
Generation of Tree Decompositions by Iterated

Local Search

Nysret Musliu

Vienna University of Technology, Karlsplatz 13, 1040 Vienna, Austria

Abstract. Many instances of NP-hard problems can be solved efficiently
if the treewidth of their corresponding graph is small. Finding the opti-
mal tree decompositions is an NP-hard problem and different algorithms
have been proposed in the literature for generation of tree decompositions
of small width. In this paper we propose a novel iterated local search al-
gorithm to find good upper bounds for treewidth of an undirected graph.
We propose two heuristics, and their combination for generation of the
solutions in the construction phase. The iterated local search algorithm
further includes the mechanism for perturbation of solution, and the
mechanism for accepting solutions for the next iteration. The proposed
algorithm iteratively applies the heuristic for finding good elimination
ordering, the acceptance criteria, and the perturbation of solution. We
proposed and evaluated different perturbation mechanisms and accep-
tance criteria. The proposed algorithms are tested on DIMACS instances
for vertex coloring, and they are compared with the existing approaches
in literature. Our algorithms have a good time performance and for 17
instances improve the best existing upper bounds for the treewidth.

1 Introduction

The concept of tree decompositions is very important due to the fact that many
instances of constraint satisfaction problems and in general NP-hard problems
can be solved in polynomial time if their treewidth is bounded by a constant.
The process of solving problems with bounded treewidth includes two phases. In
the first phase the tree decompositions with small upper bound for treewidth are
generated. The second phase includes solving a problem (based on the generated
tree decomposition) with a particular algorithm such as for example dynamic
programming. The efficiency of solving of problem based on its tree decomposi-
tions depends from the width of tree decompositions. Thus it is of high interest
to generate tree decompositions with small width.

In this paper we investigate the generation of tree decompositions of undi-
rected graphs. The concept of tree decompositions has been first introduced by
Robertson and Seymour ([11]):

Definition 1. (see [11], [9]) Let G = (V,E) be a graph. A tree decomposition
of G is a pair (T, χ), where T = (I, F) is a tree with node set I and edge set F ,
and χ = {χi : i ∈ I} is a family of subsets of V , one for each node of T , such
that

1.
⋃

i∈I χi = V ,
2. for every edge (v, w) ∈ E, there is an i ∈ I with v ∈ χi and w ∈ χi, and
3. for all i, j, k ∈ I, if j is on the path from i to k in T , then χi ∩ χk ⊆ χj.

The width of a tree decomposition is maxi∈I |χi|−1. The treewidth of a graph
G, denoted by tw(G), is the minimum width over all possible tree decompositions
of G.

Figure 1 shows a graph G (19 vertices) and a possible tree decomposition
of G. The width of shown tree decomposition is 5.

1,11,17,19

5,6,7,8,9

3,4,5,6,7,8 12,16,17,18,19

11,12,17,18,191,2,3,4,5,6

12,15,16,18,19

12,13,14,15,18,197,9,10

Fig. 1. A graph G (left) and a tree decomposition of G (right)

For the given graph G the treewidth can be found from its triangulation.
Further we will give basic definitions, explain how the triangulation of graph
can be constructed, and give lemmas which give relation between the treewidth
and the triangulated graph.

Two vertices u and v of graph G(V,E) are neighbours, if they are connected
with an edge e ∈ E. The neighbourhood of vertex v is defined as: N(v) :=
{w|w ∈ V, (v, w) ∈ E}. A set of vertices is clique if they are fully connected.
An edge connecting two non-adjacent vertices in the cycle is called chord. The
graph is triangulated if there exist a chord in every cycle of length larger than
3.

A vertex of a graph is simplicial if its neighbours form a clique. An ordering
of nodes σ(1, 2, . . . , n) of V is called a perfect elimination ordering for G if for
any i ∈ {1, 2, . . . , n}, σ(i) is a simplicial vertex in G[σ(i), . . . , σ(n)] [3]. In [4]
it is proved that the graph G is triangulated if and only if it has a perfect
elimination ordering. Given an elimination ordering of nodes the triangulation
H of graph G can be constructed as following. Initially H = G, then in the
process of elimination of vertices, the next vertex in order to be eliminated is
made simplicial vertex by adding of new edges to connect all its neighbours
in current G and H. The vertex is then eliminated from G. The process of
elimination of nodes from the given graph G is illustrated in Figure 2. Suppose

that we have given the following elimination ordering: 10, 9, 8, The vertex 10
is first eliminated from G. When this vertex is eliminated no new edges are added
in the graph G and H (graph H is not shown in the figure), as all neighbours
of node 10 are connected. Further from the remained graph G the vertex 9 is
eliminated. To connect all neighbours of vertex 9, two new edges are added in
G and H (edges (5, 8) and (6, 7)). The process of elimination continues until the
triangulation H is obtained. A more detailed description of the algorithm for
constructing a graph’s triangulation for a given elimination ordering is found in
[9].

Fig. 2. Illustration of the elimination of nodes 10, 9, and 8 in process of constructing
of triangulated graph

The treewidth of a triangulated graph is equal to the largest clique of triangu-
lated graph minus 1 ([5]). Calculation of the largest clique for the triangulated
graphs has complexity O(|V | + |E|) ([5]). For every graph G = (V,E), there
exists a triangulation of G, G = (V,E

⋃
Et), with tw(G) = tw(G) . Finding

the treewidth of a graph G is equivalent to finding a triangulation G of G with
minimum clique size. The last two lemmas can be found in [9].

1.1 Algorithms for tree decompositions

For the given graph and integer k, deciding whether the graph has a tree de-
composition with a treewidth at most k is an NP-hard problem [1]. To solve
this problem different complete and heuristic algorithms have been proposed in
the literature. Examples of complete algorithms for tree decompositions are [12]
and [6]. Gogate and Dechter [6] reported good results for tree decompositions
by using the branch and bound algorithm. They showed that their algorithm
is superior compared to the algorithm proposed in [12]. The branch and bound
algorithm proposed in [6] applies different pruning techniques, and provides any-
time solutions, which are good upper bounds for tree decompositions.

Heuristic techniques for generation of tree decompositions with small width
are mainly based on searching for a good perfect elimination ordering of graph
nodes. Several heuristics that run in polynomial time have been proposed for
finding a good elimination ordering of nodes. These heuristics select the ordering

of nodes based on different criteria, such as the degree of the nodes, the number
of edges to be added to make the node simplicial (the node which neighbours are
fully connected), etc. Maximum Cardinality Search (MCS) proposed by Tarjan
and Yannakakis ([13] constructs the ordering of nodes iteratively by picking the
next node which has the largest number of neighbors in the ordering (the ties are
broken randomly). The min-fill heuristics picks iteratively the node which adds
the smallest number of edges when eliminated. Min-degree heuristic picks the
next vertex to be eliminated based on its degree. The next node to be eliminated
is chosen based on the smallest degree. According to [6] the min-fill heuristic
performs better than MCS and min-degree heuristic. Min-degree heuristic has
been improved by Clautiaux et al ([3] by adding a new criterion based on the
lower bound of the treewidth for the graph obtained when the node is eliminated.
For other types of heuristics based on the elimination ordering of nodes see [9].

Metaheuristic approaches have also been used for tree decompositions. Sim-
ulated annealing was used by Kjaerulff ([8]). Application of genetic algorithm
for tree decompositions is presented in [10]. A tabu search approach for gener-
ation of the tree decompositions has been proposed by Clautiaux et al [3]. The
authors reported good results for DIMACS vertex coloring instances ([7]). Their
approach improved the previous results in literature for 53% of instances. Some
of the results in [3] have been further improved by Gogate and Dechter [6]. The
reader is referred to [2] for other approximation algorithms, and the information
for lower bounds algorithms.

In this paper we propose new heuristic algorithms with the aim of improving
existing upper bounds for tree decompositions and reducing the running time
of algorithms for different problems. Two simple heuristics for searching in the
elimination ordering of nodes are proposed. These local heuristics are based
on changing of positions of nodes in ordering, which cause the largest clique
when eliminated. The proposed heuristics are exploited by a new iterated local
search algorithm in the construction phase. The proposed iterative local search
algorithm applies iteratively the construction heuristic and additionally includes
the perturbation mechanism and the acceptance criteria. These algorithms have
been applied in 62 DIMACS instances for vertex coloring. For several problems
we report new upper bounds for the treewidth, and for most of problems the
tree decomposition is generated in a reasonable amount of time. Our results
have been compared with the results reported in [9],[6], and [3], which to our
best knowledge report the best results known yet in literature considering the
width of tree decompositions for these instances. For up to date information for
the best upper and lower bounds for treewidth for different instances the reader
is referred to TreewidthLIB:http://www.cs.uu.nl/ hansb/treewidthlib/.

2 An Iterative local search algorithm

As described in the previous section, the generation of tree decomposition with
small width can be done by finding an appropriate elimination ordering which
produces a triangulated graph with smallest maximum clique size. In this section

we present an algorithm which searches among the possible ordering of nodes
to find a small treewidth for the given graph. The algorithm contains a local
search heuristic for constructing a good ordering, and the iterative process, dur-
ing which the algorithm calls the local search techniques with the initial solution
that is produced in previous iteration. The algorithm includes also a mechanism
for acceptance of a candidate solution for the next iteration. Although the con-
structing phase is very important, choosing the appropriate perturbation in each
iteration as well as the mechanism for acceptance of solution are also very im-
portant to obtain good results using an iterative local search algorithm. The
proposed algorithm is presented in Algorithm 1.

Algorithm 1 Iterative heuristic algorithm - IHA

Generate initial solution S1

while Number of Iterations < MAXIterations do

Get solution S2 from the execution of one of local search techniques proposed
in the next section. The local search technique uses the solution S1 as an initial
solution

if Solution S2 fulfils the acceptance criteria then

S1 = S2
end if

Apply perturbation in solution S1

end while

As an initial solution we use an order of nodes as they appear in the input.
Better initial solutions can also be constructed by using other heuristics which
run in polynomial time, such as Maximum Cardinality Search, min-fill heuristic,
etc. However, as the proposed method usually finds fast a solution produced by
these heuristics, our algorithm starts with very poor initial solution.

2.1 Local search techniques

We propose two local search methods for generation of a good solution which
will be used as an initial solution with some perturbation in the next call of the
same local search algorithm. Both techniques are based on the idea of moving
only those vertices in the ordering, which cause the largest clique during the
elimination process. The motivation for using this method is the reduction of
the number of solutions that should be evaluated. The first proposed technique
(LS1) is presented in Algorithm 2.

As we see above, the proposed algorithm applies a very simple heuristic.
A vertex is chosen randomly among the vertices that have the same number
of neighbourhood vertices as the largest clique obtained during the elimination

Algorithm 2 Local Search Algorithm 1 - LS1 (InputSolution)

while NrNotImprovments < MAXNotImprovments do

Select a vertex in the elimination ordering which causes the largest clique (ties
are broken randomly if there are several vertices which cause the cliques with the
same size)

Swap this vertex with another vertex located in a randomly chosen position

end while

process. We experimented with two types of moves. In the first variant the vertex
is inserted in a random position in the elimination ordering, while in the second
variant the vertex is swapped with another vertex located in a randomly selected
position, i.e. the two chosen vertices change their position in the elimination
ordering. The heuristic will stop if the solution is not improved after a certain
number of iterations. Although this is a very simple heuristic, using it alone does
not produce good results for the tree decompositions. Whereas combination with
the iterative method (see Algorithm 1) it generates good results.

The second proposed heuristic (LS2) is presented in Algorithm 3. This tech-
nique is similar to algorithm LS1. However, in this technique in each iteration
we apply the same procedure as in the LS1 with some probability p, whereas
with probability 1 − p, the best solution is selected (ties are broken randomly)
from the neighbourhood of solution. The neighbourhood of a solution is obtained
by generation of all solutions which are obtained by swapping of selected vertex
with all its neighbour vertices in the graph.

2.2 Perturbation

During the perturbation phase the solution obtained by local search procedure
is perturbed and the newly obtained solution is used as an initial solution for
the new call of the local search technique. The main idea is to avoid the random
restart. Instead or random restart the solution is perturbed with a bigger move(s)
as those applied in the local search technique. This enables some diversification
that helps to escape from the local optimum, but avoids beginning from scratch
(as in case of random restart), which is very time consuming. We propose three
perturbation mechanisms for the solution:

– RandPert: N vertices are chosen randomly and they are moved into new
random positions in the ordering.

– MaxCliquePer: All nodes that produce the maximal clique in the elimination
ordering are inserted in a new randomly chosen positions in the ordering.

– DestroyPartPert: All nodes between two positions (selected randomly) in the
ordering are inserted in the new randomly chosen positions in the ordering.

Determining the number of nodes N that will be moved is complex and may
be dependent on the problem. To avoid this problem we propose an adaptive

Algorithm 3 Local Search Algorithm 2 - LS2 (InputSolution)

while NrNotImprovments < MAXNotImprovments do

With probability p:

Select a vertex in the elimination ordering which causes the largest clique (ties
are broken randomly)

Swap this vertex with another vertex located in the randomly chosen position

With probability 1 − p:
Select a vertex in the elimination ordering which causes the largest clique (ties
are broken randomly)

Generate neighbourhood of the solution by swapping the selected vertex with its
neighbours, i.e. all solutions are generated by swapping the selected vertex with
its neighbours

Select the best solution from the generated neighbourhood

end while

perturbation mechanism that takes into consideration the feedback from the
search process. The number of nodes N varies from 2 to 10, and the algorithm
begins with small perturbation with N = 2. If during the iterative process (for a
determined number of iterations) the local search technique produces solutions
with same tree width for more than 20% of cases, the size of perturbation is
increased by 1, otherwise the size of N will be decreased by 1. This enables an
automatic change of perturbation size based on the repetition of solutions with
the same width. We applied each perturbation mechanism separately, and also
considered combination of two perturbations, so that one perturbation is applied
for the certain number and another perturbation is applied for the certain next
number of iterations.

2.3 Acceptance of solution in iterated algorithm

Different techniques can be applied for acceptance of the solution obtained by
the local search technique. If the solution is accepted it will be perturbed and will
serve as an initial solution for the next call of one of the local search techniques.
We experimented with the following variants for acceptance of solution for the
next iteration (see Algorithm 1):

– Solution S2 is accepted only if it has a better width than the solution S1.

– Solution S2 is always accepted.

– Solution S2 is accepted if its treewidth is not larger than the treewidth of
the best yet found solution minus x, where x is an integer.

2.4 Setting of parameters

Using our algorithm we experimented with two proposed local search techniques
for construction phase, different perturbation, different acceptance criteria, swap
neighbourhood, and different termination criteria for the local search procedures.
For algorithm LS2 we experimented with probability p = 10, 30, 50. Consider-
ing the acceptance of solution in iterated local search we experimented with
three variants described in Section 2.3. For the third variant we experimented
with x = 2 and x = 3. We did experiments with three types of perturbations:
RandPert, MaxCliquePer, and DestroyPartPer. Additionally, we experimented
with combination of RandPert and MaxCliquePer. The current best results pre-
sented in this paper are obtained with the iterative heuristic algorithm (IHA) and
these parameters: LS1 algorithm (see Algorithm 2) is used in the construction
phase and this algorithm stops if the solution does not improve for 10 itera-
tions (MAXNotImprovments = 10). In the perturbation phase are used both
RandPert and MaxCliquePer perturbations. Initially RandPert with N = 2−10
is applied. Further the algorithm switches alternatively between two perturba-
tions RandPert and MaxCliquePer, when IHA runs for 100 iterations without
improvement of a solution. For accepting of solution in IHA the third variant is
used. The solution produced in construction phase is accepted if its width is not
more than the width of the best current solution plus 3.

3 Computational Results

In this section we report on computational results obtained with the current
implementation of methods described in this paper. The results for 62 DIMACS
vertex coloring instances are given. These instances have been used for testing
of several methods for tree decompositions proposed in the literature (see [9],
[3], and [6]). Our algorithms have been implemented in C++ and the current
experiments were performed with a Intel Pentium 4 CPU 3GHz, 1GB RAM.

We compare our results with the results reported in [9], [3], and [6]. The re-
sults reported in [9] are obtained in Pentium 3.8GHz processor. Results reported
in [3] are obtained with Pentium 3 1GHz processor, and the results reported in
[6] are obtained with Pentium-4 2.4 Ghz, 2GB RAM machine. To our best knowl-
edge these papers present the best existing upper bounds for treewidth for these
62 instances.

In Table 1 the results for the treewidth for DIMACS graph coloring instances
are presented. First and second columns of the table present the instances and
the number of nodes and edges for each instance. In column KBH are shown
the best results obtained by algorithms in [9]. The TabuS column presents the
results reported in [3], while the column BB shows the results obtained with
the branch and bound algorithm proposed in [6]. The last two columns present
results obtained by our algorithm proposed in this paper. In our algorithm are
executed three runs for each instance. In column IHA-best is given the best
width obtained in three runs for each instance, and the column IHA-AVG gives
the average of treewidth over 3 runs.

In Table 2 for each instance is given the time (in seconds) needed to produce
the treewidth presented in Table 1 for all algorithms. The time results given in
[6] present the time in which the best solutions are found. The results given in [3]
present the time of the overall run of the algorithm in one instance (number of
iterations is 20000 and the algorithm stops after 10000 non-improving solutions).
For our algorithm are given the time results for finding of best solutions (IHA-
best(AVG)) and the time of the overall run of algorithm (IHA-total (AVG))
in each instance (AVG indicates that the average over three runs is taken).
IHA algorithm stops for easy instances after 10 seconds of non improvement of
solution, for middle instances after 100 seconds, and for harder instances after
3000 seconds of non improvement of solution. The maximal running time of
algorithm for each instance is set to be 5000 seconds.

Based on the results given in Tables 1 and 2 we conclude that our algo-
rithm gives better results for 35 instances compared to [9] for the upper bound
of treewidth, whereas algorithm in [9] gives better results than our algorithm
for 1 problem. Compared to the algorithm proposed in [3] our approach gives
better upper bounds for 17 instances, whereas algorithm in [3] gives better up-
per bounds for 5 instances. Further, compared to branch and bound algorithm
proposed in [6] our algorithm gives better upper bounds for treewidth for 24 in-
stances, whereas the branch and bound algorithm gives better results compared
to our algorithm for 4 instances. Considering the time, a direct comparison of
algorithms can not be done, as the algorithms are executed in computers with
different processors and memory. However, as we can see based on the results
in Table 2 our algorithm gives good time performance and for some instances
it decreases significantly the time needed for generation of tree decompositions.
Based on our experiments the efficiency of our algorithm is due to applying of
LS1 algorithm in the construction phase of IHA. In LS1 only one solution is
evaluated during each iteration. When using LS2 the number of solutions to be
evaluated during most of iterations is much larger.

4 Conclusions

In this paper, we proposed a new heuristic algorithm for finding an upper bound
of tree decompositions for a given undirected graph. The proposed algorithm has
been applied in different DIMACS vertex coloring instances. The results show
that our algorithm achieves very good results for the upper bound of treewidth
for different instances. In particular the algorithm improves the best existing
treewidth upper bounds for 17 instances, and it has a good time performance.

For the future work we are considering further improvement of proposed al-
gorithm by automatic adaptation of different parameters such as the acceptance
criteria, perturbation mechanism, and other parameters in the local search pro-
cedure. Additionally we plan to extend the existing algorithm for generation of
hypertree decompositions.

Table 1. Algorithms comparison regarding treewidth for DIMACS graph coloring in-
stances

Instance |V |/|E| KBH TabuS BB IHA-best IHA-AVG
anna 138 / 986 12 12 12 12 12
david 87 / 812 13 13 13 13 13
huck 74 / 602 10 10 10 10 10

homer 561 / 3258 31 31 31 31 31
jean 80 / 508 9 9 9 9 9

games120 120 / 638 37 33 - 32 32
queen5 5 25 / 160 18 18 18 18 18
queen6 6 36 / 290 26 25 25 25 25
queen7 7 49 / 476 35 35 35 35 35
queen8 8 64 / 728 46 46 46 45 45.3
queen9 9 81 / 1056 59 58 59 58 58

queen10 10 100 / 1470 73 72 72 72 73
queen11 11 121 / 1980 89 88 89 88 88.7
queen12 12 144 / 2596 106 104 110 105 106.3
queen13 13 169 / 3328 125 122 125 123 124
queen14 14 196 / 4186 145 141 143 141 142.7
queen15 15 225 / 5180 167 163 167 164 166.3
queen16 16 256 / 6320 191 186 205 186 187.7
fpsol2.i.1 269 / 11654 66 66 66 66 66
fpsol2.i.2 363 / 8691 31 31 31 31 31
fpsol2.i.3 363 / 8688 31 31 31 31 31
inithx.i.1 519 / 18707 56 56 56 56 56
inithx.i.2 558 / 13979 35 35 31 35 35
inithx.i.3 559 / 13969 35 35 31 35 35.3
miles1000 128 / 3216 49 49 49 49 49
miles1500 128 / 5198 77 77 77 77 77
miles250 125 / 387 9 9 9 9 9
miles500 128 / 1170 22 22 22 23 24.3
miles750 128 / 2113 37 36 37 36 37
mulsol.i.1 138 / 3925 50 50 50 50 50
mulsol.i.2 173 / 3885 32 32 32 32 32
mulsol.i.3 174 / 3916 32 32 32 32 32
mulsol.i.4 175 / 3946 32 32 32 32 32
mulsol.i.5 176 / 3973 31 31 31 31 31
myciel3 11 / 20 5 5 5 5 5
myciel4 23 / 71 11 10 10 10 10
myciel5 47 / 236 20 19 19 19 19
myciel6 95 / 755 35 35 35 35 35.7
myciel7 191 / 2360 74 66 54 66 67.7
school1 385 / 19095 244 188 - 184 203.3

school1 nsh 352 / 14612 192 162 - 155 158.7
zeroin.i.1 126 / 4100 50 50 - 50 50
zeroin.i.2 157 / 3541 33 32 - 32 32.3
zeroin.i.3 157 / 3540 33 32 - 32 32.7
le450 5a 450 / 5714 310 256 307 253 254.7
le450 5b 450 / 5734 313 254 309 248 250
le450 5c 450 / 9803 340 272 315 272 274
le450 5d 450 / 9757 326 278 303 267 271.3
le450 15a 450 / 8168 296 272 - 264 267.7
le450 15b 450 / 8169 296 270 289 271 273.7
le450 15c 450 / 16680 376 359 372 357 359.7
le450 15d 450 / 16750 375 360 371 354 356
le450 25a 450 / 8260 255 234 255 221 227.7
le450 25b 450 / 8263 251 233 251 228 229
le450 25c 450 / 17343 355 327 349 327 328.7
le450 25d 450 / 17425 356 336 349 330 333.7
dsjc125.1 125 / 736 67 65 64 60 60.7
dsjc125.5 125 / 3891 110 109 109 108 108.3
dsjc125.9 125 / 6961 119 119 119 119 119
dsjc250.1 250 / 3218 179 173 176 169 170.3
dsjc250.5 250 / 15668 233 232 231 230 230.3
dsjc250.9 250 / 27897 243 243 243 243 243

Table 2. Algorithms comparison regarding time needed for generation of tree decom-
positions

Instance |V |/|E| KBH TabuS BB IHA-best(AVG) IHA-total(AVG)
anna 138 / 986 1.24 2776.93 1.64 0.1 11.0
david 87 / 812 0.56 796.81 77.6538 0.1 11.0
huck 74 / 602 0.24 488.76 0.041 0.1 11.0

homer 561 / 3258 556.82 157716.56 10800 105.7 206.7
jean 80 / 508 0.29 513.76 0.05 0.1 11.0

games120 120 / 638 5.2 2372.71 - 123.3 224.3
queen5 5 25 / 160 0.04 100.36 5.409 0.1 11.0
queen6 6 36 / 290 0.16 225.55 81.32 0.1 11.0
queen7 7 49 / 476 0.51 322.4 543.3 0.1 11.0
queen8 8 64 / 728 1.49 617.57 10800 17.7 118.7
queen9 9 81 / 1056 3.91 1527.13 10800 1.0 102.0

queen10 10 100 / 1470 9.97 3532.78 10800 5.3 106.3
queen11 11 121 / 1980 23.36 5395.74 10800 11.0 112.0
queen12 12 144 / 2596 49.93 10345.14 10800 18.3 119.3
queen13 13 169 / 3328 107.62 16769.58 10800 30.7 131.7
queen14 14 196 / 4186 215.36 29479.91 10800 834.9 3835.0
queen15 15 225 / 5180 416.25 47856.25 10800 249.3 3250.0
queen16 16 256 / 6320 773.09 73373.12 10800 182.2 3183.0
fpsol2.i.1 269 / 11654 319.34 63050.58 0.587076 6.7 17.7
fpsol2.i.2 363 / 8691 8068.88 78770.05 0.510367 11.0 22.0
fpsol2.i.3 363 / 8688 8131.78 79132.7 0.492061 6.7 17.7
inithx.i.1 519 / 18707 37455.1 101007.52 26.3043 10.7 21.7
inithx.i.2 558 / 13979 37437.2 121353.69 0.05661 12.7 23.7
inithx.i.3 559 / 13969 36566.8 119080.85 0.02734 10.7 21.7
miles1000 128 / 3216 14.39 5696.73 10800 29.3 130.3
miles1500 128 / 5198 29.12 6290.44 6.759 1.0 12.0
miles250 125 / 387 10.62 1898.29 1.788 5.7 16.7
miles500 128 / 1170 4.37 4659.31 1704.62 771.8 3772.0
miles750 128 / 2113 8.13 3585.68 10800 9.7 110.7
mulsol.i.1 138 / 3925 240.24 3226.77 1.407 0.1 11.0
mulsol.i.2 173 / 3885 508.71 12310.37 3.583 0.3 11.3
mulsol.i.3 174 / 3916 527.89 9201.45 3.541 0.7 11.7
mulsol.i.4 175 / 3946 535.72 8040.28 3.622 1.0 12.0
mulsol.i.5 176 / 3973 549.55 13014.81 3.651 1.0 12.0
myciel3 11 / 20 0 72.5 0.059279 0.1 11.0
myciel4 23 / 71 0.02 84.31 0.205 0.1 11.0
myciel5 47 / 236 2 211.73 112.12 0.1 11.0
myciel6 95 / 755 29.83 1992.42 10800 0.3 11.3
myciel7 191 / 2360 634.32 19924.58 10800 11.0 22.0
school1 385 / 19095 41141.1 137966.73 - 2105.4 4794.2

school1 nsh 352 / 14612 2059.52 180300.1 - 3006.3 4885.8
zeroin.i.1 126 / 4100 17.78 2595.92 - 0.1 11.0
zeroin.i.2 157 / 3541 448.74 4825.51 - 42.7 143.7
zeroin.i.3 157 / 3540 437.06 8898.8 - 3.3 104.3
le450 5a 450 / 5714 7836.99 130096.77 10800 2336.3 4789.3
le450 5b 450 / 5734 7909.11 187405.33 10800 3641.7 5001.0
le450 5c 450 / 9803 103637.17 182102.37 10800 1057.3 3947.0
le450 5d 450 / 9757 96227.4 182275.69 10800 735.3 3736.3
le450 15a 450 / 8168 6887.15 117042.59 - 3235.0 4942.0
le450 15b 450 / 8169 6886.84 197527.14 10800 4073.0 5001.0
le450 15c 450 / 16680 122069 143451.73 10800 2446.3 4599.7
le450 15d 450 / 16750 127602 117990.3 10800 3359.3 5001.0
le450 25a 450 / 8260 4478.3 143963.41 10800 2629.7 4739.3
le450 25b 450 / 8263 4869.97 184165.21 10800 3039.3 4555.3
le450 25c 450 / 17343 10998.68 151719.58 10800 3737.3 5001.0
le450 25d 450 / 17425 11376.02 189175.4 10800 2911.0 5001.0
dsjc125.1 125 / 736 171.54 1532.93 10800 696.7 3697.7
dsjc125.5 125 / 3891 38.07 2509.97 10800 1.3 12.3
dsjc125.9 125 / 6961 55.6 1623.44 260.879 0.1 11.0
dsjc250.1 250 / 3218 5507.86 28606.12 10800 1554.3 4115.7
dsjc250.5 250 / 15668 1111.66 14743.35 10800 351.7 3352.7
dsjc250.9 250 / 27897 1414.58 30167.7 10800 0.3 11.3

Acknowledgments: This paper was supported by the Austrian Science Fund
(FWF) project: Nr. P17222-N04, Complementary Approaches to Constraint Sat-
isfaction

References

1. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

2. H. L. Bodlaender. Discovering treewidth. technical report UU-CS-2005-018,
Utrecht University, 2005.

3. F. Clautiaux, A. Moukrim, S. Négre, and J. Carlier. Heuristic and meta-heurisistic
methods for computing graph treewidth. RAIRO Oper. Res., 38:13–26, 2004.

4. D. R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs. Pacific
Journal of Mathematics, 15:835–855, 1965.

5. F. Gavril. Algorithms for minimum coloring, maximum clique, minimum coloring
cliques and maximum independent set of a chordal graph. SIAM J. Comput.,
1:180–187, 1972.

6. Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth.
In Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelli-
gence, UAI-04, pages 201–208, 2004.

7. D. S. Johnson and M. A. Trick. The second dimacs implementation challenge:
Np-hard problems: Maximum clique, graph coloring, and satisfiability. Series in
Discrete Mathematics and Theoretical Computer Science, American Mathematical
Society, 1993.

8. U. Kjaerulff. Optimal decomposition of probabilistic networks by simulated anneal-
ing. Statistics and Computing, 1:2–17, 1992.

9. A. Koster, H. Bodlaender, and S. van Hoesel. Treewidth: Computational experi-
ments. Electronic Notes in Discrete Mathematics 8, Elsevier Science Publishers,
2001.

10. P. Larranaga, C.M.H Kujipers, M. Poza, and R.H. Murga. Decomposing bayesian
networks: triangulation of the moral graph with genetic algorithms. Statistics and
Computing (UK), 7(1):1997, 1991.

11. N. Robertson and P. D. Seymour. Graph minors. ii. algorithmic aspects of tree-
width. Journal Algorithms, 7:309–322, 1986.

12. K. Shoikhet and D. Geiger. A practical algorithm for finding optimal triangula-
tions. In Proc. of National Conference on Artificial Intelligence (AAAI’97, pages
185–190, 1997.

13. R.E. Tarjan and M. Yannakakis. Simple linear-time algorithm to test chordality
of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput., 13:566–579, 1984.

