if a first-order formula is in prenex normal form, then its quantifier rank is equal to
the number of the quantifiers in its prefix. For instance, if ϕ is (∀x)(∀y)(∃z)θ, where θ is quantifier-
free, then qr(ϕ) = 3. In contrast, if ϕ is (∃x)E(x, x) ∨ (∃y)(∀z)¬E(y, z), then qr(ϕ) = 2. Note also
that if qr(ϕ) = r, then for every r′ > r there is a first-order formula ψ such that qr(ψ) = r ′ and ϕ
is logically equivalent to ψ.

Definition 3.6: Let r be a positive integer, and let A and B be two σ-structures. We write
A ≡r B to denote that A and B satisfy the same first-order sentences of quantifier rank r.

Proposition 3.7: ≡r is an equivalence relation on the class S of all σ-structures.

Note that the equivalence relation ≡r is defined using purely logical concepts. The main tech-
nical result of this section asserts that ≡r coincides with the equivalence relation ∼r, which was
defined using purely combinatorial concepts.

Theorem 3.8: ([Fra54, Ehr61]) Let r be a positive integer, and let A and B be two σ-structures.
Then the following statements are equivalent:

1. A ≡r B, i.e., A and B satisfy the same first-order sentences of quantifier rank r.

2. A ∼r B, i.e., the Duplicator wins the r-move Ehrenfeucht-Fräıssé game on A and B.

Moreover, the following are true:

• ≡r has finitely many equivalence classes.

• Each ≡r-equivalence class is definable by a first-order sentence of quantifier rank r.

Example 3.9: Before embarking on the proof of Theorem 3.8, let us briefly revisit Example 3.3.
As seen in that example, the Spoiler wins the 3-move Ehrenfeucht-Fräıssé game on the structures A

and B in Figure 2. Therefore, Theorem 3.8 tells that there is first-order sentence of quantifier rank
3 that is satisfied by one of the two structures, but not by the other. Indeed, if ϕ is the sentence

∃x∃y∃z(x 6= y ∧ x 6= z ∧ y 6= z ∧ ¬E(x, y) ∧ ¬E(x, z) ∧ ¬E(y, z)),

then B |= ϕ, but A 6|= ϕ. Note also that this sentence yields a strategy for the Spoiler to win the
3-move Ehrenfeucht-Fräıssé game on A and B: the Spoiler picks three elements b1, b2, b3 from B
such that B, b1, b2, b3 |= (x 6= y∧x 6= z∧ y 6= z∧¬E(x, y)∧¬E(x, z)∧¬E(y, z)). Another sentence
witnessing that A 6≡3 B is the sentence

(∀x)(∀y)(∃z)(x 6= y → E(x, z) ∧E(y, z)),

which is true on A, but is false on B. In turn, this sentence yields another strategy for the Spoiler
to win the 3-move Ehrenfeucht-Fräıssé game on A:

The Spoiler first picks two elements fromB such that B, b1, b2 |= ∀z¬(x 6= y → E(x, z)∧E(y, z)).
After the Duplicator has picked elements a1, a2 from A, the Spoiler picks an element a3 from A
such that A, a1, a2, a3 |= x 6= y → E(x, z) ∧ E(y, z); the Duplicator is unable to respond to this
move in a way that a partial isomorphism is maintained.

11

Spoiler b1 ∈ B b2 ∈ B a3 ∈ A
l l l

Duplicator a1 ∈ A a2 ∈ A b3 ∈ B.

We now proceed with the proof of Theorem 3.8. One part of it is has a relatively straightforward
proof.

Theorem 3.10 : Let r be a positive integer. If A and B are two σ-structures such that the
Duplicator wins the Ehrenfeucht-Fräıssé game on A and B, then every first-order sentence of
quantifier rank r that is true on A is also true on B. Consequently, if A ∼r B, then A ≡r B.

Proof: We proceed by induction on the quantifier rank of formulas. Assume that the result holds
for all formulas of quantifier rank r over an arbitrary vocabulary. We have to show that if ϕ is a
formula of quantifier rank r + 1 and A, B are two σ-structures such that A ∼r+1 B and A |= ϕ,
then B |= ϕ. The interesting cases are the ones in which ϕ is of the form ∃xψ or of the form ∀xψ.

Assume that ϕ is of the form ∃xψ, which implies that qr(ψ) = r. We have to show that
B |= ∃xψ. Since A |= ϕ, there is an element a ∈ A such that A, a |= ψ. Let c be a new constant
symbol and let ψ[x/c] be the first-order sentence obtained from ψ by replacing every free occurrence
of the variable x by c. Clearly, ψ[x/c] is a sentence of quantifier rank σ over the vocabulary σ∪{c}.
Now view the above element a ∈ A as the first move of the Spoiler in a run the (r + 1)-move
Ehrenfeucht-Fräıssé game on A and B. Let b ∈ B be the response of the Duplicator in this game
played according to the Duplicator’s winning strategy. Therefore, the Duplicator wins the r-move
Ehrenfeucht-Fräıssé game on (A, a) and (B, b) viewed as structures over the vocabulary σ ∪ {c}.
Moreover, (A, a) |= ψ[x/c], so the induction hypothesis implies that (B, b) |= ψ[x/c]), which, in
turn, implies that B |= ∃xψ.

Next, assume that ϕ is of the form ∀xψ, which again implies that qr(ψ) = r. We have to
show that B |= ∀xψ. Let b be an arbitrary element of B. View this element as the first move
of the Spoiler in a run of the (r + 1)-move Ehrenfeucht-Fräıssé game on A and B. Let a ∈ A be
the response of the Duplicator in this game played according to the Duplicator’s winning strategy.
Therefore, the Duplicator wins the r-move Ehrenfeucht-Fräıssé game on (A, a) and (B, b) viewed as
structures over the vocabulary σ ∪ {c}, where, as in the previous case, c is a new constant symbol.
Since A |= ∀xψ, we have that (A, a) |= ψ[x/c]. Consequently, the induction hypothesis implies
that (B, b) |= ψ[x/c]).

To prove the remaining parts of Theorem 3.8, we need to first introduce the concept of an
(m, r)-type, 0 ≤ m ≤ r, and establish some basic properties of this concept. The definition of an
(m, r)-type is by backward induction on m.

Definition 3.11: Assume that σ is a vocabulary, r is a positive integer, and x1, . . . , xr are variables
of first-order logic.

• An (r, r)-type is a conjunction of atomic or negated atomic formulas over the vocabulary σ
such that every variable occurring in this conjunction is one of the variables x1, . . . , xr and
for every atomic formula θ over σ with variables among x1, . . . , xr either θ or ¬θ occurs as a
conjunct.

12

• Assume that the concept of (m + 1, r)-type has been defined, where 0 ≤ m ≤ r − 1. An
(m, r)-type is an expression of the form

∧

{∃xm+1ϕ : ϕ is an (m+ 1, r)-type in S}∧
∧

{∀xm+1¬ϕ : ϕ is an (m+ 1, r)-type not in S},

where S is a subset of the set of all (m+ 1, r)-types.

Lemma 3.12: Let σ be a vocabulary, r a positive integer, and m an integer such that 0 ≤ m ≤ r.

• Every (m, r)-type is a first-order formula over the vocabulary σ such that its free variables are
among x1, . . . , xm and its quantifier rank is r −m.

• There are only finitely many distinct (m, r)-types.

• For every σ-structure A and every sequence a1, . . . , am of elements of A, there is exactly one
(m, r)-type ϕ such that A, a1, . . . , am |= ϕ.

Proof: We use backward induction on m. Since σ consists of finitely many relation and constant
symbols, there are finitely many atomic and negated atomic formulas over σ with variables among
x1, . . . , xr. It follows that every (r, r)-type is a finite conjunction of such formulas and, thus, it is a
first-order formula of quantifier rank 0. Moreover, every sequence a1, . . . , am of elements from the
universe of a structure A satisfies a unique (r, r)-type, namely the conjunction of all atomic and
negated atomic formulas over σ that are satisfied by this tuple.

Assume that the properties of the lemma hold for (m+ 1, r)-types. In particular, the set of all
(m + 1, r)-types is finite, hence it has finitely many subsets, which implies that there are finitely
many (m, r)-types. Moreover, the defining expression of an (m, r)-type is a first-order formula
of quantifier rank r − m, since each (m + 1, r)-type is a first-order formula of quantifier rank
r − (m + 1) = r −m − 1. Finally, assume that A is a σ-structure and a1, . . . , am is a sequence of
elements from A. Let S∗ be the set of all (m + 1, r)-types ϕ such that A, a1, . . . , am |= ∃xm+1ϕ.
Then A, a1, . . . , am satisfies the (m, r)-type determined by S∗, i.e., the formula

∧

{∃xm+1ϕ : ϕ ∈ S∗} ∧
∧

{∀xm+1¬ϕ : ϕ 6∈ S∗},

where ϕ ranges over all (m, r)-types. Moreover, if A, a1, . . . , am satisfies some other (m,r)-type
determined by a set S, then it is easy to see that S = S∗, so A, a1, . . . , am satisfies a unique
(m, r)-type.

Definition 3.13: Let σ be a vocabulary, r a positive integer, m an integer such that 0 ≤ m ≤ r,
A a σ-structure and a1, . . . , am a sequence of elements from the universe of A.

We write ϕA,a1 ,...,ar
r to denote the unique (m, r)-type satisfied by A, a1, . . . , am. In particular,

when m = 0, we write ϕA
r to denote the unique (0, r)-type satisfied by A.

According to Lemma 3.12, each expression ϕA,a1,...,am
r is a first-order formula of quantifier rank

r − m with free variables among x1, . . . , xm. In particular, each ϕA
r is a first-order sentence of

quantifier rank r. It should be pointed out that the assumption that the vocabulary σ consists
of finitely many relation and constant symbols was critical in showing that each (m, r)-type is a
first-order formula and also that, for each m and each r with 0 ≤ r ≤ m, there are finitely many
distinct (m, r)-types. We are now ready to complete the proof of Theorem 3.8 and also establish
that ϕA

r defines the ≡r-equivalence class of A.

13

Theorem 3.14: Let r be a positive integer, let A and B be two σ-structures, and let ϕA
r be the

unique (0, r)-type satisfied by A. Then the following statements are equivalent:

1. A ≡r B, i.e., A and B satisfy the same first-order sentences of quantifier rank r.

2. B |= ϕA
r .

3. A ∼r B, i.e., the Duplicator wins the r-move Ehrenfeucht-Fräıssé game on A and B.

Proof: The implication (1) ⇒ (2) follows from the definitions and the fact that ϕA
r is satisfied

by A and has quantifier-rank r. The implication (3) ⇒ (1) was established in Theorem 3.10.
Consequently, it remains to prove the implication (2) ⇒ (3).

Assume that B |= ϕA
r . We describe a winning strategy for the Duplicator in the r-move

Ehrenfeucht-Fräıssé game on A and B. The key property of the Duplicator’s strategy is that, for
every run of the game and for every integer m with 0 ≤ m ≤ r, if a1, . . . , am and b1, . . . , bm are the
elements of A and B played in the first m-moves of that run, then A, a1, . . . , am and B, b1, . . . , bm
satisfy the same (m, r)-type.

Assume first that the Spoiler begins by playing an element a1 from A. Let ϕA,a1
r be the unique

(1, r)-type satisfied by A, a1. Hence, the sentence ∃x1ϕ
A,a1
r is a conjunct of ϕA

r , which implies
that B |= ∃x1ϕ

A,a1
r . Let b1 be an element of B such that B, b1 |= ϕA,a1

r . This element b1 is
the Duplicator’s response to the Spoiler’s first move. Assume then that the Spoiler begins by
playing an element b1 from B. Let ϕB,b1

r be the unique (1, r)-type satisfied by B, b1. We claim that

A |= ∃x1ϕ
B,b1
r . Indeed, otherwise, A |= ∀x1¬ϕ

B,b1
r , which implies that ∀x1¬ϕ

B,b1
r is a conjunct of

ϕA
r . Consequently, B |= ∀x1¬ϕ

B,b1
r , which contradicts the fact that B, b1 |= ϕB,b1

r .
By continuing to play this way, the Duplicator ensures that at the end of the run the sequences

a1, . . . , ar and b1, . . . , bm are such that A, a1, . . . , ar and A, b1, . . . , br satisfy the same (r, r)-type, i.e.,
the same atomic and negated atomic formulas. This implies that the mapping ai 7→ bi, 1 ≤ i ≤ r,
is a partial isomorphism.

The first application of the preceding results is a characterization of first-order definability on
arbitrary classes of structures.

Theorem 3.15: Let σ be a vocabulary, C a class of σ-structures, and Q a Boolean query on C.
Then the following statements are equivalent:

1. Q is first-order definable on C.

2. There is a positive integer r such that, for every structure A ∈ C and every structure B ∈ C,
if Q(A) = 1 and the Duplicator wins the r-move Ehrenfeucht-Fräıssé game on A and B, then
Q(B) = 1.

Proof: The implication (1) ⇒ (2) is an immediate consequence of Theorem 3.10. For the other
direction, assume that such a positive integer r exists. Let S be the set of all (0, r)-types of
structures A in C such that Q(A) = 1. Lemma 3.12 implies that S is a finite set, hence the
disjunction

∨

{ϕA
r : A ∈ C and Q(A) = 1}

is a first-order sentence, which we denote by ϕ. We now claim that ϕ defines the query Q on C.
Indeed, if B is a structure in C such that Q(B) = 1, then its (0, r)-type ϕB

r is one of the disjuncts
of ϕ, so B |= ϕ. Conversely, if B is a structure in C such that B |= ϕ, then there is a structure A

14

in C such that Q(A) = 1 and B |= ϕA
r . Theorem 3.14 implies that the Duplicator wins the r-move

Ehrenfeucht-Fräıssé game on A and B, hence Q(B) = 1.

The preceding Theorem 3.15 gives rise to a combinatorial method for studying first-order defin-
ability and obtaining lower bounds on the expressive power of first-order logic on arbitrary classes
of structures.

Method 3.16: The Method of Ehrenfeucht-Fräıssé Games for FO

Let σ be a vocaculary, C a class of σ-structures, and Q a Boolean query on C.

Soundness: To show that Q is not first-order definable on C, it suffices to show that for every
positive integer r there are structures Ar and Br in C such that

• Q(Ar) = 1 and Q(Br) = 0.

• The Duplicator wins the r-move Ehrenfeucht-Fräıssé game on A and B.

Completeness: This method is also complete, that is, if Q is not first-order definable on C, then
for every positive integer r such structures Ar and Br exist.

Note that the soundness of the method of Ehrenfeucht-Fräıssé games follows from Theorem
3.10, which is the easier part in establishing that the two equivalence relations ∼r and ≡r coincide.
In contrast, the completeness of the method requires Theorem 3.14. We now illustrate this method
with two easy applications.

Proposition 3.17: The Even Cardinality query is not first-order definable on the class of all
finite graphs.

Proof: For every n ≥ 1, let Kn be the totally disconnected graph with n nodes. It is obvious

q
q
q

q
q

q

w

w

w

w

w

w

w

w

w

w

KnKm

Figure 3: Even Cardinality is not first-order definable on finite graphs

that, for every r ≥ 1, every m ≥ r, and every n ≥ r, the Duplicator wins the r-move Ehrenfeucht-
Fräıssé game on Km and Kn. Thus, we can apply the method of Ehrenfeucht-Fräıssé games using
the structures Km with m ≥ r an even number and Kn with n ≥ r an odd number.

15

r r r

w

w

w

ww

�����������������XXXXXXXXXXXXXXXXXXPP
PP

PP
PP

PP
PPP

��
��

��
��

��
���

J
J
J
JJ

c2
c1 cn

b

a

An

Figure 4: Eulerian is not first-order definable on finite graphs

Proposition 3.18: The Eulerian query is not first-order definable on the class of all finite graphs.

Proof: By definition, a graph is Eulerian if there is a closed walk that traverses each edge exactly
once. Euler showed that this property holds if and only if every node has even degree, i.e., an
even number of neighbors. For every n ≥ 1, let An be the graph depicted in Figure 4. Clearly,
An is Eulerian if and only if n is an even number. Moreover, for every n ≥ r, the Duplicator
wins the r-move Ehrenfeucht-Fräıssé game on An and An+1. Thus, we can apply the method of
Ehrenfeucht-Fräıssé games using the structures A2n and A2n+1 with 2n ≥ r.

As seen earlier, the method of Ehrenfeucht-Fräıssé games is complete, which implies that if
a query Q is not first-order definable on a class C of structures, then in principle this can be
established using the method of Ehrenfeucht-Fräıssé games. In practice, however, the following
technical difficulties may arise when one attempts to apply this method to concrete queries:

• How does one find, for every r ≥ 1, structures Ar and Br in C such that Q(Ar) = 1,
Q(Br) = 0, and the Duplicator wins the r-move Ehrenfeucht-Fräıssé game on Ar and Br?

• After such candidate structures Ar and Br have been identified, how does one show rigorously
that Ar ∼r Br?

As a general rule, both these tasks can be challenging. Nonetheless, they can be eased by
pursuing the following two approaches.

• Whenever possible, analyze the ∼r-equivalence classes, r ≥ 1, of the structures in C and
obtain explicit descriptions of them.

• Find general sufficient conditions for the Duplicator to win the r-move Ehrenfeucht-Fräıssé game
and, thus, build a “library” of winning strategies for the Duplicator in this game.

The class L of all finite linear orders provides an interesting, albeit rather rare, case in which it
is possible to analyze the ∼r-equivalence classes, r ≥ 1. Before presenting the full analysis, we give
a motivating example. For every n ≥ 1, we let Ln = ({1, . . . , n},≤) be the standard linear order
on {1, . . . , n}.

Example 3.19: The following are true for the 3-move Ehrenfeucht-Fräıssé game.

• The Spoiler wins the 3-move Ehrenfeucht-Fräıssé game on L6 and L7.

16

L6 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6

L7 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7

L8 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7 ≤ 8

Figure 5: L6 6∼3 L7, but L7 ∼3 L8.

• The Duplicator wins the 3-move Ehrenfeucht-Fräıssé game on L7 and L8.

The Spoiler can win the 3-move Ehrenfeucht-Fräıssé game on L6 and L7 by playing as follows:
the first move of the Spoiler is element 4 in L7. In order to avoid loosing in the next move, the
Duplicator has to play either element 4 in L6 or element 3 in L6. If the Duplicator plays 4 in L6,
then the Spoiler plays element 6 in L7. At this point, the Duplicator must play either element 5
in L6 or element 6 in L6. In the first case, the Spoiler wins the run by playing element 5 in L7;
in the second case, the Spoiler wins the run by playing element 7 in L7. An essentially symmetric
argument shows that the Spoiler can win if the first move of the Duplicator is element 3 in L6.

In contrast, consider the 3-move Ehrenfeucht-Fräıssé game on L7 and L8, and suppose that the
Spoiler plays element 4 in L8. In this case, the Duplicator responds by playing element 4 in L7.
If the Spoiler plays element 6 in L8, then the Duplicator plays element 6 in L7 and after this can
easily maintain a partial isomorphism no matter what the third move of the Spoiler is. Similarly, if
the second move of the Spoiler is element 7 in L8, then the second move of the Duplicator is element
6 in L7. We leave it to the reader to fill in the remaining cases and verify that the Duplicator wins
the 3-move Ehrenfeucht-Fräıssé game on L7 and L8.

We are now ready to describe the analysis of ∼r, r ≥ 1, on finite linear orders and derive the
preceding Example 3.19 as a special case.

Theorem 3.20: Let r, m, and n be positive integers. Then the following are equivalent:

• Lm ∼r Ln.

• (m = n) or (m ≥ 2r − 1 and n ≥ 2r − 1)

Proof: (Hint) If c is an element of the linear order Ln, then L>cn denotes the linear order with
universe {d : c < d ≤ n} and, similarly, L<cn denotes the linear order with universe {d : 1 ≤ d < c}.
It is easy to see that for every positive integer s we have that Lm ∼s+1 Ln if and only if the
following two conditions hold:

1. For every a ∈ Lm, there is b ∈ Ln such that L>am ∼s L>bn and L<am ∼s L<bn .

2. For every b ∈ Ln, there is a ∈ Lm such that L>am ∼s L>bn and L<am ∼s L
<b
n .

The result can then be derived from the above fact using induction on min(m,n).

Corollary 3.21: The Even Cardinality query is not first-order definable on the class L of all
finite linear orders.

17

Proof: Apply the method of Ehrenfeucht-Fräıssé games using the linear orders L2m and L2m+1

with m ≥ 2r − 1.

As indicated earlier, the class of finite linear orders provides a rather rare example of a class of
structures for which a complete analysis of the ≡r-equivalence classes, r ≥ 1, has been obtained.
Over the years, however, researchers have succeeded in identifying general sufficient conditions
for the Duplicator to win the r-move Ehrenfeucht-Fräıssé game. These conditions give “off-the-
shelf” winning strategies for the Duplicator and thus facilitate the application of the method of
Ehrenfeucht-Fräıssé games. In what follows, we will present such a useful and widely applicable
sufficient condition discovered by Fagin, Stockmeyer and Vardi [FSV95], who built on earlier work
by Hanf [Han65]. Additional useful sufficient conditions for the Duplicator to win the Ehrenfeucht-
Fräıssé game have been found by Schwentick [Sch94], Arora and Fagin [AF97], and others (see
Fagin [Fag97] for a survey). Underlying this work is Gaifman’s theorem [Gai82], which intuitively
asserts that first-order logic can express local properties only. Although we will not discuss or use
Gaifman’s theorem here, we will introduce the fundamental concept of neighborhood , which plays
a key role in both Gaifman’s work and the work on sufficient conditions for the Duplicator to win
the Ehrenfeucht-Fräıssé game.

Definition 3.22: Let A = (A,RA
1 , . . . , R

A
m, c

A
1 , . . . , c

A
s) be a σ-structure, let a be an element of A,

and let d be a positive integer.

• The Gaifman graph GA = (A,EA) of A is the undirected graph having the elements of A as
nodes and edge relation EA defined as follows: there is an edge EA(b, c) between two elements
b and c of A if there is a relation RA

i , 1 ≤ i ≤ m, and a tuple (t1, . . . , ts) ∈ RA
i such that b

and c are among t1, . . . , ts.

• The neighborhood N(a, d) of a of radius d is the set of all nodes whose distance in the Gaifman
graph GA from a or from one of the constants cA1 , . . . , c

A
s is less than d. More formally, N(a, d)

is defined by the following induction on d:

– N(a, 1) = {a, cA1 , . . . , c
A
s }.

– N(a, d + 1) = N(a, d) ∪ {c ∈ A : there is a b ∈ N(a, d) such that EA(b, c)}.

The following examples reveal that the neighborhood of an element can vary widely.

Example 3.23: Let n ≥ 1 and d ≥ 2 be positive integers.

• If Ln = (Ln,≤) is a linear order with n elements, then N(a, d) = Ln, for every a ∈ Ln.

• If Kn = (Kn, E) is a clique with n nodes, then N(a, d) = Kn, for every a ∈ Kn.

• If Kn = (Kn, E) is a totally disconnected graph with n nodes, then N(a, d) = {a}, for every
a ∈ Kn.

• If Cn = (Cn, E) is a (directed or undirected) cycle Cn with n nodes and d ≤ n/2, then N(a, d)
is an undirected path with 2d− 1 nodes having a as its midpoint.

Definition 3.24: Let A = (A,RA
1 , . . . , R

A
m, c

A
1 , . . . , c

A
s) be a σ-structure, let a be an element of A,

and let d be a positive integer.

18

• (A, a) denotes the expansion of A obtained by augmenting it with a as a distinguished element
interpreting a new constant.

• (A, a) � N(a, d) denotes the substructure of (A, a) generated by N(a, d).

• The d-type of a is the isomorphism type of the structure (A, a) � N(a, d).

Note that the universe of (A, a) � N(a, d) is N(a, d), since N(a, d) contains a, cA1 , . . . , c
A
s as

members. Moreover, if B = (B,RB
1 , . . . , R

B
m, c

B
1 , . . . , c

B
s) is a σ-structure and b is an element

of B, then a and b have the same d-type precisely when there is a one-to-one and onto mapping
h : N(a, d) → N(b, d) such that h(a) = b, h(cAi) = cBi , 1 ≤ i ≤ s, and for every relation symbol Ri
of arity t, 1 ≤ i ≤ m, and every t-tuple (a1, . . . , at) from N(a, d), we have that RA

i (a1, . . . , at) if
and only if RB

i (h(a1), . . . , h(at).

Definition 3.25: Assume that d is a positive integer, σ is a vocabulary, and A and B are two
σ-structures. We say that A and B are d-equivalent if for every d-type τ they have the same
number of elements of d-type τ .

Clearly, d-equivalence is an equivalence relation on the class S of all σ-structures. The next
result, due to Fagin, Stockmeyer and Vardi [FSV95], asserts that if d is sufficiently larger than r,
then d-equivalence is actually a refinement of ≡r-equivalence.

Theorem 3.26: For every positive integer r and for every positive integer d ≥ 3r−1, if A is
d-equivalent to B, then A ≡r B.

Proof: (Hint) Assume that A is d-equivalent to B, where d ≥ 3r−1. We can show that the Dupli-
cator wins the r-move Ehrenfeucht-Fräıssé game on A and B by maintaining a partial isomorphism
between not only the elements of A and B played thus far, but also between neighborhoods of
these points of sufficiently large radius. Specifically, by induction on j ≤ m, it can be shown that
the Duplicator can win the r-move Ehrenfeucht-Fräıssé-game via a winning strategy that has the
following property, called the j-matching condition:

If a1, . . . , aj and b1, . . . , bj are the elements of A and B played in the first j moves of a run,

then A � ∪ji=1N(ai, 3
r−j) is isomorphic to B � ∪ji=1N(bi, 3

r−j) via an isomorphism that maps ai to
bi, for 1 ≤ i ≤ j.

Note that the Duplicator can ensure that the 1-matching condition holds as follows. If the
Spoiler plays an element a1 in A (or an element b1 in B), then, by d-equivalence, there is an
element b1 in B (or an element a1 in A) such that a1 and b1 have the same d-type, which implies
that A � N(a1, 3

r−1) is isomorphic to B � N(b1, 3
r−1) via an isomorphism that maps a1 to b1. The

inductive step from j to j + 1 uses d-equivalence combined with a counting argument to the effect
that the Duplicator can always find at least one element with the same d-type as the last element
played by the Spoiler, but not contained in the union of neighborhoods of radius 3r−(j+1) of the
elements played so far.

The preceding Theorem 3.26 gives rise to a new method for studying first-order definability.

Method 3.27: Let σ be a vocaculary, C a class of σ-structures, and Q a Boolean query on C. To
show that Q is not first-order definable on C, it suffices to show that for every positive integer r
there are structures Ar and Br in C such that

• Q(Ar) = 1 and Q(Br) = 0.

19

• Ar is d-equivalent to Br for some d ≥ 3r.

Although, by Theorem 3.26, this method is sound, it is not complete. For instance, it cannot
be used to analyze first-order definability on the class L of all finite linear orders, since, for every
positive integers d, m, and n, the linear order Lm is d-equivalent to the linear order Ln if and only
if m = n. In particular, this method cannot be used to show that Even Cardinality is not first-
order definable on finite linear orders. Nonetheless, whenever applicable, Method 3.27 is usually
technically simpler than Method 3.16, since it replaces the task of proving that the Duplicator wins
the r-move Ehrenfeucht-Fräıssé game with the task of analyzing and counting d-types. Moreover,
the analysis of d-types often provides a clue for finding candidate structures Ar and Br. In the
remainder of this section, we present several applications of Method 3.27 to finite model theory.

Proposition 3.28: The Connectivity query is not first-order definable on finite graphs.

Proof: For every r and every d ≥ 3r−1, let Ar be a cycle with 4d nodes and Br be the union of
two disjoint cycles each with 2d nodes, as depicted below.

v
v

v

v

v

q

q

q

��
#
##
���PPP

c
cc
BB

v
v

v

v

v

q

q

q

��
#

##���PPP
c

cc
BB

v
v v

q

q

q

.......
.......
.......
.....!!
!aaa..........................

v
vv

q

q

q

..........................!!!aaa
.......
.......
.......
.....

v
v v

q

q

q

.......
.......
.......
.....!!
!aaa..........................

v
vv

q

q

q

..........................!!!aaa
.......
.......
.......
.....

BrAr

4d

2d

2d

Clearly, each d-type in Ar or in Bd is a path with 2d − 1 nodes. Moreover, Ar is d-equivalent
to Br, since each structure has exactly 4d points of this d-type.

Proposition 3.29: The 2-Colorability query is not first-order definable on finite graphs.

Proof: For every r, let d = 3r−1, and let Ar be a cycle with 6d nodes and Bd be the union of two
disjoint cycles each with 3d nodes, as depicted below.

20

v
v

v

v

v

q

q

q

��
#
##
���PPP

c
cc
BB

v
v

v

v

v

q

q

q

��
#

##���PPP
c

cc
BB

6d v
v v

q

q

q

.......
.......
.......
.....!!
!aaa..........................

v
vv

q

q

q

..........................!!!aaa
.......
.......
.......
.....

3d

v
v v

q

q

q

.......
.......
.......
.....!!
!aaa..........................

v
vv

q

q

q

..........................!!!aaa
.......
.......
.......
.....

3d

BrAr

Ar is 2-colorable, but Br is not, since Ar is an even cycle, while Br contains an odd cycle. Moreover,
Ar is d-equivalent to Br.

Proposition 3.30: The Acyclicity query is not first-order definable on finite graphs.

Proof: Let Ar and Br be the two structures depicted.

v

v

v

v

v

v

r

r
r

r

r
r4d

r

r

r

v

v

v

��
!!
!aaa

@@

r

r

r

v

v

v ��!!!aa
a@

@

v

v

Ar

2d

2d

Br

Clearly, Ar is acyclic, Br contains a cycle, and Ar is d-equivalent to Br.

Exercise 3.31: Show that the following queries are not first-order definable on the class of all
finite graphs:

• k-Colorability, for each fixed k ≥ 3

• Planarity

21

• Rigidity

Exercise 3.32: Show that the Connectivity query is not first-order definable on the class O
of all finite linearly ordered graphs G = (V,E,≤).

Hint: Use the analysis of ≡r-equivalence on linear orders.

4 Computational Complexity

This section is a brief interlude to computational complexity and a first encounter with the con-
nections between computational complexity and logics on finite structures. These connections are
explored in depth in the Chapter by Erich Grädel in this volume.

4.1 Complexity Classes

In his 1993 Turing Award Lecture [Har94], J. Hartmanis described computational complexity as
“the quantitative study of solvability”. Indeed, the main goal of computational complexity is to
characterize the inherent difficulty of solvable decision problems by placing them into classes accord-
ing to the time resources or space resources required to solve them in some model of computation,
which usually is either the (deterministic) Turing machine or the nondeterministic Turing machine.
The following major complexity classe will be of interest to us here; their precise definitions can be
found in [Pap94].

Class Resource Bound

L Logarithmic Space

P Polynomial Time

NP Nondeterministic Polynomial Time

PSPACE Polynomial Space

EXPTIME Exponential Time

NEXPTIME Nondeterministic Exponential Time

It is well known and easy to show that the following containments hold:

L ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME.

It is also conjectured and widely believed that each of the above containments is a proper one, but
proving this remains the central open problem in computational complexity to date. It has been
established, however, that if there is an exponential gap in the amount of the resource (space or
time) used in defining two complexity classes, then one is properly contained in the other. These
results, which are are known as space and time hierarchy theorems (see [Pap94]), imply that

L $ PSPACE, P $ EXPTIME, NP $ NEXPTIME.

A possible approach to separating two complexity classes is to show that there is a structural
property possessed by one class, but not by the other. Clearly, each of the deterministic classes L,
P, PSPACE, and EXPTIME is closed under complements. In contrast, the class NP of all problems
solvable by a nondeterministic polynomial-time bounded Turing machine is not known to be closed
under complements. Thus, the question: “is NP = coNP?” constitutes another major open problem
in computational complexity. The same state of affairs also holds true for the class NEXPTIME.

22

Each of the aforementioned complexity classes contains problems that are complete for the
class, i.e., problems that embody the intrinsic computational difficulty of the class at hand. More
precisely, let C be a complexity class and Q a decision problem. We say that Q is C-complete if Q
is in C and Q is C-hard , i.e., for every Q′ ∈ C, there is a “suitable” many-one reduction f of Q′ to
Q, so that for every input x

x ∈ Q′ ⇐⇒ f(x) ∈ Q.

If C is the class P of all polynomial-time solvable problems, then “suitable” means that f is com-
putable in logarithmic space. For NP and all other larger classes, “suitable” means that f is
computable in polynomial time. Representative natural NP-complete problems include Boolean
satisfiability Sat, 3-Colorability, and Hamiltonian Path (see [GJ79]). The prototypical
PSPACE-complete problem is QBF, the satisfiability problem for quantified Boolean formulas
[Sto77].

4.2 The Complexity of Logic

Vardi [Var82] singled out certain fundamental decision problems that arise from the analysis of the
satisfaction relation between sentences of a logic L and finite structures.

Definition 4.1: ([Var82]) Let L be a logic.

• The combined complexity of L is the following decision problem: given a finite structure A

and an L-sentence ψ, does A |= ψ?

• The data complexity of L is the family of the following decision problems Qψ, one for each
fixed L-sentence ψ: given a finite structure A, does A |= ψ?

• The expression complexity of L is the family of the following decision problems QA, one for
each fixed finite structure A: given an L-sentence ψ, does A |= ψ?

The combined complexity problem for L is also known as the model checking problem for L. In
this problem, the input consists of both a finite structure and an L-sentence. The data complexity
and the expression complexity are the restricted cases of the combined complexity problem in
which an L-sentence is kept fixed or a finite structure is kept fixed, respectively. Note that the data
complexity and the expression complexity are not single decision problems, but families of decision
problems. The next definition provides a way to “measure” the computational complexity of these
families of decision problems.

Definition 4.2: ([Var82]) Let L be a logic and C a complexity class.

• The data complexity of L is in C if for each L-sentence ψ, the decision problem Qψ is in C.

• The data complexity of L is C-complete if it is in C and there is at least one L-sentence ψ
such that the decision problem Qψ is C-complete.

• The expression complexity of L is in C if for each finite structure A, the decision problem
QA is in C.

• The expression complexity of L is C-complete if it is in C and there is at least one finite
structure A such that the decision problem QA is C-complete.

23

The next result pinpoints the data, expression and combined complexity of first-order logic.

Theorem 4.3: The following hold for first-order logic FO.

• The data complexity of FO is in L.

• The expression complexity of FO is PSPACE-complete

• The combined complexity of FO is PSPACE-complete.

Proof: (Hint) For simplicity, assume that ψ is a first-order sentence in prenex normal form. Given
a finite structure A, one can check whether A |= ψ by examining each possible instantiation of
quantifiers in ψ one at a time (this requires logarithmic space), while keeping track of the number
of them in binary with the aid of a counter. Since there are polynomially-many such instantiations,
only logarithmically many cells are used to keep track of the counter, so the entire computation
requires O(log(|A|) space, where |A| is the cardinality of the universe of A.

If the sentence ψ is part of the input, then the above computation can be carried out in
space bounded by a polynomial in |A|, so the combined complexity of FO is in PSPACE. Finally,
the expression complexity of FO is PSPACE-complete (hence, the combined complexity of FO is
PSPACE-complete as well), because, for every fixed finite structure A with at least two distinct
elements, the satisfiability problem QBF for quantified Boolean formulas is easily reducible to the
expression complexity problem QA.

The preceding Theorem 4.3 shows that an exponential gap exists between the data complexity
of first-order logic and the expression complexity of first-order logic, and that the expression com-
plexity of first-order logic is as hard as the combined complexity of first-order logic. As pointed
out by Vardi [Var82], this phenomenon is also encountered in several other logics studied in finite
model theory.

The r-move Ehrenfeucht-Fräıssé game gives rise to the natural decision problem of determining
the winner of this game. In fact, there are two versions of this problem, one in which the number
of moves is fixed and one in which the number of moves is part of the input. The next two results
identify the computational complexity of these problems.

Proposition 4.4: Let r be a fixed positive integer. The following problem is in L and, hence,
also in P: given two finite structures A and B, does the Duplicator win the r-move Ehrenfeucht-
Fräıssé game on A and B?

Proof: By Theorem 3.8, for each fixed r, there are finitely many ≡r-classes and each such class
is first-order definable; moreover, the proof of Lemma 3.12 provides an explicit construction of the
first-order formulas that define the ≡r-equivalence classes. The conclusion now follows from the
fact that, by Theorem 4.3, the data complexity of FO is in L.

Pezzoli [Pez99] established that if the number of moves is part of the input, then determining
the winner of the r-move Ehrenfeucht-Fräıssé-game is a much harder task.

Theorem 4.5: The following problem is PSPACE-complete: given a positive integer r ≥ 1 and
two finite structures A and B, does the Duplicator win the r-move E-F game on A and B?

This result is proved via a reduction from QBF that entails the construction of rather compli-
cated combinatorial gadgets. It should be pointed out that, unlike many other decision problems

24

in which integers are part of the input, here the computational complexity remains the same
(PSPACE-complete) irrespective of whether the number r of moves is given in unary or in binary.
The reason is that if r is bigger than max{|A|, |B|}, then r can be replaced by max{|A|, |B|}; more-
over, this quantity is given in unary, since at least max{|A|, |B|}-many bits are needed to encode
A and B.

As shown in Section 3, first-order logic has severely limited expresive power on finite graphs.
In particular, none of the queries Disconnectivity, k-Colorability, k ≥ 2 and Hamiltonian
Path is first-order definable on the class of all finite graphs. Recall also that these queries are easily
expressible in existential second-order logic ESO, one of the two syntactically simplest fragments
of second-order logic. This increase in expressive power, however, is accompanied by an increase in
complexity.

Proposition 4.6: The data complexity of ESO is NP-complete.

Proof: Let Ψ be a fixed ESO-sentence of the form (∃S1) · · · (∃Sm)ϕ(S1, . . . , Sm), where
ϕ(S1, . . . , Sm) is a first-order sentence. Given a finite structure A, one can check that A |= Ψ by
first “guessing” relations S ′

1, . . . , S
′
m on A and then verifying that (A, S ′

1, . . . , S
′
m) |= ϕ(S1, . . . , Sm).

This computation can be carried out in nondeterministic polynomial time, since the size of the rela-
tions guessed is polynomial in |A| and the data complexity of first-order logic is in P. Consequently,
the data complexity of ESO is in NP.

Since 3-Colorability is definable by a monadic ESO-sentence and it is an NP-complete prob-
lem, it follows that the data complexity of monadic ESO is NP-complete; hence, also the data
complexity of ESO is NP-complete.

Vardi [Var82] has shown that both the expression complexity of ESO and the combined complex-
ity of ESO are NEXPTIME-complete; this is another instance of the exponential-gap phenomenon
between the data complexity and the expression (and combined) complexity of a logic.

The link between the data complexity of ESO and NP turns out to be much stronger. The
exact connection is provided by the following result, which has become known as Fagin’s Theorem
and constitutes the prototypical result of descriptive complexity.

Theorem 4.7: ([Fag74]) The following are equivalent for a Boolean query Q on the class F of all
finite σ-structures.

• Q is in NP.

• Q is ESO-definable on F .

In other words, NP = ESO on F .

Fagin’s Theorem asserts that in a precise sense ESO captures NP on the class of all finite struc-
tures and, thus, provides a logic-based and machine-independent characterization of NP. Moreover,

it makes it possible to reformulate the “NP
?
= coNP” question in terms of logic alone.

Corollary 4.8: The following statements are equivalent:

• NP is closed under complements (in other words, NP = coNP).

• ESO is closed under complements on the class F of all finite structures (in other words,
ESO[F] = USO[F]).

25

• 3-Colorability is USO-definable on the class of all finite graphs.

• Hamiltonian Path is USO-definable on the class of all finite graphs.

Proof: The result follows from Fagin’s Theorem 4.7 and the NP-completeness of 3-Colorability
and Hamiltonian Path.

5 Ehrenfeucht-Fräıssé Games for Existential Second-Order Logic

In this section, we consider certain extensions of the Ehrenfeucht-Fräıssé games that are powerful
enough to characterize definability in existential second-order logic.

Definition 5.1: Let s1, . . . , sk, r be positive integers, σ a vocabulary, and let A, B be two σ-
structures. The (〈s1, . . . , sk〉, r)-Ehrenfeucht-Fräıssé-game on A and B is played according to the
following rules. In a run of the game:

• The Spoiler picks relations S1, . . . , Sk of arities s1, . . . , sk on A.

• The Duplicator picks relations S ′
1, . . . , S

′
k of arities s1, . . . , sk on B.

• After this, the two players engage in a run of the r-move Ehrenfeucht-Fräıssé game on the
expanded structures (A, S1, . . . , Sk) and (B, S ′

1, . . . , S
′
k).

• Let (a1, b1), . . . , (ar, br) be the elements of A×B picked by the two players in their r moves.
The Duplicator wins this run if the mapping

ai 7→ bi, 1 ≤ i ≤ r, and cAi 7→ cBj , 1 ≤ j ≤ s,

is a partial isomorphism, that is, an isomorphism between the substructure (A, S1, . . . , Sk) �
{a1, . . . , ar} of (A, S1, . . . , Sk) generated by {a1, . . . , ar} and the substructure (B, S ′

1, . . . , S
′
k) �

{b1, . . . , br} of (B, S′
1, . . . , S

′
k) generated by {b1, . . . , br}.

Otherwise, the Spoiler wins the run.

• The Duplicator wins the (〈s1, . . . , sk〉, r) game on A and B if the Duplicator can win every
run of the game, i.e., if (s)he has a winning strategy for this game.

Otherwise, the Spoiler wins the (〈s1, . . . , sk〉, r)-Ehrenfeucht-Fräıssé game on A and B.

Using Theorem 3.8 and the semantics of existential second-order logic, it is quite straightforward
to establish the following result.

Proposition 5.2: Let Ψ be an ESO-sentence of the form (∃P1) · · · (∃Pk)ψ, where each Pi is a
relation symbol of arity si and ψ is a first-order sentence of quantifier rank r. If A |= Ψ and the
Duplicator wins the (〈s1, . . . , sk〉, r)-Ehrenfeucht-Fräıssé game on A and B, then B |= Ψ.

In turn, this result gives rise to a combinatorial method for establishing limitations in the
expressive power of existential second-order logic on arbitrary classes of structures. Moroever, it is
not hard to show that the method is complete as well.

Method 5.3: The Method of Ehrenfeucht-Fräıssé Games for ESO

Let σ be a vocaculary, C a class of σ-structures, and Q a Boolean query on C.

26

Soundness: To show that Q is not ESO-definable on C, it suffices to show that for every sequence
of positive integers s1, . . . , sk, r, there are structures A and B in C such that

• Q(A) = 1 and Q(B) = 0.

• The Duplicator wins the (〈s1, . . . , sk〉, r)-Ehrenfeucht-Fräıssé-game on A and B.

Completeness: This method is also complete, i.e., if Q is not ESO-definable on C, then for every
sequence s1, . . . , sk, r of positive integers such structures A and B exist.

Corollary 4.8 and Method 5.3 imply that the NP
?
= coNP question is equivalent to a problem

about combinatorial games.

Corollary 5.4: The following statements are equivalent.

• NP 6= coNP.

• For every s1, . . . , sk, r, there are finite graphs G and H such that

– G is not 3-Colorable and H is 3-Colorable.

– The Duplicator wins the (〈s1, . . . , sk〉, r)-Ehrenfeucht-Fräıssé game game on G and H.

Although (〈s1, . . . , sk〉, r)-Ehrenfeucht-Fräıssé games yield a sound and complete method for
studying ESO-definability (thus, potentially leading to the separation of NP from coNP), so far this
approach has had rather limited successes. The reason is that formidable combinatorial difficulties
arise in implementing this method when one of the integers si is bigger than 1, that is, when dealing
with ESO-formulas in which at least one of the existentially quantified second-order variables has
arity bigger than 1. Nonetheless, this method has made it possible to obtain lower bounds for
definability in monadic ESO, which is the fragment of existential second-order logic that can be
analyzed using (〈1, 1, . . . , 1〉, r)-Ehrenfeucht-Fräıssé games.

In certain cases, the study of ESO-definability can be made easier using a variant of the
(〈s1, . . . , sk〉, r)-Ehrenfeucht-Fräıssé games that has become known as the Ajtai-Fagin games. In
what follows in this section, we present the intuition behind the Ajtai-Fagin games and highlight
some of their applications to the study of definability in monadic ESO. The first observation is that,
when the method of Ehrenfeucht-Fräıssé games or one of their variants is used to show that a par-
ticular query is not definable in a certain logic, then one can expand the scope of the game and view
the selection of the structures A and B as being part of the Duplicator’s moves. Now, one of the
main difficulties with the (〈s1, . . . , sk〉, r)-Ehrenfeucht-Fräıssé games is that in effect the Duplicator
has to select the structure B before the Spoiler has picked relations S1, . . . , Sk on A. To bypass
the Duplicator’s task easier, Ajtai and Fagin [AF90] introduced a variant of the (〈s1, . . . , sk〉, r)-
Ehrenfeucht-Fräıssé games in which the Duplicator selects the structure B after the Spoiler has
picked relations S1, . . . , Sk on A. The next definition introduces the Ajtai-Fagin games for monadic
ESO; it can be easily extended to games for the full ESO with notational modifications only.

Definition 5.5: Let C be a class of σ-structures, Q a Boolean query on C, and k, r two positive
integers. The (k, r)-Ajtai-Fagin game for Q on C is played according to the following rules. In a
run of the game:

• The Duplicator picks a structure A ∈ C such that Q(A) = 1

• The Spoiler picks k-unary relations S1, . . . , Sk on A (i.e, k subsets of A)

27

• The Duplicator picks a structure B ∈ C such that Q(B) = 0 and then picks k unary relations
S′

1, . . . , S
′
k on B (i.e., k subsets of B).

• After this, the two players engage in a run of the r-move Ehrenfeucht-Fräıssé game on the
expanded structures (A, S1, . . . , Sk) and (B, S ′

1, . . . , S
′
k).

The winning conditions are as in Definition 5.1.

Note that another difference between the Ajtai-Fagin games and the Ehrenfeucht-Fräıssé games
considered earlier is that each Ajtai-Fagin game is defined with respect to a particular Boolean
query, i.e., the query itself is one of the parameters of the game. The Ajtai-Fagin games give rise
to the following method for investigating definability in monadic ESO.

Method 5.6: The Method of Ajtai-Fagin Games for monadic ESO

Let σ be a vocaculary, C a class of σ-structures, and Q a Boolean query on C.

Soundness: To show that Q is not monadic ESO-definable on C, it suffices to show that for every
k and every r, the Duplicator wins the (k, r)-Ajtai-Fagin game for Q on C.

Completeness: This method is also complete, i.e., if Q is not monadic ESO-definable on C, then
for every k and every r, the Duplicator wins the (k, r)-Ajtai-Fagin game for Q on C.

Fagin [Fag75] showed that the Connectivity query is not monadic ESO-definable on the class
of all finite graphs using Ehrenfeucht-Fräıssé games for monadic ESO. Later on, Fagin, Stockmeyer
and Vardi [FSV95] obtained a much simpler proof of this result using Ajtai-Fagin games for monadic
ESO and Theorem 3.26 about d-equivalence.

Theorem 5.7: The Connectivity query is not monadic ESO-definable on the class of all finite
graphs.

Proof: (Sketch) We will show that, for every positive integer k and every positive integer r, the
Duplicator wins the (k, r)-Ajtai-Fagin game for Connectivity on the class of all finite graphs.

Suppose that k is a positive integer, A = (A,E) is an undirected cycle, and S1, . . . , Sk are
unary relations on A. For every node b ∈ A, we define the color of b to be the Boolean vector
c(b) = (c1, . . . , cs) such that if b ∈ Si, then ci = 1; otherwise, ci = 0. Note that the number of
colors depends only on k. Moreover, it is easy to see that, for every d ≥ 1 and every a ∈ A, the
neighborhood N(a, d) of a in (A, S1, . . . , Sk) consists of 2d−1 points whose distance from a in A is
at most d, and is completely determined by the colors of these points (this, of course, hinges on the
fact that each Si is a unary relation on A). Consequently, the number of different d-types depends
only on k and d (and not on the cardinality |A| of A).

Using these facts, we can show that the Duplicator wins the (k, r)-Ajtai-Fagin game for Con-
nectivity on the class of all finite graphs by playing according to the following strategy.

• The Duplicator picks a large enough cycle A, so that, for every unary relations S1, . . . , Sk on
A, there are at least 4d points with the same d-type in (A, S1, . . . , Sk), where d = 3r−1.

• After the Spoiler picks unary relations S1, . . . , Sk on A, there are two nodes ap and aq in A
having the same d-type and are such that N(ap, 2d) ∩N(aq, 2d) = ∅.

• The Duplicator constructs B = B0 ⊕ B1 consisting of two disjoint cycles B0 and B1 con-
structed as follows:

28

– The Duplicator disconnects A by “pinching” it at ap, aq.

– The Duplicator creates B0 by joining ap and aq+1 in the first component.

– The Duplicator creates B1 by joining ap+1 and aq in the second component.

• Finally, the Duplicator picks the same unary relations S1, . . . , Sk in B as the ones picked by
the Spoiler on A.

Note the structures (A, S1, . . . , Sk) and (B, S1, . . . , Sk) are d-equivalent, as each node in A has
the same d-type as its “clone” in B. Consequently, the Duplicator wins the r-move Ehrenfeucht-
Fräıssé game on these structures.

Since the Disconnectivity query is monadic ESO-definable on the class of all finite graphs,
we obtain the following separation between monadic ESO and monadic USO on finite graphs.

Corollary 5.8: Monadic ESO is not closed under complements on the class of all finite graphs.

It should be pointed out that Theorem 5.7 and Corollary 5.8 do not have any implications

for the NP
?
= coNP problem, because Connectivity is a polynomial-time computable query and

monadic ESO cannot express all NP queries. Any breakthroughs towards the separation of NP
from coNP using combinatorial games will entail proving limitations in the expressive power of
existential second-order formulas in which the existentially quantified second-order variables have
arity bigger than one. So far, however, the successes of combinatorial games have been essentially
limited to monadic existential second-order logic. In particular, the following test problem is open.

Problem 5.9: Show that there is a Boolean query Q on finite graphs such that

• Q is in NP (hence, Q is ESO-definable).

• Q is not binary ESO-definable, i.e., Q is not definable by any ESO-sentence (∃P1) · · · (∃Pk)ψ,
where each Pi is a binary relation symbol.

Nonetheless, combinatorial games have been successfully used to establish limitations in the
expressive power of monadic ESO over the class of finite graphs with “built-in” predicates, such as
a successor relation (de Rougemont [dR87]) or a total order (Schwentick [Sch94]). Such results are
viewed as the first stepping stone towards analyzing definability in binary existential second-order
logic.

Theorem 5.10: The Connectivity query is not monadic ESO-definable on the class of finite
structures with successor, i.e., on finite structures of the form G = (V,E,Suc), where E is a binary
relation on V and Suc is the graph of a successor function on V .

Theorem 5.11: The Connectivity query is not monadic ESO-definable on the class of finite
ordered graphs, i.e., finite structures of the form G = (V,E,≤), where E is a binary relation on V
and ≤ is a linear order on V .

29

6 Logics with Fixed-Point Operators

In Section 3, we used Ehrenfeucht-Fräıssé-games to establish that first-order logic has severely
limited expressive power on the class G of all finite graphs; in particular, first-order logic fails to
express such basic polynomial-time computable queries as Transitive Closure, Acyclicity, 2-
Colorability, Eulerian, and Planarity. Several different mechanisms can be used to augment
the syntax of first-order logic, so that the resulting logic has strictly higher expressive power of finite
structures. We already saw that second-order quantification is such a mechanism. In fact, Fagin’s
Theorem 4.7 calibrates the exact gain in expressive power that is achieved when only existential
second-order quantification in prefix form is allowed; moreover, it implies that, unless P = NP,
even the syntactically simplest fragments of second-order logic can express queries that are not
polynomial-time computable.

As mentioned earlier, the limited expressive power of first-order logic on finite graphs can be
interpreted as an inability to express recursion. This realization suggests that higher expressive
power can also be achieved by augmenting the syntax of first-order logic with mechanisms that
embody recursion. Perhaps the most natural such mechanism is to use fixed-points of operators
that describe recursive specifications; this approach has been used fruifully in many different areas
of computer science, including computability theory, logic programming and denotational semantics
of programming languages. As a motivating example, let us consider the factorial function f(n),
which is usually defined inductively as

∣

∣

∣

∣

f(o) = 1
f(n+ 1) = (n+ 1)f(n)

Alternatively, the factorial function can be defined as a fixed-point of the recursive specification

f = λn.(n = 0 → 1 � (n+ 1)f(n)).

Observe that the building blocks of the above recursive specification are operations on functions,
such as definition by cases and multiplication. Here, we are interested in developing a formalism
for specifying queries recursively. The key idea is to describe recursive specifications using formu-
las of first-order logic and then augment the syntax of first-order logic with fixed-points of such
specifications. Before making this idea precise, we need to develop the basics of fixed-point theory.

6.1 Operators and Fixed-Points

Let A be a set and k a positive integer. A k-ary operator on A is a mapping Φ : P(Ak) → P(Ak),
where P(Ak) is the powerset of Ak (that is, the set of all k-ary relations on the universe A of A).

A k-ary relation P is a fixed-point of the operator Φ if P = Φ(P). Thus, every fixed-point of Φ
satisfies the recursive specification

(x1, . . . , xk) ∈ P ⇐⇒ (x1, . . . , xk) ∈ Φ(P).

An operator may have no fixed points whatsoever or it may have more than one fixed-point. For
instance, the unary operator Φ(P) = P , where P is the complement of P , has no fixed-points. In
contrast, let Φ be the binary operator such that if G = (V,E) is a graph and P is a binary relation
on V , then

Φ(P) = {(a, b) : G |= E(a, b) ∨ P (a, b) ∨ (∃z)(E(a, z) ∧ P (z, b))}.

This operator may have several fixed-points, since every transitive relation P containing the edge
relation is a fixed-point of it.

30

A k-ary relation P ∗ is the least fixed-point of Φ if P ∗ is a fixed-point of Φ and for every fixed-
point P of Φ, we have that P ∗ ⊆ P . We write lfp(Φ) to denote the least fixed-point of Φ (if
it exists). For instance, if Φ is the above binary operator on graphs G = (V,E), then lfp(Φ) is
the transitive closure of the relation E. The property of having a least fixed-point is shared by
every operator which is monotone; furthermore, the least fixed-point of a monotone operator can
be obtained by iterating the operator. We now spell out these concepts and facts in precise terms.

Definition 6.1: Let Φ : P(Ak) → P(Ak) be a k-ary operator on a set A.

• The finite stages Φn, n ≥ 1, of Φ are defined by the induction:
∣

∣

∣

∣

Φ1 = Φ(∅)
Φn+1 = Φ(Φn).

In general, for every ordinal α, the stage Φα of Φ is defined by the transfinite induction

Φα = Φ(
⋃

β<α Φβ).

We put Φ∞ =
⋃

αΦα for the union of all stages of Φ.

• The operator Φ is monotone if for every two k-ary relations P1, P2 on A such that P1 ⊆ P2,
we have that Φ(P1) ⊆ Φ(P2).

The next result, which is known as the Knaster-Tarski Theorem, describes the fundamental prop-
erties of monotone operators.

Theorem 6.2: [Kna28, Tar55] Let Φ be a monotone k-ary operator on a set A.

• Φ has a least fixed-point lfp(Φ).

• There is an ordinal γ < |Ak|+, where |Ak|+ is the smallest cardinal greater than the cardinal
|Ak| of Ak, such that

lfp(Φ) = Φ∞ = Φγ = Φδ, for every δ > γ.

In particular, if A is a finite set, then there is an integer s ≤ |A|k such that

lfp(Φ) = Φ∞ = Φs = Φδ, for every δ > s.

• The least fixed-point of Φ is equal to the intersection of all fixed-points of Φ.

Proof: Since Φ is monotone, it is easy to show by transfinite induction that the sequence of stages
is increasing, that is, if α < β, then Φα ⊆ Φβ. Since each Φα is a k-ary relation on A, it has at
most |Ak| elements. It follows that there must exist an ordinal γ < |Ak|+ such that Φγ = Φγ+1.
Consequently, Φγ is a fixed-point of Φ and also Φ∞ = Φγ = Φδ, for every δ > γ. Moreover, using
the monotonicity of Φ again, it is easy to show by transfinite induction that if P is a fixed-point
of Φ, then Φα ⊆ P , for every α. Consequently, Φδ is the least fixed-point lfp(Φ) of Φ, and also the
intersection of all of its fixed-points.

Definition 6.3: Let Φ be a monotone k-ary operator on a set A. The closure ordinal of Φ, denoted
by cl(Φ), is the smallest ordinal ordinal γ such that Φγ =

⋃

β<γ Φβ.
Note that if A is a finite set, then cl(Φ) is a positive integer.

31

Let Φ be a k-ary operator on a set A. A k-ary relation P ∗ is the greatest fixed-point of Φ if P ∗

is a fixed-point of Φ and for every fixed-point P of Φ, we have that P ⊆ P ∗. We write gfp(Φ) to
denote the greatest fixed-point of Φ (if it exists). Every monotone operator has a greatest fixed-
point that can be obtained via an iteration that is dual to the iteration used to obtain the least
fixed-point of the operator. Specifically, the dual stages Φα of Φ, where α is an ordinal, are defined
by the transfinite induction:

∣

∣

∣

∣

Φ1 = Φ(Ak)
Φα = Φ(

⋂

β<αΦβ).

We also put Φ∞ =
⋂

α Φα for the intersection of all dual stages of Φ. If Φ is monotone, then its
greatest fixed-point gfp(Φ) is equal to Φ∞ and also equal to the union of all fixed-points of Φ.
Moreover, there is an ordinal γ < |Ak|+ such that

gfp(Φ) = Φ∞ = Φγ = Φδ, for every δ > γ.

The duality relationship between the least fixed-point and the greatest fixed-point of a monotone

k-ary operator Φ can also be seen by considering the the dual operator Φ̆ of Φ, where Φ̆(P) = Φ(P)
and P = Ak − P is the complement of P . If Φ is a monotone operator, then so is its dual
Φ̆. Moreover, using transfinite induction, it is easy to show that Φ̆α = Φα, for every ordinal α.

Consequently, gfp(Φ) = lfp(Φ̆). Similarly, it is easy to show that lfp(Φ) = gfp(Φ̆).
As an example of an operator with interesting greatest fixed-points, let Φ be the binary operator

such that if G = (V,E) is a graph and P is a binary relation on V , then

Φ(P) = {(a, b) : G |= (∀a′)(E(a, a′) → (∃b′)(E(b, b′) ∧ P (a′, b′)) ∧

(∀b′)(E(b, b′) → (∃a′)(E(a, a′) ∧ P (a′, b′)))}.

The greatest fixed-point gfp(Φ) of Φ is the greatest bisimulation relation on the G = (V,E); the
concept of bisimulation plays an important role in modal logic [vB84] and also in the semantics of
concurrent processes [Mil90]. The same example can also be used to illustrate the concept of the
dual operator Φ̆ of Φ, which in this case is defined by

Φ̆(P) = {(a, b) : G |= (∃a′)(E(a, a′) ∧ (∀b′)(E(b, b′) → P (a′, b′)) ∧

(∃b′)(E(b, b′) ∧ (∀a′)(E(a, a′) → P (a′, b′)))}.

In the sequel, we will focus on operators that are definable using formulas of some logical
formalism. Let σ be a vocabulary, S a k-ary relation symbol not in σ, and ϕ(x1, . . . , xk, S) a
formula of some logic over the vocabulary σ ∪ {S} with free variables among x1, . . . , xk. On every
σ-structure A, the formula ϕ(x1, . . . , xk, S) gives rise to the k-ary operator Φ : P(Ak) → P(Ak)
such that if P is a k-ary relation on A, then

Φ(P) = {(a1, . . . , ak) : A |= ϕ(a1, . . . , ak, P)}.

For instance, both the operator whose least fixed-point is the transitive closure of the edge relation
E of a graph G = (V,E) and the operator whose greatest fixed-point is the greatest bisimulation
relation on G = (V,E) are definable using first-order formulas. In what follows, when we will
use the terms “the least fixed-point of a formula” and the “greatest fixed-point of a formula”
for the least fixed-point and the greatest fixed-point of the operator associated with the formula.
Similarly, we will use the term “the closure ordinal of a formula” for the closure ordinal of the
operator associated with the formula, and we will denote it by cl(ϕ).

32

Operators also arise from formulas with parameters. Specifically, assume that σ is a vocabulary,
S1, S2, . . . , Sm are relation symbols not in σ, and ϕ(x1, . . . , xk, y1, . . . , yn, S1, . . . , Sm) is a formula
of some logic over the vocabulary σ∪{S1, . . . , Sm} with free variables among x1, . . . , xk, y1, . . . , yn.
Assume also that the arity of the relation symbol Si is equal to k. For every σ-structure A, every se-
quence b1, . . . , bn of elements from the universeA of A, and every sequence T1, . . . , Ti−1, Ti+1, . . . , Tm
of relations on A whose arities match those of S1, . . . , Si−1, Si+1, . . . , Sm, the formula ϕ gives rise
to the k-ary operator Φ : P(Ak) → P(Ak) such

Φ(P) = {(a1, . . . , ak) : A |= ϕ(a1, . . . , ak, b1, . . . , bn, T1, . . . , Ti−1, P, Ti+1, . . . , Tm)}.

Note that operators with parameters can also be thought of as operators (without parameters) on
structures expanded with the given parameters.

As an example, let ϕ(x1, y1, S) be the first-order formula E(y1, x1) ∨ (∃z)(S(z) ∧ E(z, x1)) in
which y1 is a parameter. If G = (V,E) is a graph and a is a node in V , then this formula gives rise
to the unary operator Φ such that

Φ(P) = {b : G |= E(a, b) ∨ (∃z)(P (z) ∧E(z, b))}.

Then the least-fixed point lfp(Φ) consists of all nodes b in V that are reachable from a. Similarly,
let ϕ(x1, y1, S1, S2) be the first-order formula E(y1, x1)∨ (∃z)(S1(z)∧S2(z)∧E(z, x1)) in which y1

and S2 are parameters. If G = (V,E) is a graph, a is a node in V , and T is a subset of V , then
this formula gives rise to the unary operator Φ such that

Φ(P) = {b : G |= E(a, b) ∨ (∃z)(P (z) ∧ T (z) ∧E(z, b))}.

Then the least-fixed point lfp(Φ) consists of all nodes b in V that are reachable from a via a path
in which every intermediate node is in T .

It is easy to see that if ϕ(x1, . . . , xk, S) is an arbitrary first-order formula over the vocabulary
σ ∪ {S}, then, for every n ≥ 1, there is a first-order formula ϕn(x1, . . . , xk) over the vocabulary σ
such that it defines the n-th stage Φn of the operator Φ associated with ϕ(x1, . . . , xk, S) on every
σ-structure A. Consequently, if ϕ(x1, . . . , xk, S) is a first-order formula such that the associated
operator Φ is monotone on every finite σ-structures, then for every finite σ-structure A, there is an
integer s such that the least fixed-point lfp(Φ) of Φ is definable by ϕs(x1, . . . , xk) on A. In general,
however, this integer depends on A, and there may be no integer s such that ϕs(x1, . . . , xk) defines
the least fixed-point lfp(Φ) of Φ on every finite σ-structure, because lfp(Φ) may not be first-order
definable. For instance, if ϕ(x, y, S) is the formula E(x, y) ∨ (∃z)(E(x, z) ∧ S(z, y)), then the least
fixed-point lfp(Φ) is the transitive closure of E; moreover, for every n ≥ 1, ϕn(x, y) is a first-order
formula asserting that there is a path of length at most n from x to y. This formula defines the
transitive closure of E on every finite graph of diameter at most n, but, as we have seen earlier,
there is no first-order formula that defines the transitive closure of E on every finite graph.

6.2 Least Fixed-Point Logic

We now examine how to augment the syntax of first-order logic with least fixed-points and greatest
fixed-points of operators definable by logical formulas. Since we want our operators to be monotone,
it is natural to focus on formulas that give rise to monotone operators.

Let σ be a vocabulary, C a class of σ-structures, and ϕ(x1, . . . , xk, S) a formula of some
logic over the vocabulary σ ∪ {S}, where S is a k-ary relation symbol and the free variables

33

of ϕ are among x1, . . . , xk. We say that ϕ(x1, . . . , xk, S) is monotone on C if for every struc-
ture A ∈ C, the operator Φ associated with ϕ(x1, . . . , xk, S) is monotone. More generally, as-
sume that ϕ(x1, . . . , xk, y1, . . . , yn, S, S1, . . . , Sm) be a formula of some logic over the vocabulary
σ ∪ {S, S1, . . . , Sm}, where S is a k-ary relation symbol and the free variables of ϕ are among
x1, . . . , xk, y1, . . . , yn. We say that ϕ(x1, . . . , xk, y1, . . . , yn, S, S1, . . . , Sm) is monotone on C if for
every structure A ∈ C, every sequence b1, . . . , bn of elements from the universe A of A, and
every sequence T1, . . . , Tm of relations on A whose arities match those of S1, . . . , Sm, the op-
erator Φ associated with the formula ϕ(x1, . . . , xk, y1, . . . , yn, S, S1, . . . , Sm) and the parameters
b1 . . . , bn, T1, . . . , Tm is monotone.

So, it is tempting to consider augmenting the syntax of first-order logic with the least fixed-
points and the greatest fixed-points of first-order formulas that are monotone on the class F of all
finite σ-structures. Serious difficulties arise, however, in doing so. Specifically, it is known there is no
algorithm for testing whether a given first-order formula is monotone on F [AG87]. Consequently,
if the syntax of first-order logic is augmented with the least fixed-points of first-order formulas that
are monotone on F , then the resulting logic does not have an effective syntax. One way to bypass
this obstacle is to restrict attention on positive formulas, since positivity is a syntactic property of
formulas that implies monotonicity and is easily checkable. More precisely, let ϕ(S) be a first-order
formula over a vocabulary containing a k-ary relation symbol S. We say that ϕ(S) is positive in S
if every occurrence of S in ϕ(S) is within an even number of negations. Equivalently, a first-order
formula ϕ(S) is positive in S if and only if after all occurrences of the negation symbol in ϕ(S) are
“pushed inside”, no occurrence of S is negated in the resulting formula. It is easy to verify that
if ϕ(x1, . . . , xk, S) is positive in S and the free variables of ϕ(x1, . . . , xk, S) are among x1, . . . , xk,
then it is monotone on the class S of all σ-structures (finite and infinite). Moreover, there is a
linear-time algorithm for testing whether a given first-order formula is positive. At this point, it is
also worth recalling a classical result in mathematical logic to the effect that if a first-order formula
is monotone on the class S of all σ-structures (finite and infinite), then it is logically equivalent to
a positive first-order formula. Thus, positivity is a syntactic property of first-order formulas that,
up to logical equivalence, exhausts the semantic property of monotonicity of first-order formulas
on S.

In view of the above, we will augment the syntax of first-order logic with the least fixed-points
and the greatest fixed-point of operators definable by positive first-order formulas. However, in
order to obtain a logic whose syntax is closed under the formation rules used, we will close the
syntax under applications of the operations of first-order logic (that is, Boolean connectives and
first-order quantification) and also under applications of least fixed-points and greatest fixed-points
of positive formulas, where, as with first-order logic, a formula ϕ(S) of the extended formalism
is positive in a relation symbol S if every occurrence of S in ϕ(S) is within an even number of
negations. The resulting logic is least fixed-point logic LFP, whose precise syntax and semantics
are given in the next definition.

Definition 6.4: Let σ be a vocabulary and let S1, . . . , Sn, . . . be a sequence of relation symbols
such that for every m ≥ 1, this sequence contains infinitely many relation symbols of arity m.

LFP Syntax The collection of LFP-formulas over σ is defined inductively as follows:

• Every atomic formula θ over σ ∪ {S1, . . . , Sn, . . .} is a LFP-formula. The set free(θ) is
the union of the set of all first-order variables occurring in θ and the set of all relation
symbols Si occurring in θ.

34

• If ϕ and ψ are LFP-formulas, then so are ¬ϕ, ϕ∧ψ, ϕ∨ψ. Moreover, free(¬ϕ) = free(ϕ),
free(ϕ ∧ ψ) = free(ϕ ∨ ψ) = free(ϕ) ∪ free(ψ).

• If ϕ is a LFP-formula and x is a first-order variable, then ∃xϕ and ∀xϕ are LFP-formulas.
Moreover, free(∃xϕ) = free(∀xϕ) = free(ϕ) \ {x}.

• Assume that ϕ is a LFP-formula, Si is a k-ary relation symbol in free(ϕ) which is positive
in ϕ (that is, every occurrence of Si in ϕ is within an even number of negation symbols),
x = (x1, . . . , xk) is a k-tuple of first-order variables each of which is in free(ϕ), and u =
(u1, . . . , uk) is a k-tuple of first-order variables not occuring in ϕ. Then the expressions
[lfp Six.ϕ](u) and [gfp Six.ϕ](u) are LFP-formulas. Moreover, free([lfp Six.ϕ](u)) =
free([gfp Six.ϕ](u)) = (free(ϕ) \ {x1, . . . , xk, Si}) ∪ {u1, . . . , uk}.

Notation: If ϕ is such that Si is the only relation symbol from S1, . . . , Sn, . . . that
occurs free in ϕ and all free first-order variables of ϕ are among x = (x1, . . . , xk), then
we will often write ϕ∞(u) instead of [lfp Six.ϕ](u).

LFP Semantics The semantics of least fixed logic is defined by a straightforward induction on
the construction of LFP-formulas. For instance, the semantics of [lfp Six.ϕ](u) is the least
fixed-point of the operator associated with ϕ on a σ-structure A and parameters from A corre-
sponding to the first-order variables and relation symbols in free([lfp Six.ϕ](u)). Specifically,
assume that ϕ is a LFP-formula such that free(ϕ) ⊆ {x1, . . . , xk, y1, . . . , yn, S1, . . . , Sm} and
Si is a k-ary relation symbol that is positive in ϕ. Put x = (x1, . . . , xk), y = (y1, . . . , yn). Let
A be a σ-structure, a a k-tuple from A, b a n-tuple from A, and T1, . . . , Ti−1, Ti+1, . . . , Tm
relations on A whose arities match those of the relation symbols S1, . . . , Si−1, Si+1, . . . Sm.
Then A,a |= [lfp Six.ϕ](u) if a ∈ lfp(Φ), where Φ is the k-ary operator on A such that

Φ(P) = {a ∈ Ak : A |= ϕ(a,b, T1, . . . , Ti−1, P, Ti+1, . . . , Tm)}.

Similarly, the semantics of [gfp Six.ϕ](u) is the greatest fixed-point of the operator associated
with ϕ on a σ-structure A and parameters from A corresponding to the first-order variables
and and relation symbols in free([gfp Six.ϕ](u)).

As an example, if ϕ(x1, y1, S1, S2) is the first-order formula E(y1, x1) ∨ (∃z)(S1(z) ∧ S2(z) ∧
E(z, x1)), then for every graph G = (V,E), every node a in V , and every subset T of V , the
LFP-formula [lfp S1(x1).ϕ](u) defines the set of nodes u reachable from a via a path in which every
intermediate node is in T .

The syntax of least fixed-point logic LFP, as presented in Definition 6.4, allows for arbitrary
nesting of least fixed-points and greatest fixed-points, as well as for the interleaving of least and
greatest fixed-points with the operations of first-order logic. Although the full syntax of LFP will
be used in other chapters in this volume, in the remainder of this chapter we will focus on LFP1,
which is one of the syntactically simplest and most well-studied fragments of LFP. Informally,
LFP1 is the extension of first-order logic obtained by augmenting the syntax of first-order logic
with the least fixed-points of positive formulas (without parameters) and then closing under con-
junctions, disjunctions, existential and universal first-order quantification. The precise definition
of LFP1 follows.

Definition 6.5: Let σ be a vocabulary.
The collection of LFP1-formulas over σ is defined inductively as follows:

• Every first-order formula over σ is a LFP1-formula over σ.

35

• If k is a positive integer, S is a k-ary relation symbol not in σ, and ϕ(x1, . . . , xk, S) is a
positive in S first-order formula over the vocabulary σ ∪ {S}, and u1, . . . , uk are first-order
variables, then the expression [lfp Sx.ϕ](u) is a LFP1-formula, where x = (x1, . . . , xk) and
u = (u1, . . . , uk). Since the ϕ(x1, . . . , xk, S) contains no parameters, in the sequel we will use
the expression ϕ∞(u1 . . . , uk) to denote the formula [lfp Sx.ϕ](u).

• If ϕ and ψ are LFP1-formulas over σ, then ϕ ∧ ψ and ϕ ∨ ψ are LFP1-formulas over σ.

• If ψ is a LFP1-formula over σ and x is a first-order variable, then ∃xψ and ∀xψ are LFP1-
formulas over σ.

Since every LFP1-formula is a LFP-formula, the semantics of LFP1 is inherited from the semantics
of LFP.

The study of LFP1 -definable relations on fixed infinite structures is the focus of Moschovakis’
monograph “Elementary Induction on Abstract Structures” [Mos74], where they are called inductive
relations. It should also be pointed out that in Immerman’s book on “Descriptive Complexity”
LFP is denoted by FO(LFP) (the closure of FO under least fixed-points) and LFP1 is denoted by
LFP(FO) (least fixed-points of first-order formulas).

Note that LFP1-formulas are closed under the positive operations of first-order logic, but they
are not closed under negation. Consequently, for every class C of σ-structures, it is an interesting
problem to determine whether or not the collection of LFP1-definable queries on C is closed under
complements. In what follows, we will explore the expressive power of LFP1 on the class F of all
finite σ-structures and we will also study the complementation problem for LFP1-definable queries
on F . We begin by presenting several examples that illustrate the expressive power of LFP1 on
finite structures.

Example 6.6: Transitive Closure and Connectivity.
Let ϕ(x, y, S) be the positive in S existential first-order formula

E(x, y) ∨ (∃z)(E(x, z) ∧ S(z, y)).

As seen earlier, ϕ∞(x, y) defines the Transitive Closure query TC on the class of all graphs
G = (V,E). Thus, TC is an example of a query that is LFP1-definable, but not FO-definable.
Note that for every graph G = (V,E) (finite or infinite), we have that cl(ϕ) ≤ ω.

Observe that the LFP1-formula (∀x)(∀y)ϕ∞(x, y) defines the Connectivity query CN on
the class of all graphs; this gives another example of a query that is LFP1-definable, but not
FO-definable.

If ψ(x, y, S) is the positive in S existential first-order formula

E(x, y) ∨ (∃z)(S(x, z) ∧ S(z, y)),

then ψ∞(x, y) is a LFP1-formula that also defines the Transitive Closure query TC on the
class of all graphs. Although ϕ(x, y, S) and ψ(x, y, S) have the same least fixed-points, their stages
behave differently. Specifically, for each n ≥ 1, the n-th stage ϕn(x, y) defines all pairs of nodes
that are connected via a path of length at most n, while the n-th stage ψn(x, y) defines all pairs of
nodes that are connectd via a path of length at most 2n. Thus, on a finite structure A, we have
that cl(ϕ) ≤ |A|, while cl(ψ) ≤ log(|A|).

36

Example 6.7: Path Systems
Let σ be a vocabulary consisting of a unary relation symbol and a ternary relation symbol.

Thus, a σ-structure is a structure of the form S = (F,A,R), where A is a subset of F and R is a
ternary relation on F . Such structures can be thought of as encoding proof systems in which F is
a set of formulas, A is a set of axioms, and R is a ternary rule of inference, such as modus ponens
or resolution (that is, R(f, g, h) means that f can be derived from g and h using rule R). In this
framework, a formula f ∈ F is a theorem of S if either f is one of the axioms in A or it can be
derived from other previously derived theorems g and h of S using the rule of inference R.

The following unary query, called Path System, arises naturally now: given a finite σ-structure
S = (F,A,R) and a formula f ∈ F , find the set of all theorems of S. The computational complexity
of this query was investigated by Cook [Coo74], who showed that it is P-complete under logarithmic
space reductions. In fact, this was the first problem shown to be complete for polynomial-time
computability, and its discovery gave rise to the theory of P-completeness (see [GHR95]).

Using Ehrenfeucht-Fräıssé-games, it can be proved that Path Systems is not FO-definable. It
is easy to see, however, that Path Systems is LFP1-definable. Indeed, if ϕ(x, T) is the positive in
T existential first-order formula

A(x) ∨ (∃y)(∃z)(T (y) ∧ T (z) ∧R(x, y, z)),

then Path Systems is definable by the least fixed-point ϕ∞(x) of ψ(x, T).

Example 6.8: Acyclicity
Let ψ(x, S) be the positive in S universal first-order formula

(∀y)(E(y, x) → S(y)).

Clearly, the first stage ψ1(x) defines the set of all nodes x of in-degree equal to 0. Similarly, the
second stage ψ2(x) defines the set of all nodes x that either have in-degree equal to 0 or have the
property that if y is a node such that E(y, x), then y has in-degree equal to 0. By continuing this
analysis for all stages ψn(x), n ≥ 1, it can be seen that on every finite graph G = (V,E), the least
fixed-point ψ∞(x) defines the set of all nodes in V such that “no path down from x leads to a
cycle”, that is, the set of all nodes x such that there is no sequence of nodes y1, . . . , ym such that
E(x, y1), E(y1, y2), . . ., E(ym−1, ym) and ym is a node on a cycle of G. It follows that Acyclicity
is a LFP1-definable query, since it is definable by the LFP1-formula (∀x)ψ∞(x).

Although our main focus is on finite structures, it is worth pointing out that on every graph
G = (V,E) (finite or infinite), the least fixed-point ψ∞(x) of ψ(x, S) defines the well-founded part
of E, that is the set of all nodes x in V such that there is no infinite descending E-chain E(x, y1),
E(ym, ym+1), m ≥ 1. For finite graphs, of course, the well-founded part of E is the set of all nodes
x such that no path down from x leads to cycle. It should also be pointed out that the closure
ordinal of the formula ψ(x, S) can be arbitrarily large. Indeed, if G = (V,E) is a well-ordering of
rank α, then cl(ψ) = α.

Example 6.9: Geography
Every finite graph G = (V,E) gives rise to a two-person game played according to the following

rules: Player I and Player II take turns picking nodes in V ; if a is the last node picked, then the
player whose turn is to play next must pick a node b such that E(a, b), else this player loses. This
abstracts a game played between two children in which they take turns and write down the name
of a city whose first letter is the same as the last letter of the city written down in the previous
step of the game.

37

Consider now the following unary query, called Geography: given a finite graph G = (V,E)
and a node v in V , find the set of all nodes v that are winning positions for Player I. It is well known
that this query is P-complete (see [GHR95]); moreover, using Ehrenfeucht-Fräıssé-games, it can be
shown that it is not FO-definable. It is easy to see, however, that Geography is LFP1-definable.
Indeed, if ϕ(x, S) is the positive in S universal-existential first-order formula

(∀y)¬E(x, y) ∨ (∀y)(E(x, y) → (∃z)(E(y, z) ∧ S(z))),

then on every graph G = (V,E), the least fixed-point ϕ∞(x) of ϕ(x, S) defines the set of all winning
positions for Player I.

As a byproduct of Theorem 6.2 and the preceding Examples 6.7 and 6.9, we can determine the
data complexity of LFP and of LFP1.

Proposition 6.10: The data complexity of LFP is P-complete; the data complexity of LFP1 is
P-complete as well.

Proof: (Sketch) Every LFP-definable query is in P, because, given a finite σ-structure, the least
fixed-points and greatest fixed-points of LFP-formulas can be evaluated by iterating the stages
of the associated operator a polynomial number of times in the size of the given structure (and
each step in this iteration can be carried out in time bounded by a polynomial in the size of the
structure). Thus, the data complexity of LFP (and, a fortiori, of LFP1) is in P. Since LFP1 can
express P-complete queries, such as Path System and GEOGRAPHY, it follows that the data
complexity of LFP1 (and, a fortiori, of LFP) is P-complete.

It is also known that the expression complexity and the combined complexity of LFP and of
LFP1 are EXPTIME-complete [Var82]; this is yet another instance of the exponential-gap phe-
nomenon between data complexity and the expression (and combined) complexity of a logic.

Let σ be a vocabulary containing at least one relation symbol of arity 2 or higher, and let
F be the class of all finite σ-structures. Although LFP can express P-complete queries on F , it
cannot express every polynomial-time computable query on F . Indeed, in the next section we will
show that LFP cannot express counting queries, such as Even Cardinality. Thus, the following
proper containments hold on F :

FO(F) ⊂ LFP(F) ⊂ P.

Immerman [Imm82, Imm86] and Vardi [Var82], however, showed that LFP can express all polynomial-
time computable queries on classes of ordered finite structures, that is, on classes of finite structures
in which one of the relations is a linear order on the universe of the structure.

Theorem 6.11: [Immerman [Imm82, Imm86], Vardi [Var82]] . Let C be a class of ordered finite
structures. The following are equivalent for a query Q on C.

• Q is polynomial-time computable.

• Q is LFP-definable on C.

In other words, P(C) = LFP(C).

38

So far, we have focused on recursive specifications of single queries. In many areas of computer
science, however, it is quite common to specify objects recursively using mutual recursion, that is,
the object of interest is defined together with several other auxiliary objects via a simultaneous
recursive specification. In what follows, we formalize the mechanism of mutual recursion for queries
and explore its basic properties.

Definition 6.12: Let A be a set.

• A system of operators on a A is a finite sequence (Φ1, . . . ,Φm) of mappings

Φi : P(Ak1) × · · · × P(Akm) → P(Aki), 1 ≤ i ≤ m.

• A sequence (P1, . . . , Pm) of relations on A is a fixed-point of the system (Φ1, . . . ,Φm) if
Pi ⊆ Aki , for 1 ≤ i ≤ m, and (Φ1(P1), . . . ,Φm(Pm)) = (P1, . . . , Pm).

• A sequence (P1, . . . , Pm) of relations on A is the least fixed-point of the system (Φ1, . . . ,Φm)
if it is a fixed-point of (Φ1, . . . ,Φm) and for every fixed-point (P ′

1, . . . , P
′
m) of (Φ1, . . . ,Φm),

we have that Pi ⊆ P ′
i , for 1 ≤ i ≤ m.

We write lfp(Φ1, . . . ,Φm) to denote the least fixed-point of (Φ1, . . . ,Φm), if it exists.

• A system (Φ1, . . . ,Φm) is monotone if for every two sequences (P1, . . . , Pm), (P ′
1, . . . , P

′
m)

of relations on A such that Pi ⊆ P ′
i ⊆ Aki , 1 ≤ i ≤ m, we have that Φi(P1, . . . , Pm) ⊆

Φi(P
′
1, . . . , P

′
m), for 1 ≤ i ≤ m.

• The (finite) stages (Φn
1 , . . . ,Φ

n
m), n ≥ 1, of the system (Φ1, . . . ,Φm) are defined by the fol-

lowing simultaneous induction:

∣

∣

∣

∣

Φ1
i = Φi(∅, . . . , ∅), 1 ≤ i ≤ m

Φn+1
i = Φi(Φ

n
1 , . . . ,Φ

n
m), 1 ≤ i ≤ m.

In general, for every ordinal α, the stage (Φα
1 , . . . ,Φ

α
m) is defined by the simultaneous trans-

finite induction

Φα
i = Φi(

⋃

β<α Φβ
1 , . . . ,

⋃

β<α Φβ
m), 1 ≤ i ≤ m.

We put (Φ∞
1 , . . . ,Φ

∞
m) = (

⋃

α Φα
1 , . . . ,

⋃

αΦα
m) for the union of the stages.

Using simultaneous transfinite induction, it is easy to verify that the Knaster-Tarski Theorem
6.2 extends to monotone systems of operators.

Theorem 6.13: Let A be a set and (Φ1, . . . ,Φm) a monotone system of operators on A.

• (Φ1, . . . ,Φm) has a least fixed-point lfp(Φ1, . . . ,Φm).

• There is an ordinal γ such that

lfp(Φ1, . . . ,Φm) = (Φ∞
1 , . . . ,Φ

∞
m) = (Φγ

1 , . . . ,Φ
γ
m) = (Φδ

1, . . . ,Φ
δ
m), for every δ > γ.

If A is a finite set, then there is an integer s ≤
∏m
i=1 |A|

ki such that

lfp(Φ1, . . . ,Φm) = (Φ∞
1 , . . . ,Φ

∞
m) = (Φs

1, . . . ,Φ
s
m) = (Φδ

1, . . . ,Φ
δ
m), for every δ > s.

39

• The least fixed-point lfp(Φ1, . . . ,Φm) of (Φ1, . . . ,Φm) is equal to the (coordinatewise) inter-
section of all fixed-points of (Φ1, . . . ,Φm).

Definition 6.14: Let (Φ1, . . . ,Φm) be a monotone system of operators on A. The closure ordinal
of this system, denoted by cl(Φ1, . . . ,Φm), is the smallest ordinal ordinal γ such that

(Φγ
1 , . . . ,Φ

γ
m) = (

⋃

β<γ

Φβ
1 , . . . ,

⋃

β<γ

Φβ
m).

We now consider systems of operators arising from first-order formulas.

Definition 6.15: Let σ be a vocabulary.

• A system of first-order formulas is a sequence

(ϕ1(x1, S1, . . . , Sm), . . . , ϕm(xm, S1, . . . , Sm)),

of first-order formulas over the vocabulary σ ∪ {S1, . . . , Sm) such that each xi is a sequence
of variables whose length is equal to the arity of the relation symbol Si, 1 ≤ i ≤ m (of course,
some of the relation symbols S1, . . . , Sm may not occur in the formula ϕi).

• If A is a σ-structure, then a system of first-order formulas as above gives rise to a system
(Φ1, . . . ,Φm) of operators on A such that for every i ≤ m,

Φi(P1, . . . , Pm) = {ai : A |= ϕi(ai, P1, . . . , Pm)}.

• Let (ϕ1(x1, S1, . . . , Sm), . . . , ϕm(xm, S1, . . . , Sm)) be a system of first-order formulas each of
which is positive in S1, . . . , Sm. We write (ϕ∞

1 , . . . , ϕ
∞
m) for the least fixed-point of the mono-

tone system associated with this system of positive first-order formulas. Similarly, we write
cl(ϕ1, . . . , ϕm) for the closure ordinal of this system.

Example 6.16: Even Path and Odd Path.
Let ϕ1(x, y, S1, S2) be the positive first-order formula

E(x, y) ∨ (∃z)(E(x, z) ∧ S2(z, y))

and let ϕ2(x, y, S1, S2) be the positive first-order formula

(∃z)(E(x, z) ∧ S1(z, y)).

Consider the least fixed-point (ϕ∞
1 , ϕ

∞
2) of the system consisting of these two formulas. It is easy

to see that ϕ∞
1 defines the Odd Path query OP on graphs and ϕ∞

2 defines the Even Path query
EP on graphs, where for every graph G = (V,E)

OP (G) = {(a, b) ∈ V 2 : there is a path of odd length from a to b}

EP (G) = {(a, b) ∈ V 2 : there is a path of even length from a to b}.

The next result asserts that least fixed-points of systems of positive first-order formulas have the
same expressive power as LFP1-formulas. Moreover, it asserts that systems consisting of positive
existential and positive universal first-order formulas are as powerful as systems of arbitrary positive
first-order formulas.

40

Theorem 6.17: Let σ be a vocabulary, C a class of σ-structures each of which has at least two
elements in its universe, and Q a query on C. Then the following statements are equivalent:

1. Q is LFP1-definable on C.

2. There is system (ϕ1(x1, S1, . . . , Sm), . . . , ϕm(xm, S1, . . . , Sm)) of positive first-order formulas
such that ϕ∞

m defines Q on C and each ϕi(xi, S1, . . . , Sm) is either a positive existential first-
order formula or a positive universal first-order formula, 1 ≤ i ≤ m.

3. There is system (ϕ1(x1, S1, . . . , Sm), . . . , ϕm(xm, S1, . . . , Sm)) of positive first-order formulas
such that ϕ∞

m defines Q on C.

Proof: (Sketch) Since the direction (2) ⇒ (3) is trivial, it suffices to establish the directions (1) ⇒
(2) and (3) ⇒ (1). The proof of (1) ⇒ (2) is by induction on the construction of LFP1-formulas.
For concreteness, suppose that we are given the LFP1-formula (∃y)ϕ∞(x, y), where ϕ(x, y, S) is a
positive in S first-order formula of the form (∀z)(∃w)θ(x, y, z, w, S) with θ(x, y, z, w, S) a quantifier-
free formula and S a binary relation symbol. Consider the system

(ϕ1(x, y, z, S1, S2, S3), ϕ2(x, y, S1, S2, S3), ϕ3(x, S1, S2, S3),

where

ϕ1(x, y, z, S1, S2, S3) ≡ (∃w)θ(x, y, z, w, S2)

ϕ2(x, y, S1, S2, S3) ≡ (∀z)S1(x, y, z)

ϕ3(x, S1, S2, S3) ≡ (∃y)S2(x, y)

with S1 a ternary relation symbol, S2 a binary one, and S3 a unary one. By transfinite induction
on the stages and using the monotonicity of the formulas, it is not hard to verify that the given
LFP1-formula (∃y)ϕ∞(x, y) is logically equivalent to ϕ∞

3 (x).
The other steps of this direction are quite similar. For instance, suppose we are given the LFP1-

formula ϕ∞(x, y) ∧ ψ∞(x, y), where ϕ(x, y, S) and ψ(x, y, S) are positive in S first-order formulas.
By induction hypothesis, we may assume that there are systems (ϕ1, . . . , ϕm) and (ψ1, . . . , ψs)
of positive existential and positive universal first-order formulas such that ϕ∞(x, y) is logically
equivalent to ϕ∞

m (x, y) and ψ∞(x, y) is logically equivalent to ψ∞
s (x, y). Suppose that the relation

variables in the first system are S1, . . . , Sm and in the second system T1, . . . , Ts. Consider the
system

(ϕ1, . . . , ϕm, ψ1, . . . , ψs, χ),

where χ is the formula Sm(x, y) ∧ Ts(x, y). Then the given LFP1-formula ϕ∞(x, y) ∧ ψ∞(x, y) is
logically equivalent to χ∞(x, y).

We now focus on the direction (3) ⇒ (1). Again for concreteness, suppose we are given the
system (ϕ1(x, S1, S2), ϕ2(y, z, S1, S2)), where ϕ1 and ϕ2 are positive in S1, S2 first-order formulas,
S1 is a unary relation symbol, and S2 is a binary relation symbol. Let S be a 5-ary relation symbol
and let ϕ(u, v, x, y, z, S) be the positive in S first-order formula

((u 6= v) ∧ ϕ1(x, {x
′ : (∃u′)(∃v′)(u′ 6= v′) ∧ S(u′, v′, x′u′, u′)}, {(y′, z′) : (∃u′)S(u′, u′, u′, y′, z′)}))

∨((u = v) ∧ ϕ2(y, z, {x
′ : (∃u′)(∃v′)(u′ 6= v′) ∧ S(u′, v′, x′u′, u′)}, {(y′, z′) : (∃u′)S(u′, u′, u′, y′, z′)})).

By induction on the stages and using the monotonicity of the formulas, one can verify that for every
ordinal α, we have that ϕα1 (x) is logically equivalent to (∃u)(∃v)((u 6= v) ∧ ϕα1 (u, v, x, u, u)), while

41

at the same time ϕα2 (y, z) is logically equivalent to (∃u)(ϕα(u, u, u, y, z). It follows that ϕ∞
1 (x) is

logically equivalent to (∃u)(∃v)((u 6= v) ∧ ϕ∞(u, v, x, u, u)) and ϕ∞
2 (y, z) is logically equivalent to

(∃u)ϕ∞(u, u, u, y, z).

Several remarks are in order now. In Moschovakis’ book [Mos74], the equivalence between
statements (1) and (2) is attributed to P. Aczel (unpublished result); the same monograph contains
a detailed proof of the direction (3) ⇒ (1), which is often called the Simultaneous Induction Lemma.

The preceding Theorem 6.17 is a basic and extremely useful result about the expressive power
of least fixed-point logic LFP1. It shows that, although on the face of Definition 6.5 the syntax of
LFP1 is quite restricted, LFP1 is robust enough to simulate least fixed-points of systems of positive
first-order formulas. It also facilitates the task of showing that a query is LFP1-definable, because
quite often it is easier to define a query by mutual recursion using a system of positive first-order
formulas. Furthermore, the equivalence between statements (1) and (2) in Theorem 6.17 reveals that
no hierarchy of progressively more expressive sublogics of LFP1 arises by restricting the length of
quantifier alternation in the formulas occurring in systems. Thus, there are just two main sublogics
of least fixed-point obtained by imposing restrictions on the quantification pattern: ELFP1 and
ULFP1. The former is the sublogic of LFP1 determined by systems of positive existential first-
order formulas, while the latter is the sublogic of LFP1 determined by systems of positive universal
first-order formulas. In what follows, we will consider certain fragments of ELFP1 that have played
an important role in database theory.

6.3 Datalog and Datalog(6=)

Datalog can be succinctly described as the data sublanguage of logic programming. More formally,
a Datalog program π is a finite set of function-free, 6=-free, and negation-free rules of the form:

t0 : − t1, . . . , tm

where each ti is an atomic formula R(x1, . . . , xn) for some n-ary relation symbol, n ≥ 1; in addition,
t0 may be a 0-ary relation symbol standing for “true”. The expression t0 is the the head of the
rule, while the expression t1, . . . , tm is the body of the rule. The relation symbols that occur in
the heads of the rules of a given Datalog program π are usually called the intensional database
predicates (IDBs) of π, while all others are the extensional database predicates (EDBs) of π. One
of the IDBs is designated as the goal of π. Note that IDBs may occur in the bodies of rules and,
thus, a Datalog program can be viewed as a simultaneous recursive specification of the IDBs. Given
a set of relations for the EDBs of π, each IDB is originally instantiated to the empty relation and
then the rules of the Datalog program are applied repeatedly until no new tuples are added to the
IDBs. An application of each rule entails adding to the IDB in the head of each rule all tuples that
satisfy the head of the rule. This is an informal description of the “bottom-up” evaluation of a
Datalog program and it provides the procedural semantics of that program. Alternatively, a Datalog
program can be given declarative semantics using least fixed-points of recursive specification (see
[Ull89, AHV95] for precise definitions). The query definable by a Datalog program π is the query
whose value on a structure A is the value of the goal of π with the relations of A as EDBs of π. If
the goal of π is 0-ary, then π defines a Boolean query.

Example 6.18: Transitive Closure Revisited
Consider the following Datalog program having E as its only EDB and S as its only IDB:

∣

∣

∣

∣

S(x, y) : − E(x, y)
S(x, y) : − E(x, z), S(z, y)

42

This program defines the Transitive Closure query. Note that the Transitive Closure query
is also definable by the following Datalog program:

∣

∣

∣

∣

S(x, y) : − E(x, y)
S(x, y) : − S(x, z), S(z, y)

Example 6.19: Path Systems Revisited
Consider the following Datalog program having A and R as its EDBs and T as its only IDB.

∣

∣

∣

∣

T (x) : − A(x)
T (x) : − T (y), T (z), R(x, y, z)

This program defines the Path Systems query.

Note that the preceding Example 6.19 reveals that the data complexity of Datalog is P-complete,
that is, it is the same as the full LFP, even though Datalog is a small fragment of it.

Example 6.20: Non-2-Colorability
Consider the following Datalog program having E as its only EDB, O and Q as its IDBs, and

Q as its 0-ary goal predicate.

∣

∣

∣

∣

∣

∣

O(x, y) : − E(x, y)
O(x, y) : − E(x, z), E(z, w), O(z, y)
Q : − O(x, x)

In this program, O defines the set of pairs of nodes connected via a path of odd length. Conse-
quently, Q defines the set of all graphs that contain a cycle of odd length, that is, the set of all
graphs that are not 2-colorable.

As seen earlier in Example 6.6, the Transitive Closure query is definable by a positive in
S existential first-order formula. Similarly, as seen in Example 6.7, the Path Systems query is
definable by a positive in T existential first-order formula. Moreover, these formulas are 6=-free and
negation-free (that is, they are also positive in E). In the other direction, the Non-2-Colorability
query is definable by the formula (∃x)ϕ∞(x, x), where ϕ∞(x, y,O) is the following existential first-
order formula that is positive in O and E, and also 6=-free:

E(x, y) ∨ (∃z)(E(x, z) ∧E(z, w) ∧O(z, y)).

Chandra and Harel [CH85] were the first to point out that these connections are not accidental.

Proposition 6.21: [CH85] Let C be a class of structures and Q a query on C. Then the following
statements are equivalent:

• Q is definable on C by a Datalog program.

• Q is definable on C by ϕ∞
m for some system (ϕ1, . . . , ϕm) of first-order formulas such that

each ϕi is of the form (∃zi)ψi and ψi is a conjunction of atomic formulas.

43

Proof: (Hint) Every rule of a Datalog program gives rise to a formula of a system. The body of
the rule is first rewritten as a conjunction of the atomic relations occurring in it; after this, the
variables occurring in the body, but not in the head of the rule, are existentially quantified out.
Conversely, every formula in a system in (2) can be viewed as a rule of a Datalog program.

Although Datalog can express P-complete queries, it is strictly less expressive than LFP1. As
we will see next, some of the limitations of Datalog are consequences of preservation properties
possessed by Datalog queries.

Definition 6.22: Let σ be a vocabulary.

• A homomorphism h : A → B between two σ-structures A and B is a mapping h from the
universe A of A to the universe B of B with the following properties:

– For every constant symbol c in σ, we have that h(cA) = cB;

– For every relation symbol R in σ and every tuple a from A, if a ∈ RA, then h(a) ∈ RB.

• Let Q be a k-ary query on a class C of σ-structures. We say that Q is preserved under
homomorphisms if for every two structures A, B in C, every homomorphism h : A → B, and
every k-tuple a from A, if a ∈ Q(A, then h(a) ∈ Q(B).

• Let Q be a Boolean query on a class C of σ-structures. We say that Q is preserved under
homomorphisms if for every two structures A, B in C such that there is a homomorphism
from A to B, if A |= Q, then B |= Q.

Proposition 6.23: Let σ be a vocabulary. Every Datalog-definable query is preserved under ho-
momorphisms on the class S of all σ-structures.

Proof: (Sketch) The preceding Proposition 6.21 implies that the system of operators associated
with a Datalog program is definable by first-order formulas that are positive in every relation
symbol occurring in them and also are 6=-free. Using this fact and induction on the stages of the
system, it is easy to show that each stage of the system is preserved under homomorphisms on S.

Consider the existential first-order sentence (∃x)(∃y)(x 6= y) asserting that there are at least
two distinct elements in the universe. An immediate consequence of Proposition 6.23 is that this
sentence is not equivalent to any Datalog sentence, because it is not preserved homomorphisms.

Datalog(6=) is the extension of Datalog in which 6= are allowed in the rules. The next example
illustrates the syntax of Datalog(6=).

Example 6.24: Node-Avoiding Path:
Let Q be the following query on graphs: given a graph G = (V,E) and three nodes a, b, c, is

there a path from a to c that avoids w?
This query is definable by the following Datalog(6=)-program.

T (x, y, w) : − E(x, y) ∧ w 6= x ∧ w 6= y

T (x, y, w) : − E(x, z) ∧ T (z, y, w) ∧ w 6= x.

It is easy to see that Q is not preserved under homomorphisms and, consequently, it is not express-
ible in Datalog.

44

Note that the above query is also definable by the least fixed-point of the positive in T existential
first-order formula

(E(x, y) ∧ w 6= x ∧ w 6= y) ∨ (∃z)(E(x, z) ∧ T (z, y, w) ∧ w 6= x).

This is an instance of a more general result that is analogous to Proposition 6.21. Specifically, a
query Q is definable on a class C by a Datalog(6=)-program if and only if Q is definable on C by ϕ∞

m

for some system (ϕ1, . . . , ϕm) of first-order formulas such that each ϕi is of the form (∃ziψi and ψ
is a conjunction of atomic formulas and inequalities 6=.

We now present an example of a query on undirected graphs that is definable by a Datalog(6=)-
program, but proving this fact requires some machinery from graph theory.

Example 6.25: The Even Simple Path query asks: given a graph G = (V,E) and two nodes a,
b, is there a simple path of even length from a to b?

Using results of Fortune, Hopcroft and Wiley [FHW80] about the Graph Homeomorphism
Problem, it can be shown that Even Simple Path on directed graphs is an NP-complete prob-
lem. In contrast, there is a polynomial-time algorithm for Even Simple Path when the inputs
are undirected graphs. Moreover, in an unpublished note, Yannakakis showed that the following
Datalog(6=)-program with Q as its goal defines the Even Simple Path query on undirected graphs.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T (x, y, w) : − E(x, y) ∧ w 6= x ∧w 6= y
T (x, y, w) : − E(x, z) ∧ T (z, y, w) ∧ w 6= x
P (x, y) : − E(x, y)
P (x, y) : − Q(x,w), E(w, y), T (x,w, y)
Q(x, y) : − P (x,w), P (w, y), T (x,w, y).

The correctness of this program is established by proving that on undirected graphs:

• T defines the Node-Avoiding Path query.

• P defines the Odd Simple Path query (that is, ”is there a simple path of odd length from
a to b?”).

• Q defines the Even Simple Path query.

The proof proceeds by induction on the stages of the above Datalog(6=)-program and makes use of
Menger’s Theorem, a well-known result in graph theory which asserts that if an undirected graph
G = (V,E) and two nodes a, b have the property that every two paths from a to b intersect at
some intermediate node, then there is a node c different from a and b such that all paths from a
to b intersect at c (Menger’s Theorem is a special case of the Max Flow-Min Cut Theorem, see
[Die97]).

A one-to-one homomorphism between two σ-structures A and B is a homomorphism h : A → B

that is also a one-to-one mapping from A to B. The next result is proved along the lines of the
proof of Proposition 6.23.

Proposition 6.26: Every Datalog(6=)-definable query is preserved under one-to-one homomor-
phisms on the class S of all σ-structures.

45

Consider the universal first-order sentence (∀x)(∀y)(x 6= y → E(x, y)), which asserts that G =
(V,E) is a complete graph. Since this sentence is not preserved under one-to-one homomorphisms,
it is not equivalent to any Datalog(6=) sentence. Thus, on the class G of all finite graphs the
Datalog(6=) is strictly more expressive than Datalog, but strictly less expressive than LFP1.

Another difference between Datalog(6=) and LFP1 has to do with closure ordinals on infinite
structures. As seen earlier in Example 6.8, there are positive universal first-order formulas whose
closure ordinal can be arbitrarily large on infinite structures. In contrast, it is not hard to prove
that on every infinite structure the closure ordinal of every of Datalog(6=)-program is at most ω.
Indeed, this follows from the fact that existential quantification distributes over an infinite union,
that is, (∃x)(

⋃∞
n=1 Pn) is logically equivalent to

⋃∞
n=1(∃x)Pn.

6.4 The Complementation Problem for LFP1 and a Normal Form for LFP

The structure of arithmetic is the structure N = (N,+,×), where N is the set of all natural
numbers, and + and × are ternary relations for the graphs of the addition and multiplication
functions on the natural numbers. The expressive power of LFP1 on N = (N,+,×) was first
studied by Kleene [Kle55] and Spector [Spe61], who established the following important result,
known as the Kleene-Spector Theorem (see [Mos74]).

Theorem 6.27: Let N = (N,+,×) be the stucture of arithmetic.

• LFP1(N) = USO(N), that is, a relation R ⊆ N k is LFP1-definable on N if and only if it is
definable on N by a universal second-order formula.

• LFP1(N) is not closed under complements.

Several remarks are now in order, so that the Kleene-Spector Theorem be put into the right
perspective. First, if σ is a vocabulary and A is an arbitrary σ-structure, then LFP1(A) ⊆ USO(A.
The reason for this is that if ϕ(x, S) is a positive in S first-order formula over the vocabulary σ∪{S},
then the least fixed-point ϕ∞(x) is definable on A by the USO-formula

(∀S)((∀z)(ϕ(z, S) ↔ S(z))) → S(x)).

Indeed, the above USO-formula defines the least fixed-point of ϕ(x, S), because, as seen in Theo-
rem 6.2, the least fixed-point of a monotone operator is the intersection of all its fixed-points. If
A is an arbitrary infinite σ-structure, then LFP1(A) may be properly contained in USO(A); for
instance, this is the case for the structure Q = (Q,<), where Q is the set of rational numbers
and < is the standard linear order on Q. In contrast, the Kleene-Spector Theorem asserts that
the LFP1-definable relation coincide with the USO-definable ones on the structure N = (N,+,×)
of arithmetic; thus, this result provides a “constructive” characterization of universal second-order
logic on N. Moschovakis [Mos74] has shown that the Kleene-Spector Theorem actually extends
to countable structures A possessing a first-order coding machinery for finite sequences, that is,
countable structures in which finite sequences of arbitrary length can be encoded by individual
elements and decoded in a first-order definable way. Moreover, on such countable structures A

there is a binary USO-definable relation whose projections are exactly all unary USO-definable
relations (such relations are called universal USO-definable relations). Using this fact and a di-
agonalization argument, it can be shown that the USO-definable relations on such structures A

are not closed under complements. In particular, the LFP1-definable relations on N are not closed
under complements.

46

Chandra and Harel [CH80] initiated the study of LFP on finite structures; moreover, motivated
by the Kleene-Spector Theorem, they conjectured that the LFP1-definable queries on the class G
of all finite graphs are not closed under complements. This conjecture, however, was refuted by
Immerman [Imm82, Imm86], who showed that if C is an arbitrary class of finite structures, then
LFP1C) is closed under complements. In what follows, we will outline a proof of this result and, in
the process of doing so, we will present some other fundamental properties of LFP1.

Definition 6.28: Let σ be a vocabulary.

• Let ϕ(x1, . . . , xk, S) a positive in S first-order formula over the vocabulary σ∪{S}. For every
σ-structure A and every k-tuple a ∈ Ak, we put

|a|ϕ =

{

min{α : A |= ϕα(a)} if A |= ϕ∞(a)
∞ if A |= ¬ϕ∞(a)

• Let ϕ(x, S) be a positive in S first-order formula over σ∪{S} and let ψ(y, T) be a positive in
T first-order formula over σ ∪ {T}. The stage comparison queries �∗

ϕ,ψ and ≺∗
ϕ,ψ associated

with the formulas ϕ(x, S) and ψ(y, T) are the queries such that for every σ-structure A,

a �∗
ϕ,ψ b ⇐⇒ ϕ∞(a) ∧ (|a|ϕ ≤ |b|ψ)

a ≺∗
ϕ,ψ b ⇐⇒ |a|ϕ < |b|ψ

Note that if a ≺∗
ϕ,ψ b, then |a|ϕ <∞ and, thus, a ∈ ϕ∞.

• We write �∗
ϕ and ≺ϕ for the queries �∗

ϕ,ϕ and ≺ϕ,ϕ, respectively.

The next two examples illustrate the meaning of the stage comparison queries �∗
ϕ and ≺ϕ for

concrete formulas ϕ.

Example 6.29: Let G = (V,E) be a graph and let ϕ(x, y, S) be the formula

E(x, y) ∨ (∃z)(E(x, z) ∧ S(z, y)),

whose least fixed-point defines the transitive closure of E. A moment’s reflection reveals that �∗
ϕ

is the distance query on graphs. More precisely, (a, a′) �∗
ϕ (b, b′) holds if and only if there is a path

from a to a′ and either there is no path from b to b′ or the length of the shortest path from a to a′

is at most equal to the length of the shortest path from b to b′.

Example 6.30: As in Examples 6.7 and 6.19, assume that a proof system is encoded by a structure
S = (F,A,R), where F is a set of formulas, A is a set of axioms, and R is a ternary rule of inference.
Let ψ(x, T) be the formula

A(x) ∨ (∃y)(∃z)(T (y) ∧ T (z) ∧R(x, y, z)),

whose least fixed-point defines the set of all theorems of this proof system. Then the stage com-
parison queries �∗

ψ and ≺∗
ψ compare lengths of derivations of theorems of S. In particular, f ≺∗

ψ g
holds if and only if f is a theorem of S and either g is not a theorem of S or f has a derivation in
the proof system S that is shorter than any derivation of g.

Theorem 6.31: [The Stage Comparison Theorem - Moschovakis [Mos74]] Let σ be a vocabulary.
If ϕ(x, S) and ψ(y, T) are a positive first-order formulas, then the stage comparison queries �∗

ϕ,ψ

and ≺∗
ϕ,ψ are LFP1-definable on the class of all σ-structures.

47

Proof: (Hint:) The stage comparison queries satisfy the equivalences:

x �∗
ϕ,ψ y ⇐⇒ Φ|y|ψ(x) ⇐⇒ Φ(x, {x′ : |x′|ϕ < |y|ψ})

x ≺∗
ϕ,ψ y ⇐⇒ ¬Ψ|x|ϕ(y) ⇐⇒ ¬Ψ(y, {y′ : |y′|ψ < |x|ϕ}).

Note that if x ∈ ϕ∞, then, for every y′, we have that |y′|ψ < |x|ϕ holds if and only if ¬(x �∗
ϕ,ψ y′).

It follows that the stage comparison queries satisfy the following recursive specifications:

x �∗
ϕ,ψ y ⇐⇒ ϕ(x, {x′ : x′ ≺∗

ϕ,ψ y})

x ≺ϕ,ψ ∗y ⇐⇒ ¬ψ(y, {y′ : ¬ (x �∗
ϕ,ψ y′}).

This motivates considering the system (χ1(x, y, S1, S2), χ2(x, y, S1, S2)) of the first-order formulas

χ1(x, y, S1, S2) ≡ ϕ(x, {x′ : S2(x
′,y)})

χ2(x, y, S1, S2) ≡ ¬ψ(y, {y′ : ¬S1(x,y
′)}).

Note that these formulas are positive in both S1 and S2, thus their system has a least fixed-point
(χ∞

1 , χ
∞
2). Using transfinite induction, it can be shown that χ∞

1 defines �∗
ϕ,ψ, and that χ∞

2 defines
≺∗
ϕ,ψ.

While the stage comparison theorem is a result about the class of all structures, the next
theorem is rather special to classes of finite structures.

Theorem 6.32: [The Complementation Theorem for LFP1 - Immerman [Imm82, Imm86]] Let σ
be a vocabulary. If C is a class of finite σ-structures, then LFP1(C) is closed under complements.

Proof: (Sketch:) It suffices to show that if ϕ(x, S) is a positive in S first-order formula over the
vocabulary σ ∪ {S}, then the complement ¬ϕ∞ is LFP1-definable on C.

Let Maxϕ be the query that, given a σ-structure A, returns the set of all tuples a in ϕ∞ on A

such that for every b ∈ ϕ∞ on A we have that |b|ϕ ≤ |a|ϕ. In other words, Maxϕ(A) consists of all
tuple from A that enter the “last” stage of the evaluation of ϕ∞ on A. Note that if A is an infinite
structure, then Maxϕ(A) may be empty, because there may be no “last” stage in the evaluation of
ϕ (this happens precisely when the closure ordinal clϕ on A is a limit ordinal). For instance, this is
the case when G = (V,E) is a graph of infinite diameter and ϕ(x, y, S) is the formula whose least
fixed-point defines the transitive closure of the edge relation E. In contrast, A is a finite structure,
then Maxϕ(A) 6= ∅ (unless ϕ∞ = ∅ on A).

We will now show that Maxϕ is LFP1-definable on the class of all finite σ-structures. Note that
Maxϕ satisfies the equivalence

a ∈ Maxϕ(A) ⇐⇒ A |= (a ∈ ϕ∞) ∧ (∀b)(|a|ϕ < |b|ϕ → |a|ϕ + 1 < |b|ϕ).

It is easy to find a positive first-order formula ψ such that on finite structures ψ simulates ϕ with a
“one-step” delay, that is, for every tuple c ∈ ϕ∞, we have that c enters ψ∞ exactly one stage after
the stage it enters ϕ∞. Using stage comparison queries, the above equivalence can be rewritten as

a ∈ Maxϕ(A) ⇐⇒ A |= (a ∈ ϕ∞) ∧ (∀b)((b �∗
ϕ a) ∨ (a ≺∗

ψ,ϕ b)).

The Stage Comparison Theorem 6.31 immediately implies that Maxϕ is LFP1-definable on the class
of all finite σ-structures.

48

It is now easy to show that the complement ¬ϕ∞ is LFP1-definable on the class of all finite
σ-structures. Indeed, if A is a finite σ-structure, then

A |= ¬ϕ∞(a) ⇐⇒ A |= (∃y)(y ∈ Maxϕ ∧ y ≺∗
ϕ a).

With some extra work and using the ideas in the proof of Theorem 6.32, it is possible to establish
the following normal form for least fixed-point logic LFP on classes of finite structures.

Theorem 6.33: [Imm82, Imm86] If σ is a vocabulary and C is a class of finite σ-structures, then
every LFP-definable query on C is LFP1-definable on C. Consequently, LFP(C) = LFP1(C).

Informally, this result asserts that on finite structures the nesting of least-fixed points, greatest
fixed-points, and negations can be eliminated and reduced to a single formation of the least-fixed
point of a positive first-order formula combined with the positive operations of first-order logic
(disjunction, conjunction, universal and existential quantification).

6.5 Partial Fixed-Point Logic

The fundamental idea behind least fixed-point LFP is that recursive specifications involving positive
first-order formulas can be given meaningful fixed-point semantics, because by the Knaster-Tarski
Theorem 6.2, every positive first-order formula has a least fixed-point. Can more powerful logics
be obtained by giving fixed-point semantics to specifications involving arbitrary (not just positive)
first-order formulas? There are two main motivations behind this question that we now describe
briefly.

Recall that on every class of finite structures, least fixed-point logic LFP is at least as expressive
as first-order logic, but it is no more expressive than polynomial-time computability. In particular,
on the class of all finite structures, LFP cannot express every polynomial-time computable query,
even though it can express P-complete queries. As discussed at length in E. Grädel’s Chapter in
this volume, one of the outstanding open problems in finite model theory is whether or not there is
a logic that captures P on the class of all finite structures. This has motivated the study of fixed-
point logics that are at least as expressive as least fixed-point logic LFP, but are still withing the
realm of polynomial-time computability on finite structures. Such a logic is inflationary fixed-point
logic IFP, which, however, was shown by Gurevich and Shelah [GS86] to have the same expressive
power as LFP on classes of finite structures (see E. Grädel’s Chapter for the precise definitions of
IFP and a presentation of some of its main properties on finite structures).

The second motivation for studying logics with more powerful fixed-point mechanisms has to
do with the problem of finding logics that can express queries in higher computational complexty
classes, beyond P and NP. The most prominent logic in this family is partial fixed-point logic, whose
main features we will describe in what follows in the remainder of this section.

Let Φ : P(Ak) → P(Ak) be an arbitrary (not necessarily monotone) k-ary operator on a finite
set A. As seen earlier, the finite stages Φn, n ≥ 1, of Φ are defined by the induction:

∣

∣

∣

∣

Φ1 = Φ(∅)
Φn+1 = Φ(Φn).

If Φ is not monotone, then the sequence Φn, n ≥ 1, need not be an increasing one. Nonetheless,
since A is a finite set and each Φn is a k-ary relation on A, there must exist two positive integers
m and m′ such that m < m′ and Φm = Φm′

. Let m′ be the smallest integer greater than m having

49

this property. If m′ = m + 1, then Φm is actually a fixed-point of Φ, and, thus, the sequence of
stages of Φ converges to this fixed point. If, however, m′ > m+ 1, then the sequence of stages of Φ
cycles without ever reaching a fixed-point of Φ. This state of affairs motivates the concept of the
partial fixed-point of an operator Φ.

Definition 6.34 : Let Φ : P(Ak) → P(Ak) be an arbitrary (not necessarily monotone) k-ary
operator on a finite set A. The partial fixed-point pfp(Φ) of Φ is a stage Φm such that Φm = Φm+1,
if such a stage exists, or the empty relation ∅, otherwise.

If A is a a finite structure and Φ is the operator associated with some formula ϕ(x1, . . . , xk, S)
on A, then the partial fixed-point pfp(ϕ) of ϕ(x1, . . . , xk, S) is the partial fixed-point pfp(Φ) of Φ.

Abiteboul and Vianu [AV91a] introduced partial fixed-point logic PFP on finite structures,
which is the extension of first-order logic obtained by augmenting the syntax and the semantics
with partial fixed-points of formulas.

Definition 6.35: Let σ be a vocabulary.

• The collection of PFP-formulas over σ is defined inductively by adding the following rule to
the rules for the syntax of first-order logic:

Assume that ϕ is a PFP-formula, S is a k-ary relation symbol in free(ϕ), x = (x1, . . . , xk) is a
k-tuple of first-order variables each of which is in free(ϕ), and u = (u1, . . . , uk) is a k-tuple of
first-order variables not occurring in ϕ. Then the expression [pfp S.ϕ](u) is a PFP-formula;
moreover, free([pfp S.S](u)) = free(ϕ) \ {x1 . . . , xk, S}.

• If A is a finite σ-structure, and a is a k-tuple from A, then A,a |= [pfp S.ϕ](u) if a ∈ pfp(Φ),
where Φ is the operator associated with ϕ on A.

Clearly, if ϕ(x1, . . . , xk, S) is a formula that is positive in S, then the partial fixed-point pfp(ϕ)
of ϕ is equal to its least fixed-point lfp(ϕ). It follows that on finite structures partial fixed-point
logic PFP is at least as expressive as least fixed-point logic LFP. More precisely, if C is a class of
finite structures, then

LFP(C) ⊆ PFP(C).

Let ϕ(x1, . . . , xk, S) be an arbitrary first-order formula over the vocabulary σ ∪ {S}, where S is a
k-ary relation symbol. It is easy to see that, on every finite structure A, the partial fixed-point
pfp(ϕ) can be evaluated in polynomial space. For this, one has to compute in succession the stages
Φn of the operator Φ associated with ϕ(x1, . . . , xk, S), while at the same time maintaining a counter
that stores in binary the number n of the current stage. At any given time in this computation, a
polynomial amount of space is used to store the current stage Φn, to compute the next stage Φn+1,
and to test whether Φn+1 = Φn. If Φn+1 = Φn, then the computation terminates and returns Φn

as the value of the partial fixed-point pfp(ϕ) of ϕ(x1, . . . , xk, S) on A. Otherwise, Φn is replaced
by Φn+1 and the counter is incremented by one. If at some point the value of the counter exceeds
2|A|

k
(which is the total number of k-ary relations on A), then the computation terminates and

returns the empty relation ∅ as the value of the partial fixed-point pfp(ϕ) of ϕ(x1, . . . , xk, S) on
A. Thus, on every class C of finite structures, we have that

LFP(C) ⊆ PFP(C) ⊆ PSPACE.

The next example shows that PFP can actually express PSPACE-complete queries.

50

Example 6.36: Generalized Path Systems
Let σ be a vocabulary consisting of a unary relation symbol and a ternary relation symbol. As

in the earlier Example 6.7, a σ-structure is of the form S = (F,A,R), where A is a subset of F and
R is a ternary relation on F ; moreover, such a structure can be interpreted as consisting of a set
F of formulas, a set A of axioms, and a ternary rule of inference R. Let ϕ(x, T) be the following
existential first-order formula over the vocabulary σ ∪ {T}:

A(x) ∨ (∃y)(∃z)(T (y) ∧ ¬T (z) ∧R(x, y, z)).

Intuitively, a fixed-point of this formula can be viewed as a recursive specification of a nonmonotonic
proof system in which a formula x is a theorem of the system if it is an axiom in A or it can be
derived from the rule of inference R using a theorem y of the proof system and a non-theorem z of
the proof system.

Let pfp(ϕ) be the partial fixed-point of the formula ϕ(x, T). Grohe [Gro95] showed that
evaluating pfp(ϕ) on finite σ-structures is a PSPACE-complete problem. It follows that, un-
less P = PSPACE, the partial fixed-point pfp(ϕ) cannot be evaluated in polynomial time and, a
fortiori, it cannot be expressed in LFP.

The preceding remarks and Example 6.36 imply the following result concerning the data com-
plexity of PFP.

Proposition 6.37: The data complexity of PFP is PSPACE-complete.

Let σ be a vocabulary containing at least one relation symbol of arity 2 or higher, and let F be
the class of all finite σ-structures. Although PFP can express P-complete queries on F , it cannot
express every polynomial-time computable query on F . Indeed, in the next section we will show
that the expressive power of PFP on F has similar limitations as that of as LFP on F , namely,
PFP cannot express counting queries, such as Even Cardinality. Thus, the following proper
containment holds on F :

PFP(F) ⊂ PSPACE.

The state of affairs, however, is different on classes of ordered finite structures.

Theorem 6.38 : [Abiteboul-Vianu [AV91a], Vardi [Var82]]. Let C be a class of ordered finite
structures. The following are equivalent for a query Q on C.

• Q is polynomial-space computable.

• Q is PFP-definable on C.

In other words, PSPACE(C) = PFP(C).

E. Grädel’s Chapter in this volume contains a proof of the above theorem. Here, we discuss
briefly the history of this result and explain the credits. Chandra and Harel [CH82] introduced and
studied a logic called RQL, which is an extension of first order logic FO with recursion embodied
in the form of WHILE looping. Vardi [Var82] proved that on classes of ordered finite structures,
a query is polynomial-space computable if and only if it is RQL-definable. Later on, Abiteboul
and Vianu [AV91a] introduced partial fixed-point logic PFP and showed that on classes of finite
structures, RQL has the same expressive power as partial fixed-point logic PFP. From these results,
it follows PSPACE = PFP on every class C of ordered finite structures.

51

In this section, we showed that on the class F of all finite σ-structures, LFP can express
P-complete problems and PFP can express PSPACE-complete problems. At the same time, we
asserted that these logics cannot express such basic counting properties as Even Cardinality on
F , but gave no proof of this fact. This will be done in the next section, where we will bring into the
picture a family of infinitary logics with finitely many variables, will introduce new combinatorial
games for analyzing their expressive power, and will apply the methodology of games to derive lower
bounds for expressibility in fixed-point logics and in infinitary logics with finitely many variables.

7 Infinitary Logics with Finitely Many Variables

The syntax of the logics we have encountered thus far is finitary. Mathematical logicians, however,
have also investigated in depth logics whose syntax has infinitary constructs. Such logics can be
obtained by augmenting the syntax of first-order logic with disjunctions and conjunctions over
infinite sets of formulas or with infinite strings of quantifiers or with both these types of constructs.
Moreover, different families of infinitary logics can be obtained by imposing cardinality restrictions
on the size of the infinitary constructs allowed (see [Kei71, Dic85]). The infinitary logic L∞ω is the
most powerful among all logics with infinitary connectives and with finite strings of quantifiers. In
addition to the rules of first-order logic, the syntax of L∞ω has the following two rules:

• If Φ is an arbitrary set of L∞ω-formulas, then the infinitary disjunction
∨

Φ is also a L∞ω-
formula.

• If Φ is an arbitrary set of L∞ω-formulas, then the infinitary conjunction
∧

Φ is also a L∞ω-
formula.

The infinitary formulas
∨

Φ and
∧

Φ have straightforward semantics. For instance, if Φ is a set of
L∞ω-sentences and A is a structure, then A |=

∨

Φ if and only if there is at least one L∞ω-sentence
ϕ in Φ such that A |= ϕ.

Although L∞ω can make interesting distinctions on infinite structures, it turns out that this
logic is too powerful on classes of finite structures to be of any use. Specifically, it is easy to see
that every Boolean query Q on the class F of all finite σ-structures is L∞ω-definable. Indeed, for
every finite structure A, let ψA be a first-order sentence that defines A up to isomorphism; such a
sentence asserts that there are precisely as many elements as the cardinality of the universe A of
A, and states which tuples are in the relations of A and which are not. Since Boolean queries are
closed under isomorphisms, Q is definable by the L∞ω-sentence

∨

{A:Q(A)=1} ψA. Note that Q is
also definable by the L∞ω-sentence

∧

{A:Q(A)=0} ¬ψA. Thus, every query on the class F of all finite
σ-structures can be defined by both a countable disjunction of first-order formulas and a countable
conjunctions of first-order formulas.

7.1 The Infinitary Logic Lω∞ω

In general, L∞ω-formulas may have an infinite number of distinct variables. Barwise [Bar77] in-
troduced a family of fragments of L∞ω in which there is a finite upper bound on the number of
distinct variables in each formula.

Definition 7.1: Let σ be a vocabulary.

• For every positive integer k, we write FOk
ωω to denote the collection of all first-order formulas

over σ with at most k distinct variables.

52

• For every positive integer k, the k-variable infinitary logic Lk∞ω is the collection of all L∞ω-
formulas over σ with at most k distinct variables.

• The finite-variable infinitary logic Lω∞ω is the collection of all L∞ω-formulas over σ with
finitely many variables, that is,

Lω∞ω =
⋃

k≥1

Lk∞ω.

Note that, although each Lk∞ω-formula has at most k distinct variables, there is no restriction
on the number of occurrences of each variable in the formula. In particular, even FOk

ωω-formulas
may be of unbounded quantifier rank. In many cases, this makes it possible to define interesting
properties by judiciously reusing the available variables, in spite of the limited supply of distinct
variables. To illustrate this point, for every positive integer m, let θm be a first-order sentence
asserting that there are at least m elements in the universe of the structure. It can be shown that
on the class G of all finite graphs, θm is not equivalent to any first-order sentence with fewer than m
variables. In contrast, it is easy to see that on the class L of all finite linear orders, θm is equivalent
to a sentence of L2

ωω. For instance, θ4 is equivalent to the L2
ωω-sentence

(∃x)(∃y)[y < x ∧ (∃x)(x < y ∧ (∃y)(y < x))].

It follows that L2
∞ω can define arbitrary cardinalities on L, since for every set S of integers we have

that

n ∈ S ⇐⇒ Ln |=
∨

n∈S

(θm ∧ ¬θm+1).

In particular, the Even Cardinality query is L2
∞ω-definable on L.

The original motivation behind the introduction of the finite-variable infinitary logic was to
study inductive definability on fixed infinite structures. Indeed, Barwise [Bar77] used the infinitary
logics Lk∞ω, k ≥ 1, as a tool to solve an open problem concerning the closure ordinals of positive
first-order formulas on fixed infinite structures. Since the 1980s, however, these logics have found
many uses and applications in finite model theory, where they have become quite indispensable in
the study of fixed-point logics. The main reason for this is that on classes of finite structures, Lω∞ω

subsumes the fixed-point logics LFP and PFP that we encountered earlier. Moreover, definability
in the infinitary logics Lk∞ω, k ≥ 1, can be characterized in terms of certain combinatorial games
in a manner analogous to the characterization of first-order definability in terms of Ehrenfeucht-
Fräıssé-games.

Before spelling out the connection between fixed-point logics and Lω∞ω in more precise terms,
we present a relevant example. Let ϕn(x, y) be the first-order formula

(∃z1) . . . (∃zn−1)(E(x, z1) ∧ . . . ∧E(zm−1, y))

that defines the query “there is a path of length n from x to y”, n ≥ 1. At first sight, it appears that
this query cannot be expressed with fewer than n+1 variables, since, in addition to the variables x
and y, another n− 1 variables seem to be needed in order to describe the intermediate nodes on a
path of length n from x to y. It turns out, however, that, just three variables x, y and z suffice to
express this query; the third variable z is repeatedly reused in such a way that it ranges over the
intermediate points in a path from x to y. Specifically, it can be shown by induction on n that each

53

formula ϕn(x, y) is equivalent to an L3
ωω-formula ψn(x, y) whose variables are among x, y and z.

First, ψ1(x, y) is equivalent to the atomic formula E(x, y). Assume now that ϕn(x, y) is equivalent
to an L3

ωω-formula ψn(x, y) whose variables are x, y and z. Then ϕn+1(x, y) is equivalent to the
L3
ωω-formula

(∃z)[E(x, z) ∧ (∃x)(z = x ∧ ψn(x, y))]

whose variables are x, y and z. Consequently, the Connectivity query is L3
∞ω-definable by the

sentence
(∀x)(∀y)(

∨

n≥1

ψn(x, y)).

The preceding construction can be extended and applied to the stages of every first-order definable
operator; this makes it possible to show that the stages of every first-order definable operator are
definable by an Lk∞ω-formula for some positive integer k that depends only on the formula defining
the operator and not on the particular level of the stage. A detailed proof of the next result can
be found in [KV92b, KV96]

Theorem 7.2 : Assume that σ is a vocabulary, S is a m-ary relation symbol not in σ, and
ϕ(x1, . . . , xm, S) is a first-order formula over the vocabulary σ ∪ {S} such that the number of vari-
ables (free and bound) of ϕ(x1, . . . , xm, S) is equal to k.

• For every positive integer n ≥ 1, there is a FOk
ωω-formula ϕn(x1, . . . , xm) that defines the

n-th stage Φn of the operator Φ associated with ϕ(x1, . . . , xm, S) on every σ-structure.

• The partial fixed-point pfp(ϕ) of ϕ(x1, . . . , xm, S) is Lk∞ω-definable on the class of all finite
σ-structures.

Consequently, if C is a class of finite σ-structures, then

LFP(C) ⊆ PFP(C) ⊆ Lω∞ω(C).

For arbitrary first-order formulas ϕ(x1, . . . , xm, S), only the finite stages of the associated oper-
ator were defined earlier. Recall, however, that if ϕ(x1, . . . , xm, S) is a positive first-order formula,
then we actually defined the stages Φα of the associated operator Φ for an arbitrary ordinal α
(Definition 6.1). It can be shown that each such stage Φα is definable by an Lk∞ω-formula, where
k is the number of variables (free and bound) in ϕ(x1, . . . , xm, S). It is not true, however, that
every LFP-definable query on the class S of all σ-structures is Lω∞ω-definable. For instance, the
Well Foundedness query is LFP-definable on S, but it is not L∞ω-definable on S (see [Dic85]);
consequently, this query is not Lω∞ω-definable either. Intuitively, Lω∞ω can not subsume LFP on
the class S of all σ-structures, because the closure ordinals of positive first-order formulas can be
arbitrarily large and so the least fixed-point of a positive formula cannot be obtained by taking
the disjunction over the formulas defining the stages of the formula (this would require taking a
disjunction over a proper class, which is not allowed in the syntax of L∞ω). It is true, however,
that if C is a class of σ-structures of bounded cardinalities (that is, there is a cardinal number λ
such that the universe of each structure in C has cardinality at most λ), then LFP(C) ⊆ Lω∞ω(C).

7.2 Pebble Games and Lω∞ω-Definability

The finite-variable infinitary logic Lω∞ω can be used as a tool in studying fixed-point logics on finite
structures. In particular, certain structural properties of Lω∞ω are inherited by the fixed-point logics

54

LFP and PFP. Moreover, lower bounds for definability in Lω∞ω yield immediately similar results for
definability in LFP and PFP. The advantage of Lω∞ω over LFP and PFP is that, for each positive
integer k, definability in Lk∞ω can be characterized in terms of combinatorial k-pebble games that
we introduce next.

Definition 7.3: Let k be a positive integer, σ a vocabulary, and A and B two σ-steructures.
The k-pebble game on A and B is played between two players, called the Spoiler and the

Duplicator, each of whom has k pebbles that are labeled 1, . . . , k. In each move, the Spoiler selects
one of the two structures and either places a pebble that is not currently used on an element of
the chosen structure or removes a pebble from an element of the chosen structure. The Duplicator
responds by either placing the pebble with the same label on an element of the other structure or
by removing the pebble with the same label from an element of the other structure.

Assume that at some point of time during the game, r pebbles have been placed on each
structure, where 1 ≤ r ≤ k, and let (ai, bi) ∈ A× B, 1 ≤ i ≤ r, be the pairs of elements of A and
B such that the label of the pebble on ai is the same as the label of the pebble on bi. The Spoiler
wins the k-pebble game on A and B at this point of time, if the mapping ai 7→ bi, 1 ≤ i ≤ r, is not
an isomorphism between the substructures of A and B generated by {a1, . . . , ar} and {b1, . . . , br},
respectively.

The Duplicator wins the k-pebble game on A and B if the above never happens, which means
that the Duplicator has a winning strategy that allows him to continue playing “forever” by main-
taining a partial isomorphism at every point of time.

The above description of a winning strategy for the Duplicator in the k-pebble game is rather
informal. The concept of a winning strategy can be made precise, however, in terms of families
of partial isomorphisms with appropriate closure and extension properties. Recall that a partial
isomorphism from a σ-structure A to a σ-structure B is an isomorphism from a substructure of
A to a substructure of B. In particular, every partial isomorphism from A to B must map each
constant cAj of A to the constant cBj , 1 ≤ j ≤ s. Thus, when viewed as a set of ordered pairs, each

partial isomorphism from A to B must contain all pairs (cAj , c
B
j), 1 ≤ j ≤ s.

Definition 7.4: A winning strategy for the Duplicator in the k-pebble game on A and B is a
nonempty family I of partial isomorphisms from A to B with the following properties.

1. If f ∈ I, then |f − {(cA1 , c
B
1) . . . , (cA1 , c

B
s)}| ≤ k.

2. I is closed under subfunctions:

If g ∈ I and f is a function such that {(c1,A , cB1), . . . , (cAs , c
B
s)} ⊆ f ⊆ g, then f ∈ I.

3. I has the forth property up to k:

If f ∈ I and |f − {(cA1 , c
B
1) . . . , (cA1 , c

B
s)}| < k, then for every a ∈ A, there is g ∈ I so that

f ⊆ g and a ∈ dom(g).

4. I has the back property up to k:

If f ∈ I and |f − {(cA1 , c
B
1) . . . , (cA1 , c

B
s)}| < k, then for every b ∈ B, there is g ∈ I so that

f ⊆ g and b ∈ rng(g).

Intuitively, the second condition provides the Duplicator with a “good” move when the Spoiler
removes a pebble from an element of A or B, while the last two conditions provide the Duplicator
with “good” moves when the Spoiler places a pebble on an element of A or on an element of B.

55

Several properties of the k-pebble game follow easily from the definitions. For instance, if k ′ ≥ k
and the Spoiler wins the k-pebble game on A and B, then the Spolier also wins the k ′-pebble game
on A and B. Moreover, for every k ≥ 1, the relation “the Duplicator wins the k-pebble game on
A and B is an equivalence relation on the class S of all σ-structures.

The following examples illustrate k-pebble games on concrete finite structures.

Example 7.5: For every m ≥ 1, let Km be the m-clique, that is, the complete graph with m
nodes. It is quite clear that for every k ≥ 1:

• The Duplicator wins the k-pebble game on Kk and Kk+1.

• The Spoiler wins the (k + 1)-pebble game on Kk and Kk+1.

v v

v

v

v

�
�
�
�
��

Q
Q

Q
Q

QQ�
�

�
�

��
B
B
B
B
BB

b
b

b
b

b
b

b
b

bb

�
�

�
�

�
�

�
�

��

L
L
L
L
L
L
L
L
LL

"
"

"
"

"
"

"
"

""

v v

vv

@
@

@
@

@
@

@@

�
�

�
�

�
�

��

K4 K5

Note that the same state of affairs holds for the Ehrenfeucht-Fräıssé-game on cliques: the
Duplicator wins the k-move Ehrenfeucht-Fräıssé-game on Kk and Kk+1, but the Spoiler wins the
(k + 1)-move Ehrenfeucht-Fräıssé-game on Kk and Kk+1.

Example 7.6: For every m ≥ 1, let Lm be the linear order with m elements.
It is easy to see that for all positive integers m and n with m < n, the Spoiler wins the 2-pebble

game on Lm and Ln. Indeed, in the first two moves, the Spoiler places his two pebbles on the two
smallest elements of Ln; it is then to the best interest of the Duplicator to place his two pebbles
in the two smallest elements of Lm. In his next two movers, the Spoiler moves the pebble from
the smallest element of Ln and places it on the third smallest element of Ln; the Duplicator has
to follow suit with similar moves on Lm. By continuing playing this way, the Spoiler forces the
placement of pebbles with the same lable in progressively bigger elements of the two linear orders.
Since m < n, eventually the Duplicator “runs out of elements” in Lm and cannot duplicate the
move of the Spoiler.

In view of Theorem 3.20, this example shows a dramatic difference between the pebble games
and the Ehrenfeucht-Fräıssé-games, since for every r and for all sufficiently large m and n, the
Duplicator wins the r-move Ehrenfeucht-Fräıssé-game on Lm and Ln.

Example 7.7: For every m ≥ 3, let Am be a directed cycle with 2m nodes and Bm be the union
of two disjoint directed cycles each with m nodes.

56

v
v

v

v

v

q

q

q

��
#
##
���PPP

c
cc
BB

v
v

v

v

v

q

q

q

��
#

##���PPP
c

cc
BB

v
v v

q

q

q

.......
.......
.......
.....!!
!aaa..........................

v
vv

q

q

q

..........................!!!aaa
.......
.......
.......
.....

v
v v

q

q

q

.......
.......
.......
.....!!
!aaa..........................

v
vv

q

q

q

..........................!!!aaa
.......
.......
.......
.....

BmAm

It is easy to see that for every m ≥ 3, the Spoiler wins the 3-pebble game on Am and Bm.
Indeed, in the first two moves, the Spoiler places his first pebble on a node in the top cycle of Bm

and his second pebble on a node in the bottom cycle of Bm; thus, the Duplicator has to respond
by placing his first two pebbles on elements of Am (presumably, as far apart as possible). From
this point on, the Spoiler keeps his first pebble fixed on the top cycle, but uses his second and
third pebbles to force a walk along edges of the bottom cycle, the same way as the Spoiler moved
from smaller to bigger elements in the preceding Example 7.6. Eventually, the three pebbles of the
Duplicator are lined up along adjacent nodes in Am, but this doens not hold for the pebbles of the
Spoiler in Bm.

This example should be contrasted with the fact that, as implied by the proof of Proposition
3.28, for every r ≥ 1 and for all sufficiently large values of m, the Duplicator wins the r-move
Ehrenfeucht-Fräıssé-game on Am and Bm.

We are now ready to present the connection between k-pebble games and definability in the
k-variable infinitary logics Lk∞ω, k ≥ 1.

Definition 7.8: Let k be a positive integer, and let A and B be two σ-structures.

• A is Lk∞ω-equivalent to B, denoted by A ≡k
∞ω B, if A and B satisfy the same Lk∞ω-sentences.

• We write A ≡k
ωω B to denote that A and B satisfy the same FOk

ωω-sentences.

• Let a1, . . . , ar be a sequence of elements from A and let b1, . . . , br be a sequenec of elements
from B, for some r ≤ k.

(A, a1, . . . , ar) is Lk∞ω-equivalent to (B, b1, . . . , br), denoted (A, a1, . . . , ar) ≡k
∞ω (B, b1, . . . , br),

if for every Lk∞ω-formula ϕ(v1, . . . , vr) with free variables among v1, . . . , vr, we have that

A |= ϕ(v1/a1, . . . , vr/ar) ⇐⇒ B |= ϕ(v1/a1, . . . , vr/br).

Clearly, ≡k
∞ω is an equivalence relation on the class S of all σ-structures, which we call Lk∞ω-

equivalence. The next result asserts that Lk∞ω-equivalence coincides with the equivalence relation
that arises from the k-pebble game. Here, we only outline the main ideas of the proof; complete
details can be found in [KV92b]

57

Theorem 7.9: [Bar77, Imm82] Let k be a positive integer, and let A and B be two σ-structures.
Then the following statements are equivalent:

• A ≡k
∞ω B.

• The Duplicator wins the k-pebble game on A and B.

Moreover, if A and B are finite, then the above statements are also equivalent to

• A ≡k
ωω B.

Proof: (Outline) Assume first that A and B are two σ-structures such that A ≡k
∞ω B. We have to

show that there is a family I of partial isomorphisms on A and B that provides a winning strategy
for Player II in the k-pebble game, as described in Definition 7.4.

We take I to be the family of all partial isomorphisms f between A and B such that the
following hold:

• |f − {(cA1 , c
B
1), . . . , (cA1 , c

B
s)}| ≤ k.

• If a1, . . . , ar are all elements in the domain of f other than the elements cA1 , . . . , c
A
s (that

interpret the constant symbols) and b1 = f(a1), . . . , br = f(ar) are their images under f , then
(A, a1, . . . , ar) ≡k

∞ω (B, b1, . . . , br).

To show that I is a winnning strategy for the Duplicator, first note that I is non-empty, because
A ≡k

∞ω B and, thus, the function f with f(cAj) = cBj , 1 ≤ j ≤ s, is a member of I. Moreover, I
is clearly closed under subfunctions. To show that I has the forth property up to k, it suffices to
show that for all r < k, if we have two sequences of distinct elements a1, . . . , ar in A and b1, . . . , br
in B such that

(A, a1, . . . , ar) ≡
k
∞ω (B, b1, . . . , br),

then for every element a in A that is different from a1, . . . , ar there is an element b in B that is
different from b1, . . . , br and is such that

(A, a1, . . . , ar, a) ≡
k
∞ω (B, b1, . . . , br, b).

Assume that no such b ∈ B exists for a certain a ∈ A. Then for every b ∈ B that is different from
b1, . . . , br there is an Lk∞ω-formula ψb(v1, . . . , vr, v) such that

(A, a1, . . . , ar, a) |= ψb(v1, . . . , vr, v)

and
(B, b1, . . . , br, b) 6|= ψb(v1, . . . , vr, v).

Hence,

(A, a1, . . . , ar) |= (∃v)

(

(v1 6= v) ∧ . . . ∧ (vr 6= v) ∧
∧

b∈B

ψb(v1, . . . , vr, v)

)

,

and, at the same time,

(B, b1, . . . , br) 6|= (∃v)

(

(v1 6= v) ∧ . . . ∧ (vr 6= v) ∧
∧

b∈B

ψb(v1, . . . , vm, v)

)

.

58

But this is a contradiction, since

(∃v)

(

(v1 6= v) ∧ . . . ∧ (vm 6= v) ∧
∧

b∈B

ψb(v1, . . . , vm, v)

)

is an Lk∞ω-formula and (A, a1, . . . , ar) ≡k
∞ω (B, b1, . . . , br). The forth property up to k is established

in an analogous manner, using an infinitary conjunction over elements of A. Note that if A and B

are finite σ-structures, then these conjunctions are actually finitary. Using this observation, we can
mimick the preceding argument with ≡k

ωω in place of ≡k
∞ω in the definition of the winning strategy

I. It follows that if A and B are finite σ-structures satisfying the same FOk
ωω-sentences, then the

Duplicator wins the k-pebble game on A and B.
Conversely, let I be a winning strategy for the Duplicator in the k-pebble game on A and B. We

have to show that A and B satisfy the same Lk∞ω-sentences. This is a consequence of the following
stronger statement, which can be proved by induction on the construction of Lk∞ω-formulas using
the closure and extension properties of I:

If ψ(v1, . . . , vr) is an Lk∞ω-formula whose variables are among v1, . . . , vk and whose free variables
are among v1, . . . , vr, then for all f ∈ I and for all (not necessarily distinct) elements a1, . . . , ar
from the domain of f , we have

A |= ψ(v1/a1, . . . , vr/ar) ⇐⇒ B |= ψ(v1/f(a1), . . . , vm/f(ar)).

As a consequence of Theorem 7.9, we obtain a characterization of Lω∞ω-definability on classes
of finite structures.

Corollary 7.10: Let σ be a vocabulary, C a class of finite σ-structures, and Q a Boolean query on
C. Then the following statements are equivalent:

1. Q is Lω∞ω-definable on C.

2. There is a positive integer k such that for every structure A ∈ C and every structure B ∈ C,
if Q(A) = 1 and the Duplicator wins the k-pebble game on A and B, then Q(B) = 1.

Proof: If Q is Lω∞ω-definable on C, then there is a positive integer k such that Q is definable on
C by some Lk∞ω-sentence θ. Theorem 7.9 implies that if A and B are structures in C such that
Q(A) = 1 and the Duplicator wins the k-pebble game on A and B, then B |= θ, hence Q(A) = 1.
Note that the assumption that C consists of finite structures was not used in this direction.

For the other direction, assume that k is a positive integer with the property that if A and B

are structures in C such that Q(A) = 1 and the Duplicator wins the k-pebble game on A and B,
then Q(B) = 1. For every structure A ∈ C, let ΨA be the set of all FOk

ωω-sentences ψ such that
A |= ψ. Note that ΨA is actually a countable set because there are countably many first-order
formulas; consequently,

∧

ΨA is an Lk∞ω-sentence. Let A1, . . . ,An, . . . be a list of representatives
of all isomorphism types of structures in C. Such a list is countable, since there are countably
many non-isomorphic finite structures. Using Theorem 7.9, it is easy to see that the Lk∞ω-sentence
∨

{
∧

ΨAn : n ≥ 1} defines the query Q on C.

Method 7.11: The Method of k-Pebble Games for Lω∞ω

Let σ be a vocaculary, C a class of finite σ-structures, and Q a Boolean query on C.

59

Soundness: To show that Q is not Lω∞ω-definable on C, it suffices to show that for every positive
integer k there are structures Ak and Bk in C such that

• Q(Ak) = 1 and Q(Bk) = 0.

• The Duplicator wins the k-pebble game on A and B.

Completeness: This method is also complete, that is, if Q is not Lω∞ω-definable on C, then for
every positive integer k such structures Ak and Bk exist.

We note that the above method is sound for arbitrary classes of σ-structures, not just classes
of finite σ-structures. Moreover, it can be shown that it is complete for classes of σ-structures of
bounded cardinalities. We now present some applications of this method.

Proposition 7.12: Let G be the class of all finite graphs.

• The Even Cardinality query is not Lω∞ω-definable on G. Consequently, the Even Cardi-
nality query is neither LFP-definable nor PFP-definable on G.

• For every k ≥ 1, the query “does the graph contain a (k + 1)-clique?” is not Lk∞ω-definable
on G.

Proof: This is an immediate consequence of Example 7.5, Theorem 7.10, and Theorem 7.2.

Proposition 7.13: (de Rougemont [dR87]) The query Hamiltonian Path is not Lω∞ω-definable
on the class G of all finite graphs. Consequently, the query Hamiltonian Path is neither LFP-
definable nor PFP-definable on G.

Proof: For every m ≥ 1 and every n ≥ 1, let Km × Cn be the product graph of the totally
disconnected m-node graph Km with the n-node cycle Cn, as depicted below.

r

r
r

r

r
r

r

r
r

r

r
r

r

r

r

v

v

v

��
!!
!aaa

@@

r

r

r

v

v

v ��!!!aa
a@

@v

v

v

v

PPPPPPPPPP

````````````̀
e
e
e
e
e
e
e
e
e
e
e
e

    
    

  

�
�
�
�
�
�
��

Q
Q
Q
Q
Q
QQ

��
��

���

Km × Cn

It is easy to see that Km × Cn has a Hamiltonian Path if and only if m ≤ n. Indeed, this
holds because, in order to visit two nodes of Km by traveling along edges of Km ×Cn, one has to
visit a node of Cn. Moreover, it is quite clear that for every k ≥ 1, the Duplicator wins the k-pebble

60



game on Kk×Ck and Kk+1 ×Ck. Since Kk×Ck has a Hamiltonian Path, but Kk+1 ×Ck, the
conclusions follow immediately from Theorem 7.10, and Theorem 7.2.

As an exercise, we invite the reader to apply Method 7.11 and show that the Perfect Match-
ing query is not Lω∞ω-definable on G. Note that, using the same method, Dawar [Daw98] showed
that 3-Colorability is not Lω∞ω-definable on G. This is a technically difficult result that requires
the construction of complicated graphs Ak and Bk, k ≥ 1, such that Ak is 3-colorable, B is not 3-
colorable, and the Duplicator wins the k-pebble game on Ak and Bk. In contrast, 2-Colorability
is Lω∞ω-definable on G; in fact, it is L4

∞ω-definable, since Non-2-Colorability is definable by a
Datalog program with at most four variables in each rule, as shown in Example 6.20.

It should be pointed out that, although Method 7.11 can be used to establish limitations on
the expressive power of LFP and PFP on the class G of all finite graphs, this method cannot be
used to establish such results on the class O of all finite ordered graphs. The reason for this is that
every query on O is L2

∞ω-definable, since the isomorphism type of every ordered finite structure
is definable by an L2

ωω-sentence (this is an extension of the fact that L2
ωω can express every fixed

finite cardinality on linear orders). In particular, Hamiltonian Path and 3-Colorability are
L2∞ω-expressible on O. Consequently, Method 7.11 cannot be used to establish limitations on the
expressive power of LFP and PFP on the class O of all ordered finite graphs; this is not surprising,
since, as stated in Theorem 6.11 and Theorem 6.38, LFP capturea PTIME and PFP captures
PSPACE on O.

Up to this point, k-pebble games have been used to establish mainly negative results, that is,
lower bounds for definability in Lω∞ω and, a fortiori, lower bounds for definability in LFP and in
PFP. These games, however, can also be used to establish positive results in the form of structural
properties of Lω∞ω that in many cases are inherited by LFP and PFP. Moreover, k-pebble games
can be used to unveil certain deeper connections between LFP and Lω∞ω. As will be seen in what
follows in the remainder of this section, all these results involve an in-depth study of the family of
the equivalence relations ≡k

∞ω, k ≥ 1, using k-pebble games.

7.3 0-1 Laws for Lω∞ω

A major direction of research in finite model theory has focused on the study of the asymptotic
probabilities of queries on classes of finite structures. This is the topic of the Chapter by Joel
Spencer in this volume. Here, we present a brief overview of 0-1 laws for the infinitary logic Lω∞ω.

Definition 7.14: Let σ be a vocabulary, C a class of finite σ-structures, and Q a Boolean query
on C.

• For every n ≥ 1, we write Cn to denote the subclass of C consisting of all structures A in C
such that the universe of A has cardinality n.

• For every n ≥ 1, let µn be a probability measure on Cn.

– We write µn(Q) to denote the probability of the query Q on Cn with respect to the
measure µn, n ≥ 1.

– The asymptotic probability µ(Q) of the query Q with respect to the family of measures
µn, n ≥ 1 is defined as

µ(Q) = lim
n→∞

µn(Q),

provided the limit exists.

61



Among all measures on classes of finite structures, the uniform measure is the most well-
studied one. More precisely, if C is a class of finite σ-structures and Q is a Boolean query on
C, then the value µn(Q) of the uniform measure is equal to the fraction of structures in Cn that
satisfy the query Q, n ≥ 1. Combinatorialists have studied in depth the asymptotic probabil-
ities of queries on finite graphs with respect to the uniform measure. For instance, it is well
known that µ(4-Regular) = 0, µ(2-Colorability) = 0, and µ(Hamiltonian Path) = 1. Note,
however, that µ(Even Cardinality) does not exist, since µ2n(Even Cardinality) = 1 and
µ2n+1(Even Cardinality) = 0.

In the late 1960s and early 1970s, researchers raised the question of whether there is a connection
between the definability of a query Q in some logic and its asymptotic probability with respect to
a given measure. The next definition captures a case in which such a connection exists and it is
tight.

Definition 7.15: Let L be a logic, σ a vocabulary consisting of relation symbols only, C a class of
finite σ-structures, and µn, n ≥ 1, a family of measures on Cn.

We say that L has a 0-1 law on C with respect to µn, n ≥ 1, if for every L-definable query Q
on C, we have that µ(Q) = 0 or µ(Q) = 1.

Note that the presence of constant symbols causes the failure of the 0-1 law for first-order logic
with respect to the uniform measure. Indeed, if σ is a vocabulary containing a constant symbol c
and a unary relation symbol P , then it is quite easy to verity that µ(P (c)) = 1/2. This explains
why in Definition 7.15 it was assumed that the vocabulary consists of relation symbols only.

Over the years, there has been an extensive investigation of 0-1 laws for various logics with
respect to the uniform measure on classes of finite σ-structures and, in particular, on the class F
of all finite σ-structures. This investigation started with the independent discovery by Glebskii
et al. [GKLT69] and Fagin [Fag76] that first-order logic FO has a 0-1 law with the respect to the
uniform measure on the class F of all finite σ-structures. After this, Blass, Gurevich and Kozen
[BGK85] showed that least fixed-point logic LFP has a 0-1 law with respect to the uniform measure
on F , while Kolaitis and Vardi [KV87] showed that partial fixed-point logic PFP has a 0-1 law
with respect to the uniform measure on F . These 0-1 laws for progressively more expressive logics
turned out to be special cases of the 0-1 law for the infinitary logic Lω∞ω with respect to the uniform
measure on F , a result established by Kolaitis and Vardi [KV92b].

Theorem 7.16: Let σ be a vocabulary consisting of relation symbols only. Then the finite-variable
infinitary logic Lω∞ω has a 0-1 law with respect to the uniform measure on the class F of all finite
σ-structures.

Proof: (Hint) For every k ≥ 1, let θk be the conjunction of all extension axioms for σ with at most
k variables, that is, the conjunction of all FOk

ωω-sentences that assert that every substructure with
fewer than k elements has an extension to a substructure with k elements. Fagin [Fag76] showed
that µ(θk) = 1, where µn is the uniform measure on Fn, n ≥ 1. Let Ak be a model of θk, and let
[Ak]≡k

∞ω
= {B ∈ F : Ak ≡k

∞ω B} be the ≡k
∞ω-equivalence class of Ak. Using the characterization

of ≡k
∞ω via k-pebble games in Theorem 7.9, it can be shown that [Ak]≡k

∞ω
= {B ∈ F : B |= θk}.

Consequently, µ([Ak]≡k
∞ω

) = 1, which easily implies that the 0-1 law holds for the k-variable

infinitary logic Lk∞ω.

Since the asymptotic probability of the Even Cardinality query does not exist, the preceding
Theorem 7.16 gives another proof that Even Cardinality is not Lω∞ω-definable on the class F of
all finite σ-structures.

62



The next result characterizes when a 0-1 law holds for the k-variable infinitary logics Lk∞ω,
k ≥ 1, on a class of finite structures with respect to an arbitrary measure.

Theorem 7.17: Let σ be a vocabulary consisting of relation symbols only, C a class of finite σ-
structures, and µn a measure on Cn, n ≥ 1. Then, for every positive integer k, the following two
statements are equivalent:

1. The k-variable infinitary logic Lk∞ω has a 0-1 law with respect to µn, n ≥ 1, on C.

2. There is an equivalence class D of ≡k
∞ω on C such that µ(D) = 1.

In effect, Theorem 7.17 reveals that Lk∞ω has a 0-1 law if and only if there is a “giant” Lk∞ω-
equivalance class; all other Lk∞ω-equivalence classes must have asymptotic probability equal to 0.
Moreover, the existence of a 0-1 law for Lk∞ω can be established using k-pebble games.

As described in Joel Spencer’s Chapter in this volume, Shelah and Spencer [SS88] investigated
0-1 laws for first-order logic FO on the class G of all finite graphs under non-uniform measures on Gn
of the form p(n) = n−α, where α is a fixed real number. Their main finding is that first-order logic
FO has a 0-1 law on G with respect to the measures p(n) = n−α if and only if α is an irrational
number. It follows that if α is a rational number, then the 0-1 law fails for the finite-variable
infinitary logic Lω∞ω on G with respect to the measures p(n) = n−α. Moreover, McArthur [McA95]
showed that the 0-1 law fails for Lω∞ω on G with respect to the measures p(n) = n−α also when α
is an irrational number. Thus, the 0-1 law fails for Lω∞ω on G with respect to every measure of the
form p(n) = n−α.

7.4 Definability and Complexity of Lk∞ω-Equivalence

If L is a logic and σ is a vocabulary, then two σ-structures A and B are L-equivalent if they satisfy
the same L-sentences. The concept of L-equivalence gives rise to the following decision problem:
given two finite σ-structures A and B, are they L-equivalent? Strictly speaking, this decision
problem is not a query on finite structures, since, according to Definition 2.1, queries take single
structures as inputs, not pairs of structures. It is easy, however, to view this decision problem as a
query on an expanded vocabulary σ1 + σ2 that consists of two disjoint copies of the relation and
constant symbols in the vocabulary σ together with two unary predicates D1 and D2. Using the
vocabulary σ1 + σ2, a pair (A,B) of two σ-structures A and B is identified with a single σ1 + σ2-
structure A + B defined as follows: the universe of A + B is the union A ∪ B of the universes of
A and B, the relation symbol D1 is interpreted by the universe A of A, the relation symbol D2 is
interpreted by the universe B of B, and the remaining relation and constant symbols of σ1 + σ2

are interpreted by the corresponding relations and constants of A and B. This encoding makes it
possible to formally view queries on pairs of σ-structures as queries on single σ1 + σ2-structures.

Note that FO-equivalence coincides with the Isomorphism Problem, since the isomorphism
type of every finite σ-structure is FO-definable; as a result, FO-equivalence is not FO-definable.
The same line of reasoning shows that Lω∞ω-equivalence is not Lω∞ω-definable. In what follows, we
will investigate the logical definability and computational complexity of Lk∞ω-equivalence, k ≥ 1.

Using Theorem 7.9 and the infinitary syntax of Lk∞ω, it is easy to see that Lk∞ω-equivalence is
Lk∞ω-definable, k ≥ 1. Indeed, as in the proof of Theorem 7.10, for every finite σ-structure A, let
ΨA be the conjunction of all FOk

ωω-sentences satisfied by A; clearly, ΨA is an Lk∞ω-sentence. Note
that for every Lk∞ω-sentence Ψ, there are Lk∞ω-sentences Ψ1 and Ψ2 over σ1 + σ2 such that for all
σ-structures A and B, the following hold:

63



• A + B |= Ψ1 if and only if A |= Ψ.

• A + B |= Ψ2 if and only if B |= Ψ.

Finally, let A1, . . . ,An, . . . be a list of representatives of all isomorphism types of finite σ-structures.
Then Lk∞ω-equivalence on σ is definable by the Lk∞ω-sentence

∨

{((Ψ1
Ai

∧ Ψ2
Aj

) → Ψ1
Aj

) : i ≥ 1, j ≥ 1}.

The preceding construction shows that Lk∞ω is powerful enough to express its own equivalence, but
provides no information about the computational complexity of Lk∞ω-equivalence. Nonetheless, the
characterization of Lk∞ω-equivalence in terms of k-pebble games can be used to show that Lk∞ω-
equivalance if LFP-definable and, thus, it is also polynomial-time computable. This result, whose
proof is outlined next, was obtained by Dawar, Lindell and Weinstein [DLW95] and by Kolaitis and
Vardi [KV92a] independently.

Proposition 7.18: Let σ be a vocabulary and k a positive integer. Then there is a positive first-
order formula ϕ(x1, . . . , xk, y1, . . . , yk, S) over the vocabulary σ1 + σ2 such that the least fixed-point
ϕ∞(x1, . . . , xk, y1, . . . , yk) of this formula defines the query: “given two σ-structures A, B and two
k-tuples (a1 . . . , ak) ∈ Ak and (b1, . . . , bk) ∈ Bk, is (A, a1, . . . , ak) 6≡

k
∞ω (B, b1 . . . , bk)?”

Consequently, for each k ≥ 2, Lk∞ω-equivalence is LFP-definable.

Proof: From the proof of Theorem 7.9, it follows that (A, a1, . . . , ak) 6≡k
∞ω (A, b1 . . . , bk) if

and only if the Spoiler wins the k-pebble game on A and B starting with the configuration
(a1, . . . , ak, b1, . . . , bk), that is, the Spoiler wins the k-pebble when the game begins with pebbles of
the same label placed on ai and bi, i = 1, . . . , k. The latter statement is definable by the least fixed-
point ϕ∞ of a positive first-order formula ϕ(x1, . . . , xk, y1, . . . , yk, S) over the vocabulary σ1 + σ2

with a total of 2k distinct variables, which, intuitively, asserts that the Spoiler wins in the initial
configuration or he wins in the “next” move of the game. More precisely, ϕ(x1, . . . , xk, y1, . . . , ykS)
is the formula

χ(x1, . . . , xk, y1, . . . , yk) ∨ (∨ki=1ψi(x1, . . . , xk, y1, . . . , yk, S)),

where

• χ is a quantifier-free formula stating that xi ∈ D1, yi,∈ D2, for i = 1, . . . , k, and the sub-
structures generated by {x1, . . . , xk} and {y1, . . . , yk} are not isomorphic;

• ψi is the formula

(∃xi ∈ D1)(∀yi ∈ D2)S(x1, . . . , xk, y1, . . . , yk)∨(∃yi ∈ D2)(∀xi ∈ D1)S(x1, . . . , xk, y1, . . . , yk).

Proposition 7.18 implies that for each k ≥ 2, Lk∞ω-equivalence is in P. Grohe [Gro99] established
the following matching lower bound for the computational complexity of Lk∞ω-equivalence.

Theorem 7.19: Let σ be a vocabulary containing at least one binary relation symbol. For each
positive integer k ≥ 2, the following problem is P-complete: given two finite σ-structures A and B,
does the Duplicator win the k-pebble game on A and B?

Consequently, for each k ≥ 2, Lk∞ω-equivalence is P-complete.

64



This result is proved via an intricate reduction from the Monotone Circuit Value Problem.
Note that it provides a sharp contrast between the k-pebble game and the r-move Ehrenfeucht-
Fräıssé-game, since, by Theorem 4.4, for each fixed r ≥ 1, determining the winner in the r-move
Ehrenfeucht-Fräıssé-game is solvable in logarithmic space (hence, it is unlikely to be P-complete).
Note that if the number k of pebbles is also part of the input, then determining the winner in the
k-pebble game is solvable in exponential time. It has been conjectured, but it has not been proved,
that this upper bound is tight, which means that the following query is EXPTIME-complete: given
a positive integer k and two finite σ-structures A and B, does the Duplicator win the k-pebble game
on A and B? This would complement Theorem 4.5 by Pezzoli to the effect that, when the number
r of moves is part of the input, determining the winner in the r-move Ehrenfeucht-Fräıssé-game is
a PSPACE-complete problem.

For every finite σ-structure B, let [B]k∞ω be the Lk∞ω-equivalence class of B on finite σ-structures,
that is,

[B]k∞ω = {A ∈ F : A ≡k
∞ω B}.

Clearly, [B]k∞ω can also be viewed as a Boolean query Qk
B on the class F of all finite σ-structures:

given a finite σ-structure A, is A ≡k
∞ω B? For every finite σ-structure B and every k-tuple b from

B, we can also consider the related k-ary query Qk
B,b on F such that, given a finite σ-structure A,

we have that
QkB,b(A) = {a ∈ Ak : (A,a) ≡k

∞ω (B,b)}.

Theorem 7.9 implies that the query Qk
B is definable by the FOk

ωω-sentence
∧

ΨB, where, as earlier,
ΨB is the set of all FOk

ωω-sentences satisfied by B. Similarly, each query Qk
B,b is Lk∞ω-definable as

well. Dawar, Lindell and Weinstein [DLW95] established a much stronger result by showing that all
queries Qk

B and Qk
B,b are actually FOk

ωω-definable. This was achieved via a careful adaptation to

Lk∞ω of Scott’s [Sco65] theorem to the effect that the isomorphism type of every countable structure
is definable in the infinitary logic Lω1ω. Here, we outline a different proof that was given in [KV96].
As a stepping stone, we first establish the following result.

Proposition 7.20: Let B be a finite σ-structure and let b1, . . . ,bl be an enumeration of all k-tuples
from B. For every positive integer k, there is a system SB = (ϕB,bi(x1, . . . , xk, Tb1

, . . . , Tbl), 1 ≤ i ≤
l) of FOk

ωω-formulas that are positive in Tb1
, . . . , Tbl and have the property that ϕ∞

B,bi
(x1, . . . , xk)

defines the complement of the query Qk
B,bi

, 1 ≤ i ≤ l. Thus, for every finite σ-structure A and
every k-tuple a from A

(A,a) ≡k
∞ω (B,b) ⇐⇒ A,a |= ¬ϕ∞

B,bi(x1, . . . , xk).

Proof: (Outline) For every i ≤ l, let χB,bi(x1, . . . , xk) be the conjunction of all atomic or negated
atomic formulas η(x1, . . . , xk) such that B,bi |= η(x1, . . . , xk). Moreover, for every j such that
1 ≤ j ≤ k and every element b from the universe of B, we let bi[j/b] be the k-tuple obtained
from the k-tuple bi = (bi1, . . . , b

i
k) by replacing bij by b. We then consider the system SB = (ϕB,bi ,

1 ≤ i ≤ l), where ϕB,bi(x1, . . . , xk, Tb1
. . . , Tbl) is the formula

¬χB,bi(x1, . . . , xk) ∨ [

k
∨

j=1

(∃xj)
∧

b∈B

Tbi[j/b](x1, . . . , xk)] ∨ [

k
∨

j=1

∨

b∈B

(∀xj)Tbi[j/b](x1, . . . , xk)].

By induction on m simultaneously for all i ≤ l, it can be shown that on every σ-structure A

the component Φm
B,bi

, 1 ≤ i ≤ l, of the m-th stage of the system SB consists of all k-tuples a from
A such that the Spoiler can win within m rounds the k-pebble game on (A,a) and (B,b).

65



By combining Theorem 7.2 with Proposition 7.20, we can now obtain the result by Dawar,
Lindell and Weinstein [DLW95] to the effect that every ≡k

∞ω-equivalence class is FOk
ωω-definable.

Theorem 7.21: Let k be a positive integer, B a finite σ-structure, and b a k-tuple from B.

• The k-ary query Qk
B,b is definable by some FOk

ωω-formula θB,b(x1, . . . , xk).

• The Boolean query Qk
B is definable by some FOk

ωω-sentence θB of FOk.

In other words, for each fixed positive integer k and each fixed finite σ-structure B, the
following query is FOk-definable: “Given a finite σ-structure A, does the Duplicator win the
k-pebble game on A and B?”

Proof: (Outline) Let b1, . . . ,bl be an enumeration of all k-tuples from the universe of B and let
SB = (ϕB,bi , 1 ≤ i ≤ l), be the system of positive FOk-formulas used in the proof of Theorem 7.20.
Theorem 7.2 implies that for every i ≤ l and every m ≥ 1, there is a FOk

ωω-formula ϕmB,bi(x1, . . . , xk)
that defines the component Φm

B,bi
of the m-th stage of this system.

Let us now apply the system SB to the structure B itself. Then there is a positive integer m0

such that on B the least fixed-point of this system is equal to its m0-th stage, that is, for every
i ≤ l

B |= (∀x1 . . . ∀xk)[ϕ
m0

B,bi
(x1, . . . , xk) ↔ ϕm0+1

B,bi
(x1, . . . , xk)].

It can then be shown that the queryQk
B,b is definable by the following FOk

ωω-formula θB,b(x1, . . . , xk):

¬ϕm0

B,b(x1, . . . , xk) ∧ [

l
∧

i=1

(∀x1 . . . ∀xk)(ϕ
m0

B,bi
(x1, . . . , xk) ↔ ϕm0+1

B,bi
(x1, . . . , xk))].

Finally, the query Qk
B is definable by the FOk

ωω-sentence (∃x1 . . . ∃xk)(
∨l
i=1 θB,bi(x1, . . . , xk)).

The preceding Theorem 7.21 yields the following normal form for Lk∞ω-definability on finite
structures, k ≥ 1, a result due to Dawar, Lindell and Weinstein [DLW95].

Corollary 7.22: Let σ be a vocabulary and k a positive integer. For every Lk∞ω-sentence ψ, there
are FOk

ωω-sentences ψm, m ≥ 1, such that for every finite σ-structure A, we have that

A |= ψ ⇐⇒ A |=
∞
∨

i=1

ψm.

Proof: The class of finite σ-structures that satisfy ψ is equal to the union of all ≡k
∞ω-equivalence

classes of finite σ-structures that satisfy ψ. Thus, the desired sentences ψm are the FOk
ωω-sentences

θB, where B varies over all finite σ-structures that satisfy ψ.

Since Lk∞ω and FOk
ωω are closed under negations, we also have that on the class of all finite σ-

structures, every Lk∞ω-sentence is equivalent to a countable conjunction of FOk
ωω-sentences. Thus,

that the expressive power of Lk∞ω on finite structures reduces to a single application of infinitary
disjunction or infinitary conjunction to a countable set of FOk

ωω-sentences.

66



7.5 Least Fixed-Point Logic vs. Partial Fixed-Point Logic on Finite Structures

We now take a closer look at the relationship between least fixed-point logic LFP and partial
fixed-point logic PFP on finite structures. Since every LFP-formula is also a PFP-formula, we
have that on the class F of all finite σ-structures, LFP(F) ⊆ PFP(F). Recall that Theorem
6.11 asserts that on the class O of all ordered finite σ-structures, we have that LFP(O) = P(O);
moreover, Theorem 6.38 asserts that PFP(O) = PSPACE(O). Consequently, LFP(O) 6= PFP(O)
if and only if P 6= PSPACE. Thus, showing that PFP has strictly higher expressive power than
LFP on the class O of all ordered finite σ-structures amounts to resolving one of the outstanding
open problems in computational complexity. Chandra and Harel [CH82] raised the question of how
LFP and PFP compare in terms of expressive power on F and conjectured that LFP(F) 6= PFP(F).
Initially, researchers in finite model theory speculated that this conjecture is not equivalent to some
open problem in complexity theory; moreover, they felt that it would be possible to confirm it using
existing techniques. To justify this intuition, recall that, by Fagin’s Theorem 4.7, ESO = NP on
every class C of finite σ-structures. Consequently, showing that LFP(O) 6= ESO(O) amounts
to establishing that P 6= NP. In contrast, LFP(F) 6= ESO(F), since, as shown in this section,
the Even Cardinality query is not LFP-definable on F , but, of course, it is ESO-definable on
F . Similarly, PFP(F) 6= ESO(F), since the Even Cardinality query is not PFP-definable on
F . So, it seems plausible that one could separate LFP from PFP on F by introducing suitable
combinatorial games that would make it possible to differentiate between these two fixed-point
logics on F ; of course, these games would have to be different from the k-pebble games, k ≥ 1,
since k-pebble games capture definability in the finite variable infinitary logic Lω∞ω, which subsumes
both LFP and PFP on classes of finite structures. It turned out, however, that this intution was
wrong. Indeed, a decade after Chandra and Harel [CH82] formulated their conjecture, Abiteboul
and Vianu [AV91b] established that the separation of LFP from PFP on the class F of all finite
σ-structures is literally equivalent to the separation of P from PSPACE. In what follows, we will
highlight some of the key ideas that go into the proof of this result. For a complete proof, we refer
the reader to the paper by Abiteboul and Vianu [AV91b] and to the subsequent excellent exposition
by Dawar, Lindell and Weinstein [DLW95].

Definition 7.23: Let σ be a vocabulary and k a positive integer.

• If A is a finite σ-structure and a is a k-tuple of element of A, then the k-type of a on A is
the collection of all Lk∞ω-formulas ϕ(x) such that A |= ϕ(a).

• If A is a finite σ-structure and a, b are two k-tuples of element of A, then we write A ≡k,A
∞ω b

to denote that a and b have the same the k-type on A.

As we have seen, LFP cannot express the Even Cardinality query on F , but it can express
every polynomial-time computable query on O. It follows that no LFP-formula ψ(x, y) exists such
that for every finite σ-structure A, this formula defines a linear order on the universe A of A. In
contrast, Abiteboul and Vianu [AV91b] showed that, for every k ≥ 1, there is an LFP-formula such
that, for every finite σ-structure A, this formula defines (in a sense that has to be made precise) a

linear order on the set of the equivalence classes of the equivalence relation ≡k,A
∞ω .

By definition, a linear preorder on a set B is a binary relation � on B that is is reflexive,
transitive, and has the property that for every b1 and b2 in B, we have that b1 � b2 or b2 � b1.
Every linear preorder � gives rise to an equivalence relation ≡ defined by the condition: b1 ≡ b2
if and only if b1 � b2 or b2 � b1. Moreover, � induces a linear order, also denoted by �, on
the quotient set B/ ≡ of the equivalence classes of ≡, where [b1]≡ � [b2]≡ if and only if b1 � b2.

67



The next theorem is the key technical result in Abiteboul and Vianu [AV91b]; we give a hint of a
different proof that has been discovered by Dawar, Lindell and Weinstein [DLW95].

Theorem 7.24: Let σ be a vocabulary and F the class of all finite σ-structures. For every positive
integer k, there is an LFP-definable 2k-ary query Qk on F such that for every finite σ-structure
A, the value Qk(A) of this query on A is a linear preorder on Ak whose whose induced equivalence

relation coincides with the equivalence relation ≡k,A
∞ω of k-types on A.

Proof: (Hint) Using the characterization of Lk∞ω-equivalence in terms of k-pebble games, it is pos-
sible to design a color-refinement algorithm such that on every finite σ-structure A, it inductively
preorders all k-tuples from A according to their k-type on A. This algorithm is naturally expressed
in inflationary fixed-point logic IFP, which, as shown by Gurevich and Shelah [GS86], has the same
expressive power as LFP on the class of all finite σ-structures (see also E. Grädel’s Chapter in this
volume for additional information on IFP).

We can finally present Abiteboul and Vianu’s surprising resolution of Chandra and Harel’s
conjecture.

Theorem 7.25: ([AV91b]) Let σ be a vocabulary and F the class of all finite σ-structures. Then
the following statements are equivalent:

1. LFP(F) = PFP(F).

2. P = PSPACE.

Proof: (Hint) Assume first that LFP(F) = PFP(F). As seen in Example 6.36, PFP can express
PSPACE-complete queries on F . Therefore, such queries are LFP-definable on F . Since every
LFP-definable query query is polynomial-time computable, it follows that PSPACE ⊆ P.

For the other direction, assume that P = PSPACE. We have to show that LFP(F) = PFP(F).
This will require essentially all the machinery we have developed in this section. Fix a positive
integer k. If A is a finite σ-structure, then the equivalence relation ≡k,A

∞ω induces a quotient structure
A/ ≡k,A

∞ω with universe the equivalence classes [a]
≡k,A

∞ω
of k-tuples from A. Let

F/ ≡k
∞ω= {A/ ≡k,A

∞ω : A ∈ F}

be the class of all these quotient structures. Theorem 7.24 implies that there is an LFP-definable
query that defines a linear order on the universe of every quotient structure A/ ≡k,A

∞ω in F/ ≡k
∞ω.

Consequently, LFP(F/ ≡k
∞ω) = P(F/ ≡k

∞ω). We can now use transfer properties between F and
F/ ≡k

∞ω to show that PFP(F) ⊆ LFP(F), as indicated in the diagram below.

ϕ ∈ PFP(F) ≡ ψ ∈ LFP(F)




y

x





ϕ∗ ∈ PFP(F/ ≡k
∞ω) ≡ ψ∗ ∈ LFP(F/ ≡k

∞ω)

Specifically, assume that Q is a query on F definable by a PFP-formula ϕ with k distinct
variables. The formula ϕ can be “transformed” to a PFP-formula ϕ∗ over the vocabulary of
the quotient structures, so that ϕ∗ defines the “transformation” of the query Q to a query Q∗

on F/ ≡k
∞ω. Since Q∗ is PFP-definable on F/ ≡k

∞ω, it is polynomial-space computable. The
hypothesis PSPACE = P implies that Q∗ is polynomial-time computable, henceQ∗ is LFP-definable

68



on F/ ≡k
∞ω. Let ψ∗ be an LFP-formula that defines Q∗ on F/ ≡k

∞ω. We can now “pull back” ψ∗

and obtain an LFP-formula ψ that defines the query Q on F . Thus, PFP(F) ⊆ LFP(F).

Thus, the difference in computational power between polynomial-time and polynomial-space
computations, if any, amounts to the difference in expressive power between least fixed-points and
partial fixed-points of first-order formulas on the class of all finite structures.

8 Existential Infinitary Logics with Finitely Many Variables

In Section 7, we saw that the finite-variable infinitary logics Lk∞ω and the k-pebble games, k ≥ 1,
provide powerful tools for analyzing the expressive power of least fixed-point logic LFP. Our goal in
this section is to develop a similar methodology for analyzing the expressive power of the existential
fragment of LFP and, in particular, the expressive power of Datalog and Datalog(6=). To this effect,
we will introduce finite-variable existential infinitary logics and certain asymmetric pebble games
that turn out to be tailored for the study of Datalog and Datalog(6=).

8.1 The infinitary logics ∃Lk∞ω and ∃Lk∞ω(6=)

Informally, an existential finite-variable infinitary logic is a fragment of Lω∞ω in which the rules for
constructing formulas do not include applications of universal quantification or negation. These
fragments can be further differentiated depending on whether the basic formulas include negated
equalities or negated atomic formulas. We now formally two of these fragments, originally intro-
duced by Kolaitis and Vardi [KV95].

Definition 8.1: Let σ be a vocabulary.

• For every positive integer k, we write ∃Lk∞ω to denote the collection of all L∞ω-formulas
that have at most k distinct variables and are obtained from atomic formulas (which may
be equality statements) using existential quantification, infinitary conjunction, and infinitary
disjunction.

We write ∃FOk to denote the collection of all first-order ∃Lk∞ω-formulas.

• The finite-variable existential infinitary logic ∃Lω∞ω is the union of all ∃Lk∞ω’s

∃Lω∞ω =

∞
⋃

k=1

∃Lk∞ω.

• For every positive integer k, we write ∃Lk∞ω(6=) to denote the collection of all L∞ω-formulas
that have at most k distinct variables and are obtained from atomic formulas and negated
equality statements (that is, formulas of the form t1 6= t2, where t1, t2 are among the k vari-
ables and the constant symbols of σ), using existential quantification, infinitary conjunction,
and infinitary disjunction.

We write ∃FOk(6=) to denote the collection of all first-order ∃Lk∞ω( 6=)-formulas.

• The finite-variable existential infinitary logic ∃Lω∞ω(6=) is the union of all ∃Lk∞ω(6=)’s, that is,

∃Lω∞ω(6=) =

∞
⋃

k=1

∃Lk∞ω(6=).

69



As an example, the expression

(∃z)(E(x, z) ∧ (∃x)(x = z ∧ (∃z)(E(x, z) ∧E(z, y))))

is an ∃FO3-formula that defines the query “there is a path of length 3 from x to y”. Actually, for
every m ≥ 1, the query “there is a path of length m from x to y” is ∃FO3-definable. This is a
special case of a result concerning the relationship between Datalog and ∃Lω∞ω. Before stating this
result in precise terms, we need to introduce a parametrization of Datalog programs based on the
number of variables occurring in the rules.

For every positive integer k, let k-Datalog be the collection of all Datalog programs in which
the body of every rule has at most k distinct variables and also the head of every rule has at most k
variables (the variables of the body may be different from the variables of the head). For instance,
the Non-2-Colorability query is expressible in 4-Datalog, since, as seen Example 6.20, it is
definable by the goal predicate Q of the Datalog program below, which asserts that the existence
of a cycle of odd length:

∣

∣

∣

∣

∣

∣

O(x, y) : − E(x, y)
O(x, y) : − E(x, z), E(z, w), O(z, y)
Q : − O(x, x)

A complete proof of the next result can be found in [KV00].

Theorem 8.2: Let σ be a vocabulary, k a positive integer, and

ϕ1(x1, . . . , xn1
, S1, . . . , Sl), . . . , ϕl(x1, . . . , xnl , S1, . . . , Sl)

a system of positive ∃FOk-formulas over the vocabulary σ ∪ {S1, . . . , Sl}. Then the following state-
ments are true for the above system and for the operator Φ associated with it.

• For every m ≥ 1, each component Φm
i , 1 ≤ i ≤ l, of the stage Φm = (Φm

1 , . . . ,Φ
m
l ) is

∃FOk-definable on all the class S of all σ-structures.

• Each component ϕ∞
i , 1 ≤ i ≤ l, of the least fixed-point (ϕ∞

1 , . . . , ϕ
∞
l ) of the system is ∃FOk-

definable on the class of all σ-structures.

Consequently, every query definable by a k-Datalog program on the class S of all σ-structures is
also is also ∃Lk∞ω-definable on S. In symbols,

k-Datalog(S) ⊆ ∃Lk∞ω(S).

Proof: ((Hint) This result is proved by induction on m simultaneously for all i ≤ l. As was the
case with Theorem 7.2, the key idea is to reuse variables judiciously. Some additional technical
difficulties arise from the limited syntax of ∃Lk∞ω. These are overcome by using the following closure
property of ∃FOk-definable queries, which has to be established separately:

If Q is an ∃FOk-definable query and π : {1, . . . , k} 7→ {1, . . . , k} is a function, then the query Qπ

is also ∃FOk-definable, where for every σ-structure A and every sequence (a1, . . . , ak) of elements
from the universe of A

(a1, . . . , ak) ∈ Qπ(A) ⇐⇒ (aπ(1), . . . , aπ(k)) ∈ Q(A).

70



By refining the proof of Proposition 6.21, it can be shown that every query definable by a
k-Datalog program is also definable by the least fixed-point of a system of positive ∃FOk-formulas.
Consequently, k-Datalog(S) ⊆ ∃Lk∞ω(S).

A result similar to Theorem 8.2 can be established about the relationship between k-Datalog(6=)
and ∃Lω∞ω(6=).

Theorem 8.3: Let k be a positive integer. Every query definable by a k-Datalog( 6=) program on
the class S of all σ-structures is also is also ∃Lk∞ω(6=)-definable on S.

It should be pointed out that on the class F of all finite σ-structures structures k-Datalog is
properly contained in ∃Lω∞ω, since the latter can express queries that are not computable. Similarly,
k-Datalog(6=) is properly in ∃Lω∞ω(6=) on F .

The preservation properties of Datalog and Datalog(6=) in Propositions 6.23 and 6.26 extend to
∃Lω∞ω and ∃Lω∞ω(6=). Specifically, every ∃Lω∞ω-definable query is preserved under homomorphisms
and every ∃Lω∞ω-definable query is preserved under one-to-one homomorphisms. These preserva-
tion properties give rise to sufficient, but not necessary, conditions for inexpressibility in ∃Lω∞ω

or in ∃Lω∞ω(6=). In what follows, we will introduce a variant of pebble games that can actually
characterize definability in these two infinitary logics.

8.2 Existential Pebble Games

The k-pebble game is a symmetric game, in the sense that the Duplicator wins the k-pebble game
on A and B if and only if the Duplicator wins the k-pebble game on B and A. This is a consequence
of the following two properties of the k-pebble game:

1. In each move of the game, the Spoiler can choose one of the two structures and place or
remove a pebble on that structure.

2. The payoff condition is that the substructures generated by the pebbled elements must be
isomorphic.

Thus, we can reverse the order of A and B without affecting the winner of the k-pebble game.
We are interested in games that can characterize definability in the k-variable existential infinitary
logics ∃Lk∞ω, k ≥ 1. A closer scrutiny of the relationship between k-pebble games and Lk∞ω reveals
that moves of the Spoiler on the structure B correspond to universal quantification in Lk∞ω-formulas.
This suggests that games for ∃Lk∞ω should be such that the Spoiler is limited to always playing on
A (and the Duplicator is limited to always playing on B). Moreover, the payoff condition should
be modified appropriately to account for the absence of negation and universal quantification in
∃Lk∞ω. These considerations led to the introduction of existential k-pebble games in [KV00].

Definition 8.4: Let k be a positive integer, σ a vocabulary, and A and B two σ-steructures.
The (∃, k)-pebble game on A and B is played between two players, called the Spoiler and the

Duplicator, each of whom has k pebbles that are labeled 1, . . . , k. In each move, the Spoiler either
places a pebble that is not currently used on an element of A or removes a pebble from an element
of A. The Duplicator responds by either placing the pebble with the same label on an element of
B or by removing the pebble with the same label from an element of B.

Spoiler plays on A : a1 a2 . . . ar
↓ ↓ · · · ↓

Duplicator plays on B : b1 b2 . . . br r ≤ k

71



Assume that at some point of time during the game, r pebbles have been placed on each
structure, where 1 ≤ r ≤ k, and let (ai, bi) ∈ A× B, 1 ≤ i ≤ r, be the pairs of elements of A and
B such that the label of the pebble on ai is the same as the label of the pebble on bi. The Spoiler
wins the (∃, k)-pebble game on A and B at this point of time, if the mapping ai 7→ bi, 1 ≤ i ≤ r,
is not an homomorphism between the substructures of A and B generated by {a1, . . . , ar} and
{b1, . . . , br}, respectively.

The Duplicator wins the (∃, k)-pebble game on A and B if the above never happens, which
means that the Duplicator has a winning strategy that allows him to continue playing “forever” by
maintaining a partial homomorphism at every point of time.

The (∃, 6=, k)-pebble game on A and B is defined in an entirely analogous way with the exception
that the payoff condition for the Duplicator is that the mapping ai 7→ bi, 1 ≤ i ≤ r, is a one-to-one
homomorphism between the substructures of A and B generated by {a1, . . . , ar} and {b1, . . . , br},
respectively.

The concept of a winning strategy for the Duplicator in the (∃, k)-pebble game and the (∃, 6=, k)-
pebble game can be made precise in terms of families of partial homomorphisms or partial one-to-one
homomorphisms with appropriate closure and extension properties.

Definition 8.5: A winning strategy for the Duplicator in the (∃, k)-pebble game (respectively, in the
(∃, 6=, k)-pebble game) on A and B is a nonempty family I of partial homomorphisms (respectively,
partial one-to-one homomorphims) from A to B with the following properties.

1. If f ∈ I, then |f − {(cA1 , c
B
1 ) . . . , (cA1 , c

B
s )}| ≤ k.

2. I is closed under subfunctions:

If g ∈ I and f is a function such that {(c1,A , cB1 ), . . . , (cAs , c
B
s )} ⊆ f ⊆ g, then f ∈ I.

3. I has the forth property up to k:

If f ∈ I and |f − {(cA1 , c
B
1 ) . . . , (cA1 , c

B
s )}| < k, then for every a ∈ A, there is g ∈ I so that

f ⊆ g and a ∈ dom(g).

It is clear that if the Duplicator wins the k-pebble game on A and B, then the Duplicator also
wins the (∃, k)-pebble game on A and B. The converse, however, is not always true. Intuitively, it
is easier for the Duplicator to win the (∃, k)-game than it is to win the k-pebble game, because the
Spoiler can not switch between the two structures. Note also that, unlike the k-pebble game, the
(∃, k)-pebble game is asymmetric. For instance, the Spoiler wins the (∃, k+1)-game on the cliques
Kk+1 and Kk, but the Duplicator wins the (∃, k+ 1)-game on the cliques Kk and Kk+1. A similar
state of affairs holds for the (∃, 6=, k)-pebble game.

We now present the connection between existential pebble games and definability in the finite-
variable existential infinitary logics.

Definition 8.6: Let k be a positive integer, and let A and B be two σ-structures.

• We write A �∃,k
∞ω B to denote that every ∃Lk∞ω-sentence that is true on A is also true on B.

• We write A �∃,k
ωω B to denote that every first-order sentence of ∃Lk∞ω that is true on A is

also true on B.

72



• Let a1, . . . , ar be a sequence of elements from A and let b1, . . . , br be a sequenec of elements
from B, for some r ≤ k.

We write (A, a1, . . . , ar) �
∃,k
∞ω (B, b1, . . . , br) to denote that for every ∃Lk∞ω-formula ϕ(v1, . . . , vr)

with free variables among v1, . . . , vr, we have that

A |= ϕ(v1/a1, . . . , vr/ar) =⇒ B |= ϕ(v1/a1, . . . , vr/br).

The relation �∃,6=,k
∞ω is defined in a similar manner with ∃Lk∞ω(6=) in place of ∃Lk∞ω.

Theorem 8.7: [KV95] Let k be a positive integer, and let A and B be two σ-structures. Then the
following statements are equivalent:

• A �∃,k
∞ω B.

• The Duplicator wins the (∃, k)-pebble game on A and B.

Moreover, if B is finite, then the above statements are also equivalent to

• A �∃,k
ωω B.

A similar result holds for ∃Lk∞ω(6=) and the (∃, 6=, k)-pebble game.

As a consequence of Theorem 8.7, we obtain a characterization of ∃Lω∞ω-definability on classes
of finite structures.

Corollary 8.8: Let σ be a vocabulary, C a class of finite σ-structures, and Q a Boolean query on
C. Then the following statements are equivalent:

1. Q is ∃Lω∞ω-definable on C.

2. There is a positive integer k such that for every structure A ∈ C and every structure B ∈ C,
if Q(A) = 1 and the Duplicator wins the (∃, k)-pebble game on A and B, then Q(B) = 1.

Thus, we have a sound and complete method for studying ∃Lω∞ω-definability on classes of finite
structures.

Method 8.9: The Method of (∃, k)-Pebble Games for ∃Lω∞ω

Let σ be a vocaculary, C a class of finite σ-structures, and Q a Boolean query on C.

Soundness: To show that Q is not ∃Lω∞ω-definable on C, it suffices to show that for every positive
integer k there are structures Ak and Bk in C such that

• Q(Ak) = 1 and Q(Bk) = 0.

• The Duplicator wins the (∃, k)-pebble game on A and B.

Completeness: This method is also complete, that is, if Q is not ∃Lω∞ω-definable on C, then for
every positive integer k such structures Ak and Bk exist.

73



A similar method can be used for studying ∃Lω∞ω(6=)-definability on classes of finite structures
using (∃, 6=, k)-pebble games, k ≥ 1.

We now present some results concerning the descriptive and computational complexity of de-
termining the winner in the (∃, k)-pebble game, k ≥ 1. These results should be compared with the
results in Propositions 7.18 and 7.20 and in Theorem 7.21 about the descriptive and computational
complexity of determining the winner in the k-pebble game, k ≥ 1.

Theorem 8.10: ([KV00]) Let σ be a vocabulary and let k be a positive integer.

1. The query: “Given two σ-structures A and B, does the Spoiler win the (∃, k)-pebble on A

and B?” is LFP-definable.

As a result, there is a polynomial-time algorithm such that, given two finite σ-structures A

and B, it determines whether the Spoiler wins the (∃, k)-pebble game on A and B.

2. For every finite σ-structure B, there is a k-Datalog program ρB that expresses the query
“Given a σ-structure A, does the Spoiler win the (∃, k)-pebble game on A and B?”.

Proof: (Sketch) For notational simplicity, let us assume that the vocabulary σ consists of relation
symbols only. Let θ(x1, . . . , xk, y1, . . . , yk) be a quantifier-free formula over the vocabulary σ1 + σ2

asserting that the correspondence xi 7→ yi, 1 ≤ i ≤ k, is not a mapping or it is a mapping that is
not a homomorphism from the substructure generated by x1, . . . , xk over the vocabulary σ1 to the
substructure induced by y1, . . . , yk over the vocabulary σ2. In particular, θ is the disjunction of the
following formulas:

• xi = xj ∧ yi 6= yj, for every i, j ≤ k such that i 6= j.

• R1(xi1 , . . . , xim)∧¬R2(yi1 , . . . , yim), for every m-ary relation symbol R in σ and every m-ary
tuple (i1, . . . , im) of indices from the set {1, . . . , k}.

Let T be a 2k-ary relation symbol not in σ1 +σ2 and let ϕ(x1, . . . , xk, y1, . . . , yk, T ) be the following
positive first-order formula over the vocabulary σ1 + σ2 ∪ {T}:

θ(x1, . . . , xk, y1, . . . , yk) ∨
k
∨

j=1

(∃xj ∈ D1)(∀yj ∈ D2)T (x1, . . . , xk, y1, . . . , yk).

It is easy to verify that if A and B are σ-structures and (a1, . . . , ak), (b1, . . . , bk) are k-tuples of
elements from A and B respectively, then the following statements are equivalent:

1. A + B |= ϕ∞(a1, . . . , ak, b1, . . . , bk).

2. The Spoiler wins the (∃, k)-pebble game on (A, a1, . . . , ak) and (B, b1, . . . , bk).

Let ψ be the sentence (∃x1) · · · (∃xk)(∀y1) · · · (∀yk)ϕ
∞(x1, . . . , xk, y1, . . . , yk) of least fixed-point

logic LFP. Consequently, for every σ-structure A and every σ-structure B the following statements
are equivalent:

1. A + B |= ψ.

2. The Spoiler wins the (∃, k)-pebble game on A and B.

74



Note that the positive first-order formula ϕ above involves existential quantifiers that are inter-
preted over the elements of A, and universal quantifiers that are interpreted over the elements of
B. Consequently, if B is a fixed finite σ-structure, then the universal quantifiers can be replaced by
finitary conjunctions over the elements of the universe B of B and, thus, ϕ can be transformed to a
k-Datalog program ρp that expresses the query: “Given a finite σ-structure A, does the Spoiler win
the existential k-pebble game on A and B?”. In what follows, we describe this k-Datalog program
in some detail. The goal of ρB is a 0-ary predicate S. Let b = (b1, . . . , bk) be a k-tuple of elements
of B. For each such k-tuple, we introduce a k-ary relation symbol Tb and the following rules:

• For every i and j such that bi 6= bj , we have a rule

Tb(x′1, . . . , x
′
k) : − ,

where x′i = x′j = xi, and x′s = xs, for s 6= i, j.

• For every m-ary relation symbol R of σ and every m-ary tuple (i1, . . . , im) such that

B, bi1 , . . . , bim |= ¬R(xi1 , . . . , xim),

we have a rule
Tb(x1, . . . , xk) : − R(xi1 , . . . , xim).

• For every j with 1 ≤ j ≤ k, we have a rule

T (x1, . . . , xk) : −
∧

c∈B

Tb[j/c](x1, . . . , xj−1, y, xj+1, . . . , xk),

where b[j/c] = (b1, . . . , bj−1, c, bj+1, . . . , bk) and y is a new variable (note, however, that the
body of the rule has k variables).

• For the goal predicate S, we have the rule

S : −
∧

b∈Bk

Tb(x1, . . . , xk).

As stated in Theorem 7.19, Grohe [Gro99] showed that if σ is a vocabulary containing at least
one binary relation symbol, then for every k ≥ 2, the following query is P-complete: “given two
finite σ-structures A and B, does the Duplicator win the k-pebble game on A and B?”. In this
query both structures A and B are part of the input. Recall, however, that the complexity drops
if the structure B is kept fixed. Indeed, as shown in Theorem 7.21, for each fixed positive integer
k and for each fixed finite σ-structure B, the following query is FOk

ωω-definable (hence, solvable in
logarithmic space): “given a finite σ-structure A, does the Duplicator win the k-pebble game on
A and B?”. In contrast, we now show that determining the winner in the (∃, k)-pebble game can
be P-complete, even for a fixed k and a fixed B.

Proposition 8.11: There are a vocabulary σ consisting of relation symbols of arity at most 3 and
a finite σ-structure B such that the following query is P-complete: “given a finite σ-structure A,
does the Duplicator win the (∃, 3)-pebble game on A and B?”.

75



Proof: We will describe a logarithmic-space reduction from the satisfiability problem Horn 3-Sat
for Horn formulas with at most three literals per clause, which is a well-known P-complete problem
(see [GHR95])

Let σ be a vocabulary consisting of two unary relation symbols N1 and P1, two binary relation
symbols N2 and P2, and two ternary relation symbols N3 and P3. The intuition is that these
relation symbols represent the various types of clauses that may occur in a Horn formula with at
most three literals per clause. Specifically, N1 and P1 will represent the unit clauses ¬x and x, N2

and P2 will represent the binary Horn clauses ¬x ∨ ¬y and ¬x ∨ y, while N3 and P3 will represent
the ternary Horn clauses ¬x ∨ ¬y ∨ ¬z and ¬x ∨ ¬y ∨ z. Let B be the Boolean σ-structure whose
relations are the sets of satisfying truth assignments of Horn clauses with at most three literals per
clause. More precisely, the universe of B is the set {0, 1} and the relations of B are as follows:

• NB
1 = {0} and PB

1 = {1};

• NB
2 = {0, 1}2 − {(1, 1)} and PB

2 = {0, 1}2 − {(1, 0)};

• NB
3 = {0, 1}3 − {(1, 1, 1)} and NB

3 = {0, 1}3 − {(1, 1, 0)}.

If ϕ is a Horn formula with at most three literals per clause, then ϕ can be encoded by a finite
σ-structure Aϕ such that the universe A of A is the set of all variables occurring in ϕ and the
relations on A represent the clauses of ϕ. For instance, NA

2 consists of all pairs (x, y) of variables
such that ¬x ∨ ¬y is a clause of ϕ, while PA

3 consists of all triples (x, y, z) of variables such that
¬x ∨ ¬y ∨ z is a clause of ϕ. Clearly, Aϕ can be constructed in logarithmic space from ϕ.

We now claim that ϕ is satisfiable if and only if the Duplicator wins the (∃, 3)-pebble game on
Aϕ and B. If ϕ is satisfiable, then a satisfying truth assignment is a homomorphism from Aϕ to
B. Hence, the Duplicator can win the (∃, 3)-pebble game on Aϕ and B by using the values of this
homomorphism to respond to the moves of the Spoiler. In fact, in this case the Duplicator can
win the (∃, k)-pebble game on Aϕ and B for every k ≥ 1. The other direction requires more work.
We start with the observation that the well-known polynomial-time marking algorithm for Horn
satisfiability is readily expressible in 3-Datalog. More precisely, consider the following 3-Datalog
program π with T and P as its IDB predicates and P as its goal predicate.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T (z) : − P1(z)
T (z) : − P2(x, z), T (x)
T (z) : − P3(x, y, z), T (x), T (y)
P : − N1(x), T (x)
P : − N2(x, y), T (x), T (y)
P : − N3(x, y, z), T (x), T (y), T (z)

It is easy to verify that B does not satisfy the goal predicate P . Moreover, a Horn formula ϕ with at
most 3 literals per clause is unsatisfiable if and only if the structure Aϕ satisfies the goal predicate
P . This holds because the first three rules of π mimick the marking algorithm for Horn satisfiability
by putting into the predicate T all variables of ϕ that must take value “true” in every satisfying
truth assignment; the last three rules capture the possible ways in which a Horn formula is found
to be unsatisfiable by this algorithm because all variables occurring in some negative clause are
forced to take value “true”. Assume now that the Duplicator wins the (∃, 3)-pebble game on Aϕ

and B. We claim that ϕ is satisfiable. If this is not the case, then Aϕ satisfies the goal predicate
P of the above 3-Datalog program π. Since the Duplicator wins the (∃, 3)-pebble game on Aϕ and
B, Theorem 8.8 implies that B satisfies the goal predicate P of π, which is not true.

76



Obviously, the preceding Proposition 8.11 implies that, when both structures A and B are part
of the input, then determining the winner in the (∃, 3)-pebble game is a P-complete problem. In
fact, it is known that this holds for every fixed k ≥ 2 and for vocabularies consisting of a binary
relation symbol and a fixed number of unary relation symbols [KP03]. As stated earlier, it has been
conjectured, but remains to be proved, that determining the winner in the k-pebble game with k
part of the input is an EXPTIME-complete problem. In contrast, determining the winner in the
(∃, k)-pebble game when k is part of the input has been shown to be EXPTIME-complete.

Theorem 8.12: ([KP03]) The following problem is EXPTIME-complete: given a positive integer
k, a vocabulary σ consisting of one binary relation symbol and a number of unary relation symbols,
and two finite σ-structures A and B, does the Duplicator win the (∃, k)-pebble game on A and B?

We note that some of the results about Datalog and (∃, k)-pebble games that we presented here
have found numerous applications to the study of constraint satisfaction problems, which is the
topic of the Chapter by Moshe Y. Vardi in this volume.

8.3 Descriptive Complexity of Fixed Subgraph Homeomorphism Queries

The original motivation behind the introduction of (∃, k)-pebble games and (∃, 6=, k)-pebble games
in [KV95] was to develop tools for analyzing the expressive power of Datalog and Datalog(6=).
We now close this chapter by presenting a case study of the expressibility of certain important
graph-theoretic problems in Datalog(6=) using (∃, 6=, k)-pebble games.

Definition 8.13: Let H and G be two directed graphs.
A homeomorphism h : H  G from H to G is a one-to-one mapping from the nodes of H to

the nodes of G such that h maps the edges of H to pairwise node-disjoint simple paths of G.

The concept of homeomorphism gives rise to a family of decision problems on directed graphs,
one for each fixed finite directed graph H.

Definition 8.14: Let H be a fixed finite directed graph. The Fixed Subgraph Homeomorphism
Query with Pattern H, denoted by FiSH(H), asks: given a directed graph G and a one-to-one
mapping from the nodes of H to the nodes of G, is there a homeomorphism h : H  G extending
this mapping?

The following examples illustrate some typical members of this family of queries.

Example 8.15: Let H be a directed graph consisting of two parallel directed edges, that is, H has
four nodes s1, s2, t1, t2 and two edges (s1, t1), (s2, t2).

v v

v v

-

-s2 t2

t1s1

b b b

b b b v

v

-

-

t′
2

t′
1v

v

v

v

-

-

-

-s′
2

s′
1

77



Then FiSH(H) is the 2-Disjoint Paths Query: given a directed graph G and four nodes
s′1, s

′
2, t

′
1, t

′
2, does G contain two node-disjoint simple paths from s′1 to t′1 and from s′2 to t′2?

By taking H to be a graph consisting of m parallel directed edges, this example generalizes to
the m-Disjoint Paths query, m ≥ 2.

Example 8.16: Let C3 be a directed cycle with three nodes. Then FiSH(C3) is the query: given
a directed graph G and three nodes a1, a2, a3, is there a simple cycle in G containing these nodes?

By taking H to be a directed cycle Cm with m nodes, m ≥ 3, this example generalizes to the
query: given a directed graph G and m nodes a1, . . . , am, is there a simple cycle in G containing
these m nodes?

Fortune, Hopcroft and Willey [FHW80] obtained a complete classification of the computational
complexity of all FiSH(H) queries, as H ranges over all finite directed graphs. Before stating this
classification result, we need one more concept.

Definition 8.17: A star graph is a directed graph that consists either of a single source node and
edges emanating from this node or of a single sink node with edges terminating on this node.

v

v

v

v

v

v

v

v
b
b

b

v

v

v

v

v

v

v

v
b
b

b
?

�
�	

� �
��
-

6
@
@I

6�
��
-
@
@R?

�
�	�

Theorem 8.18: The following dichotomy holds for the computational complexity of the Fixed
Subgraph Homeomorphism Query with Pattern H, where H ranges over all finite directed
graphs.

• If H is a star graph, then FiSH(H) is in P.

• If H is not a star graph, then FiSH(H) is NP-complete.

Let us digress for moment and explain why the preceding result is a dichotomy theorem. Ladner
[Lad75] showed that if P 6= NP, then there is a decision problem Q such that

• Q ∈ NP − P;

• Q is not NP-complete.

Thus, if P 6= NP, then NP contains problems of intermediate complexity between polynomial-
time solvability and NP-completeness. Theorem 8.18, however, asserts that no Fish(H) query is a
problem of such intermediate complexity.

↗ NP-complete

FiSH(H) NP − P

↘ P

78



Note that the dichotomy in the computational complexity of FiSH(H) queries is proper only if
P 6= NP. We now present a dichotomy in the descriptive complexity of FiSH(H) queries that does
not depend on any complexity-theoretic assumptions.

Theorem 8.19 : ([KV95]) The following dichotomy holds for the descriptive complexity of the
Fixed Subgraph Homeomorphism Query with Pattern H, where H ranges over all finite
directed graphs.

• If H is a star graph, then FiSH(H) is ∃Lω∞ω(6=)-definable; in fact, it is definable in Datalog(6=).

• If H is not a star graph, then FiSH(H) is not ∃Lω∞ω(6=)-definable.

Proof: (Hint) If H is a star graph, then the FiSH(H) query is solvable in polynomial time using
a max flow algorithm, which can be expressed by a Datalog(6=) program.

The 2-Disjoint Paths query is the key case of the results concerning the inexpressibility of
Fish(H) in Datalog(6=) when H is not a star graph. To this effect, one can show that for every
k ≥ 1 there are directed graphs Ak and Bk such that the following hold:

• Ak satisfies the 2-Disjoint Paths query, but Bk does not;

• the Duplicator wins the (∃, 6=, k)-pebble game on Ak, Bk.

The graph Ak consists of two disjoint sufficiently long paths. The graph Bk, however, is much
more complicated and so is the description of the Duplicator’s winning strategy in the (∃, 6=, k)-
pebble game on Ak and Bk. This graph is extracted from the reduction of 3-Sat to 2-Disjoint
Paths used by Fortune, Hopcroft and Willey [FHW80] to establish that the 2-Disjoint Paths
query is NP-hard.

Several remarks are in order now. The first is that the proof of Theorem 8.19 reveals that
certain constructions used to prove NP-hardness can also be used to obtain interesting structures
on which to play combinatorial logics and establish lower bounds for definability. Note that the
dichotomy in the descriptive complexity of FiSH(H) queries cannot be proved using preservation
properties of Datalog(6=), because these queries are preserved under one-to-one homomorphisms.

It is an open problem to significantly strengthen the lower bound in Theorem 8.19 by establishing
that if H is not a star graph, then the FiSH(H) query is not Lω∞ω-definable. The critical step would
be to show that the 2-Disjoint Paths query is not Lω∞ω-definable.

As a byproduct of their celebrated work on the graph minor problem, Robertson and Seymour
[RS85, RS95] showed that every FiSH(H) query is solvable in polynomial time when restricted
to undirected graphs. It would be interesting to carry out a detailed study of the descriptive
complexity of FiSH(H) queries on undirected graphs. A preliminary investigation by Barland
[Bar96] showed that the FiSH(C3) query is LFP-definable on the class G of all finite undirected
graphs. This suggest that if there is a dichotomy in the descriptive complexity of FiSH(H) queries
on undirected graphs, then the boundary of that dichotomy is going to be different from the
boundary of the dichotomy in Theorem 8.19.

9 References

References

[AF90] M. Ajtai and R. Fagin. Reachability is harder for directed than for undirected finite
graphs. Journal of Symbolic Logic, 55(1):113–150, March 1990.

79



[AF97] S. Arora and R. Fagin. On winning strategies in Ehrenfeucht-Fraïssé games. Theoretical
Computer Science, 174:97–121, 1997.

[AG87] M. Ajtai and Y. Gurevich. Monotone versus positive. Journal of the ACM, 34:1004–
1015, 1987.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison-Wesley, 1995.

[AV91a] S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates. Jour-
nal of Computer and System Sciences, 43:62–124, 1991.

[AV91b] S. Abiteboul and V. Vianu. Generic computation and its complexity. In Proc. 23rd
ACM Symp. on Theory of Computing, pages 209–219, 1991.

[Bar77] J. Barwise. On Moschovakis closure ordinals. Journal of Symbolic Logic, 42:292–296,
1977.

[Bar96] I. Barland. Expressing Optimization Problems as Integer Programs, and Undirected Path
Problems: a Descriptive Complexity Approach. PhD thesis, University of California,
Santa Cruz, 1996.

[BGK85] A. Blass, Y. Gurevich, and D. Kozen. A zero–one law for logic with a fixed point
operator. Information and Control, 67:70–90, 1985.

[CH80] A. Chandra and D. Harel. Computable queries for relational databases. Journal of
Computer and System Sciences, 21:156–178, 1980.

[CH82] A. Chandra and D. Harel. Structure and complexity of relational queries. Journal of
Computer and System Sciences, 25:99–128, 1982.

[CH85] A. Chandra and D. Harel. Horn clause queries and generalizations. Journal of Logic
Programming, 1:1–15, 1985.

[Coo74] S. A. Cook. An observation of time-storage trade-off. Journal of Computer and System
Sciences, 9:308–316, 1974.

[Daw98] A. Dawar. A restricted second-order logic for finite structures. Information and Com-
putation, 143:154–174, 1998.

[Dic85] M. A. Dickmann. Larger infinitary languages. In J. Barwise and S. Feferman, editors,
Model-Theoretic Logics, pages 317–363. Springer-Verlag, 1985.

[Die97] R. Diestel. Graph Theory. Springer, 1997.

[DLW95] A. Dawar, S. Lindell, and S. Weinstein. Infinitary logic and inductive definability over
finite structures. Information and Computation, 119:160–175, 1995.

[dR87] M. de Rougemont. Second-order and inductive definability on finite structures.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 33:47–63, 1987.

[Ehr61] A. Ehrenfeucht. An application of games to the completeness problem for formalized
theories. Fund. Math., 49:129–141, 1961.

80



[End72] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, New York,
1972.

[Fag74] R. Fagin. Generalized first–order spectra and polynomial–time recognizable sets. In
R. M. Karp, editor, Complexity of Computation, SIAM-AMS Proceedings, Vol. 7, pages
43–73, 1974.

[Fag75] R. Fagin. Monadic generalized spectra. Zeitschrift für Mathematische Logik und Grund-
lagen der Mathematik, 21:89–96, 1975.

[Fag76] R. Fagin. Probabilities on finite models. Journal of Symbolic Logic, 41:50–58, 1976.

[Fag97] R. Fagin. Easier ways to win logical games. In N. Immerman and Ph. G. Kolaitis, editors,
Descriptive Complexity and Finite Models, volume 31 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 1–32. American Mathematical
Society, 1997.

[FHW80] S. Fortune, J. Hopcroft, and J. Wyllie. The directed homeomorphism problem. Theo-
retical Computer Science, 10:111–121, 1980.

[Fra54] R. Fräıssé. Sur quelques classifications des systèmes de relations. Publ. Sci. Univ. Alger.
Sér. A, 1:35–182, 1954.

[FSV95] R. Fagin, L. Stockmeyer, and M. Y. Vardi. On monadic NP vs. monadic co-NP. Infor-
mation and Computation, 120(1):78–92, July 1995.

[Gai82] H. Gaifman. On local and nonlocal properties. In J. Stern, editor, Logic Colloquium
’81, pages 105–135. North Holland, 1982.

[GHR95] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to parallel computation: P-
completeness theory. Oxford University Press, New York, 1995.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., 1979.

[GKLT69] Y. V. Glebskii, D. I. Kogan, M. I. Liogonki, and V. A. Talanov. Range and degree
of realizability of formulas in the restricted predicate calculus. Cybernetics, 5:142–154,
1969.

[Gro95] M. Grohe. Complete problems for fixed–point logics. Journal of Symbolic Logic,
60(2):517–527, 1995.

[Gro99] M. Grohe. Equivalence in finite-variable logics is complete for polynomial time. Com-
binatorica, 19(4):507–523, 1999.

[GS86] Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Annals of Pure
and Applied Logic, 32:265–280, 1986.

[GV85] H. Gaifman and M. Y. Vardi. A simple proof that connectivity is not first-order. Bulletin
of the European Association for Theoretical Computer Science, 26:43–45, June 1985.

[Han65] W. Hanf. Model-theoretic methods in the study of elementary logic. In J. Addison,
L. Henkin, and A. Tarski, editors, The Theory of Models, pages 132–145. North Holland,
1965.

81



[Har94] J Hartmanis. Turing Award Lecture: on computational complexity and the nature of
computer science. Communications of the ACM, 37:37–43, 1994.

[Imm82] N. Immerman. Upper and lower bounds for first-order expressibility. Journal of Com-
puter and System Sciences, 25:76–98, 1982.

[Imm86] N. Immerman. Relational queries computable in polynomial time. Information and
Control, 68:86–104, 1986.

[Kei71] H. J. Keisler. Model Theory for Infinitary Logic. North Holland, 1971.

[Kle55] S. C. Kleene. Arithmetical predicates and function quantifiers. Trans. Amer. Math.
Soc., 79:312–340, 1955.

[Kna28] B. Knaster. Un theoreme sur les fonctions d’ensembles. Ann. Soc. Polon. Math., 6:133–
134, 1928.

[KP03] Ph.G. Kolaitis and J. Panttaja. On the complexity of existential pebble games. In 2003
Annual Conference of the European Association for Computer Science Logic - CSL ’03,
Lecture Notes in Computer Science. Springer, 2003. to appear.

[KV87] Ph. G. Kolaitis and M. Y. Vardi. The decision problem for the probabilities of higher-
order properties. In Proc. 19th ACM Symp. on Theory of Computing, pages 425–435,
1987.

[KV92a] Ph. G. Kolaitis and M. Y. Vardi. Fixpoint logic vs. infinitary logic in finite-model theory.
In Proc. 6th IEEE Symp. on Logic in Comp. Sci., pages 46–57, 1992.

[KV92b] Ph. G. Kolaitis and M. Y. Vardi. Infinitary logic and 0-1 laws. Information and Com-
putation, 98:258–294, 1992. Special issue: Selections from the Fifth Annual IEEE Sym-
posium on Logic in Computer Science.

[KV95] Ph. G. Kolaitis and M. Y. Vardi. On the expressive power of Datalog: tools and a case
study. Journal of Computer and System Sciences, 51(1):110–134, August 1995. Special
Issue: Selections from Ninth Annual ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS), Nashville, TN, USA, 2-4 April 1990.

[KV96] Ph.G. Kolaitis and M.Y. Vardi. On the expressive power of variable-confined logics. In
Proceedings of 11th Annual IEEE Symposium on Logic in Computer Science - LICS ’96,
pages 348–59, 1996.

[KV00] Ph.G. Kolaitis and M.Y. Vardi. Conjunctive-query containment and constraint satisfac-
tion. Journal of Computer and System Sciences, pages 302–332, 2000. Earlier version
in: Proc. 17th ACM Symp. on Principles of Database Systems (PODS ’98).

[Lad75] R. E. Ladner. On the structure of polynomial time reducibility. Journal of the Associ-
ation for Computing Machinery, 22(1):155–171, 1975.

[McA95] M. McArthur. Convergence and 0-1 laws for lk∞ω under arbitrary measures. In 1994
Annual Conference of the European Association for Computer Science Logic - CSL ’94,
volume 933 of Lecture Notes in Computer Science, pages 228–241. Springer, 1995.

82



[Mil90] R. Milner. Operational and algebraic semantics of concurrent processes. In J. van
Leeuween, editor, Handbook of Theoretical Computer Science, volume B, pages 1201–
1242. The MIT Press/Elsevier, 1990.

[Mos74] Y. N. Moschovakis. Elementary Induction on Abstract Structures. North Holland, 1974.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company,
1994.

[Pez99] E. Pezzoli. Computational complexity of Ehrenfeucht-fräıssé games on finite structures.
In Proc. 12th International Workshop on Computer Science Logic - CSL ’98, pages
159–170. Springer-Verlag, 1999.

[RS85] N. Robertson and P. D. Seymour. Disjoint paths - a survey. SIAM Journal of Algebraic
and Discrete Methods, 6:300–305, 1985.

[RS95] N. Robertson and P.D. Seymour. Graph Minors XIII. the disjoint paths problem. J.
Combinatorial Theory B, 63:65–110, 1995.

[Sch94] T. Schwentick. Graph connectivity and monadic NP. In Proc. 35th IEEE Symp. on
Foundations of Computer Science, pages 614–622, 1994.

[Sco65] D. Scott. Logic with denumerably long formulas and finite strings of quantifiers. In
J.W. Addison, L. Henkin, and A. Tarski, editors, The Theory of Models, pages 320–341.
North Holland, 1965.

[Spe61] C. Spector. Inductively defind sets of natural numbers. In Infinitistic Methods, pages
97–102. Pergamon, 1961.

[SS88] S. Shelah and J. Spencer. Zero-one laws for sparse random graphs. J. Amer. Math.
Soc., 1:97–115, 1988.

[Sto77] L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1–22,
1977.

[Tar55] A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific J. of
Mathematics, 5:285–309, 1955.

[Ull89] J. D. Ullman. Database and Knowledge-Base Systems, Volumes I and II. Computer
Science Press, 1989.

[Var82] M. Y. Vardi. The complexity of relational query languages. In Proc. 14th ACM Symp.
on Theory of Computing, pages 137–146, 1982.

[vB84] J. van Benthem. Correspondence theory. In D.M. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, volume 2, pages 167–247. Reidel, 1984.

83


