
Algorithm Selection for the Graph
Coloring Problem

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Martin Schwengerer
Matrikelnummer e0625209

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Priv.-Doz. Dr. Nysret Musliu

Wien, 18.10.2012
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Algorithm Selection for the Graph
Coloring Problem

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Martin Schwengerer
Registration Number e0625209

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Priv.-Doz. Dr. Nysret Musliu

Vienna, 18.10.2012
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Martin Schwengerer
Schönbrunnerstraße 293/10/8, 1120 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Preface

This is a revised version of the master thesis Algorithm Selection for the Graph Coloring Prob-
lem.

In the following paragraph, we list the corrections compared to the original version. In-
significant typos and spelling errors are not marked explicitly.

Notation: p. x, t. y means page x, line y from top. Similarly p. x, b. y means page x, line y
from bottom.

• p. 23, b 8: Changes citation source to [109]. Note that this changes the enumeration of
the remaining references.

• p. 39, first subsection: We are using maximal cliques and not maximum cliques as graph
feature.

iii

Acknowledgements

First of all, let me note that I don’t believe that many people will ever read this thesis. From
my experience, I know that especially the acknowledgments are one of the first chapters that
everybody skips because of time reasons or just a lack of interest. Nevertheless, I would like to
thank some people which supported me in different ways.

First of all, I thank my supervisor for the chance to make my thesis about this interesting
topic, inspiring talks and the great assistance.

Furthermore, I thank all researcher who provided implementations of their heuristics for the
GCP. Without their support, it would not have been possible to carry out this thesis.

Special thanks go to my parents for their patience and support through the past years. In
addition, I thank my brother for pointless, but funny philosophical discussions and various little
help.

And last but not least, I would like to thank my girlfriend for so many things that I can not
name them all here.

v

Abstract

The graph coloring problem (GCP) is one of the most-studied NP-HARD problems in computer
science. Given a graph G = (V,E), the task is to assign a color c ≤ k to all vertices v ∈ V
such that no vertices sharing an edge e ∈ E receive the same color and that the number of used
colors, k, is minimal. In the recent years, various heuristic and exact approaches for this problem
have been developed. However, all of them seem to have advantages and disadvantages, which
highly depend on the concrete instance on which they are applied. Consequently, designing an
algorithm which finds on each graph the best coloring is hard or, by analogy to the No Free
Lunch theorems, even impossible.

One possibility to achieve a better performance is to predict for each instance the algorithm
which achieves the best performance. This task is known as algorithm selection problem: Given
a set of algorithms and a set of intrinsic features of a particular instance, select the algorithm
which is predicted to show the best performance on that instance.

This thesis investigates the application of machine learning techniques to automatic algo-
rithm selection for the GCP. For this purpose, we first present several specific features of a
graph, which can be calculated in polynomial time. Then, we evaluate the performance of 7
state-of-the-art (meta)heuristic algorithms for the GCP based on experimental results on 1265
graphs of 3 public available instance sets. The results clearly show that none of the algorithms
is superior to all others. In addition, we analyze the behavior of these algorithms on classes
of instances with certain attributes. The experiments show that for each of these classes, there
exists at least one heuristic which performs clearly better than the rest.

In a subsequent step, we use the knowledge about the best-suited algorithm per instance in
combination with intrinsic graph features to train 6 classification algorithms. These supervised
learning methods are then used to predict for an unseen instance the most appropriate algorithm.
For each classifier, we test multiple parameter settings. We further identify relevant subsets of
features and investigate the impact of different data-preparation techniques on the performance
of the classifiers. In addition, we study the effect of considering only a subset of heuristics on
the overall quality of the prediction.

For a meaningful comparison with the underlying heuristics, we evaluate our proposed ap-
proach on a new generated set of instances. Our experiments show that algorithm selection based
on machine learning is able to outperform all considered solvers regarding several performance
criteria.

vii

Kurzfassung

Das Graphenfärbeproblem (engl. Graph Coloring Problem (GCP)) ist eines der bekanntesten
NP-schweren Probleme in der Informatik. Ziel dabei ist es, für einen gegebenen Graphen G =
(V,E) jedem Knoten v ∈ V eine Farbe c ≤ k zuzuweisen, sodass keine zwei Knoten, welche
mittels einer Kante e ∈ E verbunden sind, die gleiche Farbe erhalten und dass die Anzahl der
verwendeten Farben k minimal ist. Da das Berechnen eine exakte Lösung dieses Problems im
schlimmsten Fall eine exponentielle Laufzeit benötigt, wurde im Laufe der Jahre eine Vielzahl
an verschiedenen (Meta)Heuristiken für das GCP entwickelt. Viele dieser Methoden weisen
gute Erfolge auf, allerdings scheint es, als würden die Ergebnisse sehr oft von der konkreten
Instanz abhängen. Dementsprechend ist es schwierig, wenn (in Analogie zu den No Free Lunch
Theoremen) nicht sogar unmöglich, einen Algorithmus zu finden, welcher auf allen Graphen
optimal ist.

Ein Lösungsansatz für dieses Problem wäre, nicht nur einen Algorithmus zu verwenden,
sondern, abhängig von der konkreten Instanz, immer den geeignetsten auszuwählen. Bei dieser
Herangehensweise, auch bekannt als Algorithm Selection, wird aus einer Menge von Algorith-
men anhand bestimmter Attribute einer Instanz derjenige ausgewählt, von welchem auf dieser
Instanz das beste Ergebnis prognostiziert wird.

Die vorliegende Arbeit befasst sich mit der Anwendung von Techniken des überwachten
Lernens als Algorithm Selection für das GCP. Für diesen Zweck stellen wir verschiedene rele-
vante Attribute eines Graphen vor, welche in polynomieller Zeit berechnet werden können. Des
Weiteren evaluieren wir die Performance von 7 modernen (Meta)heuristiken auf 1265 öffent-
lich verfügbaren Instanzen. Die Ergebnisse dieser Experimente zeigen deutlich, dass keine der
Heuristiken im Allgemeinen besser als jede andere ist. Zudem beweisen die Experimente, dass
auf der einzelnen Untergruppen von Instanzen jeweils ein oder mehrere Algorithmen deutlich
bessere Leistung als der Rest erzielen.

Im zweiten Teil dieser Arbeit wird die Information über den besten Algorithmus je Instanz
mit ihren charakteristischen Attributen kombiniert, um damit 6 verschiedene Klassifikations-
algorithmen zu trainieren. Im Zuge dieser Experimente identifizieren wir erfolgreiche Attribut-
kombinationen und evaluieren, welchen Einfluss verschiedene Attributtransformationstechniken
ausüben. Darüber hinaus untersuchen wir, wie eine verringerte Anzahl von Auswahlmöglichkei-
ten (d.h. das Entfernen von Algorithmen aus der Menge an Lösungsalgorithmen) die Qualität der
Vorhersagen verändert.

Im letzten Teil vergleichen wir die Performance eines Systems basierend auf Algorithm
Selection mit den zugrundeliegenden Heuristiken auf einer Menge eigens erstellter Instanzen.

ix

Diese Experimente zeigen eindeutig, dass Algorithm Selection in allen betrachteten Kriterien
bessere Ergebnisse als die einzelnen Algorithmen erzielen kann.

Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Main Results . 2
1.3 Organization . 3

2 Background 5
2.1 NP-Problems . 5
2.2 (Meta)heuristics . 6
2.3 Experimental Aspects . 8
2.4 Machine Learning . 12

3 Algorithm Selection 19
3.1 What is a good algorithm? . 19
3.2 No Free Lunch Theorem . 21
3.3 The Algorithm Selection Problem . 23
3.4 Algorithm Selection: Basic Concept . 23

4 Algorithm Selection for the GCP 29
4.1 The Graph Coloring Problem . 29
4.2 Features . 37
4.3 Proposed Approach . 43

5 Experimental Setup and Environment 45
5.1 Algorithms for the Graph Coloring Problem 45
5.2 Benchmark Graphs . 47
5.3 Test Methodology & Experimental Environment 50
5.4 Discretization . 52
5.5 Chosen Classification Algorithms . 52
5.6 Feature Selection . 54

6 Experimental Results and Evaluation 57
6.1 Heuristics Evaluation . 57
6.2 Solvers based on Algorithm Selection . 72

xi

7 Conclusion and Future Work 99

A Appendix 101
A.1 Weka Commands . 101
A.2 Detailed Results . 105
A.3 Feature Subsets . 106
A.4 Most-Selected Features . 110

Bibliography 113

xii

CHAPTER 1
Introduction

In computer science, there are some problems which arise more frequently and are, conse-
quently, well-investigated. One of these is the prominent graph coloring problem (GCP), which
is one of Karp’s NP-COMPLETE problems [139]. This problem has its origins in the coloring
the countries of maps such that no neighboring countries receive the same color. In this context,
a coloring of a graph G = (V,E) is an assignment of a color c ≤ k to all vertices v ∈ V of the
graph such that no adjacent vertices u, v ∈ V : (u, v) ∈ E receive the same color and that the
number of used colors, k is minimal. Although this sounds easy, finding such a coloring with
only a limited number of colors can be very hard. Even more, due to its NP-completeness, it
is unlikely (unless P = NP) that there exist exact strategies which require less than exponential
time to color an arbitrary graph. As a result, much focus has been spent on the development
of (meta)heuristics approaches for the problem. These methods do not longer ensure optimal
solutions, but return good colorings in a reasonable time.

For the GCP, various algorithms have been developed, starting with greedy algorithms [29,
157] to more sophisticated techniques from the area of (meta)heuristics like local search or
genetic algorithms. Some of the most popular solvers in this context base on a Tabu search [122,
20], variable neighborhood [123, 11] or iterated local search [51]. Other methods built on
genetic algorithms [90, 203] or ant colony optimization [17, 216, 75].

However, the different algorithms often show varying performance on different classes of
instances. For the practical usage, this raises some new problems, as deciding which method is
the best is not trivial and heavily depends on the concrete application. Even more, by analogy
to the No Free Lunch theorems [244], it is highly probable that there exist no heuristic that is on
all instances better than the rest. Thus, for an optimal solving of a particular instance, it would
be beneficial to know in advance which method is the most appropriate one.

This problem of selecting the most suitable algorithm for a concrete instance is also known
as Rice’s Algorithm Selection Problem [214]. It is an important problem, especially for practical
issues, as it allows more efficient solving and prevents worst-case scenarios. On the other hand,
it is also very interesting from a theoretical point of view. Knowing the circumstances under

1

which an algorithm performs good (or poor) may allow to develop new strategies and leads to
more insights on the hardness of a problem.

In the recent years, various methods and applications for algorithm selection have been de-
veloped. One emerging technique in this context, that addresses this problem from a rather
empirical point, is the usage of machine learning. These methods learn from given data relevant
patterns to draw new conclusions (or in our case, predict the best algorithm).

In this thesis, we will consider the problem for selecting the best heuristic for the GCP using
machine learning techniques. In detail, we will investigate if, under the assumption that no
heuristic is superior to all others, it is possible to extract from an instance of the GCP specific
attributes which allow to predict the most appropriate heuristic.

For this purpose, we will show that the assumption holds by an empirical investigation on
the performance of 7 state-of-the-art heuristics for the GCP on instances of 3 different, public
available sources. We will further identify characteristic attributes for an instance of the GCP
and use this knowledge to train several classifiers for predicting on a new, unseen instance the
best algorithm.

Finally, we will compare the overall performance of solvers based on algorithm selection
with the underlying heuristic algorithms.

1.1 Objectives

The objectives of this thesis are:

• Identification of modern algorithms used for graph coloring and evaluation of their per-
formance on a representative set of instances.

• Identification of important features of an GCP instance that have an impact on the perfor-
mance of algorithms.

• Investigation of the application of different machine learning techniques for automated
algorithm selection based on features of a specific instance.

• Comparison of the performance of overall solvers based on algorithm selection with other
algorithms for the GCP.

1.2 Main Results

The main results of this thesis are:

• We investigated the performance of 7 state-of-the-art algorithms for the GCP on 1265
instances of 3 different, public available sources. Experimental results showed that none
of the algorithms dominates all others and that some algorithms are more appropriate to
instances with certain intrinsic features.

• We identified 78 attributes of GCP based on clustering coefficient, graph size, greedy
coloring methods, local search behavior, lower- and upper bounds, maximum cliques,
node degree and tree decomposition.

2

• We used the results of the algorithm evaluation in combination with the features to train
6 different classifiers for predicting the best algorithm on a new, unseen instance. In ad-
dition, we study the impact of data-preparation for algorithm selection and apply feature
selection to identify important features.

• Finally, we compare our solvers based on algorithm selection with the single solver for
the GCP on a new generated set of instances. The results show that our approach achieves
better results than any single algorithm on all considered performance criteria.

1.3 Organization

The organization of this work is as follows: This thesis continues in Chapter 2 with relevant
background information on complexity, heuristics, experimental aspects and machine learning.
Chapter 3 explains the concept of algorithm selection and its relation to the No Free Lunch the-
orems. In Chapter 4, we present the GCP including solving strategies and popular heuristics.
Furthermore, we identify important features of GCP instances and introduce our approach for
algorithm selection for the GCP. Chapter 5 describes the design and setup of our experimental
part with information about the chosen heuristics, the benchmark instances and the used tech-
niques from the area of machine learning. The results of these experiments and a comparison of
the heuristics for the GCP are presented in Chapter 6. In addition, we show in this chapter the
performance of overall solvers based on algorithm selection and discuss the impact of different
parameter configurations and data-preparation techniques. In Chapter 7, we conclude the results
of this thesis and reflect upon further work.

3

CHAPTER 2
Background

2.1 NP-Problems

In computer science, a lot effort is done to solve different kinds of problems like sorting numbers,
calculate complex equations or finding the shortest path for a salesman.

A problem in this context is usually a general question to be answered, often in terms of a
set of parameters as input and certain variables whose values are unknown [94]. An instance of
a problem is a particular case of a problem with concrete values for the parameters and solving
the instance means to specify the unknown variables such that all given constraints are fulfilled.

The different problems in computer science can further be divided into two categories: de-
cision and optimization ones. The former deal with the single question if something is possible
or not, resulting in a YES or NO answer (and the corresponding solution) while the latter focus
on finding a “good” (or the best) solution in a set of feasible solutions. Optimization problems
can be substituted by decision problems, as for each optimization problem with a solution of
quality m, there exists a corresponding decision problem asking if there is a solution of quality
m. Consequently, any optimization problem can be replaced by calling the underlying decision
problem multiple (linear) times.

Of course, not all problems are of equal difficulty and scientists are always eager to know
how long some algorithm f(n) for a particular problem in relation to some size measurement
n will take. One method to analyze this behavior which is based on complexity theory is the
so-called Landau notation [142]. This approach investigates how an algorithm performs asymp-
totically on an instance with respect to some input size n. In detail, this system describes the
behavior of a function f with respect to n considering the worst (O), the best (Ω), and the
average (Θ) case as follows [142]:

O(g(n)) = {f(n)|∃c ∈ R, n0 ∈ N : ∀n ≥ n0 : |f(n)| ≤ c · |g(n)|}
Ω(g(n)) = {f(n)|∃c ∈ R, n0 ∈ N : ∀n ≥ n0 : |f(n)| ≥ c · |g(n)|}
Θ(g(n)) = {f(n)|∃c, c′ ∈ R, n0 ∈ N : ∀n ≥ n0 : c · |g(n)| ≤ |f(n)| ≤ c′ · |g(n)|}

5

where n is some problem-specific variable, g(n) is an arbitrary function and c, c′ and n0 are a
constant factors (which are most times ignored).

For example, f(n) is in O(n2) means that solving any instance of the size n with f(n) will
at most take c · n2 time. Note that this is only an asymptotic upper bound for the run time and
some instances may be solvable in a fraction of this value. Nevertheless, knowing this worst-
case analysis is very useful for estimating the runtime. Even more, showing that a problem can
never be solved in less time than some boundary allows a classification of problems into different
"hardness classes".

One of the most prominent distinction in this context is the one between polynomial and
non-polynomial algorithms. The former class, polynomial time algorithms represent functions
which complexity is characterized by a maximal runtime of O(p(n)) for some polynomial p
(e.g. n3 or log n). These algorithms may still take long time, but their growing rather ensures
that they terminate within appropriate limits. Algorithms which runtime can not be bounded by
a polynomial are denoted as exponential time algorithms, which, as the name implies, need an
exponential amount of time to discover a solution. In contrast to the former class, it is unlikely
that these algorithms terminate for larger n within reasonable time. Concerning a taxonomy for
problems itself, those for which polynomial time algorithms exist are grouped in the class P and
called tractable while those for which no such algorithm has been found are called intractable.
More formally, the class P includes are problems that can be solved on a deterministic Turing
machine in polynomial time, in contrast to problems of the class NP, which can only be solved
on a nondeterministic Turing machine in polynomial time. An alternative definition for the class
NP includes all decision problems their solution can be verified in polynomial time. Moreover,
problems which are denoted as NP-HARD are at least as hard to solve as any problem in NP (but
can also be harder to solve), while a problem p is NP-COMPLETE if every other problem in NP
can be transformed into p in polynomial time.

2.2 (Meta)heuristics

As already mentioned, certain problems are so complex that, even with enormous computational
power, solving them exactly may take years. Nevertheless, there exist some approaches to solve
NP-HARD problems [47]:

One possibility is that, although the underlying problem is NP-HARD, a particular instance
is solvable in polynomial time. Unfortunately, this effect is most times limited to a small subset
of instances with certain attributes, which do not occur in practice very often.

Another possibility is to use an exhaustive search and decrease the search effort with tech-
niques like dynamic programming, branch and bound or backtracking. These concepts try to
reduce the search space by skipping non-promising areas or reduce re-computations. Alterna-
tively, methods like mathematical linear programming or Lagrangian techniques can be used to
efficiently solve complex subproblems. Although all of these sophisticated methods obtain large
improvements compared with enumeration methods, they are still applicable only for smaller
instances.

A different, but widely used alternative is stop searching for an optimal solution and instead
concentrate on finding good solutions within certain time. These methods, called (meta)heu-

6

ristics, do not longer check all possible variable configurations (the search space) but rather
perform a limited search among certain areas where good configurations are expected. In detail,
these algorithms start from some (random) solution(s) and explore related variable configura-
tions and their objective values, which guide the search process to promising areas. The under-
lying assumption is that good configurations tend to cluster together, as they often share some
variable assignments. Thus, following an improved solution and testing modifications on it may
lead to even more optimized variable decisions and better configurations. Consequently, these
algorithms return, instead of a verified optimal solution, the best solution found during their
survey among the solution space.

One very important aspect with some heuristic algorithms is the initial solution, as this is
the starting point and effects the complete subsequent search [258]. In this context, the basin of
attraction [198] of a solution is the area (the set of start configurations) in the search space from
which a heuristic is guided to this solution. Two other often used terms are intensification and
diversification in a search. The former one stands for the detailed investigation of a specific area
in the search space, e.g. by optimizing only a few variables of the current state. The latter one,
diversification, means a more expanded exploration where the search moves between different
areas and different basins of attraction.

In the recent years, various (meta)heuristics have been developed and there exist multiple
taxonomies for categorizing them (see [258] for more details). For this thesis, we use a classifi-
cation introduced in [124] which separates the different approaches into local-search based and
population based methods. Figure 2.1 gives an overview on the different approaches using this
schema. The former group, local search (LS), contain techniques which take an initial state and
try to improve it by exploring related configurations [258]. Therefore, a LS algorithm iteratively
generate possible candidates (called neighborhood) by applying so-called moves on the current
solution and chooses the most promising one as its as new current state. This process repeats
until some termination condition, like a time limit or a lack of improvement, is fulfilled. Critical
elements in a LS are the neighborhood and the acceptance criteria. Concerning the latter, the
algorithm usually look for states which are better (lower in case of a minimization problem) than
the current one. Two prominent paradigms therefore are first-improvement, which accepts the
first improved solution and best-improvement, which selects the best solution among the whole
neighborhood. However, it can be the case that no move result in a better state than the current
one, so the algorithm could not choose an improving configuration and the search is stuck in a
local optima. This is of course bad for the performance of the search, so researchers invented
different techniques to escape local optima like accepting worse solutions (e.g. simulated an-
nealing [140]) or adding a memory (e.g. tabu search [103]). Concerning the neighborhood
itself, it is clear that a small neighborhood increases the speed of the procedure, as only a few
candidate configurations have to be considered. The downside is that this also decreases the
chance to find a good solution, and the search is more likely to get stuck in a local optima. On
the other side, a too large neighborhood leads to a slow search that considers many unnecessary
states.

The second central group are population-based methods. These are often inspired by nat-
ural processes like evolution (e.g. genetic algorithms [105]) or behavior of animals (e.g. ant
colony optimization [72]). In contrast to LS, population-based methods consider several pos-

7

Figure 2.1: Classification of (meta)heuristics based on [258].

sible solutions at once and try to evolve them in a simultaneous manner [258]. This should
help to avoid local optima and provide a more robust search. In addition, many state-of-the-art
population-based methods are complemented with a LS to so-called memetic algorithms [185].
These systems try to combine the strength of both paradigms by enhancing the strong diver-
sification abilities of maintaining multiple solutions with the intensification capabilities of the
LS.

2.3 Experimental Aspects

This thesis aims to show that knowledge about the individual behavior of heuristics for some type
of instance can be used to predict the best algorithm for a new, unseen instance. For this pur-
pose, it is mandatory to examine the efficiency of the different algorithms with respect to some
instance-specific attributes. Following an empirical paradigm, this is usually done in terms of a
comprehensive study on the performance of the heuristics on a representative set of instances.

8

Unfortunately, there exist only limited appropriate data for the GCP that we could use to
investigate the behavior of the algorithms. For that reasons, we were forced to carry out our own
experiments. Such experiments should follow systematic criteria to allow neutral and fair con-
clusions about the different algorithms. For this reason, we present in the following paragraphs
considerations and existing work on methodical testing and the comparison of (meta)heuristics.

2.3.1 Testing and Comparing Metaheuristics

In the field of algorithmic, huge effort has been spent on the asymptotic analysis of algorithms
in the context of complexity theory. Apart of this theoretical approach, the experimental inves-
tigation of (meta)heuristics has long time been neglected [109]. However, since the 90ties,
the interest on the latter subject increased, resulting in several work on methodical evalua-
tion [13, 127, 134, 183, 14, 19]. Worth mentioning in this context is [211] where a complete
tutorial and hints for the representation of results are given. Also recommendable is [218] that
contains an excellent chapter on runtime comparison.

In general, we followed these guidelines for our experimental design. Nevertheless, we want
to describe some aspects and considerations for our particular test setting.

2.3.2 Performance Measurement

When evaluating the performance of (meta)heuristics, usually several measurements, like the
quality of the solution or the required runtime, can be observed. Furthermore, such experi-
ments involve typically multiple instances with different size and constraints, so scientists need
methods to compare the different results and draw conclusions about the overall performance.
A central issue in this context is to provide instance-independent measures because otherwise,
outliers or extreme values may adulterate the results [47].

For the solution quality, one possible measurement, which is independent of the instance and
normalized, is the relative distance (or error) to the optimal solution value. More formal, the
distance d(c, i) on an instance i is defined as d(c, i) =

|c(i)−copt(i)|
copt(i)

where c(i) are the costs of the
solution returned by the algorithm and copt(i) are the optimal costs. Drawback of this approach
is that it requires the knowledge of the best possible result, which is often unknown. Alternative
values, like using bounds or approximations, are often only weak estimations so in practice,
often the best known solution (BKS) replaces the optimum [218]. Another disadvantage of this
metric is shown in [259] where some properties of error functions are defined. According to this
work, the relative error is not proper and the same author introduce a more robust metric which
requires knowledge about a reference solution. In detail, their measurement err(k, i) for the
cost 1 of the solution c on an instance i is defined as

err(k, i) =
c(i)− copt(i)

c′(i)− copt(i)

1Note that this metric can be applied for any kind of costs. For this thesis, we will use this measurement only
concerning the number of colors needed k, for which reason we will denote this metric with err(k, i).

9

where copt(i) represent the optimal and c′(i) the costs of some reference point (e.g. a worse
solution). Unfortunately, defining a good reference point is also often hard2, wherefore [260]
modified this approach by replacing c′(i) with the cost of a generic algorithm such as a heuristic
or a random solution generator [47].

An alternative to using distance metrics offer so-called rank-based methods [47]. Char-
acteristic features of them are that the measurements of the algorithms (like solution quality
or time) are transformed into a ranking that displays the relative performance on an instance.
Then, depending on its rank, the leading algorithm achieves a descent number of points which
are summarized and form the global performance indicator over all instances. Popular ver-
sions of this approach are a classical ranking where the earned points are distributed linearly
(e.g. according to their position)3 and the formula one (F1) method4 where the received points
are 10, 8, 6, 5, 4, 3, 2, 1, respectively. One inherent benefit of these methods is that they ignore
instance-specific differences in the objective function (e.g. an instance with an optimal value
of 10 versus an instance with an optimal value of 10000). In addition, they are more robust
compared with distance-based metrics, as one outlier does not have so much influence on the
average performance. On the downside, all ranking methods comprise a loss of information, as
generating rankings neglects the actual distance between algorithms, which may also be relevant.

2.3.3 Runtime Comparisons

As the title of this thesis reveals, we would like to design a system which selects the best al-
gorithm for a specific problem. For this purpose, it is necessary to compare the performance
(which includes in our case also the runtime) of the different alternatives and, as already men-
tioned, we follow an experimental approach. However, this leads to one problem which many
scientists ignore, namely that it is almost impossible to measure the runtime of an algorithm. An
algorithm is idea how to solve a problem, represented in an abstract set of commands, orders
and variables. Thus, it is just some kind of instruction how to act and only the implementation of
an algorithm is a concrete entity which can also be executed. Following this definitions, exper-
iments can only be carried out with implementations of algorithms and not with the algorithm
itself. Nevertheless, it is common usage in computer science that an algorithm is metonymic
with its implementation, although this is not true.

The reason for this precisely distinction is that, though we want to compare algorithms, we
have to use their implementations for the experiments. Moreover, these implementations are
made in a particular programming language using a particular data structure and data types,
which can dramatically effect the runtime. Considering these factors, the question arises how to
perform fair runtime comparisons, which is one of the hardest fields in the area of experimental
analysis.

2For the GCP, one possible reference point is the number of nodes, or the highest degree of a node plus one, as
these two values are a trivial upper bound for the required number of colors.

3This value correlates with the average rank, wherefore we consider in this thesis only the average rank and the
standard deviation.

4Based on a system used for Formula one between 2003 and 2009. For more info, see https://en.
wikipedia.org/wiki/Formula_one_points (last visited 18.10.2012)

10

https://en.wikipedia.org/wiki/Formula_one_points
https://en.wikipedia.org/wiki/Formula_one_points

In this context, [218] describe what they call Best Runtime Comparison Solution, namely that
all algorithms are implemented in the same language and that the source code is available so that
they can be compiled on the same machine with the same compilation flags. Unfortunately, dif-
ferent researchers use different programming languages and have different programming skills,
resulting that often approaches for one problem are encoded in unequal ways. Consequently, is
very unlikely to achieve such an optimal setting.

One alternative is to omit the language requirements and use implementations written in
different languages. Some people may criticize that this corrupts somehow a comparison of
different algorithms as the implementation language affects the program speed. This holds es-
pecially for the field of (meta)heuristics, where often a time limit is used as stopping criteria.
Indeed, we cannot deny that the choice of the programming language impacts the performance,
especially when different paradigms like compiler-based (e.g. C++) versus interpreter-based ap-
proaches (e.g. Java, Python) are used. On the other side, the chosen programming language is
not the only possible reason for a slow implementation - sometimes it might just be bad pro-
gramming skills or improper modeling decisions which result in a slower program [67]. Case
studies on this topic reveal that the ratio of execution speed of programs between the best and
the worst programmer is up to 10 : 1 [174].

A different situation appears when it is not possible to obtain the source code (e.g. it is lost,
protected by copyright, not published etc.). In these cases, a valid alternative is to reimplement
the algorithm in a preferred language. This solution would solve the problem with multiple pro-
gramming languages without suffering from unequal programming skills of different program-
mers. Even more, this method allows using similar data structures, solution-checking methods
and compilers, which eliminate some major points of critique. Even though this approach sounds
promising, we would like to highlight some major downsides.

First of all, reimplementing multiple algorithms is sometimes not possible [218]. Although
one of the principles of modern science is reproducibility, it can be very hard to construct exactly
the same algorithm from a coarse-grained description in a publication. Often, the algorithm is
described roughly to provide an overview, ignoring some small design decisions which may
have an huge impact on the final program. We do not want to say that this happens on purpose!
This is just an unavoidable result of needed abstraction, information filtering and lack of space.

The second argument against a manual translation to one programming language is a more
practical and human problem: Neutrality and Fairness! As already mentioned before, different
programmer have different skills and even if all algorithms are reimplemented by the same
authors, it is not guaranteed that all algorithms are equally optimized. It is easy understandable
that researchers will spend some time in optimizing their own and new algorithm where they
know the underlying concepts and structures. In contrast to this, it is much harder to optimize a
foreign algorithm where the programmer does not know so much about the basic idea, algorithm
and dependencies. Moreover, improving an already published algorithm is less worthwhile, less
motivating and sometimes a waste of rare working time. In addition, even if all implemented
algorithms received the same amount of time, it is not guaranteed that the resulting programs are
equal optimized. There might still be the case that the programmer is just not able to implement
the heuristic in the most efficient way.

As the reader can see, both alternatives to the optimal setting involve some drawbacks. For

11

this thesis, we stick to a recommendation of Johnson [134], who suggested to use as efficient
implementation as expected for practical usage. Following this principle, we argue that most au-
thors will optimize their own implementation as much as possible (within limited time), always
in mind that their implementation has to be competitive to existing solutions. Hence, we expect
that most available original implementations are improved to a certain grade of optimization for
their used programming language such that the effects of different programming skills can be
ignored 5. Moreover, we argue that it does not matter in which language it is developed, as long
as it is competitive with the other approaches. In other words and from a more practical (and
economical) point of view: It does not matter in which language the best program is written, as
long as it achieves the best solutions.

2.4 Machine Learning

In nature, one essential element of many successful species is their ability to adapt their behav-
ior by learning from previous events. It is the capability to use knowledge extracted of past
observations to recognize a situation and expect behavior of new entities. This a very powerful
and effective ability with incredible impact on any kind of problem solving. For this reasons,
many researcher spent much effort to enrich computers with such capabilities. These techniques,
grouped under the term machine learning, are an interesting branch in the area of artificial in-
telligence (AI).

In this thesis, we want to design a system that should, like an oracle, predict for some prob-
lem the best way to solve it. However, forecasting which solution for some new, unseen task is
not trivial. It requires knowledge about the different alternatives and a lot of experience. Even
more, we want a robust system which is able to gain more insight into the problem than its cre-
ators. At this point, machine learning comes into play. These techniques allow not only to judge
based on given rules, they are also capable of learning them from given observations. Hence,
they can autonomously extract knowledge of training data, determine relevant patterns and use
this information to predict new data.

For this thesis, we only deal with a small part of machine learning, namely classification
and regression. These two techniques belong to so-called supervised learning methods where
the training process includes data (a correct solution) given by a well-informed supervisor. In
contrast to this, unsupervised methods do not have any knowledge about the correct solution.

2.4.1 Classification

The first topic in this context is classification. Given some training data T consisting on obser-
vations of a set of variables X = {x1, x2, ..., xn} for each instance6 in T . Furthermore, each

5This statement does not mean that there are no runtime differences caused by the choice of the programming
language. We just assume that the authors of the various programs optimized as good such that we can compare the
underlying algorithms and that our measurements are not corrupted by poor programming.

6We want to distinguish between an instance for a problem (as described in Section 2.1) and an instance in
the context of machine learning. The former one is a concrete case of the problem while the latter is a concrete
observation of multiple attributes of an entity. Regarding this thesis, the instances of the GCP is usually a graph
while its related data (attributes of the graph and algorithm information) are referred as instance in the sense of

12

instance belongs to a specific class y ∈ Y = {c1, c2, ..., cm}. The process of classification is
then determining for a new observation o the corresponding class y based on the attribute values
{x1o , x2o , ..., xno} of o. A classifier in this context is a function mapping h : X → y from a set
of variables X to a class value y ∈ Y [23].

During the recent years, several different classification algorithms have been designed, fol-
lowing different concepts and formal background. Similar to (meta)heuristics, the no free lunch
theorems also hold for classification algorithms, claiming that none of these is superior to the
others in general [243]. Thus, finding the most suited technique manually is usually hard and
requires broad domain knowledge and experience in machine learning. To face this challenge,
automatic techniques, like algorithm selection, have been proposed [7, 30]. However, applying
this technique here would extend the scope of this thesis so we will limit our research on a few
classification algorithms.

For this thesis, we consider 6 popular machine learning methods: k-nearest neighbor (kNN),
C4.5 decision trees (DT), random forests (RF), Bayesian networks (BN), support vector ma-
chines (SVM), and multilayer perceptrons (MLP). The motivation behind this selection is that
these six approaches are popular techniques that have been used successfully for algorithm se-
lection. In addition, they follow different paradigms which allows a more comprehensive com-
parison with respect to their usability for the GCP.

The following section presents a short overview on the chosen algorithms. For a more de-
tailed description, we refer to the original publications and [8, 242]. For implementation details,
see the Weka manual [23].

k-Nearest Neighbor

The nearest neighbor (NN) decision rule [58] is a very simple classification method based on
the assumption that observations, which have closely related attribute values, are often catego-
rized in the same class. NN-based algorithms belong to the class of instance-based- (IB) [4] or
lazy- learning methods. Thus, instead of learning a model of the underlying distribution, these
techniques save in the training phase all observations and corresponding classifications. As a
consequence, they do not need a (time-consuming) training but with the drawback that all data
is stored, which results in a higher space consumption.

Concerning a new, unclassified sample, a NN-based classifier uses the saved knowledge to
find a point in the training data which minimizes a distance function of their features, called the
nearest neighbor, and takes that point’s classification as prediction for the new sample. This
concept can be extended to consider k stored observations (kNN) where the majority vote of
k-nearest neighbors determines the predicted class.

Essential parameters for kNN are the number of neighbors, k, the used distance function and
the voting procedure [249]. Small k may increase the influence of noise in the data while a too
large value of k may include many neighbors of other classes. Furthermore, kNN classifiers can
use different distance functions (e.g. linear or with scaling) and, for k > 1, also voting methods
using distance-dependent weighting.

machine learning.

13

Advantages of kNN classifiers are their simplicity and that they provide often good results
(e.g. [151]). On the downside, computing the predictions is usually more expensive, as all
training instances have to be considered [249].

Decision Trees

Decision Trees [208, 249] are a simple way to represent knowledge in a tree-like structure.
The most prominent method is the C4.5 decision trees (DT) [209], a descendant of ID3 [208].
Both techniques base on a divide-and-conquer algorithm where the training set is recursively
divided into subsets according to values of a single attributes. This top-down process creates
on each level, starting with a set of all training observations, a decision node which splits the
examples into multiple subsets depending on their values of a single feature. Then, the process
continues on the subsets until either all entries of each subset have the same classification value
or some other criteria is fulfilled. In that case, a leave note is created which denotes the subset’s
classification.

Essential component in this algorithm is the selection of the observed attribute for the current
node, as this influences the depth of the search tree and the evaluation performance. Different
methods have been invented. The most popular consider the information gain [208] or the gain
ratio [209]. In addition, after the initial tree construction is completed, usually a pruning phase
occurs starting from the leaves to the root to avoid overfitting [249]. During this process, the
algorithm computes for each subtree (a) the estimated error of that subtree and (b) a leave node
replacing it. In case that the latter does not exceed the former, the leave node replaces the subtree.

Making predictions on an existing DT is rather simple. Starting on the head node, a search
algorithm compares the attribute value of the new observation with the decision rule of the
current node and determines the descent node, on which the procedure repeats. When the search
reaches a leave node, it stops and returns the classification of that node. Advantages of this
method, which can also be implied by a hierarchical set of rules, are that the resulting classifier
is intuitive, easy to understand and fast.

Random Forests

random forests (RF) [125, 126] are an extension of C4.5 decision trees (DT) by using so-called
ensemble methods. Main idea is to connect multiple different decision tree-based classifiers to
achieve higher generalization accuracies. For this purpose, t different DT are generated during
the training phase by using randomly chosen subsets of the feature space.

For the prediction of an unclassified observation x, the t classifications of x are calculated.
This knowledge is used to build for each possible classification c a discriminant function gc(x)
which estimates the probability of x belonging to class c. Then, the class c with the highest
probability gc(x) is used as predicted classification.

Advantages of RF are their good performance on high-dimensional data [43], a short training
phase and their robustness to overfitting [126]. One disadvantage is that, compared with decision
trees, RF are harder to interpret for humans as the prediction is divided among multiple trees and
masked by the discriminant function.

14

Support Vector Machines

support vector machines (SVM) [22, 57, 234] are one of the most popular techniques in machine
learning. Originally designed for binary discrimination, SVM use the training data to find the
best possible decision boundary in the feature space. This decision function is based on a linear
separation of the data points in a metric space using a hyperplane. Usually multiple of these
hyperplanes exist, so to ensure a maximal generalization ability, SVM calculate the hyperplane
which maximizes the margin between the two classes. This margin is determined by the short-
est distance between the closest data points, the so-called support vectors, to any point on the
hyperplane. In case that the data is not linearly separable, it is allowed that some points are in-
correct classified by using a penalty function for finding the correct "soft" margin. Moreover, it
is also possible to use non-linear classifiers which map the input vectors into a high-dimensional
feature space using kernel functions (e.g. high order polynomials or radial basis functions).

For a classification of a new observation, the new data point is simply tested on the decision
function to see if it belongs to the first or second class. In case of multiple classes, several
(binary-splitting) SVM are combined to form a hierarchical decision procedure.

Advantages of SVM are their robustness and their sound theoretical foundation [249]. Fur-
thermore, they require less training data than other algorithms and can handle large numbers of
attributes.

Bayesian Networks

One central issue in artificial intelligence (and computer science in general) is dealing with
uncertainty. Estimating, handling and reasoning with probabilistic events is often a challenging
task and one of the current leading approaches to face this are Bayesian networks (BN) (also
called Bayes networks, Bayesian believe networks, causal networks, or probabilistic networks)
[56, 120, 23]. These networks are a graphical model to represent a set of random variables U
and their (conditional) dependencies.

Formally, a BN is a directed acyclic graph where the nodes are variables with an underlying
probability function and the edges represent conditional dependencies between the variables.
Variables may be continuous or discrete and an arc from u to v indicates a probabilistic depen-
dency between these nodes where v depends on u. Furthermore, the lack of an edge between
two nodes implies that there is no direct dependency between them. The probability for each
variable u ∈ U is defined as p(u|pa(u)) where pa(u) are the parents of u and the probability
distribution for the set of all variables U is P (U) =

∏
u∈U

p(u|pa(u)).

For the purpose of classification, a BN with the feature variables X and the classes Y as
nodes can be used to estimate the probability of each class, given an observation x. Thus, for
all y ∈ Y , it is possible to calculate the probability p(y|a1(x), a2(x), ..., an(x)) and predict the
class with the highest probability.

Multilayer Perceptrons

A neural network [215] is an artificial construct trying to imitate biological reasoning in human
brains. Central elements are single units (called neurons or perceptrons) which are linked within

15

each other by a set of input and output interfaces. Input signals are weighted using a node-
specific bias and if this input function exceeds the activation function of such a neuron, it is
activates and "fires" a signal to all linked nodes, which process this signal and may be activated
too. Possible activation functions are threshold functions, sigmoid functions or radial basis
functions.

One of the most popular versions of neural networks are multilayer perceptrons (MLP) [234],
which are well-suited for classification tasks (e.g. OCR [220]). As the name implies, the char-
acteristic feature of MLP are that the perceptrons are arranged in a layered structure where each
node has output links to all other nodes in the following layer. The nodes are typically connected
acyclic following a feed-forward approach and as activation function most times a sigmoid one
is chosen. For classification, each feature is used as separate variable of the input layer, followed
by multiple hidden layers and an output layer representing the class prediction. The training of a
MLP is usually done by back-propagation that uses the error of a misclassification to adapt the
bias weight of the different neurons.

Advantages of MLP are their robustness and that they are suitable for many different tasks.
In addition, they can model complex and non-linear dependencies. Disadvantages are their
hidden inner structure, which makes them hard to monitor. Furthermore, they may require,
compared with other techniques, a large training time.

2.4.2 Regression

So far, we have considered machine learning techniques that classify examples into one of a dis-
crete set of possible categories. A slightly different problem occurs when the predicted variable
is outside some predefined classes, e.g. if the target value is a continuous or real-valued number.
In such cases, the task is to approximate the underlying function and estimate for a new observa-
tion the value of the chosen variable. This is done by finding a regression function using different
techniques from the field of regression analysis [16]. These methods try to model the relation of
one or more input variables x1, x2, ..., xn to one variable y. One of the most common variants in
this context is linear regression. This techniques use a linear model of the connection between
the input variables and y. Consequently, the expected value E(yj) of an new observation j can
be modeled as

E(yj) = β0 +
n∑

i=1

βi · xij

where i = 1, ..., n is an index for the attributes and βk for k = 0, ..., n are weighting values.
Other models inherit more complex functions like quadratic regression or cubic regression.

For the context of algorithm selection, regression is very interesting because it poses an
alternative to classification-based approaches. For this purpose, a system can be trained to learn
the relation between instance features and the performance criteria (e.g. the runtime). During the
selection process, this program predicts via regression for all algorithms the performance on the
current instance, which is then used to rank the algorithms and to determine the best selection.
We want to note that this process can also be understood as some kind of classification [32] as it
finally results in one discrete value. Nevertheless, it is based on a different principle with other
advantages and disadvantages.

16

2.4.3 Discretization

In the context of machine learning, data (in form of a variable) are usually nominal (categorical)
or continuous (numeric). The former class refers to data taking values of a predefined finite set
of possible categories while the latter is only characterized by a linearly ordered range of values.
Unfortunately, not all algorithms can handle numeric values (e.g. the Tree Augmented Naive
Bayes classifier [86]). Some of these techniques have build-in conversion functionality (e.g.
C4.5 decision trees) but if not, an explicit discretization can be used to transform continuous
attributes into nominal-valued ones. The different discretization techniques can be classified
according to their characteristics [74] like supervised vs. unsupervised, global vs. local, or
static vs. dynamic methods. Supervised methods include the classification information of the
instances for their decisions (in contrast to unsupervised ones), global vs. local indicates if
the produced partitions are applied to the compete instance space (global) or not (local), and
static vs. dynamic refers to a fixed (static) or variable (dynamic) maximum number of generated
intervals.

One of the most trivial discretization is a simple uniform binning of the data, e.g. Equal
Interval Width or Equal Frequency Intervals (both unsupervised, global and static method). An
example for a supervised, global and dynamic method is Fayyad & Irani’s minimum-descriptive
length (MDL) [81] algorithm. For a more comprehensive list of different techniques, we refer
to [74].

One important point, which is also worth mentioning, is that discretization is not only benefi-
cial when the algorithm requires categorical data. Research clearly indicate that some algorithms
show significant better performance when the data is transformed from numeric to nominal val-
ues [74]. For example, experimental studies [256, 100] on naive Bayes and kNN classifiers show
that both achieve unambiguously better results on discretized data than on continuous ones.

2.4.4 Feature Selection

Basic idea of machine learning is to learn from given examples and predict new knowledge.
Information itself is here considered in the form of instances described by various attributes
(also called features), and someone might easy come to the conclusion the more information
(features) we have of an example, the better for the learning process. Even more, it is reasonable
for any kind of learning that there is no such thing as "too much information" (as long as we
have the computational power to process it).

Unfortunately, practical results show that for machine learning, this assumption is often
not true - more features do not ensure better performance and in some cases, they even impair
accuracy of the used classifier [115, 227]. The effects of irrelevant, duplicated or correlated
features differ depending on the used classifier, but are usually a longer training time [156] and
lower accuracy [131, 156]. Even more, also adding relevant attributes can degrade an algorithm’s
performance [131].

At this point, the question arises given a set of features F , which subset S ⊆ F should be
used to achieve the best performance. And, more interestingly, how should we find this subset?

This process, called feature selection, is important subtask for each application of machine
learning. Its difficulty bases on the fact that for each set of features F with |F | = n attributes,

17

there exist 2n different subsets, so even for small n it is impossible to test all subsets. A man-
ual selection could of course reduce the number of candidates, but this requires usually deep
domain knowledge and expertise in classification algorithms. Furthermore, it is often even for
humans not decidable which attributes to choose. In this context, [132] define three categories
of features: irrelevant, weakly relevant and strongly relevant ones. Following this classification,
the task is to select all strongly relevant features, no irrelevant features and a subset of weakly
relevant features that yields good performance. However, other authors argue that selecting only
the most relevant features leads often in a suboptimal results, especially if the variables are re-
dundant [112]. Thus, a subset of useful features may contain only a few relevant features with
less redundant information.

Regardless of the different notations of relevance, it is widely accepted that the choice of
features is in general hard. Fortunately, there exist various automated techniques for feature
selection which follow two paradigms [112]. The first one, subset selection, aims on finding
good subsets that together have good prediction results. These techniques are often based on
search algorithms like forward selection, backward selection or genetic search and can further
be divided into filter and wrapper [132, 144] procedures. The former one, filter techniques, are
general algorithms which require no further knowledge about the used classifiers while wrapper-
based techniques require the intended classification method and "wrap" it for their search proce-
dure. Both criteria evaluate complete subsets, but while filter-based algorithms decide about the
"value" of attributes according to some calculated measurements (e.g. correlation), wrapper just
apply the classification algorithm and use its performance as decision criterion. Advantages of
the former algorithms are their versatility, as they are not tailored to only one classifier. More-
over they are usually much faster and therefore, cover a wider area of the search space. Benefit
of wrapper methods are that their results are sometimes better for the targeted classifier, but with
the loss of generality. Examples for filter techniques are CFS [115] or LVF [161].

An opposed concept to subset selection is to rank the attributes according to their individual
predictive utility [112]. For this purpose, each feature is tested on some measurement (e.g.
information gain) and a ranking of all attributes is generated. In a subsequent step, superior
features (e.g. exceeding some threshold) are selected while inferior features can be discarded.

Finally, it has to be mentioned that one of the most successful preprocessing can be achieved
by the combination of feature selection and discretization [100].

For more information about feature selection itself, we recommend [64] which gives an
overview on the different search strategies. For an introduction of the different methods and
general guidelines for feature selection in form of a checklist, we suggest reading [112].

18

CHAPTER 3
Algorithm Selection

3.1 What is a good algorithm?

In a previous chapter, we have presented some methodology for testing and measuring the per-
formance of algorithms. However, there is still the question what metrics should be tested. Even
more: What is a good algorithm? And how to decide if an algorithm is better than another one?
Answering these simple questions seem to be very easy, but is that really the case? For this
thesis, we would like to find and predict the best algorithm for a specific instance of a problem,
so first of all, we have to define what is “the best” or what is “better” 1. In many areas, it is
hard to specify “better” or “the best”. For example concerning cars: Some people would suggest
taking the fastest car as the best one. Others judge by the fuel consumption, while some take the
price or the horsepower as relevant parameters.

Of course there is no best possible way to sort; we must define precisely what
is meant by “best”, and there is no best possible way to define “best”[Donald E.
Knuth, in the context of sorting] [143][p. 181]

In algorithmics, it is a little bit easier as we do not have so much parameters, but still the
definition of “better” is always in relation of the observed attribute. For the field of (meta)heuris-
tics, [13] highlights three areas of interest: computational effort, solution quality, and robustness.

1Mathematically spoken, we are looking for a total preorder of the algorithms. A total preorder is a binary
relation ≤ over a set X where the following properties hold for ∀a, b, c ∈ X:

a ≤ a (reflexivity)

a ≤ b ∧ b ≤ c→ a ≤ c (transitivity)

a ≤ b ∨ b ≤ a (totality)

19

Computational effort is the most obvious candidate, and as for nearly all algorithms, inter-
esting measurements are the runtime and the space (memory) consumption. Memory is usually
bound by the implementation, the operating system and current machine, which are relative un-
stable (with respect to different machines), but easily expandable factors. Furthermore, as most
(meta)heuristics cover only a limited area of the search space, they require much less space than
complete methods and do not exceed today’s memory limitations. Moreover, as most important
argument, lack of memory can often be substituted by additional computational effort (which
means by time). For that reasons, many researchers exclude the space requirements for their
comparisons and focus on time requirement, whereby the question occurs how (and in which
forms) to measure it. The most natural way is just stopping CPU execution time, a simple and
easy-comparable method. Although widely used in practice, some researchers argue that CPU
times are inappropriate measures, as they are hardware-dependent and hard to replicate [5]. Al-
ternative methods, include like using the representative operation counts [5] base on the number
of predefined program calls in the execution of the solver, resulting in a machine-independent
indicator for an algorithms performance.

However, time may not be the only relevant factor. As already mentioned, the different
problems in computer science can be roughly divided into two classes: decision and optimization
problems. In case of a decision problem, the result of all algorithms is similar and time can be
considered as most relevant metric. However, in case of an optimization problem, the new
feature of solution quality appears, which is most likely correlated to the runtime. Even more,
runtime and solution quality are often adversaries, so a better solution usually requires more
runtime and more runtime may likely result in a better solution. This could end in the special case
that with enough time, the algorithm could cover the whole search space, were it definitely finds
the best solution. However, this would require maximal runtime, which is undesirable (and often
incomputable) for (meta)heuristics. So it ends up in the question if the additional time required
to find a better solution is justifiable compared with the improvements in the evaluation function.
This is also closely related with the question of the termination condition (e.g. maximal runtime,
number of iterations), which is discussed later. Nevertheless, the interaction between time and
solution quality is a crucial issue for any comparison of algorithms dealing with optimization
problems.

The third category, robustness, describes how well an algorithm scales with different in-
stances of a problem. This includes the need of parameter tuning and the usability on a wide
range of instances. Consequently, this measurement describes a behavior on a set of instances
rather than on a particular instance. However, algorithm selection primary focuses on instance-
based decisions, wherefore robustness-attributes are less relevant. As a result, we almost ignore
this metric when comparing different algorithms. Nevertheless, there was one application of
some robustness-related attributed in this thesis: During the creation of our training data, we
discovered instances where multiple solvers performed best. For algorithm selection itself, it
would be sufficient to predict only one of these solvers, but the question arises which algorithm
should be used for training. One solution would be to handle this as multi-label classification
where multiple classes can be assigned to a single instance. Unfortunately, many classifiers can
not handle these ambiguous data, for what reasons transformation strategies have been devel-
oped [66]. Worth mentioning in this context is [138] where a study on different techniques for

20

an algorithm selection of TSP solvers is presented. However, we follow a different approach by
eliminating additional labels and selecting only one algorithm for training. Therefore, we break
ties by preferring algorithms that are on average more successful, i.e. that showed an lower
average rank, which is a robustness attribute.

Another attribute of algorithms, although often ignored, deals with one central element on
many (meta)heuristics- the randomness. Nearly all state-of-the-art methods contain random
elements which are used for initialization decisions, branching or just solving ties during the
search. Besides the statistical relevance of the numeric values like runtime, this creates an addi-
tional feature of algorithms, its risk [130]. This central point poses great influence on practical
usability, as even the fastest algorithm is inapplicable if it provides the correct solution only with
a probability of e.g. 10%. Regardless of a decision or optimization problem, this information,
which can mostly be gained via experiments, must be taken into account, either implicit (e.g. by
encoding it in other attributes) or explicit as coincidence value.

After this short review of possible features, is it now possible to say some algorithm A is
better in general than another algorithm B. Of course it is. Someone can easily argument that
when algorithm A performs on all observed features f ∈ F at least as good as B and for at least
one attribute f ′ ∈ F A is better than B it is always beneficial to use algorithm A and therefore,
A is better than B [80]2. Unfortunately this is seldom the case in the field of (meta)heuristics if
|F | > 1, as most times the different features are (inverse) related. Thus, an ordering using this
scheme is likely to end up with several algorithms denoted as best, each superior in one or a few
features. This is called Pareto optimality and for further information, we refer to research in this
area. For our purpose, this method is inapplicable, as we prefer a distinct (or at least dominant)
solution. In this situation, researchers have only a few possibilities. Either they can try to map
the different features on one value by using an artificial function, or they have to prioritize the
attributes according to their importance. Both cases have the disadvantage that the weight of the
features must be specified according to some criteria, which influences the complete ordering.
An error or a wrong prioritization may corrupt the entire result of the research. Regardless of
the chosen method, in the end there must be a non-ambiguous method, specifying for any two
algorithms and given their features, if and which one is better.

3.2 No Free Lunch Theorem

The no free lunch (NFL) theorems by Wolpert and Macready [244, 245] are well-known theo-
rems in optimization heuristics and were “the” disappointment for all researchers trying to create
the best and all-dominating (meta)heuristic. Although primarily proposed for natural-inspired

2Mathematically spoken:

∀f ∈ F : f(A) ≤ f(B) ∧ (A is at least as good as B)

∃f ′ : f ′(A) < f ′(B) → (A is on f ′ better than B)

A < B (A is better than B)

21

heuristics like genetic search or simulated annealing, they are in general valid for all black-box 3

algorithms for optimization problems. Central statement is that for any two different algorithm
A,B where A outperforms B on some cost function f , there must be a different cost function f ′

where B outperforms A [244]. Even more, Wolpert and Macready show that over the set of all
possible problems, the average performance of any pair of algorithms is exactly the same. This
is even valid for a random search, so roughly speaking, no algorithm performs in general better
than just randomly exploring the search space. Note that here lies the drawback of the theorem
- it is only valid over the set of all possible optimization problems. For one concrete problem,
the average performance of different methods can vary and nobody will deny that heuristics
specially designed for one problem often outperform general search methods [244, 76].

The NFL theorems have been addressed by many researchers [60, 210], leading to the
almost no free lunch (ANFL) theorem [76] that introduces some restriction on the complexity of
the considered functions. The authors proved that if a search heuristic performs well compared
to the average results on some optimization problem with an evaluation function f , it must take
advance on some hidden structure of f . This is also confirmed as each search strategy follows
some intuition how f looks like, e.g. that inputs with large f -values are very likely located
together at some local optima. In addition, the authors of the ANFL theorem show that for each
function f , it is possible to create a function f ′ closely related to f which is hard to solve for
this particular heuristic.

With the NFL theorem in mind, the reader might ask herself if it is even possible to choose
a “good” algorithm for a particular problem and a particular instance, as all methods in general
perform equal. Practice shows us clearly, that it is possible. The NFL theorem is only a general
statement over all possible evaluation functions (which means all problems), not necessary valid
for one particular problem or the individual instances of it. Thus, it is possible that there are
classes of instances where a particular algorithm is more suitable than others. However, it is very
unlikely that one algorithm is better than all others on all instances. The reason for this is that
for many problems, their instances can be reduced to instances of other problems. In addition,
also many different real world tasks can all be transformed to instances of the same problem.
Consequently, although all instances of a problem follow the same semantical structure, they
may imply different constraints, needs and requirements. An indicator for this is that for many
problems there exist multiple methods to create a particular instance 4.

One result of the ANFL is that an algorithm A performs better if it fits to some underly-
ing, hidden structure of the problem. It is some kind of implicit guessing and using hints in a
problem’s evaluation function that determines ifA is beneficial for that problem (or an particular
instance) or not [76]. Starting from this concept, the question arises that if the hidden structure of
a problem influences the performance of algorithms, does this statement also hold for instances
(or instance classes) of a particular problem. If it is possible to say that some method is better
suited for functions (problems) with some features, even if these features are implicit, can we

3This means that the function f to be maximized (or minimized) is a black box and the algorithm has no infor-
mation about the underlying problem.

4Regarding graph coloring problem, we refer in this context to [59], where the authors identify different classes
of the problem and introduce a parametric instance generator. A different method for generating hard graphs with
low chromatic number is presented in [180, 181].

22

distinct upon the same features to make instance-specific predictions about the performance of
an algorithm?

This issue is part of the central question of this thesis (some would say the underlying null-
hypothesis):

• Are there some (hidden) attributes of an instance of a particular problem, the GCP, which
indicate the performance of different algorithms?

• And under the assumption that no algorithm outperforms all others on all instances, can
we use these attributes to predict the “best” algorithm for a new and unseen instance of
the GCP?

But how to choose these algorithms? And how to describe an instance and find relevant
instance classes? These crucial questions lead us to a well-known problem, the Algorithm Se-
lection Problem.

3.3 The Algorithm Selection Problem

For a particular problem, usually different researchers invent multiple different solution strate-
gies and algorithms, each having advantages and disadvantages. Although this is highly rec-
ommendable, it entails some challenges for practical applications as selecting (or finding) the
best fitting method may be hard. Even more, the “best fitting” is always related to the particular
problem instance and may change as the instance changes.

3.4 Algorithm Selection: Basic Concept

The Algorithm Selection Problem postulated by Rice [214] faces this important question, namely
given multiple algorithms, which one should be selected to solve a concrete problem instance.
A schematic view on algorithm selection is given in Figure 3.1 where x is an instance of the
problem space P andw is a performance criteria. The term f(x) represent characteristic features
of x obtained by an extrapolation method F . Given this feature, the task is to find a selection
mapping S that selects the best algorithm a from the set of candidates A for x with respect to w.
Then P (a, x) predicts the performance p of a on x, which is finally mapped by a norm function
g(p, w) to the performance of the algorithm.

Besides the basic task of selecting the best algorithm for one instance, there exist different
paradigms for algorithm selection. A central distinction can be done between static and dynamic
techniques [109] where the former one select one algorithm once while the latter approaches
monitor the performance of their selection and may revise their decision later. A special case of
dynamic methods is recursive algorithm selection [152, 154, 235] where the selection procedure
occurs at every recursive call.

A different topic, which often comes together with algorithm selection, are algorithm port-
folios [106] and their design. Originally, algorithm portfolios have been intended as a collection
of algorithms for a particular problem which are executed in parallel (concurrently) [130]. How-
ever, follow-up work also consider sequential (one by one) or partly sequential executions [253],

23

Figure 3.1: Schematic model of algorithm selection [214].

dynamic portfolios [87, 88, 89] or using a restart strategy [106]. In general, approaches can fur-
ther be classified according to an (a,b)-of-n naming scheme, denoting that at least a and maximal
b of a total of n algorithms are executed [253]. Thus, while the classical algorithm portfolios
follow a (n,n)-of-n philosophy, other configurations like 3-of-n or a 1-of-n (the classical algo-
rithm selection) exist. In these settings, when not all n algorithms are used, it is reasonable that
only the best algorithms should be executed, which is just a different variant of the algorithm
selection problem.

Moreover, it has to be distinguished between systems where the different algorithms share
information between each other (e.g. in a sequential and dynamic scheduling) or not. The
advantages of the former case over classical algorithm selection is that it allows to combine
algorithms in a dynamic way. Thus, such a system is able to reach a better performance for an
instance than any of the underlying engines alone [172]. In contrast to this, the performance of
non-communicative approaches or ordinary algorithm selection is always bounded by the best
solver for that particular problem.

In the following paragraph, we will explain some crucial elements for algorithm selection,
namely the feature space and the algorithm space. For the criteria space, which considers
possible metrics for an algorithm, we refer to the discussions in Section 3.1.

24

3.4.1 Algorithm Space

Backbone for each successful application of algorithm selection is the collection of algorithms
available and in theory, no limits regarding the chosen methods exist. It is possible to mix
exact and heuristic methods or even include bad or simple algorithms, as an optimal selection
strategy would not use suboptimal methods anyway. The former is especially useful for hard
problems where exact methods are only able to solve a subclass of instances (e.g. small ones).
In practice of course, it is a little bit more complicated and, although some research has been
done (especially in the field of portfolio selection, see [80]), there are no general valid concrete
recipes to achieve a perfect mix of algorithms. Often, it ends up with a manual analysis on
test instances to identify good candidates [253], which requires high domain and algorithm
knowledge. Using this method, first a collection of aspirants is designed which is often limited
by available algorithms, existing implementations and time for own developments. Then, meta-
information like existing research (e.g. on benchmark instances) or complexity aspects (see
Section 3.4.3) can be used for a preselection to remove suboptimal candidates. In a subsequent
step, the remaining solving strategies are tested on a representative set of instances, which forms
the basis for a manual selection.

3.4.2 Feature Space

Besides the algorithm collection, the choice of features which describe a concrete instance is an
essential element for algorithm selection. Unfortunately, there exist no automatic way finding
such features [190], as this requires usually good domain knowledge and analytic skills. Nev-
ertheless, some approaches seem to be useful across different problems and sometimes, even
features of related problems can be reused [222]. Example for such generic features usual con-
cern metrics about the instance size or the strength (amount) of some constraints. Also using
heuristics, approximations or solving subproblems may provide insightful attributes. In this
context, we warmly recommend [222] which presents various features for different optimization
problems.

In theory, almost anything related to the instance can be used, although not every attribute
is always a good feature. [190] suggest two guidelines for good attributes: First of all, features
shall be generated by any instance of the problem without any knowledge of the instance con-
struction. This is reasonable, as additional information, like the construction method, is usually
not available (as it is not part of the problem) and therefore for a general usage just worthless.
The second recommendation is that the computation should be in low-order polynomial time.
This is closely related to the metareasoning-partition problem [128] and faces the fact that the
more time is needed for the meta-reasoning (which also includes feature computation), the less
time is left for solving the problem. Thus a time-expensive feature extraction may undo the
benefits of an excellent selection of the solving algorithm and should therefore be avoided.

Besides these two issues, there are also other reasons why features are not suitable even if
they fulfill these suggestions. For example, attributes which strongly correlate to other features
reveal no additional information. The same holds also for attributes taking always the same
value or containing just random noise. Such features are useless and can be omitted. However,
it is often not possible to determine if a feature is useful or not in advance.

25

A successful and widely used solution to this problem is to collect a wide range of features
and use then different selection techniques to find the most appropriate one. This process is
called feature selection (see Section 2.4.4) and is a well-studied area in machine learning.

3.4.3 Analytic Algorithm Selection

One method to compare different algorithms is based on the complexity theory and works by
analyzing the asymptotic behavior for the best/worst/average case of an algorithm [80]. This is
usually done using the Landau notation (see Section 2.1) which denotes the time or space com-
plexity with respect to some size metric n. For the context of algorithm selection, knowing these
characteristic values of all candidates allows to choose the one having the best best/worst/average
performance for a given instance with size n. In addition, estimating the constants c, c′ and n0
for each algorithm enables a more precise selection and can prevent worst-case scenarios effi-
ciently.

One benefit of this approach is a good abstraction of the algorithm from implementation
details [80]. On the one hand, this brings advantages as different methods can be compared in
general and more easily. On the other hand, algorithms may have equal asymptotic behavior, but
show dissimilar performance in practice depending on the concrete instance and the implemen-
tation [129].

Due to this, analytic analysis and complexity theory is in general not suitable for an au-
tomatic algorithm selection [80]. However, complexity theory is still an essential background
for many automated algorithm selection methods, which makes it a convenient candidate for a
manual preselection during the portfolio design.

3.4.4 Machine Learning for Algorithm Selection

In the previous section, we describe an analytical and theoretical approach for a decision proce-
dure. Unfortunately, it seems that these analysis is often not usable in practice, either because it
is very hard to analyze the behavior of the algorithms or the results are not satisfying. An alter-
native method addresses this problem from a rather empirical point of view. Instead of a detailed
mathematical analysis of algorithms, it is sometimes easier to evaluate their performance on dif-
ferent types of instances experimentally. The resulting knowledge can then be used in a subse-
quent step to decide which algorithm is appropriate for instances with certain characteristics. In
theory, this task can be made manually. However, with increasing number of attributes and com-
plexity, it is necessary to use more sophisticated techniques to learn under which circumstances
an algorithm is to prefer. This process of learning patterns to predict the performance (or the
best algorithm) is exactly the same task that various algorithms in the area of machine learning
are designed for. Consequently, the wide portfolio of machine learning techniques are an ideal
basis for algorithm selection, which is also underpinned by various successful applications [80].

Although it is widely accepted that machine learning provides the most promising tech-
niques, there is an ongoing discussion which of the two major concepts, classification or re-
gression, is better suited for algorithm selection. In the original work, Rice [214] encourages
a structure similar to decision-trees and also other early implementations prefer classification-
based methods (e.g. [3, 30]). However, recent approaches like [253, 32] built on regression to

26

predict for all algorithms the performance, which is then used to choose the one with the best
estimated value. According to its authors, regression is more appropriate than classification, as it
allows a more adequate error metric. The reason for this is that one global goal of algorithm se-
lection is to increase the average performance, so it is sometimes acceptable to use an algorithm
which is nearly as good as the best if it improves the average efficiency. However, classifiers use
an error metric that penalizes all misclassification equally, regardless if the predicted algorithm
is almost the best or the worst. In contrast to this, the learning procedure for a regression func-
tion penalizes a large inconformity more than only a minor mismatch. Thus, a wrong prediction
of a classifier results more likely in a larger performance gap to the best algorithm of that in-
stance while using regression minimizes this risk. In addition, using regression does not require
an implicit ranking nor the comparison with other algorithms. As a result, these models can be
trained once and do not have to be recalculated in case of a new algorithm. Arguments against
using regressions are presented in [171], where the authors point out that modeling the execu-
tion time is challenging. For example, the estimated values of SATzilla [253] differ by up to
an order of magnitude. Furthermore, although a runtime prediction is convenient for algorithm
selection, it is by no means necessary. It would be sufficient to anticipate the fastest algorithm
without having knowledge how long it will take to solve the current instance. Moreover, [111]
object that also classifiers can penalize misclassifications differently and that the performance
difference between a mismatch of a classifier and the best solution is often small. Similar results
are also reported in [178].

Because of these arguments, we believe that it is hardly decidable which approach to pre-
fer as both have advantages and disadvantages. We can not deny that for decision problems,
regression poses some benefits, especially regarding the error metric and because it is easily
expandable. On the other hand, estimating the runtime is often complicated and not necessary,
particularly if it would be sufficient to predict just the best algorithm. Furthermore, using re-
gression for optimization enforces to predict the solution quality and the execution time, which
(a) may be inverse correlating and (b) requires twice as much learning effort (and enables twice
as much possibilities for mispredictions). Nevertheless, there are for both paradigms multiple
state-of-the-art implementations. In this context, we recommend [148] where the authors com-
pare different techniques from the area of machine learning for algorithm selection.

In the following paragraphs, we give an overview on the different approaches to algo-
rithm selection using machine learning. One of the most famous algorithm selection systems
is SATzilla [253] (and its successor [254]), which is a portfolio-based approach using regres-
sion to estimate the best suited SAT-solver. It has won several categories in the 2007 and 2009
SAT competition [252] and is among the state-of-the-art systems for solving this problem. A
different system, which also targets SAT, is presented in [171]. In contrast to SATzilla, it
builds on a kNN classifier to predict an algorithm and achieves, according to its authors, bet-
ter performance than SATzilla. In addition, [137] presents static and dynamic scheduling
strategies for algorithm portfolios of SAT solver. Also mentionable, in this context is [219]
which utilizes a technique called latent class models to identify groups of similar instances.
Another systems for SAT is presented in [189] that applies a greedy selection strategy and is,
according to its authors, also competitive to SATzilla. Besides for SAT, there are of course
other problems for which successful applications of algorithm selection exist. For example, the

27

system CLASPFOLIO [98] is a recent approach to select the best solver for answer set program-
ming (ASP) [99] using a support vector regression. Also for ASP is ME-ASP [172, 173], which
builds on kNN classifier. A comparable framework for quantified Boolean formulas (QBF) is
AQME [206, 207], which uses 1-nearest-neighbor, Decision Trees, Decision Rules, and Logistic
Regression to predict the best solver. For the well-known TSP, [223] developed a prediction
using a MLP while [138] applied different methods like DT, kNN, SVM and a naive Bayes net-
work. Another regression-based system is shown in [32, 31] where algorithm selection for the
WDP is presented. Moreover, there exist approaches for the QAP [224], the MPE [110, 111],
the NRP [178], the BEP [108, 97]), and scheduling [15]. Also worth mentioning is [182] where
classification- and regression-based algorithm selection for ASP based on features of tree de-
composition is presented.

Regarding learning itself, there is also various work on selecting the best learning algorithm,
e.g. [3, 30, 28, 158, 7]. However, as this is not directly related to our application area, we omit
further descriptions. For more information regarding this topic, we refer to [225] where further
examples are given.

Besides these systems using classical techniques of machine learning, there are also ap-
proaches based on other meta-learning [242] methods. For example, [111] show in their work
for the MPE a successful application of bagging, boosting and stacking.

Other methods built on Markov decision processes, e.g. for selecting branching rules in SAT
algorithms [153], or for algorithm selection in sorting and the OSSP [152]. Still others handle
the problem from a statistical point of view [83]. Their proposed solution approximates the
performance of the algorithms using regression and applies simple rules for method selection.
Also noteworthy is [162], where runtime prediction for branch and bound algorithms is used to
estimate the best method.

For the field of dynamic algorithm selection, [10] and [42] encourage using reinforcement
learning techniques to observe and revise the selection decision during the search. In this con-
text, we also want to mention work on dynamic algorithm portfolios [87, 88, 89] and an appli-
cation example about selecting QBF solver [217].

Other portfolio-based approaches are [247] for backtracking search and [255] for the SCOP.
The latter approach is interesting, as it used analytical hierarchy process as external deci-
sion making tool for selecting the best portfolio. Also worth mentioning in this context is
CPHYDRA [191], a very successful system for constraint programming which builds on case-
based reasoning to partition CPU-time between multiple solver.

Finally, we also want to highlight HYDRA [251], a combination of automated algorithm
configuration and portfolio-based algorithm selection. An application with SAT algorithms
shows that this method has high potential and is competitive to portfolio-based approaches.

For further information of the state-of-the-art, including historical remarks and interdisci-
plinary connections, we refer to [225]. In addition, we recommend [147] (and the correspond-
ing online bibliography [146]) where a summary on literature and a classification of the different
approaches is presented.

28

CHAPTER 4
Algorithm Selection for the GCP

In this chapter, we present our algorithm selection approach for the graph coloring problem
(GCP). We first explain the GCP and popular heuristics to solve it. Afterwards, we describe
several graph features (and ways to compute them) that can be used to characterize a concrete
instance of the GCP. Finally, we introduce our approach based on machine learning to automat-
ically select the best algorithm for GCP instances.

4.1 The Graph Coloring Problem

4.1.1 Definition

Graph Coloring is a well-known and often studied problem in computer science. The deci-
sion variant, the graph coloring problem (GCP) (sometimes also vertex coloring problem or
k-coloring problem) is one of Karp’s NP-COMPLETE problems [139] and its origins go back to
the four color theorem and the task of coloring real-world maps.

Given an undirected, acyclic graph G = (V,E) where V is a set of vertices (nodes) and E is
a set of edges (u, v) : u, v ∈ V between these nodes. A coloring of G is a mapping φ : V 7→ Γ
which labels each vertex with one of k colors Γ = {1, ..., k} such that no adjacent nodes have
the same color. A coloring is denoted as legal (or feasible) if for all pairs of vertices u, v with
(u, v) ∈ E, φ(u) 6= φ(v) holds. If there are two connected nodes u, v such that ϕ(u) = ϕ(v),
then these nodes are in conflict (or conflict nodes) and the coloring is said to be infeasible.

Alternatively, a coloring can be seen as a partitioning of V into k subsets where all nodes
of one subset Sc, c ∈ Γ have the same color c. Then, a coloring is legal if for each subsets Sc,
no nodes of Sc are adjacent (that is, ∀u, v ∈ Sc, (u, v) /∈ E holds). Such sets are also called
independent sets.

A graph G is called k-colorable if there exists a legal coloring with at most k colors, and the
minimum number of colors necessary for a legal coloring is denoted as chromatic number χG.

As many other NP-problems, graph coloring arises as NP-COMPLETE decision and as NP-
HARD optimization problem [195]. The former case, the GCP, targets the question if there exist

29

a legal coloring for a given graph G and number of colors k, while the optimization version, the
chromatic number problem, aims to find the lowest possible number of colors k under which a
feasible coloring ofG is possible. Note that in literature, the distinction between these names are
often not clear and some authors also call the optimization version as graph coloring problem.

Unlike other NP-complete problems (e.g. the Hamilton path problem), instances of the
GCP are “hard on average” [237], meaning that also random instances tend to be difficult to
solve. A landscape analysis reveals that the search space tend to contain large plateaus [179]
which complicate the search process. Other results show that the landscape is mostly rugged [9,
149] and that various valleys, peaks and local optima are distributed over the whole search
space [25]. In this context, several works [119, 2, 149, 12] have been done to investigate under
which circumstances a graph is hard to color by investigating the phase transition of the GCP.
Although is widely accepted that an increasing density for a fixed k tend to result in more
difficult instances [61], there is not explicit correlation between graph attributes and hardness
known. Consequently, there exists so far no concrete link between the phase transition and a
specific parameter and the only measurement if an instance is hard is the computational effort to
solve it [47]. Moreover, approximating the chromatic number itself is very hard [82], although
many different approaches for this task exist (see [195] for more details).

The first coloring algorithms date back to the late 1960s [54, 241] and since that time, many
different exact and heuristic methods have been introduced.

Graph coloring itself has many applications. Possible application areas are, besides others,
scheduling [157, 101] (e.g. satellite scheduling [261], timetabling problems [241], time-tabling
problems in education [35]), register allocation [44], frequency assignment [93], wireless sensor
networks [167], bag rationalization [102], or circuit testing [95]. In addition, algorithms for
graph coloring are also used to solve other problems like finding bounds for the maximal clique
problem [194].

4.1.2 Exact Algorithms for the GCP

As already mentioned, the GCP is an NP-COMPLETE problem. Thus, finding the optimal solu-
tion may be very time intensive. In detail, calculating the exact chromatic number for a graph

with n nodes is, to the best of our knowledge, in O((43 + 3
4
3

4)n) ≈ 2.4150n [78]. Neverthe-
less, there exist multiple methods for finding an exact solution. While early approaches focus
on a depth-first search [54, 239] or backtracking [29], recent methods base on column genera-
tion [175, 107], integer linear programming (ILP) [33, 177, 36, 34] or branch and bound [38,
104, 176, 117]. Other exact methods perform linear-decomposition of the graph [166] or base
on dynamic programming [78].

An alternative approach to these exact methods is to map the GCP to another problem, that
is then solved separately. A good candidate in this context is the satisfiability problem (SAT),
which is one of the best-studied NP-COMPLETE problems. Moreover, there exist various exact
and heuristic solvers for SAT. For more information, we refer to [236] which reviews 12
different encodings of the GCP as SAT and to [233] presents techniques for symmetry breaking.
Also worth mentioning is [24], which describes a learning automata especially designed for
solving the GCP as SAT-representation.

30

However, all these approaches are only usable in general on small graphs up to 100 ver-
tices [48]. For larger graphs, these algorithms become very time consuming, which inhibits a
practical application on these instances. Thus, for obtaining results in reasonable runtime, the
use of heuristic methods is in general unavoidable.

4.1.3 Heuristics for the GCP

The following section gives a short overview on the different heuristic approaches for the GCP,
highlighting their principles, similarities, differences and relations within each other. To begin
with, we explain different concepts and representations which highly influence the algorithms
and allow a classification of the different approaches. We describe important algorithms di-
vided into three groups: fast, but sometimes inaccurate greedy methods; classical local search
approaches; and population-based heuristics. For each of them, we present popular algorithms
whereby we focus on those used for the experimental part of this thesis. For more details in-
cluding historical remarks, we refer to [91]. Other surveys can be found in [170, 118, 160]. An
experimental evaluation of different algorithms is presented in [48].

Strategies

As already mentioned, the GCP is a popular and well-known problem in computer science for
that many different solving methods have been developed. In the course of this research, some
general strategies have been evolved that are used successfully for the GCP [90].

Some algorithms solve the decision problem, where the k is fixed, while other algorithms
deal with the optimization problem, where the goal is to minimize k. As described before (see
Chapter 2), this is a rather arbitrary choice, as the optimization variant can be substituted by
the decision one in linear time. Consequently, most modern heuristics deal with the decision
version. Besides that, another interesting aspect is if the search works internally on complete
(proper [25]) or incomplete (partial [20], or impasse [169]) colorings. In the former case, at
every state in the search all nodes have a color assigned, regardless if the color is allowed or not,
while in the latter case, nodes can also be “uncolored”. Another facet is if the procedure operates
on feasible (or legal) or infeasible colorings. The first method considers only colorings where
no adjacent nodes have the same color, in contrast to infeasible models, which allow conflict
nodes. A different distinction can be made on the representation of the GCP itself - some meth-
ods follow the so-called assignment approach and work on finding a labeling function which
assigns each node a color while others stick to a partitioning approach using a set formula-
tion [90]. Although these two models are in principle similar, they offer different neighborhoods
and crossover strategies.

In general, it is possible to transform the current state of a search (the current solution) to
an alternative model, although this may cause drawbacks in the solution quality. For example
a feasible and incomplete coloring can be converted to a infeasible and complete coloring by
assigning a random color to all uncolored vertices. Such remodeling can be used to escape local
optima and find a better coloring. An successful example for such strategy is the VSS [123]
algorithm, which uses three different representations and predefined translation steps.

31

In the following paragraphs, we describe some popular algorithms that are also used for our
evaluation.

Greedy Heuristics

Greedy (or constructive) heuristics are methods which build iteratively a solution based on lo-
cally optimal decisions. These algorithms usually show a short runtime, but with the drawback
that each decision is final, which implies that there is no backtracking. As a consequence, bad
(global) decisions often lead to non-optimal solutions. Nevertheless, many modern heuristics
contain constructive algorithms, especially for obtaining initial solutions, e.g. for a following
local search (LS) algorithm. Furthermore, these heuristics can easily be modified to generate
colorings with a fixed number of colors k by eventually returning illegal solutions, which is also
widely used for other (meta)heuristics [48]. In the following paragraphs, we present the most
popular greedy algorithms. For a more detailed list, we refer to [150].

Random Order Sequential: The random order sequential (ROS) is one of the simplest algo-
rithm for graph coloring. Given a graph , the algorithm creates a (random) sequence of vertices
S = {v1, v2, . . . , vn} and assigns to v1 the color 1. Then, in the following iterative procedure,
all other nodes vi for i = {2, . . . n} receive the lowest possible color such that for each node vi
no adjacent node vj (j < i) has the same color. It is clear that the quality of this solution highly
depends on the order of the nodes and although there exists for any graph an ordering which
would produce an optimal coloring1 , practical results are in general below other constructive
methods [48, 52].

DSATUR: As already mentioned, the quality of ROS highly depends on finding a good order-
ing, which seems to be hard too. Brélaz [29] introduced therefore a new way to rank the nodes
based on their saturation degree, which is defined as the number of different colors of adjacent
nodes. His proposed algorithm, DSATUR (DSAT), uses a similar coloring method as ROS but
instead of a fixed ordering of the nodes, it chooses the one with highest saturation degree for
coloring. In case of a tie (and for the first node), the node with maximal degree to still uncolored
nodes is preferred; and if the tie remain, it is broken randomly. With this dynamic ordering, the
algorithm greedily colors vertices with the lowest possible color, resulting in a time complexity
of O(n3) and a space complexity of O(n2) [52].

Recursive Largest First: The recursive largest first (RLF) [157] algorithm is a greedy method
which builds on the extraction of large independent sets. Given a graph, it assigns the color c = 1
to a node v with largest degree to the nodes of the set of uncolored nodes U1. Next, it moves all
nodes adjacent to v in a set U2, containing nodes which cannot be colored with color c. Then, it
adds, as long as U1 is not empty, the vertex u ∈ U1 with largest degree to nodes in U2 whereby
ties are broken up by preferring minimal node degree. After a node u is chosen (and colored

1The proof of this proposition is trivial: Given an optimal coloring for a graph G where for all color classes Ci

and Cj with 1 ≤ i, j ≤ k − 1, i < j, |Ci| ≥ |Cj | holds. Then, an ordering of the vertices according to their colors
result in a sequence of vertices for which the described coloring method returns an optimal coloring.

32

with c), its adjacent nodes are moved from U1 to U2. When no further nodes can be added, the
construction of the color class c is complete and the entire process is repeated using the next
available color on the subgraph of G, containing only uncolored nodes U2. The time complexity
of RLF is O(n3) while its space requirements is O(n2). Compared with DSAT and ROS, RLF
provides on many classes of instances significant better results, but with the drawback of a higher
runtime [48]. Improved versions of RLF can be found in [50].

Local Search Heuristics

One downside of greedy algorithms are their irreversible decisions, which often lead to colorings
with far more colors than the chromatic number. One alternative are heuristics based on a local
search (LS). Instead of building a valid solution step-by-step, these methods systematically
explore the search space to improve their current solution.

Since the formulation of the GCP, various techniques following this paradigm have been
introduced. In the following paragraph, we present the most popular one, which are also consid-
ered for our experimental part.

TABUCOL: One of the most popular heuristics for the GCP is the TABUCOL algorithm by
Hertz and Werra [122]. Introduced in the late 80ties, it became de facto the reference algorithm
for any new developed method and is often used a LS in memetic algorithms. As the name
implies, TABUCOL is a classical tabu search that saves applied moves and forbids their revision
for a period of iterations. The algorithm works on infeasible colorings using a partitioning
approach where the neighborhood of a current state is obtained by moving a single node u of one
class Vi to another class Vj . After one move, the color class i is marked as forbidden for u, except
this would result in a configuration better than the best solution found so far (aspiration criteria).
Originally, the algorithm works with a fixed tabu tenure of 7, but today’s implementation are
based on an improved version [90], which uses a dynamic tabu tenure t = random(A) +α ·nc
where random(A) returns a random number between 0 and (A − 1), nc is the number of
conflict nodes and α is a parameter. Proposed values for the parameters areA = 10 and α = 0.6.
Furthermore, the improved method restricts the neighborhood move by considering only conflict
nodes. The evaluation function is the number of conflict nodes and at the end, the solution with
the lowest number of these nodes is returned.

PartialCol: PartialCol [20] is a prototype for two heuristics using a tabu list. In con-
trast to TABUCOL, these algorithms work with feasible, but incomplete colorings. A current
solution is represented by the k color classes and a set of uncolored nodes Vk+1. The search
aims to reduce Vk+1 to {}, using |Vk+1| as objective function. The neighborhood is defined
as moving one node u from Vk+1 to a color class Vi. In case that this configuration is infeasi-
ble, nodes adjacent to u are shifted to Vk+1 until the solution is legal again. At each iteration,
PartialCol selects the node u and the color class Vi which results in the smallest |Vk+1|. In
addition, it sets Vi tabu for all vertices removed from Vi for a certain period of time. The authors
of PartialCol experimented with different calculations of this tabu tenure, which result in
the two versions, Dyn-PartialCol and Foo-PartialCol. The former one uses a tenure

33

similar to TABUCOL by just replacing the number of conflict nodes with the size of Vk+1, re-
sulting in t = random(10) + 0.6 · |Vk+1|. The latter approach operates with a reactive tabu
tenure based on the fluctuation of the objective function. If the value of this function is stable
over some period of time, the tabu tenure is increased to escape the current search region. To
prevent a too high tenure, the variable is slightly evaporated along the search process, resulting
that the search is alternating between diversification (with high tenure) and intensification (when
the tenure is low).

Iterated Local Search: Another search strategy, which is also used for the GCP, is the iter-
ated local search (ILS), a concept which combines an external LS with an explicit diversification
mechanism. Starting from an initial solution, the method first calculates some local optima s∗

using the LS. Then, it iteratively uses a perturbation procedure to gain a new state s′ from s∗,
applies the LS on s′ and replaces the current incumbent s∗ by the new local optima if some ac-
ceptance criteria are fulfilled. This process is then repeated from the (maybe new) configuration
s∗ until the termination conditions are satisfied.

For the context of the GCP, different implementations of the ILS have been developed [193,
163]. We consider here the version of Chiarandini and Stützle [51, 47]. In this approach, the ini-
tial solution is created with the DSAT heuristic followed by a color reduction until the solution is
infeasible. As LS, an one-opt neighborhood enhanced with a tabu list, comparable to TABUCOL,
is used and the perturbation is applied always to the best solution found so far. For the perturba-
tion itself, the authors suggest a recoloring, where a certain number of colors kr = γ · k (where
γ is a parameter) are removed and the corresponding nodes are recolored using the DSAT [51]
or ROS [47] method. To prevent a stagnation on the current state, it is ensured that the new color
of each node is different from the one before the recoloring.

Guided Local Search: guided local search (GLS) [238] is an adaptive heuristic which tries to
escape local optima by a dynamic objective function. Instead of using the classical cost function
of a problem, it augments the cost function with penalties that are updated every time when the
underlying search finds a local optima. Key element is that the penalties are updated on some
attributes of the current solution so that the method avoids reentering this state again and is
guided to new, promising search regions.

Chiarandini adapted this scheme for the GCP [47]. This algorithm uses weights associated
to edges that cause a conflict as penalties which modify the original cost function. Moreover,
it uses an one-opt exchange neighborhood for the LS and whenever a local optima is found,
it allows sw = 20 non-worsening moves (sidewalks) before the weights (and the evaluation
function) are updated.

Population Bases Heuristics

Central element of the local search paradigm is that these methods maintain one current solution
during the search process, which is improve by exploring related configurations (its neighbor-
hood). A different, but also widely used alternative is to omit this limitation and consider a

34

whole set (or a population) of solutions. These techniques, also denoted as population-based
heuristics, can also be used to solve the GCP.

Similar to the LS-based methods, there exist various population-based algorithms to solve
GCP. In the following paragraphs, we introduce several popular state-of-the-art solvers that are
also considered for the evaluation.

HEA: One of the first successful evolutionary approaches for the GCP is hybrid evolutionary
algorithm (HEA) [90]. This method is a genetic algorithm using a LS instead of a mutation
operator and a specialized crossover operator, called Greedy Partition Crossover (GPX). HEA
represents solutions using a partitioning approach working on complete, but illegal colorings.
Starting from an initial population obtained by a modified DSAT algorithm, it iteratively applies
the LS followed by a crossover operation and a population update. The LS itself is a tabu search
similar to TABUCOL, which improves the individual solutions. One factor of the success of HEA
is the GPX crossover. This operator creates of two parents one offspring by building iteratively
new subsets based on the parents subsets with maximum cardinality. Consequently, the offspring
inherits large color classes of both ancestor, which form the basis for the following LS.

MACOL: In the article introducing HEA [90], its authors identify that one important element
for the success of population-based methods for the GCP is the diversity of the population.
This factor balances the search between diversification and intensification and prevents it from
converging to early to a local optima. This phenomena leads to the development of MACOL [164]
which uses a similar concept of a memetic algorithm as HEA. Instead of DSAT, MACOL, applies
a modified version of the DANGER [104] algorithm for the initial population in combination
with elements for diversity control: before a new individual is accepted, a distance metric to the
already generated colorings is calculated and, in case that the solution is too close to existing
ones, the new individual is not accepted. Note that according to the authors of MACOL, using
a pure random initial method does not result in worse solutions but may prolong the search
slightly. The following LS is again TABUCOL with a critical one-move neighborhood. However,
instead of the GPX, MACOL uses an Adaptive Multi-Parent Crossover (AMPaX). This operator
differs in two major points to the GPX: First, AMPaX uses two or more parents per offspring
(between 2 and 6, chosen randomly) and second, in each step of the crossover operation, AMPaX
chooses a parent and a color class adaptively (instead of a successive, alternating way). In
addition, after selecting an independent set from one parent, this parent is ignored for a few
number of steps to avoid focusing on a single parent. Another difference to HEA is the Pool
Updating strategy, which balances intensification and diversification of the search on the basis
of the distance between the quality of existing solutions and the quality of the new one.

MMT: MMT [169] is a two-phase hybrid heuristic based on an evolutionary algorithm and a
set covering formulation. In contrast to other population-based approaches, the first phase deals
with partial feasible solutions and is using a tabu list with an impasse class neighborhood as
LS. Crossover is done with a modified GPX and to enforce diversity, MMT applies a distance-
sensitive pool updating considering for each individual its score (sum of the degree of uncolored
nodes) and the number of uncolored nodes. The second phase, called Column Optimization,

35

utilizes a set covering (or set partitioning) formulation of the problem. This is an integer lin-
ear programming (ILP) model that is also used for other GCP algorithms [175]. Considering
this formulation, MMT applies the Lagrangian heuristic algorithm CFT to find further improved
solutions.

Multi-agent Fusion Search: The multi-agent fusion search (MAFS) algorithm [250] is an ap-
plication of a multi-agent optimization framework for the GCP. Basic elements are independent
agents who share information within each other using a communication protocol. Furthermore,
the system inherits two forms of knowledge representation: declarative knowledge, which is
represented in a symbol structure called chunks, and procedural information processes (like an
algorithm), which are implemented as rules. The fusion search itself is a collaboration of a re-
combination search and a LS, where the former one is responsible for “navigating” through the
search landscape while the latter one performs a more intensive low-level search. The agents are
initialized based on a dummy solution obtained by DSAT, which is for each individual modified
and optimized using the LS. This search itself is again TABUCOL, although also other variants
have been tested. The most important parts is the recombination search, which is based on a
grouping approach similar to HEA or MACOL. To create a new configuration, this method first
extracts of the parents’ color classes maximal independent sets. These sets are then recombined
in a alternate-greedy way whereby to prevent that the offspring is not to closely related one of
its parents, the independent sets are chosen alternatively of the individual ancestors. Finally,
redundant vertices are removed by keeping the node with the smallest k value.

Other Approaches

As already mentioned, the GCP is one of the most studied problems in computer science and
as a result, various different techniques for solving it have been developed. In the following
paragraph, we list different methods in the literature and although we found more than 40 ap-
proaches, we have to admit that this list might be incomplete. For a more comprehensive view,
we group the algorithms in the following classes.

Methods based on Local Search: Concerning the algorithms based on LS, it is interesting
that a large number of heuristics build upon a tabu list. Most of these techniques try to en-
hance the classical tabu search, e.g. by a guiding the search to some regions [202, 204] or
adding further reactive elements [45]. Other algorithms focus on an adaptive neighborhood
exploration [69] or combine a tabu search with simulated annealing [192]. Another interest-
ing hybrid approach in this context is VSS [123], which is build on a tripartite search space
using TABUCOL, PartialCol and a third technique alternately for an effective search. A
different idea follow HCD [37] and its successor CHECKCOL [41], which assign weights to ver-
tices to escape local optima. There are further approaches based on multi-phased local search
(TPA) [40] and IGrAll [39] and applications of a GRASP [155] whereas latter is primary de-
signed for sparse graphs. Moreover, there are implementations using simulated annealing [135],
variable neighborhoods (VNS) [11] or a very large neighborhood (VLNS) [231, 49], although
the latter is according to its authors less effective. Other heuristics, which we do not describe

36

further, are RCC [71], an iterated greedy method [62], a Novelty algorithm [47], an approach
based on the minimum-conflict principle used in constraint satisfaction problem (CSP) [47], and
lmXRLF/lsII [141].

Population-based Approaches: Besides the different variants using a LS, there exist a wide
range of population-based methods for the GCP. One of the first approach with these tech-
niques built on a classical genetic algorithm [65]. Unfortunately, this method does not perform
well [91], which leaded to the invention of more sophisticated techniques using for example an
uniform independent set crossover [73] or no crossover at all [184, 77]. However, the first really
successful GAs apply instead of the mutation operation, a local search to improve the current
solution. We have already introduced one of the first successful methods, HEA [90]. More recent
algorithms are AMACOL [92], EVOCOL [201], and EVODIV [203], which also include elements
for controlling the diversity of the population. Another solver, EXTRACOL [248], reduces the
graph by extracting large independent sets before the basic solving procedure. There are further
approaches based on ant colony optimization [17, 216, 75] and an ant local search [200]. Other
naturally inspired methods are the honey bee algorithm BeesCol [18], hybrid immune algo-
rithm [63], quantum annealing [228], and using a gravitational swarm [212, 213]. Moreover,
there are applications of a scatter search [116], a combination of a GA with simulated anneal-
ing [84], and approaches working with multiple, concurrent applied searches like MEA [45] or
[205]. Also worth mentionable are two parallel genetic algorithms [1, 221] which are well suited
for multi-core application.

Unconventional Approaches: In the end, we would like to present some unconventional ap-
proaches which we could not classify to one of the previous groups. These methods are usually
not popular techniques for (meta)heuristics. One group in this context are a couple of solvers
based on the combination of cellular automata and learning automata [229, 230, 6, 79]. In these
algorithms, each cell is associated to a vertex and has certain actions, which are trained to find
the best action (color) for the graph.

Other approaches use a neural network (e.g. [197, 96, 70]) or a DNA computation [257].
One hardware-based solution is described in [246] where the authors solve the GCP with the
help of coupled oscillators.

4.2 Features

One central element for algorithm selection is a representative set of attributes (also called fea-
tures) that shows individual characteristics of an instance. These features can be used to estimate
the hardness of an instance. Features must be easy (and fast) to compute and should cover dif-
ferent constraints, aspects and representation of the problem.

For the GCP, we choose the following features based on graph invariants, greedy heuristics
and local search elements. For simplicity, we introduce a naming scheme where each feature x
belongs to a certain class C and is denoted as Cx.

Feature elements targeting single nodes (e.g. node degree or betweenness centrality) leading
in a statistical population, a frequency distribution (or just a set of values) enforce using aggre-

37

gate functions for a meaningful outcome. For the proposed approach, Table 4.1 displays the used
aggregate functions (and corresponding shortcuts). All features are, when suitable, normalized
using n = |E|, m = |V | or (in case of maximum or minimum of a set of values) by their mean
value.

Name Shortcut Description

minimum min minimum value of the population
maximum max maximum value of the population
mean mean arithmetic mean of the population
variation coefficient vc a normalized measure of dispersion
median med median (or second quartile) of the population
first quartile q25 the value that splits lowest 25% of the data
third quartile q75 the value that splits lowest 75% (or highest 25%) of the data
entropy e entropy in the population

Table 4.1: Aggregate functions for a set of values.

Note that we are aware that some of the following features may seem redundant or use-
less. Nevertheless, we think that the elimination of features should occur in the process of fea-
ture selection based on scientific evidences rather than eliminating based on an educated guess.
Therefore, we decided to generate a wide range of features and evaluate their usability in a sub-
sequent step, the feature selection (see Section 2.4.4 for general information and Section 5.6 for
implementation details).

Note that some of the following features have also been used for other applications of algo-
rithm selection. For example, information about the degree of the nodes is used in [253] while
[182] also considers attributes of a tree decomposition for their selection procedure. Further-
more, [222] describes size-related attributes and recommends the usage of statistical properties
in case of a set of values.

Graph Size

This class of features (denotes as Sx) targets the size of the graph represented by the number
of nodes Sn = |V | and the number of edges Se = |E|. In addition, we use the ratio between
these values Sne = m

n , its multiplicative inverse Sen = n
m and the density, which is defined as

Sd = 2·m
n·n−1 .

Node Degree

The degree of a node u is the number of adjacent nodes (the number of edges of u) and therefore
a measurement how constrained u is. For the corresponding feature class Dx we take the set of
node degrees and calculate the features Dmin, Dmax, Dmean, Dmed, Dq25, Dq75, Dvc, De normal-
ized by the number of nodes. Note that Dmean is similar to Sen and can therefor be omitted. We
included it in this listing only for the sake of completeness.

38

Maximal Clique

A clique in a graph G = (V,E) is a subset of vertices C ⊆ V such that for each two vertices
u, v ∈ C there exists an edge (u, v) ∈ E. A maximal clique is a clique which cannot be enlarged
by adding an additional adjacent vertex without loosing its clique state. This also implies that a
maximal clique is not included in any other clique of G.

For our purpose of finding good graph features, the cliques of a graph reveal interesting
details about its colorability. First of all, the size (also called cardinality) of each clique forms a
lower bound of colors needed, as each node in a clique must receive a different color. In addition,
the size and number of the cliques where a particular node u is included may also indicates how
strong the adjacent nodes of u are connected with each other. To find large cliques, we designed
a greedy construction heuristic that works as follows: Starting from a clique C containing a
single node u, it iteratively adds one node v which (a) is adjacent to all nodes of C and (b)
shares the highest number of neighbors with all nodes w ∈ C, until no further nodes can be
added. Roughly speaking, the algorithm enlarges the clique by selecting the node with the most
legal expansion possibilities.

With this algorithm, we can find for each node u ∈ V as start node a maximal clique mc(n)
(not necessarily the largest one) and its cardinality |mc(n)| whereby we only keep the latter for
further usage. From this set of clique sizes, we calculate the maximal clique features CSmin,
CSmax, CSmean, CSmed, CSq25, CSq75, CSvc, and CSe normalized by the number of nodes n.
In addition, we add the computation time CStime and the size of the greatest found clique CSm
(without normalization) to our feature set. The reason for the latter is that CSm forms a lower
bound and therefore may be useful.

Betweenness Centrality

The betweenness centrality [85] of a node is a measurement how central a node is within the
graph. Given a node u, it is defined as the number of shortest paths from all vertices to all other
nodes that pass through u. More formally, the betweenness centrality g(u) of u is

g(u) =
∑ σs,t(u)

σs,t
|s, t ∈ V, s 6= u 6= t

where σs,t is the number of shortest paths from s to t and σs,t(u) is the number of shortest paths
that include u.

For calculating the betweenness centrality for all nodes of a graph, we use an algorithm by
Brandes [26] with runtime O(n ·m), resulting in a set of betweenness centrality values of the
nodes. Again, we apply various aggregate functions and normalize these outcome using n,m
and the mean value, resulting in the features BCe, BCvc, BCm

min, BCm
max, BCm

mean, BCm
med, BCm

q25,
BCm

q75, BCn
min, BCn

max, BCn
mean, BCn

med, BCn
q25, BCn

q75, BCBCmean
min , BCBCmean

max , BCBCmean
q25 , BCBCmean

q75 ,
and BCtime.

As already mentioned, calculating the betweenness centrality requires finding all shortest
paths between any two nodes. These paths can further be used to determine the distance between
two nodes (called eccentricity) which might also be an useful graph invariant (which is described

39

later). As these information is already computed with the algorithm by Brandes, we modified
the method slightly to save the corresponding value and gain the eccentricity features for free.

Clustering Coefficient

The clustering coefficient is a degree how strongly a graph is clustered together. There are two
different kinds of clustering coefficient - a global clustering coefficient and a local clustering
coefficient. The global clustering coefficient [165] is the ratio between the number of closed
triples (which equals the number of closed triangles multiplied with 3) and the total number
of triples where a (closed) triple consists of three nodes which are connected with two (three)
undirected edges. Formally, it is defined as

CCg =
3 · no. triangles

no. connected triples
=

no. closed triples
no. connected triples

.

The local clustering coefficient [240] of a node u indicates how strong the adjacent nodes of
u are connected and how close they are to forming a clique. It is defined as the proportion of
the number of edges between its neighbors and the maximal possible amount of edges between
them. Suppose that u has du neighbors and the number of edges between them is

eu = |{(v, v′) : (u, v) ∈ E, (u, v′) ∈ E, (v, v′) ∈ E}|,

then the local clustering coefficient is Cu = eu
du·(du−1) . A value Cu = 1 means that all adjacent

nodes of u are connected within each other while a coefficient of 0 denotes that there exist no
edges between the neighbors of u.

For the aspect of finding graph features based on the clustering coefficient CCx, we use the
set of clustering coefficients and calculate the aggregate functions described in the Table 4.1 to
receive CCmin, CCmax, CCmean, CCmed, CCq25, CCq75, CCvc, and CCe. In addition, we also save
the time needed for calculating the clustering coefficient in the variable CCtime

Although the clustering coefficient is a normalized value and therefore a good statistical
measurement, it has one major drawback - it hides the information about the size of the neigh-
borhood of a node. To counter this lack of information, we compute for each node u a weighted
clustering coefficient by multiplying the clustering Cu with the degree of u. Then, the features
WCCmin, WCCmax, WCCmean, WCCmed, WCCq25, WCCq75, WCCvc, and WCCe, are calculated
based on these values using the mentioned aggregate functions.

Eccentricity

This class of features considers the distance between the nodes of a graph. Consider two vertices
u, v ∈ V of a graph. The distance between u and v is defined as the number of edges on the
shortest path between them [113] (or infinite, if no path exists). Then, the eccentricity of a node
u is the greatest distance between any node v ∈ V : v 6= u, indicating how far u is from the
most distant node in the graph. The minimum eccentricity of a graph G is called radius, while
the maximum eccentricity is the diameter of G.

For our purpose as graph metric, we consider the radius (ECmin), diameter (ECmax) as well
as ECmean, ECmed, ECq25, ECq75, ECvc, and ECe. In addition, we normalize the radius, the

40

diameter and the first- and third quartile with the mean eccentricity ECmean, resulting in the
variables ECECmean

min , ECECmean
max , ECECmean

q25 , ECECmean
q75 .

Local Search Features

local search (LS) is a widely-used technique in (meta)heuristics and all of here discussed algo-
rithms for the GCP include some local search component. As a logical consequence, it may
be useful to gather performance information of a LS itself. This idea is closely related to the
concept of landmarking, which is a successful applied approach for algorithm selection (e.g.
[196, 159]). Moreover, also SATzilla [253] and CPHYDRA [191] use features extracted from
short runs of simple solvers. Of course an entire and highly sophisticated LS would be too time-
consuming, for which reason we only search for the first local optima in combination with a
fixed number of iterations and a time limit. For our LS, we use a neighborhood changing the
color of one conflict node applied in a best-improvement manner by minimizing the number
of conflict edges. One drawback is that each LS needs a (not necessary legal) initial solution,
usually created randomly or in a greedy way. For this purpose, we decided to use a greedy
procedure with random components that returns for a given number k a coloring with at most k
colours. As we want to observe the progress of the LS, we ensure that the found coloring is not
legal (for a non-trivial graph) by selecting kinit as follows:

kinit = max{GCbest · 0.9, kLB}

whereby GCbest is an upper bound obtained by the minimal colors needed of DSAT and RLF
and kLB is the lower bound, CSm. As we are using random elements and for more stable results,
we execute the search 10 times with different values as random seed. Every time a local optima
is found, we store the iteration number (nto), the number of conflict edges (ce) and number of
conflict nodes (cn) as graph features. Furthermore, also if no local optima is found, we save
at the end of one run the number of conflict edges (cee), number of conflict nodes (cne), total
improvement (i)2 and the improvement per iteration (ii). Based on these values, we calculate
the average over the 10 runs, resulting in the attributes LSce, LScn, LScee, LScne, LSnto, LSii, and
LSi. In addition, we also record the number of local optima found LSnlo and the runtime LSt.

Greedy Coloring Methods

As already mentioned (see Section 4.1.3), there exist two widely-used greedy coloring methods
for the GCP. These algorithms, DSAT [29] and RLF [157], are often used as initial procedures
for various other heuristic algorithms. Furthermore, they are fast and result in a legal coloring
that forms an upper bound, which makes them perfectly suitable for our needs.

For our feature class GCx, we calculate for each of these two algorithms the number of
colors needed GCDSAT (GCRLF), and their runtime GCT−DSAT (GCT−RLF). Furthermore, we
take the minimum number of colors GCbest = min{GCDSAT,GCRLF} and the ratio between
them, GCR/D = GCRLF

GCDSAT
and GCD/R = GCDSAT

GCRLF
, as additional attributes.

2the number of conflict edges at the beginning minus the number of conflict edges at the end

41

Beside these very useful attributes, a complete coloring obtained by such a greedy method
provides additional benefits - it also includes the construction of independent sets. The reason for
this is that in a coloring for a graph, all nodes with the same color assigned form an independent
set and as these information comes for free with each colouring, we use it for additional informa-
tion about the graph (more precisely, the found colouring). For this purpose, we evaluate the size
of the different color classes and calculate the features hmin, hmax, hmean, hmed, hq25, hq75, hvc, he
(h ∈ {ID, IR}), which are normalized using the number of nodes n.

Tree Decomposition

Tree decomposition is a mapping of a graph into a tree structure. Formally, a tree decomposition
of a graph G = (V,E) consists of a tree T such that for each node t ∈ T , there exists a subset
of vertices Vt ⊆ V . Furthermore, for each of these subsets Vt, t ∈ T the following statements
hold [114]:

• for each vertex v ∈ V there is some Vt such that v ∈ Vt (Node coverage)

• for all edges (u, v) ∈ E there exists some Vt including u and v (Edge coverage)

• for any two sets Vt2 , Vt2 of the nodes t1, t2 ∈ T containing both a node v ∈ G (v ∈
Vt1 ∧ v ∈ Vt2) and any third node t3 ∈ T lying on the path from t1 to t2, the node v is
also included in Vt3 .

In this context, the width of a tree decomposition is the size of its largest set Vt minus one and
the treewidth of a graph G is the minimum width over all possible tree decompositions of G.

Tree decomposition itself is applied to different problems in mathematic and computer sci-
ence. Tree decomposition characterizes the difficulty of solving a particular problem, and usu-
ally, problems that have small tree width can be solved more efficiently. Unfortunately, finding
a tree decomposition with lowest width for a graph is NP-HARD for which reason this is usually
computed using heuristic approaches. For our purpose, we use a minimum-degree heuristic im-
plemented in the hypertree library [68]. Note that the resulting width still can be improved with
(meta)heuristic techniques like genetic algorithms [187] or iterated local search [186]. However,
these techniques consume usually more time. Therefore, we decided to use minimum-degree
heuristic to find a decomposition because it is a simple, but very efficient method. Given a
tree decomposition for a graph, we use its width normalized by the number of nodes as feature
TDwidth. Moreover, we also store the time needed for the graph decomposition TDtime.

Lower- and Upper Bound

This class of features, denoted as Bx, targets the question how much space for improvement
is given, starting from a trivial solution as upper bound kUB to a theoretical lower bound kLB.
Central idea is that the range between these values may indicate how complex (or easy) it is to
find colorings with less than kUB colors. In addition, an upper bound can also be used as initial
number of colors for the optimization variant of the GCP as well as starting number for our
evaluation of the different algorithms. Note that also some heuristics itself use lower and upper
bounds for their calculations (e.g. MMT [169]).

42

For our purpose, we can use other, already introduced features as bounds. For the upper
bound, we can either use the maximal node degree Dmax + 1, or the number of colors needed
when using the greedy algorithms DSAT or RLF. As both, DSAT and RLF, always require less
or equal Dmax + 1 colors, we take the value kUB = min{GCDSAT,GCRLF}GCbest, krlf} as upper
bound.

For the lower bound, one obvious limit for the number of colors is the cardinality of a
maximum clique (also denoted as clique number ω(G) of a graph G). Recall that a maximum
clique is a clique of largest possible size in G, which forms a valid lower bound as each node in
these clique must be colored with a different color. Unfortunately, finding the maximum clique
(the maximum clique problem) is also NP-HARD [94] and therefore not suitable as feature.
Nevertheless, also the cardinality of any other clique represents a lower bound and as we already
search for a maximal clique mc(n) for each node n, this data can be used for the lower bound

kLB = max{|mc(n)| : n ∈ V }

of the chromatic number.
Note that other lower bounds, which are maybe more tight, can be found in [121], although

most of them require higher computational effort and are therefore less applicable [168].
Regarding graph features, we use the ratio between the lower and upper bound Blu = kLB

kUB
,

its inverse Bul = kUB
kLB

, the distance between the bounds normalized by the lower bound BkLB
dist =

kUB−kLB
kLB

and upper bound BkUB
dist = kUB−kLB

kUB
as instance attributes.

4.2.1 Remarks

During some preliminary experiments, we discovered that calculating the betweenness centrality
and the eccentricity might require very long time. Although the used algorithms have a worst-
case complexity which is polynomial with respect to the graph size, they need up to one hour
for their computation (e.g. on very large graphs with 4000 nodes). For this reasons, we removed
these features from our collection. Nevertheless, we mention them in this work for the sake
of completeness. Moreover, they might contain important information, so in case that faster
algorithms (or heuristics) for these features are invented, it is definitely worth making further
investigations on these graph features.

4.3 Proposed Approach

According to Rice’s original work, algorithm selection consists of the main components:

• the problem space P,

• the feature space F,

• the algorithm space A, and

• the performance space Y.

43

Following this notation, our proposed system targets instances for the GCP (P) (see Section 4.1.1)
of which we extract up to 78 different attributes (F) (see Section 4.2). Furthermore, we consider
state-of-the-art heuristics for the GCP (A) (see Section 4.1.3) and use the quality of the obtained
coloring and the runtime as performance criteria (Y) (see Section 3.1).

For the decision procedure itself, we follow a empirical approach using classification algo-
rithms from the area of machine learning. These classifiers are trained with a representative
amount of training data consisting of the features and the best algorithm according to Y for
each instance. For predicting the most appropriate heuristic for a new graph, such a system cal-
culates the feature of the graph and uses this information with the trained model to determine
the corresponding algorithm.

44

CHAPTER 5
Experimental Setup and Environment

In this chapter, we describe the environment and setup for our experiments. In the first part, we
explain the settings for evaluation of different (meta)heuristic approaches for GCP. In detail, we
list the used heuristics, their parameter configuration and the benchmark instances. Afterwards,
we describe the setup for experiments with machine learning techniques used for algorithm
selection problem. We list the chosen classification algorithms and describe the techniques that
were applied for feature selection and discretization.

5.1 Algorithms for the Graph Coloring Problem

For the experiments, we needed a wide-range of algorithms for the GCP. Therefore, we ana-
lyzed different approaches and selected several state-of-the-art algorithms as candidates for our
comparison. We contacted the authors of these algorithms to get their original implementations
and used public available programs. Due to pleasant support of various researcher, we ware
able to collect 12 different (meta)heuristic algorithms for the GCP, namely EVODIV [201, 203],
GLS [47], HEA [90], ILS [51], MACOL [164], MAFS [250], MEA [45], MMT [169] (only the
component containing the genetic algorithm), PRTS [45], FOO-PARTIALCOL [20] (further
abbreviated to FPC), SA/TS [192], and TABUCOL [122] (further denoted as TABU). Unfortu-
nately, we had to exclude PRTS, MEA and SA/TS because they were incompatible with our test
environment. These solvers were compiled for a Windows operating system and enforced the
usage of a graphical user interface, which was no compatible with our test setup. In addition, we
also removed EVODIV from out algorithm set because it showed poor performance compared
to other algorithms. In the end, we had 8 different (meta)heuristic algorithms in 3 different pro-
gramming languages (C,C++ and Java). In the following paragraph, we explain why we have
chosen these algorithms.

The main reason for selecting the TABU solver, because it is one of the most-studied heuris-
tics and is often used as LS in various population-based algorithms for the GCP. In addition,
according to a comparison by Chiarandini [47], TABU is besides HEA and ILS the most effec-
tive algorithm for random graphs. The same study also identified GLS as best algorithm for

45

geometric graphs and it is, as ILS, also well-suited for Leighton graphs. HEA is chosen because
it shows good performance on flat graphs and it is used as basis for many other evolutionary
heuristics that are applied for GCP. This also motivated us to use MACOL, which is a direct
successor of HEA. Moreover, it achieves the best known solution (BKS) on some hard graphs
of the Dimacs challenge. We selected FPC and MMT because we also wanted to use algorithms
working with partial colorings and these two candidates are the correspondent versions of TABU
and HEA. The last competitor, MAFS, is included because it shows good performance on large
graphs. Table 5.1 displays the chosen algorithms and their parameters. Note that concerning
the parameter settings, we used the values proposed in the original publications and that were
suggested by its developers. We did not apply any parameter tuning nor did we test the effect of
instance-specific settings. The only parameter which we vary is the stopping criteria (the time
limit or the number of iterations).

Name Parameters

GLS [47] λ = 1, no. sidewalks = 20

FPC [20] α = 0.5

HEA [90] α = 0.5, no. tabu Iterations = 10000

ILS [51] α = 0.5, ilsprob = 100, pert = 0.0(ROS), γ = 0.35

MACOL [164] no. tabu iterations α = 75000, λ = 0.8, population size p = 20, RPN = 20

MAFS [250] no. agents = 25, no. iterations = 70 · time limit
MMT [169] no. tabu Iterations = 20000, tabu tenure = 45, (population size) p = 20

TABU [122] α = 0.5

Table 5.1: Algorithms for the GCP and corresponding parameter configurations used for the
evaluation.

We also made some experiments with other approaches like one that transforms the GCP
to SAT(ColorSat [233]), constraint satisfaction problem (CSP) (GeCol [107]), and integer
linear programming (ILP) using a supernodal formulation [34]. Additionally, we also im-
plement a program for answer set programming (ASP) [99]. Unfortunately, the results of these
solvers obtained by preliminary tests were always far behind those achieved by the above algo-
rithms. Therefore, we did not include these approaches in our final comparison.

5.1.1 Variations of the Algorithm Space

After our preliminary experiments, we selected 8 different algorithms for solving the GCP which
should, in combination with a classification algorithm, form our system for algorithm selection
for the GCP. However, the performance of the different classification algorithms depends, be-
sides the used attributes and the data itself, also on the number of possible classes. Thus, it is
possible that by removing heuristics from the set of possible algorithms the overall performance
is improved.

To evaluate this aspect, we also investigated the usage of only a subset of algorithms. In
detail, we evaluated if and how removing some heuristic changes the performance of the clas-

46

sification algorithm for algorithm selection. Therefore, we used several subsets of algorithms
denoted as hx with x ∈ {8, 7, 6, 5, 4, 3} where x stands for the best x heuristics. As selection
criteria, we took the number of first places according to our ranking scheme. The best algorithm
is the one which achieved on the most instances the best coloring in the shortest time. Note that
also other configurations are possible, e.g. selecting an algorithm that dominates on a particular
subset of instances with some specific attributes. However, this is beyond the scope of this thesis
and is therefore left for the future work.

5.2 Benchmark Graphs

5.2.1 Training Data

For the evaluation of different algorithms, we took as training data three different public avail-
able sets of instances. The first set, further denoted as dimacs, consists of difficult graphs
from the Graph Coloring and its Generalizations-series (COLOR02/03/04) 1 which builds up
on the well-established Dimacs Challenge [133]. This set includes benchmark instances from
the coloring and the clique part of the Dimacs Challenge and are graphs obtained by various con-
struction methods. The second and third set of instances, denoted as chi500 and chi1000,
are provided by Marco Chiarandini and Thomas Stützle [53] and contain 520 instances with 500
nodes and 740 instances with 1000 nodes respectively. These instances are created using Cul-
berson’s [62] random instance generator by controlling various parameters like the edge density
or the edge distribution. The former variable, denoted as p, determines the ratio of edges be-
tween the vertices. Considered values for these two sets are p = {0.1, 0.5, 0.9}. Regarding the
edge distribution, the graphs can be classified into three groups: uniform graphs (G), geometric
graphs (U) and weight biased graphs (W). In an uniform graph the edges are assigned for
each pair of nodes with a fixed probability p which is equal to the desired density. Geometric
graphs are created by uniformly locating the nodes in a two-dimensional square and assigning
an edge between two nodes if their euclidean distance is less or equal to some parameter r. For
the last category, weight biased graphs, the nodes are first assigned to independent sets. Then,
a weight is assigned to each pair of nodes and the edges are iteratively created with a probabil-
ity proportional to the weight of the pair of nodes. Each time a new edge is generated, these
weights are decreased such that large cliques becomes unlikely. to prevent the creation of edges
between nodes in one independent set, the weight of these pairs is set to 0. Considering the
second and third set of instances, Table 5.2 gives an overview on the number of graphs with
different attributes. As the reader may have noticed, the number of instances of the different
subgroup is not distributed homogeneously. Especially sparse graphs with a density of 0.1 are
less represented. In addition, these sparse graphs tend to be less hard to color. Consequently, the
number of hard instances in these graphs is smaller than on the graphs with higher density. Also
worth mentioning is that the number of uniform graphs is larger compared to the other types of
graphs.

1available at http://mat.gsia.cmu.edu/COLOR04/

47

http://mat.gsia.cmu.edu/COLOR04/

n = 500 n = 1000
Type p = 0.1 p = 0.5 p = 0.9 p = 0.1 p = 0.5 p = 0.9

G 30 60 90 40 140 70
U 30 110 60 50 200 70
W 30 60 50 30 90 50

Table 5.2: Number of instances of the set chi500 (left) and chi1000 (right) separated by
density and graph type.

5.2.2 Test Data

For the final evaluation of our algorithm selection approach with the underlying heuristics for
the GCP, we used as a test set a complete new and unseen set of instances. For this purpose,
we used Culberson’s instance generator to construct instances of different size, density and type.
We adopted the main parameters of Chiarandini’s graphs and focused on uniform (G), geometric
(U) and weight biased (W) graphs. We used 4 different sizes n = {500, 750, 1000, 1250} with
density values p = {0.1, 0.5, 0.9}. For each parameter setting we created 5 graphs, leading to
a total of 180 instances. Note that for the weight biased graphs the density is also affected by
the initial weighting W . To achieve the desired values p = {0.1, 0.5, 0.9}, we set W according
to [59] to {2, 115, 404}, {3, 173, 605}, {5, 232, 804}, {6, 290, 1003} for graphs of size 500, 750,
1000 and 1250, respectively.

5.2.3 Time Limit

As already mentioned, the GCP is an NP-hard problem, so deciding whether a graph is k-
colorable or not may take very long time and usually it is not possible to estimate the time
needed. To prevent programs to run for a very long time, we specified for each instance some
time limit after which the execution is stopped. Different approaches for such threshold have
been used in practice like using fixed values (ranging from 5 to 120 hours [164, 203, 248]) or
comparing with some reference algorithm, e.g. TABU with a fixed number of iterations [48]. We
decided to use a maximal runtime based on instance attributes itself. In detail, we set the time
limit tmax as

tmax = min(3600,
√
|E| · x)

where |E| is the number of edges and x is 15, 5 and 3 for the sets dimacs, chi500 and
chi1000, respectively. For the test set which contains graphs of different size, we stick
to the values used for chi1000 (x = 3). These values for x were obtained experimentally.

Our general assumption is that the chosen time limit does not influence the ranking of the
algorithms, as long as it is not customized to one heuristic and if it is between some "rational"
boundaries. This means that on the one hand, the time limit should be long enough so that the
data input and the initialization processes does not effect the timing. On the other hand, the
time limit should be within practical limits, because an unrealistic long value is not useful for
real-world applications.

48

In this context, according to our results, these limits do not restrict the search. For example,
on the instances of chi1000, the average time needed for the best solution on the hard instances
is only 21.58% of the allowed value tmax. Even more, 90% of the best solutions are found within
62.66% of tmax.

5.2.4 Trivial-, Easy- and Hard- Instances

The graph coloring instances used in this work are of different difficulty. For algorithm selection,
easy instances are usually uninteresting - calculating features and performing predictions for the
best algorithm may often take longer than even the slowest search procedure that solves the
problem optimally. Therefore, we are interesting in problems that are hard to solve.

So we came up with the questions (a) how to define easy and hard (or difficult) instances,
and (b) how to assign an instance to a particular category before applying a solver.

The first question is hardly discussed in literature and usually this depends on the specific
problem. Typically, in the literature an instance is classified as hard or easy based on attributes
like [46]:
• the number of possible solutions,
• the size of basins of attraction, or
• the frequency of nearly-optimal local optima.

Beside these theoretical aspect, there are some common practices described in literature which
are often based on implicit mutual agreement or an established historical classification (e.g., used
in [118]). Typical criteria for classifying an instance as easy are for example a short runtime of
multiple solvers to achieve a best known solution (e.g., used in [164]). Also the comparison to
low-level algorithms that obtain the optimal solution indicates that an instance is of low com-
plexity (e.g., used in [250, 47, 51]). On the other hand, hard instances are usually characterized
by a lack of an exact solution, relatively long runtime and a strong variations in the performance
of different heuristics.

Also, to denote in which category an instance belongs to is not trivial. Of course, this can be
performed by the application of one or multiple algorithms, but from the practical point of view,
this is often inefficient, unusable or just not possible. Much more interesting would be to clas-
sify in advance and before applying some solvers. This question is closely related to finding the
phase transition [46], an idea following the observation that easy instances are either undercon-
strained or overconstrained and that the hard problems usually occur on the boundary of these
two regions. This area, where the difficulty of the problem changes abruptly, is called phase
transition and can be described for each problem by a critical values of some order parame-
ters. Unfortunately, finding these transition may also be complex and requires explicit empirical
research.

One possible practical alternative might also be machine learning - under the precondition
that extracting the relevant features is efficient (with respect to time), machine learning classifiers
seem as the perfect decision tool for classifying instances as easy or hard.

Another different approach is implemented in SATzilla [253], which runs as first step a
general algorithm for a short predefined period of time and checks whether this method finds
a solution or not. Only in the latter case, when the instance seems to be hard, the program
applies its algorithm selection techniques.

49

For this thesis, we will ignore these questions and just focus on hard instances. Therefore,
we manually separated our instances into four categories: trivial, trivial2, easy and hard.

The first class, trivial, contains instances where we already get the best known solution dur-
ing the computation of features. In detail, we use greedy coloring techniques and an algorithm
for finding maximal cliques to obtain lower and upper bounds for the chromatic number. If these
two values equal, it is impossible to find a better coloring. Therefore, the instance is trivial. The
second category, denoted as trivial2, follows a related principle: It includes all instances where,
starting with the color number obtained by the greedy algorithms, no further improvements can
been found by any search algorithm. For these instances, it seems that the greedy approaches
return the best known solutions. We further denote instances as easy if the heuristics find better
solutions than the greedy methods, but these results are found by at least 50% of the solvers
and in at most 5 seconds. And finally, all other instances which do not belong to one of the
introduced categories are categorized as hard.

We focus on hard instances because these instances require the most effort to solve them.
Therefore, the algorithm selection can be useful for these instances.

5.3 Test Methodology & Experimental Environment

5.3.1 Evaluation System

All tests have been performed on the same system, a Transtec CALLEO 652 Server containing 4
nodes, each with 2 AMD Opteron Magny-Cours 6176 SE CPUs (2 ·12 = 24 cores with 2.3GHz)
and 128 GB memory. For resource control and job scheduling, we used the Condor workload
management system 2 (for more information about the Condor system, we refer to [226]). Each
algorithm is executed for each instance on a separate core with a memory limit of 5 GB. The
programs itself are compiled, in cases where we got the source code, on the same machine using
the g++ compiler with optimization level -O3. For the Java program, we use the JDK version
1.6.0_23.

5.3.2 Algorithm Evaluation

As already mentioned, we gathered both decision- and optimization methods for GCP. Luckily
for us, all optimization-based approaches also print the time when they found a new (better)
coloring during their search. This allowed us to treat both variants in an uniform way using
similar input (the instance, start number of colors k and time limit tlimit). Moreover, we ensured
by an external time limit that no heuristic takes longer then the provided time limit and also
limited the memory to 5 GB. As output of each execution, we collected for each number of
colors k the time needed to find that coloring.

On each particular instance, we took the lowest number of colors obtained by the greedy
coloring methods and reduced it by one (formally, k = ks = min{GCDSAT,GCRLF} − 1). So,
we assumed that all solvers are able to find a coloring with ks + 1 colors. Then, we called each
algorithm n = 10 times (n = 20 for the dimacs instances) using different random seeds. After

2 http://research.cs.wisc.edu/condor/

50

http://research.cs.wisc.edu/condor/

all executions had been finished, we checked whether a coloring with k colors has been found. If
so, we recorded the runtime, and, after checking if we reached a lower bound or not, repeated the
process with k − 1 colors. For solvers that solve the optimization version of GCP, we recorded
the computation time for all numbers of colors k − 1, ..., kx which have been found by all n
program calls separately. Then, we continued by searching for a coloring using kx − 1 colors.
For both types of solvers, the process stopped if none of the n executions found a coloring using
k colors, or if a lower bound (e.g. obtained by the clique size) was reached.

After applying the algorithms to all instances, we calculated for each algorithm, each in-
stance and each number of colors k for which a coloring has been found these two parameters:

(a) the median time needed and

(b) how often a coloring has been found (the risk).

Having this information for each instance and all algorithms, we measure the performance of
a method as follows: Let a be an algorithm, i be an instance and mi

a(k) be the median time
needed for a to solve i with k colors. Furthermore, let kia be the lowest number of colors
of a on i where the risk of a is above 50%. Then, we define the performance measurement
f(a, i) = 〈kia,mi

a(kia)〉.
Using this measurement, we are able to rank different methods according to their reached

number of colors k and the computation time for a particular instance. More formally: Let i be
an instance and a and b be two algorithms. Then a is better or equal b on instance i (a ≤i b)
with f(a, i) = 〈kia,mi

a(kia)〉, f(b, i) = 〈kib,mi
b(k

i
b)〉 if and only if

• kia < kib, or

• kia = kib and mi
a(kia) ≤ mi

b(k
i
b).

It is easy to see that≤i is a total preorder over the set of all algorithmsA, as it fulfills reflexivity,
transitivity and totality.

Using this binary relation, we can define the "best" algorithms 3 B for an instance i as

Bi = {a ∈ A : ∀b ∈ A(a ≤i b)}

5.3.3 Classifier Evaluation

Besides measurements for the used GCP algorithms, we also need metrics indicating the per-
formance of the algorithm selection itself. One of the most interesting metrics for this is of
course how often the "best" algorithm is predicted. As we were using classifiers, this value is
related to the accuracy of a classifier, which is the percentage of correct classifications among
all instances. However, in our experiments, we also investigated the effect of using only a sub-
set of the tested heuristics. Unfortunately, using only the accuracy for this kind of comparison
is less informative and does not contain information about the usability of algorithm selection.

3Note that according to our definition, there can be multiple algorithms that give the best result. Although this is
rare in practice (especially on hard instances), it is unpractical for machine learning. Therefore, in case of a tie, we
use an ordering based on the average rank of the algorithms and select the method that is ranked on the first place.

51

Therefore, we introduce the term success rate, which indicates how often the algorithm selection
returns the best algorithm among a set of tested heuristics. In detail, the success rate s(c, I, A)
of a classifier c on a set of instances I and the algorithm space A is defined as

s(c, I, A) =
|{i ∈ I : c(i) ∈ Bi}|

|I|

where c(i) is the predicted algorithm for the instance i. Note that for the rest of this thesis, we
will only use the success rate considering all tested heuristics A = h7.

One advantage of this metric is that it also considers algorithm predictions that are not correct
with respect to the training data, but which are also ranked on the first place (because there were
multiple best algorithms). Thus, it takes all cases into account where the predicted algorithm
obtains the best solution, regardless if it is the expected class in the training data or not.

Besides this measurement for the number of best-selected algorithms, another interesting
information is how “close” the prediction of a classifier is to the optimal value and how the
algorithm selection performs in comparison with single heuristics for the GCP. For this purpose,
we treat the classifiers like a normal heuristic and use for each instance the performance of the
predicted algorithm as the classifiers result. This allows us to apply different evaluation criteria
used for other comparisons.

In detail, we consider three different measurements: err(k, i), a classical ranking (in terms
of the average rank and the standard derivation) and a formula one ranking.

5.4 Discretization

As already mentioned, various classifiers show significant better performance when they are
trained with nominal data instead of continuous values. To evaluate the results of such a dis-
cretization, we used two different discretization methods in our experiment which transformed
our numeric features into nominal ones. The first one is the classical minimum-descriptive
length (MDL) algorithm by Fayyad and Irani [81], while the second method is a derivation
of MDL by Kononenko [145] using a different criteria (further denoted as Kononenko’s crite-
ria (KON)). Concerning the nomenclature of our data sets, we denote a set which has been
discretized using the first method with the extension mdl, while sets obtained by Kononenko’s
criteria with kon. In addition, we also use the non-discretized data set for the following classi-
fication, which is marked with none.

5.5 Chosen Classification Algorithms

One key assumption for this thesis is that different algorithms show diverse performance on
the same data. This includes of course also classification techniques from machine learning.
Therefore, before each successful application of classification, first appropriate algorithms must
be selected. This task of choosing the best machine learning algorithm is itself an algorithm
selection problem and is subject to various research projects (e.g. [3, 30, 27, 28, 158, 7]), where
also automated approaches have been developed.

52

However, applying such selection methods is outside of the scope of this thesis, wherefore
we test exemplary the performance of several well-known machine learning-algorithms. For
the classification part of our experiments we used six different machine learning techniques,
namely: Bayesian networks (BN), C4.5 decision trees (DT), k-nearest neighbor (kNN), multi-
layer perceptrons (MLP), random forests (RF), and support vector machines (SVM).

For all these techniques, we used the implementation included in the Weka software col-
lection, version 3.6.6. Many of these methods offer a wide range of parameters, which may
effect the performance and the success of the learning task. Therefore, we manually identified
important variables and used for each learning algorithm multiple settings. The following para-
graphs describe the most important decisions. Final parameter settings included in the original
Weka-calls can be found in Appendix A.1.

For the Bayesian Network (BN), one of the most important parameters is the maximal num-
ber of parent nodes P that each node can obtain. The more parent nodes, the more complex
relations can be represented, but also the more possible structures exist, which results in a larger
search space. For our application, we tested 5 settings denoted as BNp with p = 1, ..., 5. Another
parameter worth mentioning is the method for finding the most probable believe-network struc-
ture, which is itself a NP-HARD problem [55]. For this purpose, we used the K2 heuristic [55]
which is a hill-climbing method combined with a strict variable ordering.

Concerning the C4.5 Decision Tree (C4.5), we experimented with four settings regarding
different confidence factor C (used for pruning) and minimal number of objects per leave, M .
Table 5.3 gives a more detailed view on the settings and the concrete variable values. Note that,
to avoid confusions, we denote the configurations DTx with x = 1, ...4.

Setting C M

DT1 0.250 2

DT2 0.125 2

DT3 0.250 3

DT4 0.250 4

Table 5.3: Parameter settings for the DT classi-
fier.

Setting c Kernel e

SMO1 1.0 Poly 1.0

SMO2 1.0 Poly 1.2

SMO3 1.0 Poly 1.4

SMO4 1.5 Poly 1.0

SMO5 1.5 Poly 1.4

SMO6 2.0 Poly 2.0

SMO7 3.0 Poly 2.0

SMO8 2.0 PUK -

Table 5.4: Parameter settings for the SVM clas-
sifier .

Concerning the Random Forest (RF), we experimented with the depth, the number of chosen
attributes and the number of trees. Based on our experiments, have not observed any advantage
in cutting the depth or limit the number of chosen attributes. Therefore, we considered only two
settings, specifying the number of trees used to 10 (denoted as RF1) and 15 (RF2).

Regarding the Support-Vector Machine (SVM), we used the sequential minimal optimization
(SMO) algorithm [199], which is a fast and easy to train SVM. Relevant parameters are the
complexity parameter c where we tested values for c ∈ {1.0, 1.5, 2.0, 3.0}, and the underlying

53

kernel function. As kernel function, we used a polynomial kernel with K(x, y) = 〈x, y〉p or
K(x, y) = (〈x, y〉 + 1)p and a Pearson VII function-based universal kernel (PUK) [232]. For
the former one, we tested different values for the exponent e ∈ {1.0, 1.2, 1.4, 2} while for the
latter one, we used the default parameters. Table 5.4 shows the different settings for SVM. Note
that we named the configurations with SMOx with x = 1, ...8 according to the SMO algorithm.

Concerning the Multilayer Perceptron, we almost entirely used the default parameters from
Weka. The number of hidden layers was set to (no. attr.+no. classes)

2 and the number of training
iterations was 500. We experimented with different learning rates and selected two settings with
a value of 0.3 (denoted as MLP1) and 0.4 (MLP2) respectively.

For the k-Nearest Neighbor, an obvious variable is the number of neighbors k. We exper-
imented with k = {1, 3, 5, 7, 9} and the corresponding settings are denoted as IBk (according
to the name of the classifier, IBk in Weka). For other parameters like the search algorithm or
distance weighting, we used the default values of Weka.

5.6 Feature Selection

For feature selection, we used two search methods: a genetic search and a best-first selection
strategy with backtracking abilities. The former one is a simple implementation of the classical
genetic algorithm by Goldberg [105], using a 〈0, 1〉-vector for the chosen features as chromo-
some. Important parameters for this method are the crossover probability C, the number of
generations G, the population size R and the mutation probability M . We used a parameter set-
ting of C = 0.6, G = 100000, R = 50 and M = 0.033. These values are, except the number of
generations, the default setting of the Weka system. We also want to note that for the expanded
features, we reduced the maximal generations to G = 10000 because of runtime reasons.

The second method was a greedy hill climbing algorithm which is enhanced with (limited)
backtracking. The search starts with an empty or predefined set of attributes and adds iteratively
the feature with the highest improvement concerning the chosen measurement. Backtracking is
limited by the number of consecutive non-improving decisions N , which was set to N = 10000
for our application based on preliminary experiments. Moreover, we used the empty set as start
set.

For the evaluation, we used in both methods the CfsSubsetEval (CFS) criteria [115]. This
method evaluates a subset by measuring for each feature its prognostic value concerning the
classification, in combination with the degree of redundancy between the attributes. Using this
two measurements, CFS prefers feature subsets which have a low correlation within each other,
but are highly correlated with the classification value.

Concerning our experiments, we first performed a feature selection on our base features,
which are denoted as b. The resulting data sets of this process are denoted with bff for the
best-first forward selection, and gen for the genetic search. After the feature selection, we
combined for each subset of algorithms hx, x ∈ {8, 7, 6, 5, 4, 3} and discretization method
disc ∈ {none, mdl, kon} the two resulting feature subsets and applied on these sets a process
called basis function expansion. In this process, the features of an instance i are multiplied
pairwise and the product is added as new feature xi,j ·xi,k for j = 1...m and k = j + 1...m. In

54

addition, we also add the quotient xi,j/xi,k of each pair of features. As result, we obtained for
all subsets of algorithms three sets of expanded features, denoted as:

• e1 from the feature subsets using no discretization,

• e2_mdl from the subsets based on mdl as discretization method, and

• e3_kon from the data using the kon criteria.

Note that for the last two, we performed the expansion on the non-discretized features and ap-
plied the discretization procedure afterwards. The feature selection itself occurred on the dis-
cretized attributes, but as these features are nominal, it is no longer possible to multiply or
divide them. After this expansion, we performed another stage of feature selection to determine
for each expanded set two reduced subsets.

All feature selection variants were performed using a 10-fold cross-validation. Using this
method, Weka returns as result for each attribute the occurrence in the 10 attribute sets. For the
basic features, we took all attributes which were selected at least once within the 10 folds. For
the expanded attributes, this procedure resulted in very large sets of features, especially when we
were using the genetic search. Therefore, we reduced the chosen features by considering only
attributes which were selected in at least x folds with x ∈ {3, 6, 8, 9} such that the total number
of attributes is around 100. This is necessary as the execution time for testing some classifiers
(especially the MLP) raises dramatically with increasing size of the attribute set, which makes
systematic testing impracticable.

55

CHAPTER 6
Experimental Results and Evaluation

In this chapter we present an evaluation of 8 state-of-the-art solvers for the GCP on the instances
of three public available instance sets. Main issue of interest is to find for each instance the
algorithm that achieves the best results and to analyze the performance of the different heuristics
on subsets of instances. For this purpose, we calculate several performance measurements of the
algorithms and investigate the impact of graph features on the behavior of the algorithms.

In the second part of this chapter, we investigate automatic algorithm selection for the GCP
using machine learning techniques. In detail, we train several popular classification algorithms
and study their performance using several parameter configurations and data-discretization tech-
niques. Furthermore, we compare the results of the different classifiers and investigate the effect
of feature selection and reducing the algorithm portfolio. Finally, we compare our solvers based
on automated algorithm selection with the underlying heuristic algorithms on a set of new gen-
erated instances.

6.1 Heuristics Evaluation

To begin with, we take a look on the results on the different sets of instances and analyze the
behavior of solvers on different subsets of instances.

6.1.1 Instance Set chi500

Of the 520 graphs with 500 nodes from the instance set chi500, we detected 65 trivial instances
which can be solved optimal by greedy algorithms. After our experiments with the chosen
heuristics, we discovered 8 instances where none of the heuristics found a better coloring than
the greedy methods (marked as trivial2). We further classified 170 instances as easy (according
to our definitions in Section 5.2.4) and categorized the remaining to 277 instances as hard. To
compare different algorithms, we calculated multiple performance metrics of the heuristics.

The first and maybe most interesting issue is the comparison of the performance between the
different algorithms. For this purpose, we rank all methods according to our metric described

57

in 5.3.2 and count how often a heuristic gives best results. Figure 6.1 shows for each algorithm
the number of instances on which it can obtain the best performance. Note that according to our

Figure 6.1: Number of instances of the test set chi500 on which the algorithms obtain the best
solution.

definition, there can be multiple programs performing equal on one instance, so it might be that
for an instance there are several heuristics achieving the best result. In detail, on 154 (90.1%) of
the easy instances at least two methods found the best solution in equal time while on the hard
instances, only 17 (6.1%) times no unique best algorithm was detected. In addition, the data
clearly indicate that counting the number of first places on all instances is not representative for
the success on hard instances. For example, HEA and ILS have nearly similar number of best
solutions on all instances (191 to 195), but considering only hard graphs shows that the former
obtained on 66 instances best results while the latter performed only in 38 cases best. Also FPC,
who achieved on 100 of all 447 tested instances the best results, showed on hard graphs with 6
best-solved instances a worse performance than MAFS, which achieved on 88 graphs, including
17 hard ones, the best solution.

More interesting are the results on the different subsets of instances. Therefore, we separated
the instance set into 9 subgroups depending on their class (G, U and W , see Section 5.2) and
their density (0.1, 0.5, and 0.9). Figure 6.2 shows the result of the hard instances according to
these subsets. As expected, the different algorithms show different performances concerning the

58

Figure 6.2: Number of hard instances from chi500 on which the algorithms obtain the best
solution. The graphs are separated according to their class and the density.

graph attributes. Even more, the results clearly show that no algorithm outperforms all others
on all subsets. The figures also illustrates that only few graphs with a low density of 0.1 are
classified as hard and the results on these three subsets do not clearly identify any dominant
algorithm. Concerning a density of 0.5, the results on the instances of G-0.5 and W-0.5
reveal a strong performance of HEA, followed by TABU. This is interesting as HEA uses TABU as
embedded LS, which seems a successful approach on these graphs. A complete different result
can be observed on the subgroup U-0.5, where MMT outperformed other heuristics on most
instances. Also on the other geometric graphs, grouped in U-0.1 and U-0.9, MMT achieved
the highest number of best solutions, which indicate that MMT is in general well-suited for these
type of graphs. On the remaining two subsets with high density (G-0.9 and W-0.9) ILS and
TABU showed the best performance.

Concerning the distance err(k, i) to the best colorings found so far, Figure 6.3 gives a
more detailed view (the results are again separated by the density and the class of the graphs).
Remarkable is especially MMT, which has a very low value on the subsets U-0.5 and U-0.9.
This indicates that this method finds in our experiments most of the time the best coloring on
these instances. In addition, the results suggest that the success of this algorithm is due to finding
colorings using fewer colors and not necessarily because of a quick search. A different, but also
interesting observation is that GLS achieves in almost all subsets a worse performance than any
other algorithm. Only on the instances of U-0.9 and U-0.5 it shows competitive results, but

59

err(k,i)

A
lg

or
ith

m

TABU

MMT

MAFS

MACOL

ILS

HEA

GLS

FPC

0.0 0.2 0.4 0.6 0.8 1.0

W−0.1 W−0.5

0.0 0.2 0.4 0.6 0.8 1.0

W−0.9
TABU

MMT

MAFS

MACOL

ILS

HEA

GLS

FPC

U−0.1 U−0.5 U−0.9
TABU

MMT

MAFS

MACOL

ILS

HEA

GLS

FPC

G−0.1

0.0 0.2 0.4 0.6 0.8 1.0

G−0.5 G−0.9

Figure 6.3: Distance metric err(k, i) of the algorithms on the hard instances of chi500. The
results are grouped by the graph class and the density.

60

it is never among the leading approaches. Worth mentioning is also that the values of err(k, i)
on the sets G-0.9 and W-0.9 are in general low. One explanation could be that the greedy
methods achieve worse results compared with other heuristics. Therefore, upper bounds used
are relative high and there is much space for progress by finding better colorings. This is also
justified because on average, the best coloring found by the heuristics has 22.44% less colors
than the solution obtained by the greedy algorithms.

A similar observation is reported in [47] using the same instances where the improvement
of heuristics over the RLF function is studied.

The figures also highlight that the median of the different algorithms are often located at
similar areas among one subset, which shows a similar performance of these solvers. Only on
the subsets containing the geometric graphs (U-*) there is no such clustering.

Another interesting measurement for the performance are the results concerning our ranking
method. Table 6.1 contains the results using a classical ranking and a formula one ranking. The

Algorithm
Classical

F1
No. Ranks

avg std 1 2 3 4 5 6 7 8

FPC 5.26 1.72 1063 6 14 24 37 75 49 43 29
GLS 6.74 1.75 640 1 12 16 10 9 23 77 129
HEA 2.47 1.25 2036 66 95 63 33 14 5 1 0
ILS 3.57 1.86 1638 38 59 46 54 31 18 31 0
MACOL 4.74 1.42 1201 3 15 34 72 57 69 25 2
MAFS 4.70 1.74 1239 17 14 45 38 55 62 45 1
MMT 3.17 2.06 1845 89 51 26 17 39 40 15 0
TABU 2.75 1.51 1939 74 61 58 42 30 10 1 1

Table 6.1: Ranking results on the hard instances of chi500. The best results among this ranking
are marked bold.

second and third column show the average rank and the standard derivation using a classical
ranking. The lower the value, the better is the algorithm compared with the other competitors.
It is easy to see that GLS achieves on average the worst rank while the most successful algo-
rithms in this category is HEA followed by TABU and MMT. Surprisingly, MACOL, which does
not obtain on many graphs the best solution, is clearly better than FPC and competitive to MAFS.
Concerning the ranks using the formula one (F1) method, which is given in the third column,
the results are quite similar and only the gaps between the values differ. The reason for this is
that the method rewards top rankings more than good average results, which sometimes effects
the ranking of closely related competitors. The remaining columns in this table give detailed
information how often an algorithm achieves a particular rank. As the reader may notice, GLS
shows on 129 of the 277 (46.57%) graphs the worst performance while more robust methods
like HEA or TABU are almost never ranked worse than on the sixth place.

For a more detailed view, Figure 6.4 displays the ranks on the hard instances grouped by
the different subsets. Areas of interest are especially subgroups where many algorithms achieve
similar distance metric err(k, i) (see Figure 6.3), like for example G-0.9 or W-0.9. On these
sets, we can clearly see that, although many heuristics find on average solutions with closely
related number of colors, there are clear patterns concerning the rankings. In both cases ILS

61

Rank

A
lg

or
ith

m

TABU

MMT

MAFS

MACOL

ILS

HEA

GLS

FPC

2 4 6 8

W−0.1 W−0.5

2 4 6 8

W−0.9
TABU

MMT

MAFS

MACOL

ILS

HEA

GLS

FPC

U−0.1 U−0.5 U−0.9
TABU

MMT

MAFS

MACOL

ILS

HEA

GLS

FPC

G−0.1

2 4 6 8

G−0.5 G−0.9

Figure 6.4: Boxplot diagram showing the ranking of the algorithms on the hard instances of
chi500. The results are grouped according to graph class and the density.

62

and TABU are the leading approaches followed by HEA while MMT is always located at the lower
ranks. Another observation is that GLS is on most subclasses the worst performing algorithm.
Only on U-0.9 it achieves a median rank of 3, but as on these instances MMT is clearly the
dominant algorithm, it is not a sufficient criteria to keep GLS in our algorithm set.

As consequence of these results, we excluded GLS for further tests. Main reason is that it
shows poor performance with respect to err(k, i) and is only a few times the best algorithm.
The latter holds also for MACOL, but due its better results concerning the distance metric we
decided to apply further tests on this heuristic. The results of GLS surprised us, as this method
is one of the best on geometric random graphs in the experiments by Chiarandini [47]. One
explanation is that our experiments involved much larger computation time, which may allow
other algorithms to find better solutions while GLS reaches quickly colorings for higher k, but
is unable to make further improvements (i.e. find better colorings).

6.1.2 Instance Set chi1000

The second instance set, chi1000, contains 740 instances, from which we separated 71 as
trivial after the feature computation. We further classified 5 instances as trivial2 after the exper-
iments with our algorithms where none of our heuristics found a better coloring on that graphs
than the greedy methods. From the remaining 664 graphs, we identified 136 as easy and the
remaining 528 as hard.

Figure 6.5 gives an overview on the number of best solutions each algorithm reaches. As
on the set chi500, MMT shows an very good performance and achieves the highest number of
best solutions. Also TABU, HEA and ILS reach many times the best solution. Mentionable is
also the performance of MACOL, which is on no instance among the best heuristics. Considering
only the hard instances, the ranking stays the same although some algorithms seem to achieve
many of their first places on easy instances (e.g. TABU and ILS, which are both ranked on 92
easy graphs at the first place).

Figure 6.6 reveals a closer look on the results on the different subsets. We can see that again
almost all classes have their most appropriate algorithm. On five of the nine groups (G-0.1,
G-0.5, U-0.1, U-0.5, U-0.9), MMT is the best method, which supports the observations
from chi500 that this algorithm is well-suited for geometric graphs. On G-0.5, MMT it is
closely followed by HEA, which also shows very good results on W-0.5. These results also cor-
respond to the results on chi500 where HEA is also very successful on instances with density
0.5. On the subsets of graphs with high density G-0.9 and W-0.9, TABU and ILS seems to
be adequate. These algorithm show also on some graphs with medium density the best perfor-
mance. One difference to the instances of chi500 is observed on the subset W-0.1, where
FPC clearly achieves the highest number of best solutions. One explanation is that the graphs
of the equivalent subgroup of chi500 are mostly classified as easy so that the group W-0.1 of
chi500 consists only of 5 instances, which do not provide much insight into the performance
of the heuristics on that graphs. The algorithm MAFS is again on no subset the dominating algo-
rithm but shows on instances with medium density, especially on G-0.5, good performance.

Note that the number of instances are not uniform distributed among the different instance
subset (neither in chi500 nor in chi1000), which affects the results concerning the total num-
ber of instances on which an algorithm showed best performance. Especially U-0.5 consists

63

Figure 6.5: Number of instances from the set chi1000 on which the algorithms show best
performance.

of more hard graphs than any other subgroup which also has an effect on the gap between MMT
and other heuristics (see Figure 6.5 and Figure 6.6).

Concerning the distance metric err(k, i), Figure 6.7 reveals some interesting explanations
for the ranking of the algorithms. First of all, it seems that on some instance sets (G-0.9,
W-0.5, W-0.9), the distance between the different algorithms is very small meaning that the
number of colors found differ only slightly. In contrast to this, on the geometric graphs, and
especially on U-0.5 and U-0.9, the values diverge and on these subsets MMT achieves the
lowest values. A different, but also interesting behavior are the results of MAFS on the instances
of G-0.1 and G-0.5. On the former subset, this algorithm shows the worst results while on
the related instances of G-0.5 it is one of the best heuristics. Unfortunately, we could not find
some explanation for this behavior. Also mentionable is that HEA and ILS fail to improve their
initial colorings on some instances of G-0.9. This is remarkable as HEA was handled as robust
method [160] and ILS is among the best in this subgroup.

Table 6.2 shows the results using the classical and the formula-one ranking. In addition, it
contains the detailed information how often a particular rank is obtained. The data on this table
clearly reveal that algorithms MMT and HEA are on average the most effective ones followed
by TABU. Then, with some gap, lies ILS before MAFS while FPC and MACOL are located at

64

Figure 6.6: Number of hard instances from the set chi1000 on which the algorithms show best
performance. The results are grouped according to the class of the graphs and the density. Note
that the y-axis on the diagram for U-0.5 has a different scale.

Algorithm
Classic

F1
No. Ranks

avg std 1 2 3 4 5 6 7

FPC 4.64 1.91 2424 35 50 78 81 80 73 131
HEA 2.79 1.39 3631 74 206 104 81 35 18 10
ILS 4.14 1.87 2732 44 78 69 135 67 41 94
MACOL 5.59 1.15 1818 0 16 24 29 115 253 91
MAFS 4.22 1.58 2623 19 61 110 91 139 58 50
MMT 2.30 1.67 4141 263 80 68 40 40 29 8
TABU 2.97 1.50 3513 109 109 120 105 63 10 12

Table 6.2: Ranking results on the hard instances of chi1000.

65

err(k,i)

A
lg

or
ith

m

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

0.0 0.2 0.4 0.6 0.8 1.0

W−0.1 W−0.5

0.0 0.2 0.4 0.6 0.8 1.0

W−0.9

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

U−0.1 U−0.5 U−0.9

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

G−0.1

0.0 0.2 0.4 0.6 0.8 1.0

G−0.5 G−0.9

Figure 6.7: Distance metric err(k, i) of the algorithms on the hard instances of chi1000. The
results are grouped by the graph class and the density.

66

the end of the ranking. The formula-one method enlarges the distance between MMT and HEA,
mostly because it is not normalized and depends on the number of instances where the algorithm
achieves the first place. However, using this criteria does not change the order of the heuristics
compared with using average rank, although the gaps between some competitors change slightly.

For a more insightful illustration, Figure 6.8 shows the ranking results on the hard instances
grouped by the different subsets. As expected from the err(k, i) measurement, MMT achieves

Rank

A
lg

or
ith

m

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

1 2 3 4 5 6 7

W−0.1 W−0.5

1 2 3 4 5 6 7

W−0.9

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

U−0.1 U−0.5 U−0.9

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

G−0.1

1 2 3 4 5 6 7

G−0.5 G−0.9

Figure 6.8: Boxplot diagram showing the ranking of the algorithms on the hard instances of
chi1000. The results are grouped according to graph class and the density.

ordinary good results on the geometric graphs U-* while on the subsets G-0.9 and W-0.9,
TABU is the best-suiting algorithm, followed by ILS. One observation worth mentioning is that

67

on some subsets, where MMT obtained very low values of err(k, i), MMT is not the one with the
lowest average rank. Especially on the uniform and weighted graphs, this method is many times
ranked on mid-level positions although the required number of colors seems to be low. This
confirmed our assumption that the success of MMT is most times not caused by a fast search, but
rather by the quality of the found solution. A good example for this is W-0.1 where FPC is very
effective. On these instances, MMT, HEA and FPC perform equally with respect to the distance
err(k, i), but FPC is apparently faster and therefore to prefer. Another example is W-0.9 where
the median rank of MMT is only 5 although it offers competitive results concerning err(k, i).

6.1.3 Dimacs Instances

The third set containing the instances of the DIMACS challenge consists of 174 graphs of dif-
ferent size where we identified 33 of them as trivial. We further separated 35 instances where
no better coloring has been found during our experiments (marked as trivial2) and from the
remaining 106 graphs, we classified 52 as easy and 54 as hard.

Figure 6.9 gives an overview on the number of best solutions each algorithm achieves. In

Figure 6.9: Number of instances from the set dimacs on which the algorithms show best
performance.

contrast to the previous two instance sets, all heuristics showed on at least one hard instance
the best solution. Moreover, the gaps between the different algorithms are rather small, which
may also depend on the small number of instances. The method which has at the most instances

68

the best performance is again MMT, but only with a small margin of 4 instances to its successor
TABU.

Figure 6.10 gives a detailed view on the distance err(k, i) on some selected subsets of
instances. Surprisingly, MAFS, which does not shine out so far, shows the best performance

err(k,i)

A
lg

or
ith

m

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

0.0 0.2 0.4 0.6 0.8 1.0

r* wap

0.0 0.2 0.4 0.6 0.8 1.0

rest

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

dsjr flat p_hat

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

brock

0.0 0.2 0.4 0.6 0.8 1.0

c* dsjc

Figure 6.10: Distance metric err(k, i) of the algorithms on the hard instances of dimacs. The
results are grouped by the graph class and the density.

on the graphs of the set brock, closely followed by HEA. On the graphs grouped in c*, TABU,
ILS and MMT are well-suited while FPC fails completely to find any coloring lower than the
greedy methods. On the instances of dsjc, MMT and HEA are the leading approaches and on
dsjr, MMT is able to find on all instances the best known solution. In contrast to this, this

69

algorithm performs badly on flat graphs where HEA, MACOL, MAFS, FPC, and TABU form
the most appropriate algorithms. The results on subset p_hat reveal a rather inhomogeneous
distribution among the different heuristics where TABU is the most robust and successful one.
On the graphs of r*, MMT is again able to find in most cases the best coloring while MAFS is,
as for the instances of dsjr and wap, inappropriate. Concerning the latter subset, FPC and
MMT are well-suited with slightly advantages for FPC. We further conclude the results of the
remaining graphs in the category rest, where besides MMT, MACOL and MAFS achieve good
performance.

As already mentioned, one central disadvantage of the distance err(k, i) is that it only con-
siders the number of colors and ignores the runtime. To include also the runtime of the heuristics,
we also analyzed the rank within the tested algorithms, which combines the solution quality and
the required time. Figure 6.11 shows the ranking of the algorithms separated by the different
subsets. One interesting observation is that, although HEA and MAFS show similar values for
err(k, i) on the set brock, the latter achieves a lower median rank which indicates that is re-
quires less time than HEA. A similar conclusion can be drawn between HEA and MMT on the
instances of dsjc where HEA’s median rank is below the value of MMT. Also on the graphs of
dsjr, where MMT finds on all instances the best solution, is MMT’s mean rank equal to the one of
HEA and above the one of the ILS. Concerning the graphs of c*, the algorithm with the lowest
ranks is TABU followed by ILS. On the subset dsjc the best heuristic is HEA while on dsjr,
ILS shows the strongest performance. On flat graphs is FPC the leading heuristic followed
by MAFS while on the subset p_hat these two algorithms are the worst and TABU is the best.
On the remaining three subsets r*, wap and rest MMT reaches the lowest mean rank although
on the last group the results are diffuse.

6.1.4 Conclusion

Our experiments clearly show that none of the algorithm is superior to the others on all classes of
graphs. Although this observation is not new and it coincides to previous work [160, 47], it is one
essential requirement for algorithm selection. On most of our considered subclasses of instances,
there are one or two heuristics which perform better than the rest and which qualify themselves
to be included in a potential set of candidate solvers. Furthermore, many algorithms showing
good results on some subset of instances perform bad on other classes, which conforms to our
assumption that heuristics follow some hidden structure which highly influences the progress of
the search.

The second observation is that there must be some intrinsic features of a graph that influence
the performance of the different coloring algorithms and that can be ascribed to construction
parameters like the graph class. Thus, the different methods to build graphs result in instances
with different inner structure that also influences the solving of the GCP

These are two crucial preconditions for algorithm selection and the goal for the following
experiments is to evaluate if these inherent attributes can be extracted using simple metrics and
if they allow a prediction of the best-suited algorithm for a particular instance.

70

Rank

A
lg

or
ith

m

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

1 2 3 4 5 6 7

r* wap

1 2 3 4 5 6 7

rest

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

dsjr flat p_hat

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

brock

1 2 3 4 5 6 7

c* dsjc

Figure 6.11: Boxplot diagram showing the ranking of the algorithms on the hard instances of
dimacs. The results are grouped according to graph class and the density.

71

6.2 Solvers based on Algorithm Selection

6.2.1 Terminology

Before we take a look on the results of our experiments regarding algorithm selection based
on machine learning, let us shortly describe some terminology and nomenclature used in the
following section.

As mentioned before, we tested graphs from three different sets, called chi500, chi1000
and dimacs. Unfortunately, the last set contains only 54 hard instances (according to our defi-
nition), but usually more instances are needed for a meaningful application of machine learning.
Therefore, we combined these instances with those of chi500 and chi1000 to one big set
denoted as mixed. This set comprises all 859 hard instances and represents, as it is much more
heterogeneous than chi500 and chi1000, a more realistic and harder setting for an algorithm
selection. For that reason, we will focus our evaluation on the mixed set of instances.

In our experiments, we tested different instance sets, preparation steps and feature subsets.
To provide a better overview on these modifications, we introduce here a naming scheme for
the data sets. In detail, the different sets are labeled as set_hx_base_disc_fs where set ∈
{chi500, chi1000,mixed} represent the set of instances, hx with x ∈ {3, ...8} the number of
used heuristics, base ∈ {u, e1, e2, e3} 1 the attributes on which the feature selection is applied,
disc ∈ {none,mdl, kon} the applied discretization method and fs ∈ {none, bff, gen} the method
used for feature selection. For example, the data set chi500_h7_b_mdl_bff represent the
data for the instances of chi500 using the best 7 algorithms. Moreover, the features contains
of non-expanded attributes (b), which are discretized using the MDL criteria and selected via a
best-first forward selection search.

Concerning the used heuristics, we test 5 sets containing the best x ∈ {3, ...8} heuristics with
respect to the number of first places in our ranking. Therefore we start with all algorithms h7
(see Section 5.1.1) and exclude successively the algorithms with the lowest success. A detailed
description about the different sets of heuristics and the sorting criteria is shown in Table 6.3.

6.2.2 Feature Selection

Before we take a look on the performance of the various classification algorithms, let us shortly
discuss the results of our feature selection. Main purpose of this process is to eliminate redun-
dant or useless attributes so that the classifier can focus on the relevant characteristics of the
instances. To analyze the importance of the different classes of attributes, we count for each
attribute how often it is selected, sum this value up according to their class and normalize the
sum by the number of attribute selections. Figure 6.12 shows the average number of attributes
per class on the selected subsets of the unexpanded data sets. From the figure it is apparent
that data sets which have been discretized contained significant less attributes compared to the
non-discretized ones. One reason for this might be that in the course of the discretization, the
values of some features are all mapped to one single nominal value. Thus, all instances have

1 We applied a basis function expansion on the results of the feature selection using the numerical values and
those of the discretized ones. The result of the non-discretized cases is marked as e1 while e2 (e3) is based on
outcome of the feature selection on data discretized with the MDL (KON) criteria.

72

Rank Algorithm
No. Best

Algorithm Set
Solution

1 MMT 367

h7
h6

h5
h4

h32 TABU 194
3 HEA 143
4 ILS 88
5 FPC 51
6 MAFS 46
7 MACOL 4
8 GLS 1

Table 6.3: Ranking according to the total number of best solutions on the instances of mixed.
Note that GLS has only been tested on the instances of chi500 and is listed for the sake of
completeness.

Attribute Class

A
ve

ra
ge

 o
cc

ur
re

nc
e

pe
r

su
bs

et

0
1
2
3
4
5
6

B CC CS D GC ID IR LS S
TW

W
CC

chi500
kon

B CC CS D GC ID IR LS S
TW

W
CC

chi1000
kon

B CC CS D GC ID IR LS S
TW

W
CC

mixed
kon

chi500
mdl

chi1000
mdl

0
1
2
3
4
5
6

mixed
mdl

0
1
2
3
4
5
6

chi500
none

chi1000
none

mixed
none

Figure 6.12: Average number of attributes selected per attribute class in the unexpanded data
sets.

73

on that features the same value, which makes it meaningless and therefore, it is removed by the
feature selection. Another explanation is that the discretized data are more significant than the
original one and therefore, less attributes are needed for a similar performance with respect to
the selection criteria. Nevertheless, these are just some possible explanations and more detailed
investigations in this topic are left for future work.

Concerning the chosen attributes, it is easy to see that features of some classes are more
frequently used than others. Surprisingly, the frequency of being selected varied over the three
sets of instances, especially between chi500 and chi1000. For example, attributes con-
cerning the lower and upper bound are frequently used in chi500 while never on the data of
chi1000, in contrast to the attributes based on the tree width, which are only selected for the
data of chi1000.

The most selected features are in almost any settings those based on the clustering coeffi-
cient, the weighted clustering coefficient and the clique size. In detail, in each selected subset
there are on average between 2 and 6 attributes of that three classes, which indicates high im-
portance to these features. Note that these figures highly depends on the number of attributes
per type, which is for some classes higher than others (e.g. the class CC (clustering coefficient)
has 10 different attributes while the class S (size features) 5 and the class TW tree width only
2 attributes). Nevertheless, we believe that it reveals some insight on the selected attributes and
the importance of the classes.

Concerning the expanded attributes, Figure 6.13 shows the results using all selected subsets
(expanded and unexpanded). Note that, as the expanded attributes are based on attributes of two
classes, we count them twice - once for each class of the underlying attributes.

Again, attributes based on the clustering coefficient or the weighted clustering coefficient
are highly represented while the features concerning the clique size occurred, in relation to the
results on the unexpanded attributes, less frequently. On the feature sets of chi500, attributes
depending on bounds, the node degree and local search are often selected while for the data of
chi1000, besides clustering coefficient and the weighted clustering coefficient, also the class
of features using the clique size is important. On the data of mixed, again the classes clustering
coefficient and weighted clustering coefficient are those with the most selected members.

Another interesting result is that for all three sets of instances, there were some features
which are included in almost any selected subset. For example, on the data sets for chi500
the attribute GCD/R is selected in 95.89% of the subsets, closely followed by GCR/D which
is included in 89.04% of the subsets. On the data sets for chi1000, the most-selected at-
tribute is CCg (83.33%) followed by CCmean (75.00%). These attributes occurred also in the
results from the feature selection on data sets containing all graphs very often (GCD/R (81.01%),
GCR/D(50.63%), CCg (64.56%), CCmean (82.28%)). This indicates that these attributes have a
higher correlation to the classification variable. However, the attribute with the highest number
of occurrences in the data of mixed is CCmax (86.08%). For more information about the single
attributes, we refer to the Appendix A.4 where a detailed listing of the most-selected attributes
can be found.

A different aspect of this evaluation is also to detect attributes which do not correlate with
the best algorithm and are therefore never selected. As also seen in Figure 6.12, one class of
attributes which is almost never chosen are the features concerning the tree decomposition. The

74

Attribute Class

A
ve

ra
ge

 o
cc

ur
re

nc
e

pe
r

su
bs

et

0

10

20

30

B CC CS D GC ID IR LS S
TW

W
CC

chi500
kon

B CC CS D GC ID IR LS S
TW

W
CC

chi1000
kon

B CC CS D GC ID IR LS S
TW

W
CC

mixed
kon

chi500
mdl

chi1000
mdl

0

10

20

30

mixed
mdl

0

10

20

30

chi500
none

chi1000
none

mixed
none

Figure 6.13: Average number of attributes selected per attribute class in all data sets.

attribute TDtime is never selected and the minimal tree width TDwidth is only used on the data
sets of chi1000. This let us conclude that these metrics are in general not very important for
algorithm selection for the GCP.

Another features which are (almost) never selected are the results of the two greedy methods,
GCRLF and GCDSAT and the time needed for their calculation, GCT−DSAT and GCT−RLF. Only
GCDSAT is selected in two subsets while the others are never chosen. The reason for this is
that these variables are not normalized and contain therefore none general meaning. Moreover,
multiple related attributes like GCD/R or GCR/D are among the most-used ones, which leads us to
the conclusion that the greedy algorithms DSAT and RLF are important, but only in combination
with other attributes.

There are of course other variables which are never selected (e.g. LSii or Dmax), but most
surprising for us was that also the number of nodes Sn is one of the unused attributes. This was
expected for the data sets of chi500 and chi1000 where all instances have the same size, but
also on the set of all instances, mixed, this attribute is never selected. One explanation is that
the number of nodes does not vary so much to have a high dependency on the performance of

75

the algorithms.

6.2.3 Classifier Parameter Evaluation

In the following section, we analyze the performance of the different parameter settings for the
classifiers. For this purpose, we take a look on the accuracy on the classifications grouped by
the used discretization method and the algorithm space.

Bayesian Network

As mentioned before, we tested 5 different settings for the BN classifier. These settings differ
on the number of parent nodes each node can have. Figure 6.14 shows the accuracy values of
the different configurations on the observations from the instance set mixed. Considering the
different settings, the plot clearly shows that using only 1 parent node always leads to suboptimal
results and that by incrementing the value of this parameter, also the accuracy increases. At
value of 3, this effect stagnates and additional parent nodes do not further improve the results.
In addition, the diagram reveals that the less algorithms for the GCP are used, the higher the
average accuracy gets, regardless of the used parameter setting. This is reasonable, as the less
heuristics are used, the less classes are available and the higher are the number of classifications
for the remaining algorithms, which makes it easier for the classification algorithms. Another
interesting observation is that on all tested data sets, the classifier seems to perform on the non-
discretized data sets worse than the using those from the groups MDL or KON.

k-Nearest Neighbor

Figure 6.15 shows the results of the different parameter configurations for the kNN classifier
on the instances of the data set mixed. For this algorithm, we experimented with the number of
nearest neighbors k (denoted as IBk) whereby we tested values of k ∈ {1, 3, 5, 7, 9} . The exper-
iments clearly illustrate that on the non-discretized features a larger neighborhood is more suc-
cessful than considering only a small number of neighbors. This effect is especially observable
on the dataset of chi500, where the difference between using 1 and 9 nearest neighbors is up to
10%. On the discretized data of mixed, this effect on the average accuracy almost disappears.
Only between using 1, 3 and 5 neighbors, marginal improvements can be observed. Although
there is on average no advance in using higher values, the best results were almost always ob-
tained when using a large neighborhood. In addition, increasing the number of neighbors leads
on average almost never to decreasing accuracy. Therefore, although larger k requires more
computational effort, it may result in a better performance and can therefore be recommended.

Decision Tree

For the C4.5 decision trees (DT) classifier, we tested 4 parameter configurations with different
confidence factor and number of objects per leave node (see Table 5.3).Figure 6.16 gives an
overview on the accuracy of these settings on the instances of mixed. Unfortunately, none of
the configurations seems to be clearly better than the others. On the non-discretized data, the

76

Parameter Setting

A
cc

ur
ac

y
R

at
e

0.55
0.60
0.65
0.70
0.75

BN1
BN2

BN3
BN4

BN5

h3
kon

h4
kon

BN1
BN2

BN3
BN4

BN5

h5
kon

h6
kon

BN1
BN2

BN3
BN4

BN5

h7
kon

h3
mdl

h4
mdl

h5
mdl

h6
mdl

0.55
0.60
0.65
0.70
0.75

h7
mdl

0.55
0.60
0.65
0.70
0.75

h3
none

BN1
BN2

BN3
BN4

BN5

h4
none

h5
none

BN1
BN2

BN3
BN4

BN5

h6
none

h7
none

Figure 6.14: Accuracy of the BN classifier on the instances of mixed using the different pa-
rameter settings. The results are grouped by discretization method and algorithm set. The dots
represent a result on a particular data set and the black line indicates the mean value.

77

Parameter Setting

A
cc

ur
ac

y
R

at
e

0.5

0.6

0.7

IB
1

IB
3

IB
5

IB
7

IB
9

h3
kon

h4
kon

IB
1

IB
3

IB
5

IB
7

IB
9

h5
kon

h6
kon

IB
1

IB
3

IB
5

IB
7

IB
9

h7
kon

h3
mdl

h4
mdl

h5
mdl

h6
mdl

0.5

0.6

0.7

h7
mdl

0.5

0.6

0.7

h3
none

IB
1

IB
3

IB
5

IB
7

IB
9

h4
none

h5
none

IB
1

IB
3

IB
5

IB
7

IB
9

h6
none

h7
none

Figure 6.15: Accuracy of the kNN classifier on the instances of mixed using different parameter
settings. The results are grouped by the discretization method and the algorithm set. The dots
represent a result on a particular data set and the black line indicates the mean value.

settings DT2 and DT4 perform slightly better than the rest while when using discretized fea-
tures, these configurations perform worse than DT1 and DT3. In the latter cases using nominal
values, the default parameters of Weka (DT1) work on average marginally better than the others.
Remarkable is the gab between using the best 4 and 3 algorithms, where the accuracy increases
on average up to 5% with the decreasing amount of used heuristics.

Random Forest

For the random forests (RF) classifier, we tested 2 parameter settings that differ only in the
number of generated trees (RF1 using 10 decision trees, which is the default value of Weka,
and DRF2, which comprises 15 trees). Figure 6.17 gives an overview on the results on the data

78

Parameter Setting

A
cc

ur
ac

y
R

at
e

0.60

0.65

0.70

0.75

DT1
DT2

DT3
DT4

h3
kon

h4
kon

DT1
DT2

DT3
DT4

h5
kon

h6
kon

DT1
DT2

DT3
DT4

h7
kon

h3
mdl

h4
mdl

h5
mdl

h6
mdl

0.60

0.65

0.70

0.75

h7
mdl

0.60

0.65

0.70

0.75

h3
none

DT1
DT2

DT3
DT4

h4
none

h5
none

DT1
DT2

DT3
DT4

h6
none

h7
none

Figure 6.16: Accuracy of the C4.5 decision trees (DT) classifier on the instances of mixed
using different parameter settings. The results are grouped by the discretization method and the
algorithm set. The dots represent a result on a particular data set and the black line indicates the
mean value.

sets of mixed. The data show that both settings are performing nearly equal with some minor
advantages for the second configuration, especially on the non-discretized data.

Multilayer Perceptron

Concerning the multilayer perceptrons (MLP), we tested 2 configurations which only differ on
their learning rate (MLP1 with a value of 0.3 and MLP2 with a value of 0.4). The results for the
data sets of mixed are displayed in Figure 6.18. On the non-discretized data, the accuracy of
both settings is on average nearly similar and varies only in correlation with a decreasing amount
of heuristics used. The graphic further reveals that this classifier has major problems on the

79

Parameter Setting

A
cc

ur
ac

y
R

at
e

0.65

0.70

0.75

RF1
RF2

h3
kon

h4
kon

RF1
RF2

h5
kon

h6
kon

RF1
RF2

h7
kon

h3
mdl

h4
mdl

h5
mdl

h6
mdl

0.65

0.70

0.75

h7
mdl

0.65

0.70

0.75

h3
none

RF1
RF2

h4
none

h5
none

RF1
RF2

h6
none

h7
none

Figure 6.17: Accuracy of the random forests classifier on the instances of mixed using the
two tested parameter settings. The results are grouped by the discretization method and the
algorithm set. The dots represent a result on a particular data set and the black line indicates the
mean value.

discretized data and in particular when using the best 6 or 7 algorithms for the GCP. Especially
with larger amounts of features, a MLP approach required much more time compared with the
other methods. In detail, testing one classifier took on 10 of the 186 data sets of mixed more
than 12 hours and the average accuracy on these cases was 50% for the configuration MLP1
and 33% for MLP2. Surprisingly, using a similar amount of continuous parameters does not
result to such a behavior, which leads us to the conclusion that this classifier is not suited for
discretized data. Concerning the 2 parameter settings, our results indicate that when they are
applied on discretized data, the default setting of Weka is with 65% slightly better than using an
increased learning rate, which results in an average accuracy of 60%. On the numeric data, both
settings seem to be equal successful (an accuracy of 64% versus 65%) with also competitive

80

Parameter Setting

A
cc

ur
ac

y
R

at
e

0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
LP

1

M
LP

2

h3
kon

h4
kon

M
LP

1

M
LP

2

h5
kon

h6
kon

M
LP

1

M
LP

2

h7
kon

h3
mdl

h4
mdl

h5
mdl

h6
mdl

0.2
0.3
0.4
0.5
0.6
0.7
0.8

h7
mdl

0.2
0.3
0.4
0.5
0.6
0.7
0.8

h3
none

M
LP

1

M
LP

2

h4
none

h5
none

M
LP

1

M
LP

2

h6
none

h7
none

Figure 6.18: Accuracy of the MLP classifier on the instances of mixed using the two tested
parameter settings. The results are grouped by the discretization method and the algorithm set.
The dots represent a result on a particular data set and the black line indicates the mean value.

results concerning the runtime.

Support Vector Machines

The last considered classifier uses support vector machines (SVM) and we tested 8 parameter
configurations with different kernel functions, exponentials and complexity parameters (see Ta-
ble 5.4). Figure 6.19 shows the results of the parameter settings on the data sets of mixed
separated by the discretization method and the considered heuristics for the GCP. Concerning
the non-discretized data, it is easy to see that using a PUK kernel (SMO8) leads to the best
results. The highest average accuracy using the polynomial kernel can be achieved with the set-
tings SMO6 and SMO7. On the discretized cases, the most suitable configurations are SMO1 and

81

Parameter Setting

A
cc

ur
ac

y
R

at
e

0.50
0.55
0.60
0.65
0.70
0.75
0.80

SM
O1

SM
O2

SM
O3

SM
O4

SM
O5

SM
O6

SM
O7

SM
O8

h3
kon

h4
kon

SM
O1

SM
O2

SM
O3

SM
O4

SM
O5

SM
O6

SM
O7

SM
O8

h5
kon

h6
kon

SM
O1

SM
O2

SM
O3

SM
O4

SM
O5

SM
O6

SM
O7

SM
O8

h7
kon

h3
mdl

h4
mdl

h5
mdl

h6
mdl

0.50
0.55
0.60
0.65
0.70
0.75
0.80

h7
mdl

0.50
0.55
0.60
0.65
0.70
0.75
0.80

h3
none

SM
O1

SM
O2

SM
O3

SM
O4

SM
O5

SM
O6

SM
O7

SM
O8

h4
none

h5
none

SM
O1

SM
O2

SM
O3

SM
O4

SM
O5

SM
O6

SM
O7

SM
O8

h6
none

h7
none

Figure 6.19: Accuracy of the SVM classifier on the instances of mixed using the tested param-
eter settings. The results are grouped by the discretization method and the algorithm set. The
dots represent a result on a particular data set and the black line indicates the mean value.

SMO4 while the approach using a PUK kernel (SMO8) obtained by far the worst values. Another
observation is that on nearly all data sets, there was no difference between the configurations
SMO6 and SMO7 which indicates that increasing the complexity factor further does not enhance
the accuracy. In general, the accuracy of the discretized data is, depending on the configuration,
up to 10% better than using only numerical values (e.g. see the best values of the configuration
SMO1 using the algorithm set h3).

6.2.4 Variation in the Algorithm Space

One question that arose during our experiments was if and how the choice of the algorithm space
influences the performance of the classifier. Assuming that, the less choices a classifier has,

82

the more likely it will predict the correct class, we wanted to see if dropping some algorithms
result in a higher total performance. For that reason, we applied all our tests using only the
best x ∈ {3, ..., 8} heuristics. Figure 6.20 displays the results concerning the success rate
of the different classifiers separated by the discretization method. Recall that the success rate
s(c,I,A) of a solver is the ratio between the number of instances an which the solver achieves
the best solution and the total number of instances. Thus, this metric gives information about
the performance of a solver in relation to a set of solver (in our case, the set of tested algorithms
h7). It is easy to see that using only the best 3 heuristics always leads to worse performance

Classifier

S
uc

ce
ss

 R
at

e

0.60

0.65

0.70

BN
C4.

5
kN

N
M

LP RF
SVM

h3
kon

h4
kon

BN
C4.

5
kN

N
M

LP RF
SVM

h5
kon

h6
kon

BN
C4.

5
kN

N
M

LP RF
SVM

h7
kon

h3
mdl

h4
mdl

h5
mdl

h6
mdl

0.60

0.65

0.70

h7
mdl

0.60

0.65

0.70

h3
none

BN C4.
5
kN

N
M

LP
RF SVM

h4
none

h5
none

BN C4.
5
kN

N
M

LP
RF SVM

h6
none

h7
none

Figure 6.20: Success rate s(c,I,A) of the tested classifiers using the best x ∈ {3, 4, 5, 6, 7}
heuristics (denoted as hx) on the instances of mixed. The dots represent a result on a particular
attribute subset and parameter configuration while the line displays the best achieved result.

83

compared to using 4 or more algorithms. Especially between the algorithm sets h3, h4 and
h5 all classifiers show larger gaps on their achieved success rate. For example, the classifier
using a Bayesian network achieved on the non-discretized data sets of h3 a best result of 62%,
on h4 a value of 65% and on h5 a success rate of 67%. Considering the algorithm sets with
more heuristics, our data show that the benefit of including additional algorithm decreases in
relation to the performance of the new algorithm. Thus, changing the algorithm set from h5
to h6 (include MAFS) or adding MACOL to the set h6 results only in minor advantages on the
success rate.

6.2.5 Comparison of Classifiers

Besides the question of selecting a good algorithm portfolio, one important issue is the per-
formance of the different classification algorithms in our experiments. For this purpose, we
compared the success rate s(c,I,A) of the classifiers using their best parameter configuration.
Figure 6.21 shows the highest achieved success rate per classifier separated by the discretization
method and the used algorithm set. Again, it is easy to see that for all classifiers and starting

Algorithm Set

S
uc

ce
ss

 R
at

e

0.60

0.65

0.70

h3 h4 h5 h6 h7

none

h3 h4 h5 h6 h7

mdl

h3 h4 h5 h6 h7

kon

BN
C4.5

kNN
MLP

RF
SVM

Figure 6.21: Success rate of the tested classifiers on the instances of mixed. The values are the
best (highest) values using different attribute subsets and parameter configurations.

with the algorithm set h3, adding further heuristics increases the overall performance. Then, at
a certain point the improvement stagnates and only minor progress, or in some cases, even a loss
of the performance, occur. In the case of the numeric attributes, this effect occurs at the set h5,
from where the classifier SMO, BN, kNN and MLP show only small changes compared to h6.
Even more, the DT classifier has on h6 a worse performance than on h5 and only RF is able to
use the additional heuristics for a better algorithm selection.

84

Method
BN C4.5 kNN

avg (%) best(%) avg(%) best(%) avg(%) best(%)

MDL + 2.54 + 3.43 + 5.38 + 6.03 + 7.42 + 7.00
KON + 3.50 + 4.70 + 4.97 + 5.22 + 7.84 + 8.92

Method MLP RF SVM

MDL + 2.64 + 4.69 + 2.32 + 3.01 + 2.85 + 3.18
KON - 7.47 + 3.59 + 2.58 + 4.38 + 3.07 + 4.52

Table 6.4: Improvements of the success rate s(c,I,A) (in percent) when using discretized data in
relation to the results achieved with non-discretized data on the instances of mixed.

Concerning the data sets prepared with the MDL criteria, the graphic shows that also some
classifiers reach a peak using h5. For example, the RF and SMO show their best performance
using h5 and loose both on the success rate when they are applied with h6. In contrast to
this, kNN reaches its best results on h6 while BN seems to be the only classifier which makes
advances of the bigger choice of algorithms of h7.

On the data where we applied Kononenko’s criteria (KON) for discretization, it is observable
that except BN and DT, all classifier reach a higher success rate when tested with the algorithm
set h3 than the corresponding settings on the non-discretized data or using the standard MDL
criteria. However, applied with h4 many classifiers achieve worse results compared to the clas-
sical MDL criteria. Especially MLP and DT show only a flat increase on their success rate. The
other four classifiers reveal in general a slightly better performance than using the MDL criteria
with a peak on h6 for BN, kNN and RF while SMO reached its highest values on h7.

6.2.6 Effects of Discretization

Besides a comparison of the different considered heuristics, Figure 6.20 and Figure 6.21 re-
veal also some insights for the effects of the different methods of discretization. As mentioned
before, transforming numerical values into nominal ones can have a significant effect on the
performance of the classifier. Hence, we tested, apart from using the original data, two dis-
cretization methods denoted as MDL and KON. Concerning the impact of this data preparation,
Table 6.4 clearly show that all classifiers can achieve higher values than using nominal values.

In detail, the column avg refers to the average success rate of the best parameter configu-
ration for each data set while the column best represents the difference between the best value
obtained on all data sets using no numerical values and the best value of the discretized data sets.
As the reader can see, both discretization variants improve the best reached success rate whereby
using the classical MDL method raises the value on average by 4.36% while using Kononenko’s
criteria increases s(c,I,A) by 3.80%. However, the best parameter and portfolio configurations,
the benefits of discretized values for some classifier are up to +7.00% with MDL and even
+8.92% using KON. Also worth mentioning are the bad results of the MLP using KON, where
on average the success rate decreases by 7.47%.

85

Setting Data Set
Accuracy s(c, I, A) err(k, i) Rank t

(%) (%) (%) avg stdev F1 (min)

BN3 h7_e3_kon_bff 71.89 72.49 4.06 1.50 1.01 7810 1
IB5 h6_e3_kon_gen 72.14 72.86 4.20 1.49 0.99 7827 1
DT3 h6_e2_mdl_bff 69.81 70.54 4.86 1.57 1.09 7724 1
MLP1 h5_e2_mdl_gen 70.91 69.56 4.45 1.57 1.10 7715 52
RF2 h6_e3_kon_gen 71.66 72.33 4.19 1.50 1.00 7816 1
SMO1 h7_e3_kon_gen 71.44 71.98 4.55 1.53 1.04 7773 1

Table 6.5: Summary of the best-performing parameter settings with respect to the success rate
s(c,I,A) of the different classifiers on the instance set mixed.

6.2.7 Analysis of the Best Configuration per Classifier

To conclude these various parameter configurations and used algorithm set, we manually se-
lected for each classifier the setting with the highest success rate. Table 6.5 gives an overview
on these results considering the different performance measurements.

From these figures, it is apparent that discretization is one of the key factors for a successful
algorithm selection on the GCP. All results of the Table 6.5 are reached on nominal attributes
with only marginal differences between using MDL or KON. As the latter seems to provide
slightly better outcome (with respect to the best configurations per classifier), we focus for the
remaining comparisons on data prepared with this method.

Furthermore, we decided to fix our set of used heuristics to h6. The reason for this is that
all classifiers show high performance on that set and neither adding additional algorithms nor
removing some lead to significant improvements concerning the success rate.

For a more detailed statistical analysis, we executed all classifiers (except the MLP) using
their best configurations with a 10-fold cross-validation on the data set h6_e3_kon_gen. Then
we applied a corrected resampled T-test [188] on these results. These experiments, applied with
a level of significance of α = 0.05, reveal that BN3, IB5 and RF2 are significant better than
DT3 while all other pairwise comparisons do not show significant differences.

A detailed view on the performance with respect to the different classes (heuristics) can be
seen with the help of a confusion matrix. Table 6.6 shows the aggregated and normalized values
over 20 runs for the BN classifier. The figures reveal that the classifier focus especially on clas-
sifying MMT, HEA and TABU, which is reasonable, as these are the most-successful algorithms.
Remarkable is also the low true positive (TP) rate on ILS, where most cases are classified as
TABU instead of the correct heuristic.

A slightly different behavior can be seen in Table 6.7 where the confusion matrix of IB5 is
given. In addition, this This classifier shows slightly lower success predicting instances for MMT
compared with BN, but a higher TP rate regarding ILS and TABUB.

The confusion matrix for the setting RF2 is presented in Table 6.8. The data here show that
RF2 and IB5 have similar performance concerning prediction of the different classes.

For a better overview on the prediction per class on the different heuristics, we summarize

86

FPC HEA ILS MAFS MMT TABU ← classified as

3.6 0.2 0.0 0.1 1.1 0.7 FPC
0.1 10.1 0.5 0.3 4.2 1.5 HEA
0.1 0.8 2.7 0.0 0.6 3.3 ILS
0.0 0.7 0.2 2.1 1.5 0.3 MAFS
0.5 2.1 0.2 0.2 39.1 0.7 MMT
0.0 1.3 0.7 0.0 6.7 13.8 TABU

Table 6.6: Confusion matrix of the setting BN3 of 20 runs using the data set
mixed_h6_e3_kon_gen. Note that the values are normalized by the number of instances.

FPC HEA ILS MAFS MMT TABU ← classified as

3.0 0.4 0.1 0.1 1.4 0.6 FPC
0.1 10.4 0.9 0.5 3.3 1.5 HEA
0.2 0.3 4.4 0.1 0.3 2.2 ILS
0.0 0.6 0.4 2.7 0.7 0.4 MAFS
0.5 3.0 0.2 0.7 36.4 2.1 MMT
0.0 1.0 2.2 0.1 4.0 15.2 TABU

Table 6.7: Confusion matrix of the setting IB5 of 20 runs using the data set h6_e3_kon_gen.
Note that the values are normalized by the number of instances.

FPC HEA ILS MAFS MMT TABU ← classified as

3.7 0.4 0.1 0.2 0.8 0.5 FPC
0.2 10.1 0.5 0.6 3.8 1.5 HEA
0.2 0.4 4.3 0.2 0.5 2.0 ILS
0.1 0.7 0.3 2.5 1.0 0.3 MAFS
0.6 3.0 0.2 0.7 36.2 2.2 MMT
0.2 1.0 1.7 0.3 4.4 14.9 TABU

Table 6.8: Confusion matrix of the setting RF2 of 20 runs using the data set h6_e3_kon_gen.
Note that the values are normalized by the number of instances.

the individual results in Table 6.9. This statistic clearly shows that all classifiers offer good
results concerning MMT, which is the appropriate choice in the majority of instances. In detail,
all classifiers show a TP rate of up to 91.35% (average value 84.62%) for this class, which
is recommended on 42.84% of the 859 observations. In contrast to this, from the examples
of the second biggest group, TABU, are on average only 64.06% correct classified. Although
this is the desired behavior, it poses some risk because the success of MMT is intensified by the
inhomogeneous training set. On a different (balanced) training data, the performance of MMT
might be inferior in relation to its competitors. On such data, the learning algorithms would
have to increase their prediction rate on the other classes to achieve similar performance.

87

Class
No. Best

BN C4.5 kNN RF SVM
abs. (%)

FPC 48 5.59 63.65 65.42 54.06 65.52 68.75
HEA 143 16.65 60.38 56.05 62.48 60.49 63.81

ILS 65 7.57 35.46 47.23 58.62 56.46 57.54
MAFS 41 4.77 43.41 46.95 55.98 51.83 47.32
MMT 368 42.84 91.35 83.68 84.93 84.59 78.55
TABU 194 22.58 61.29 59.72 67.42 66.19 65.70

TOTAL 859 71.34 68.14 72.14 71.66 69.56

Table 6.9: Percentage of correct predictions per class on the data set
mixed_h6_e3_kon_gen. The second column represents the number of instances
where the heuristic achieves the best solution.

6.2.8 Comparison of Algorithms for the GCP using Cross-Validation

So far, we have evaluated different parameter configurations, classifier, discretization methods
and used heuristics. In the following paragraph, we compare the best found classifier with the
underlying heuristics to show the benefits of algorithm selection. For this purpose, we selected
for each classifier the parameter configurations which achieved high success rate and inspect
their behavior on the different subsets of instances.

In detail, we tested each classifier 20 times using a 10-fold cross validation on the data set
mixed_h6_e3_kon_gen. Figure 6.22 shows the average number of correct predictions per
classifier separated by the three instance sets. For a good comparison with the tested solvers
for the GCP, the graphic contains also for each algorithm the number of instances on which
they show the best performance. The diagram clearly illustrate that 5 of 6 tested classifiers
achieve nearly similar results. Only the MLP fails completely on this data set. This method
requires more than 24 hours for one cross-validation and its results are even below those of the
underlying heuristics. Nevertheless, the other approaches show an overwhelming performance
by obtaining on up to 625.9 (72.86%) instances the best solution. Compared with the best single
heuristic for the GCP, MMT, this is an improvement by 259 (30%). Even more, this increase can
be observed on all three tested sets of instances, chi500, chi1000 and dimacs.

A more detailed comparison is given in Table 6.10 where we evaluate the classifiers using
different metrics. Due to the poor performance of MLP on the data discretized with KON, we
also add the results of the data set mixed_h5_e2_mdl_gen for this classifier. According to
this data, we can say that our systems for algorithm selection are clearly better on all evaluated
measurements. All tested classifier, except MLP, show a lower distance err(k, i) than the best
heuristic, MMT (up to −1.35%) and are way ahead of the other algorithms (between 8% and
32%). Concerning the ranking, the classifiers reach on average a rank between 1.49 and 1.57,
which is much better than the best single heuristic (MMT with 2.63). In addition, the algorithm
selection shows a lower standard derivation of the ranking (average values around 1.04 versus
1.64) and win also using the formula-one criteria (7827 versus 6348) by an increase of +23.30%.

88

Figure 6.22: Number of predicted best algorithms of the different classifiers on the data set
mixed_h6_e3_kon_gen in comparison with the underlying (meta)heuristics. The classifiers
are tested 20 times using 10-fold cross-validation. The asterisk denotes that this heuristic is only
tested on chi500. Please note that the MLP classifier is only tested once because of time
reasons.

Next, we analyze the behavior on the different subsets of the instance sets chi500 and
chi1000. For this purpose, we compare the results of the RF classifier using the setting RF2
with the heuristics for the GCP. Note that according to our experiments, the data of the other
classifiers are in the majority of cases similar to those presented here, for what reason we omit
these additional results.

Figure 6.23 illustrates the results of RF2 on the instances of chi500. It can be seen that the
classifier chooses for all subsets appropriate algorithms and is in 6 of the 9 subgroups better than
any single heuristic. On some subsets, especially U-0.5 and U-0.9, the proposed approach is
not better than MMT which indicate that the used features might be unable to characterize these
cases in a perfect way. Another noteworthy observation is that on the subset G-0.5 it seems
that the classifier is able to distinguish well between the two dominating algorithms HEA and
TABU and achieves relative good success rate.

The results for the instances of the larger set chi1000 are given in Figure 6.24. As on the
previous figure, the diagram clearly shows that the classifier is able to identify on all subsets
appropriate heuristics and the number of correct classifications is always at least near to those

89

Solver
s(c, I, A) err(k, i) Rank

(%) (%) avg stdev F1

Algorithm Selection
BN 71.68 3.78 1.53 1.07 7772
C4.5 68.99 4.62 1.58 1.06 7693
kNN 72.86 4.20 1.49 0.99 7827
RF 72.33 4.19 1.50 1.00 7816
MLP 17.69 26.32 4.02 2.05 4665
MLP’ 69.56 4.45 1.57 1.10 7715
SVM 70.16 5.02 1.57 1.11 7718

Heuristics
FPC 5.94 36.57 4.74 1.83 3829
HEA 16.65 12.23 2.72 1.37 6001
ILS 10.24 19.26 3.89 1.88 4720
MACOL 0.47 25.29 5.22 1.32 3294
MAFS 5.36 21.72 4.36 1.68 4159
MMT 42.84 5.41 2.63 1.86 6348
TABU 22.58 16.00 2.92 1.54 5791

Best (heuristic) 42.84 5.41 2.63 1.86 6348
Best (AS) 72.86 3.78 1.49 0.99 7827

Table 6.10: Comparison of several performance metrics between the an cross validation of the
classifiers on the data mixed_h6_e3_kon_gen and the underlying heuristics on the instances
of mixed. Note that MLP’ denotes a configuration on the set mixed_h5_e2_mdl_gen.

of the best algorithm. In detail, on 6 of the subsets is our algorithm selection better than the best
underlying method and the gap on the remaining 3 groups is always marginal. The data further
indicate that on the instances of W-0.5, where multiple heuristics perform best, the classifier is
able to discriminate between the different graph types as its performance is better than any single
solver for the GCP. On the other side, the prediction rate on G-0.5 is in relation to MMT and
HEA not very well, which is a strong clue that the classifier is not always able to distinguish when
to apply one of these two algorithms. This is interesting, as on the subset G-0.5 of chi500,
RF shows good performance. However, on the instances of chi500, the most successful solvers
are HEA and TABU while on the instances of chi1000, MMT achieves the highest number of
best solution. This diverse information in the data could explain the suboptimal performance of
the classifier.

6.2.9 Comparison with Algorithms for the GCP on the Test Set

In the previous section, we compare the predictions of the different classifiers with the single
heuristics for the GCP on the data set mixed, which is also used for the learning process itself.

90

Figure 6.23: Number of predicted best algorithms on the instances of chi500 using the setting
RF2 in comparison with the underlying (meta)heuristics. The classifier is tested 20 times on the
data set mixed_h6_e3_kon_gen using 10-fold cross-validation.

However, a more realistic scenario is that an already trained classifier has to choose an algorithm
on new, unseen instances. To simulate this application, we trained each considered learning
algorithm using the instance set mixed_h6_e3_kon_gen and evaluated their performance
on the test set. This also allows a fair comparison between the underlying algorithms and
our approach based on algorithm selection, as the performance of the former on these instances
is not visible for the latter and can not affect their predictions.

Concerning the test set itself, we considered again only hard instances. In detail, from
the 180 instances we classified 16 as trivial after the feature computation. Based on the data of
the heuristic evaluation, we further separated 9 as trivial2 and 3 as easy leading to 152 remaining
hard instances.

As for the training set, we transformed all numeric attributes into discrete ones using KON.
However, this is a supervised method that uses the information about the correct class for finding
good decision boundaries and as this information is prohibited for the test set, we discretized
based on the nominal values of mixed_h6_e3_kon_gen.

Then we trained each classifier with the data of mixed_h6_e3_kon_gen as training set
and used test set as test set. We further used the parameter configuration which showed the
best performance during previous experiments (see Table 6.5).

The most interesting evaluation criteria is of course the number of instances on which the

91

Figure 6.24: Number of predicted best algorithms on the instances of chi1000 using the setting
RF2 in comparison with the underlying (meta)heuristics. The classifier is tested 20 times on the
data set mixed_h6_e3_kon_gen using 10-fold cross-validation.

solvers show the best performance. Figure 6.25 gives on overview on this measurement. From
this diagram, it is easy to see that all learning strategies except MLP accomplish a higher number
of first ranks than any single solver for the GCP. The most successful classifiers are RF, BN and
kNN which forecast on up to 68.59% of the 156 graphs the most appropriate algorithm.

A more detailed view on the results using different metrics is given in Table 6.11. The figures
point out that again MMT is the best single heuristic with respect to the number of first places in
our ranking. Moreover, it accomplishes the lowest average distance err(k, i) with a larger gap
to the other approaches. Surprisingly, when we look at the average rank, MMT is not ranked first
because TABU and HEA show both a lower value. However, concerning the formula-one score,
MMT lies again in front of HEA, but is still behind TABU.

Compared with our solvers using all algorithms and an automatic algorithm selection mech-
anism, it is easy to see that for all considered metrics except err(k, i) at least one system shows
a stronger performance than the best single heuristic. The best selection mechanism provides
clearly RF, which is on all criteria except the err(k, i) better than the other classifier. In detail,
this system achieves a success rate of 70.39% (+33.55% compared with MMT) and an average
rank of 1.51 (−1.07 compared with TABU). Using the formula-one ranking, it reaches 1386
points (+292 or +26.7% to the results of TABU). Only on the metric err(k, i) MMT shows with
4.63% a lower value than RF, which predictions have an average distance of 6.44%. Surpris-

92

Figure 6.25: Number of instances from the test set on which a solver show best perfor-
mance.

ingly, the approach based on a DT, which performs suboptimal concerning s(c,I,A) and the
ranking criteria, has with 4.90% one of the lowest value of err(k, i) from all solvers based on
algorithm selection. Only kNN achieves with 4.88 a slightly lower value. The worst perfor-
mance of the classifiers shows clearly MLP, which results concerning the number of instances
where it performs best are even below those of MMT. In combination with the long runtime, these
data confirm that this machine learning technique is in combination with KON not suited for the
GCP.

It is now clear that it is possible to implement algorithm selection for the GCP using machine
learning techniques. Let us now analyze the behavior of the most successful classifier, RF, on
the different types of graphs. For this purpose, we separated the results according to the graph
class and density and evaluate the performance of the heuristics and the RF with respect to that
subsets.

Figure 6.26 shows the amount of graphs on which the different methods show the best per-
formance. This diagram reveals that our solver based on algorithm selection is on 5 of the 9
subsets better or equal the best heuristic. Unfortunately, on the groups G-0.5 and W-0.5 our
approach is not able achieve better or equal performance than any single solver. This is sur-
prising as the best heuristic on that instances is HEA, which showed also on the corresponding
training data good results. Consequently, it seems that the classifier was not able to learn this
pattern correctly. On the groups U-0.9 and W-0.1 the algorithm selection fails by predicting

93

Solver
No. Best s(c, I, A) err(k, i) Rank
Solution (%) (%) avg stdev F1

Heuristics
FPC 17 11.18 25.43 3.39 1.53 919
HEA 34 22.37 15.25 2.74 1.43 1065
ILS 1 0.66 21.97 3.99 1.56 784
MACOL 0 0.00 28.13 5.17 1.23 588
MAFS 7 4.61 31.71 5.34 1.94 585
MMT 56 36.84 4.63 2.88 1.99 1077
TABU 43 28.29 19.47 2.57 1.25 1094

Algorithm Selection
BN 102 67.11 5.85 1.58 1.02 1360
C4.5 76 50.00 4.90 2.26 1.62 1204
IBK 100 65.79 4.88 1.61 1.17 1357
MLP 52 34.21 22.92 2.64 1.54 1091
RF 107 70.39 6.44 1.50 1.07 1386
SVM 82 53.95 9.37 2.10 1.58 1240

Best (heuristic) 56 36.84 4.63 2.57 1.25 1094
Best (AS) 107 70.39 4.88 1.50 1.07 1386

Table 6.11: Performance metrics of the algorithm selection and the underlying heuristics on the
test set.

on only 3 of 10 and 6 of 20 graphs the correct algorithm. The reason for this bad results on the
former subset might be in the performance of algorithms: In contrast to the training data, where
MMT is the dominant method, on the test data also MAFS obtains in 4 cases the best solution.
Thus, the trained patterns might not fit and this leads the classifier to so many mispredictions.
We could not clearly identify why the results of the heuristics differ compared to the training set.
One possible explanation for the increased success of MAFS is that in contrast to the training set,
the new created instances do not hide any fixed coloring.

However, the suboptimal prediction rate on the latter subset can not be explained, as FPC is
also in related subset W-0.1 of chi1000 the best algorithm. Thus, is seems that the classifier
is just not able to learn this pattern correctly.

Concerning the distance measurement err(k, i), Figure 6.27 shows a box-whisker diagram
with the results on the different subsets. The figures clearly show that algorithm selection
achieves in almost all subsets a very low distance which often correlates with the best heuristic.
Only on the subsets U-0.9 there is a larger gap between the RF-based approach and the values
of MMT. Also noteworthy is that the distance of the heuristics on the instances of U-0.5 fluc-
tuates and varies much more compared with the other subsets and that MMT achieves by far the
best solutions. A similar behavior can also be discovered at the training data. However, on the
related instances of U-0.9 this does not hold for all techniques: only MMT and MAFS achieve on

94

Figure 6.26: Number of graphs where a method shows the best performance on the instances of
the test set grouped by the graph type and the density.

average improvements over the greedy algorithms while the other heuristics are often not able
to find a better coloring. Regarding our classification approach, it seems that the RF is able to
learn the pattern for the class U-0.5 such that it predicts always the correct algorithm (MMT).
On the instances of U-0.9, its performance is worse than MMT. However, it is still above those
of the other heuristics.

A more detailed view on the ranking of the different approaches is given in Figure 6.28. As
in the training data, the diagram reveals that no heuristic performs best on all types of graphs.
Moreover, the ranks of the algorithms between related subsets may vary strong. A good example
for this are the sets G-0.5 and G-0.9 where for each algorithm, its median rank changes
between the former and the latter sets. Also worth mentioning are the results on U-0.9 where
most algorithms achieve a median rank of 2.5 except MMT and MAFS. This also correlates to
the solution distance (see Figure 6.27) and is mainly caused by the fact that in many cases, only
MAFS and MMT are able to improve the initial number of colors. As a result, these two algorithms
achieve better ranks and are therefore to prefer.

Concerning the algorithm selection approach, the figure show that the proposed method is
on every subgroup successful. In detail, on 6 subsets (G-*, U-0.1, U-0.5 and W-0.9) the
median rank of our method is 1 and also on the remaining 3 types of graphs, this value is never
higher than 2. It is clear to see that in most of the cases, the box and whisker correspond with the
dominating heuristic. Only on the subsets U-0.9, W-0.1 and W-0.5, our method based on a

95

err(k,i)

M
et

ho
d

RF

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

0.0 0.2 0.4 0.6 0.8 1.0

W−0.1 W−0.5

0.0 0.2 0.4 0.6 0.8 1.0

W−0.9
RF

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

U−0.1 U−0.5 U−0.9
RF

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

G−0.1

0.0 0.2 0.4 0.6 0.8 1.0

G−0.5 G−0.9

Figure 6.27: Distance metric err(k, i) of the heuristics and the algorithm selection on the hard
instances of the test set grouped by the graph class and the density.

96

Rank

M
et

ho
d

RF

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

1 2 3 4 5 6 7

W−0.1 W−0.5

1 2 3 4 5 6 7

W−0.9
RF

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

U−0.1 U−0.5 U−0.9
RF

TABU

MMT

MAFS

MACOL

ILS

HEA

FPC

G−0.1

1 2 3 4 5 6 7

G−0.5 G−0.9

Figure 6.28: Ranking results of the heuristics and the algorithm selection on the hard instances
of the test set grouped by the graph class and the density.

97

RF differ to the single algorithms for the GCP. However, compared with any single heuristic,
the classifier-based approach achieves a much lower average rank (1.50 versus 2.57) because it
exploits the strengths of the heuristics on the different subsets.

98

CHAPTER 7
Conclusion and Future Work

In this thesis, we have presented our approach to algorithm selection for the graph coloring
problem (GCP) based on machine learning. For this purpose, we identified 78 characteristic
attributes of a graph. We further gathered empirical data from experimental analysis of 7 heuris-
tics (HEA, ILS, MACOL, MAFS, MMT, TABUCOL, and Foo-PartialCol) on 1265 instances
of 3 different, public available sets of instances.

These information was used to train 6 classifiers (Bayesian networks, C4.5 decision trees,
k-nearest neighbor, multilayer perceptrons, random forests, and support vector machines). We
further experimented with different parameter settings for the classifiers and tested the effect of
two discretization techniques. In addition, we investigated how a reduced algorithm portfolio
effects the accuracy and the overall quality of the prediction.

The main findings of this thesis are:

• In our experiments, no heuristic was on all instances better than the rest.

• Some algorithm tend to be more successful on instances with certain attributes.

• Algorithm selection using classifiers outperforms the underlying heuristics.

• Supervised discretization techniques increase the performance of almost all classifiers.

• Removing worse algorithms from the portfolio may increase the overall performance of
the algorithm selection.

In addition, our experiments showed that Bayesian networks, k-nearest neighbor and ran-
dom forests are the most successful machine learning strategies to solve the algorithm selection
problem for the GCP.

Finally, we evaluated the performance of solvers that include all heuristics and an algorithm
selection mechanism and compared it with the heuristics for the GCP on a set of new generated

99

instances. The experiments on these graphs, which have not been used for training the classi-
fiers, clearly showed that our proposed approach is able to achieve on more instances the best
performance than any heuristic alone.

For future work, we will consider a concrete implementation of the presented approach,
which is so far only an experimental patchwork consisting of multiple programs and scripts. In
addition, including further algorithms as well as experiments on other types of graphs would
be interesting. Such an extension could also include exact solvers and smaller instances. The
algorithm selection’s duty would be to decide whether an instance can be colored exactly or not
(like in [109]).

Another issue to investigate is a regression-based approach using runtime and solution qual-
ity predictions. This technique, which is successfully used for other systems, is an alternative
to our classification-based approach and in this context, a comparison on the suitability for the
GCP is definitely interesting.

Finally, it is also worth considering a portfolio system which execute more than one heuris-
tics. Especially dynamic approaches which can combine different heuristics offer the chance to
achieve a higher performance than any single algorithm on alone.

100

APPENDIX A
Appendix

A.1 Weka Commands

The following tables contain the command line parameters for our experiments using the Weka
framework. Please note that <dataset.arff> denotes the used data set, i.e. the training observa-
tions consisting on the instance features and the best suited algorithm. For our evaluation, we
tested all classifiers 20 times using a random seed S = {1, ..., 20}. All following commands are
for performing a 10-fold cross-validation. For using a separate test set, see the Weka manual.

Name Command Line

DT1 java weka.classifiers.trees.J48 -C 0.25 -M 2 -t <dataset.arff>

DT2 java weka.classifiers.trees.J48 -C 0.125 -M 2 -t <dataset.arff>

DT3 java weka.classifiers.trees.J48 -C 0.25 -M 3 -t <dataset.arff>

DT4 java weka.classifiers.trees.J48 -C 0.125 -M 4 -t <dataset.arff>

Table A.1: Command line calls for the C4.5 decision trees (DT) classifier.

Name Command Line

RF1 java weka.classifiers.trees.RandomForest -I 10 -K 0 -S 1 -t
<dataset.arff>

RF2 java weka.classifiers.trees.RandomForest -I 15 -K 0 -S 1 -t
<dataset.arff>

Table A.2: Command line calls for the random forests (RF) classifier.

101

Name Command Line

MLP1 java weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2
-N 500 -V 0 -S 0 -E 20 -H a -t <dataset.arff>

MLP2 java weka.classifiers.functions.MultilayerPerceptron -L 0.4 -M 0.2
-N 500 -V 0 -S 0 -E 20 -H a -t <dataset.arff>

Table A.3: Command line calls for the multilayer perceptrons (MLP) classifier.

Name Command Line

BN1 java weka.classifiers.bayes.BayesNet -D -Q
weka.classifiers.bayes.net.search.local.K2 - -P 1 -S BAYES -E
weka.classifiers.bayes.net.estimate.SimpleEstimator - -A 0.5 -t
<dataset.arff>

BN2 java weka.classifiers.bayes.BayesNet -D -Q
weka.classifiers.bayes.net.search.local.K2 - -P 2 -S BAYES -E
weka.classifiers.bayes.net.estimate.SimpleEstimator - -A 0.5 -t
<dataset.arff>

BN3 java weka.classifiers.bayes.BayesNet -D -Q
weka.classifiers.bayes.net.search.local.K2 - -P 3 -S BAYES -E
weka.classifiers.bayes.net.estimate.SimpleEstimator - -A 0.5 -t
<dataset.arff>

BN4 java weka.classifiers.bayes.BayesNet -D -Q
weka.classifiers.bayes.net.search.local.K2 - -P 4 -S BAYES -E
weka.classifiers.bayes.net.estimate.SimpleEstimator - -A 0.5 -t
<dataset.arff>

BN5 java weka.classifiers.bayes.BayesNet -D -Q
weka.classifiers.bayes.net.search.local.K2 - -P 5 -S BAYES -E
weka.classifiers.bayes.net.estimate.SimpleEstimator - -A 0.5 -t
<dataset.arff>

Table A.4: Command line calls for the Bayesian networks (BN) classifier.

102

Name Command Line

IB1 java weka.classifiers.lazy.IBk -K 1 -W 0 -A
"weka.core.neighboursearch.LinearNNSearch -A
ẅeka.core.EuclideanDistance -R first-last"̈ -t <dataset.arff>

IB2 java weka.classifiers.lazy.IBk -K 3 -W 0 -A
"weka.core.neighboursearch.LinearNNSearch -A
ẅeka.core.EuclideanDistance -R first-last"̈ -t <dataset.arff>

IB3 java weka.classifiers.lazy.IBk -K 5 -W 0 -A
"weka.core.neighboursearch.LinearNNSearch -A
ẅeka.core.EuclideanDistance -R first-last"̈ -t <dataset.arff>

IB4 java weka.classifiers.lazy.IBk -K 7 -W 0 -A
"weka.core.neighboursearch.LinearNNSearch -A
ẅeka.core.EuclideanDistance -R first-last"̈ -t <dataset.arff>

IB5 java weka.classifiers.lazy.IBk -K 9 -W 0 -A
"weka.core.neighboursearch.LinearNNSearch -A
ẅeka.core.EuclideanDistance -R first-last"̈ -t <dataset.arff>

Table A.5: Command line calls for the k-nearest neighbor (kNN) classifier.

103

Name Command Line

SMO1 java weka.classifiers.functions.SMO -C 1.0
-L 0.0010 -P 1.0E-12 -N 0 -V -1 -W SEED -K
"weka.classifiers.functions.supportVector.PolyKernel -C 250007
-E 1.0" -t <dataset.arff>

SMO2 java weka.classifiers.functions.SMO -C 1.0
-L 0.0010 -P 1.0E-12 -N 0 -V -1 -W SEED -K
"weka.classifiers.functions.supportVector.PolyKernel -C 250007
-E 1.2" -t <dataset.arff>

SMO3 java weka.classifiers.functions.SMO -C 1.0
-L 0.0010 -P 1.0E-12 -N 0 -V -1 -W SEED -K
"weka.classifiers.functions.supportVector.PolyKernel -C 250007
-E 1.4" -t <dataset.arff>

SMO4 java wweka.classifiers.functions.SMO -C 1.5
-L 0.0010 -P 1.0E-12 -N 0 -V -1 -W SEED -K
"weka.classifiers.functions.supportVector.PolyKernel -C 250007
-E 1.0" -t <dataset.arff>

SMO5 java weka.classifiers.functions.SMO -C 1.5
-L 0.0010 -P 1.0E-12 -N 0 -V -1 -W SEED -K
"weka.classifiers.functions.supportVector.PolyKernel -C 250007
-E 1.4" -t <dataset.arff>

SMO6 java weka.classifiers.functions.SMO -C 2.0
-L 0.0010 -P 1.0E-12 -N 0 -V -1 -W SEED -K
"weka.classifiers.functions.supportVector.PolyKernel -C 250007
-E 2.0" -t <dataset.arff>

SMO7 java weka.classifiers.functions.SMO -C 3.0
-L 0.0010 -P 1.0E-12 -N 0 -V -1 -W SEED -K
"weka.classifiers.functions.supportVector.PolyKernel -C 250007
-E 2.0" -t <dataset.arff>

SMO8 java -W weka.classifiers.functions.SMO -C 2.0 -L 0.0010 -P 1.0E-12
-N 0 -V -1 -W SEED -K "weka.classifiers.functions.supportVector.Puk
-C 250007 -O 1.0 -S 1.0" -t <dataset.arff>

Table A.6: Command line calls for the sequential minimal optimization (SMO) classifier.

104

A.2 Detailed Results

The following section contains detailed results using discretized (denoted according to the used
method mdl or kon and non-discretized (marked with none) data. For each of the three classes,
we present the best parameter configurations for the 6 tested classifiers and the results on the data
set mixed.

The set of instances mixed is the combination of the hard instances of chi500, chi1000
and dimacs and consists of 859 instances which we classified as hard according to our criteria.

In the following tables, we show the accuracy of the classification algorithm, the s(c,I,A),
the err(k, i) and two rank-based metric. In addition, the column BKS denotes the number of
instances on that our solvers based on algorithm selection finds a coloring requiring as less
colors as the best known solution (BKS).

Setting Data Set
Accuracy s(c, I, A) err(k, i) Rank

BKS
(%) (%) (%) avg stdev F1

BN3 h7_e1_none_bff 66.98 67.79 4.69 1.61 1.13 7657 771
IB9 h6_b_none_gen 63.38 63.95 4.89 1.68 1.15 7537 754
DT4 h5_b_none_gen 65.47 64.51 5.27 1.69 1.18 7542 745
MLP1 h7_b_none_bff 63.81 64.87 4.86 1.68 1.18 7557 761
RF2 h6_b_none 67.04 67.96 4.86 1.56 1.00 7708 765
SMO8 h6_b_none 66.84 67.46 4.16 1.60 1.10 7666 775

Table A.7: Summary of the best-performing settings with respect to the success rate for the
different classifiers on the instance set mixed using non-discretized features.

Setting Data Set
Accuracy s(c, I, A) err(k, i) Rank

BKS
(%) (%) (%) avg stdev F1

BN4 h7_e2_mdl_gen_50 70.36 71.23 4.38 1.55 1.11 7754 781
IB3 h6_e2_mdl_gen_50 70.28 70.94 4.63 1.57 1.12 7722 754
DT3 h6_e2_mdl_bff 69.81 70.54 4.86 1.57 1.09 7724 755
MLP1 h5_e2_mdl_gen 70.91 69.56 4.45 1.57 1.10 7715 763
RF2 h5_e2_mdl_gen_50 72.36 70.97 4.23 1.53 1.02 7770 769
SMO1 h5_e2_mdl_bff 72.20 70.64 4.64 1.59 1.16 7706 761

Table A.8: Summary of the best-performing settings with respect to the success rate for the
different classifiers on the instance set mixed using the MLD criteria.

105

Setting Data Set
Accuracy s(c, I, A) err(k, i) Rank

BKS
(%) (%) (%) avg stdev F1

BN3 h7_e3_kon_bff 71.89 72.49 4.06 1.50 1.01 7810 783
IB5 h6_e3_kon_gen 72.14 72.86 4.20 1.49 0.99 7827 778
DT1 h7_e3_kon_bff 68.78 69.72 4.74 1.59 1.11 7689 756
MLP2 h7_b_kon_bff 67.80 68.46 5.05 1.60 1.11 7666 752
RF2 h6_e3_kon_gen 71.66 72.33 4.19 1.50 1.00 7816 778
SMO1 h7_e3_kon_gen 71.44 71.98 4.55 1.53 1.04 7773 764

Table A.9: Summary of the best-performing settings with respect to the success rate for the
different classifiers on the instance set mixed using Kononenko’s MDL criteria.

A.3 Feature Subsets

The following section contains selected feature subsets that were obtained by the feature selec-
tion on the data of the instances of mixed.

106

Setname Features

h5_b_none_gen BkUB
dist , CCg, CCmax, CCmean, CCvc, CSmax, CSm, CSmean, CSmin, CSq25, GCD/R, GCR/D,

IDe, IRmin, LSce, LSnlo, Dmin, Dvc, Se, Sen, Sne, WCCe, WCCmean, WCCmin, WCCvc

h6_b_none BkLB
dist , BkUB

dist , Blu, Bul, CCe, CCg, CCmax, CCmean, CCmed, CCmin, CCq25, CCq75, CCtime,
CCvc, CSe, CSmax, CSm, CSmean, CSmin, CSq25, CSq75, CStime, CSvc, GCbest, GCDSAT,
GCT−DSAT, GCRLF, GCT−RLF, GCD/R, GCR/D, IDe, IDmax, IDmean, IDmed, IDmin, IDq25,
IDq75, IDvc, IRe, IRmax, IRmean, IRmed, IRmin, IRq25, IRq75, IRvc, LSi, LSii, LSce, LScee, LScn,
LScne, LSnlo, LSnto, LSt, De, Dmax, Dmean, Dmed, Dmin, Dq25, Dq75, Dvc, Sd, Se, Sen, Sn,
Sne, TDwidth, TDtime, WCCe, WCCmax, WCCmean, WCCmed, WCCmin, WCCq25, WCCq75,
WCCvc

h6_b_none_gen CCg, CCmax, CCmean, CCvc, CSmax, CSmean, CSmin, CSq25, GCD/R, GCR/D, IDmean, IRmax,
IRmean, IRmin, LSi, LSnlo, Dmin, Dvc, Se, Sen, Sne, WCCe, WCCmean, WCCmin, WCCvc

h7_b_none_bff Blu, CCg, CCmax, CCmean, CCvc, CSmax, CSmean, CSmin, CSq25, GCD/R, IDe, IDmean, IRmax,
IRmin, LScne, De, Dmin, Dvc, Sen, Sne, WCCe, WCCmean, WCCmin, WCCvc

h7_e1_none_bff BkLB
dist /CCg, BkLB

dist /CCmean, BkLB
dist ·CCg, BkLB

dist ·CCmean, BkLB
dist ·CSmax, BkLB

dist ·CSmean,
BkLB

dist ·CSmin, BkLB
dist ·CSq25, BkLB

dist ·Dmin, BkLB
dist ·Sen, BkLB

dist /IDmean, BkLB
dist /Sne, BkUB

dist /CCmax,
BkUB

dist /CCmean, Blu·CCmax, Blu·CCvc, Blu/IRmax, Blu/Dvc, Blu/WCCmin, CCg,
CCg/B

kLB
dist , CCg·CCmean, CCg·IRmax, CCg·Dmin, CCg·Sen, CCg/Sne, CCg/WCCvc,

CCmax/B
kUB
dist , CCmax·CSmax, CCmax·CSmean, CCmax·Sen, CCmax/Dvc, CCmax/Sne,

CCmean, CCmean·IRmax, CCmean·IRmin, CCmean·WCCmin, CCmean/CSmax, CCmean/IRmin,
CCmean/WCCvc, CCvc/WCCmin, CSmax/CCmean, CSmax·De, CSmax/GCD/R, CSmean·De,
CSmean/CSq25, CSmin·De, GCDSAT/Dmin, GCD/R/WCCmin, GCR/D/Sen, IDe·IRmin,
IDe/IRmax, IDmean·GCDSAT, IDmean/De, IDmean/WCCe, IRmax·Sen, IRmax/IRmin,
IRmax/Dvc, IRmax/Sne, IRmax/WCCvc, LScne·IRmin, LScne/De, LScne/WCCe, De·IRmin,
De/IDmean, De/LScne, Dmin/CCvc, Dmin·IDmean, Dmin·IRmax, Dmin·IRmin, Dmin·Sne,
Dmin/GCDSAT, Dmin/GCD/R, Dmin/Sen, Dvc/CCmax, Dvc/IRmax, Dvc/WCCmean,
Sen, Sen·Sne, Sen/Dmin, Sne/B

kLB
dist , Sne/WCCmin, WCCe·CSmax, WCCe·IRmin,

WCCe·De, WCCe·Dvc, WCCe/IRmin, WCCe/LScne, WCCmean·IRmax, WCCmean·LScne,
WCCmean/GCR/D, WCCmean/IRmin, WCCmean/Dvc, WCCmin/CCvc, WCCmin·IRmax,
WCCmin·LScne, WCCmin/GCD/R, WCCmin/Sne, WCCvc/CCg, WCCvc/CCmean,
WCCvc/IRmax, WCCvc/WCCmean

Table A.10: Selected subsets of non-discretized features based on the feature selection on the
data set mixed.

107

Setname Features

h5_e2_mdl_bff CCg, CCg/CCmax, CCg·CCmean, CCg/CSmax, CCg/Dvc, CCmax, CCmax·CSmax,
CCmax·Dmin, CCmax·Se, CCmax/GCD/R, CCmax/WCCmean, CCmean, CCmean·Dmin,
CCmean/IDe, CSmax·CSq25, CSmax/Dmin, CSmean·Dvc, CSmean/CSq25, CSq25/Dmin,
GCD/R, GCD/R/WCCe, GCR/D/WCCe, IDe/WCCe, Dvc/CCmax, Dvc·IDe,
Dvc/WCCmean, Se/CCmax, Se/Dmin, Se/Dvc, Se/WCCe, WCCe, WCCe·CSmax,
WCCe·CSmean, WCCmean, WCCmean·Dmin, WCCmean/CSmax, WCCmean/Dvc

h5_e2_mdl_gen CCg, CCg·CCmean, CCg/Dvc, CCmax, CCmax·CSmax, CCmax·Dmin, CCmax·Se,
CCmax/GCD/R, CCmean, CSmax·CSq25, CSmax/Dmin, GCD/R/WCCe, Dmin/CSmax,
Dvc/WCCmean, Se/CCmax, Se/Dmin, WCCe, WCCe·CSmax, WCCe·CSmean,
WCCmean, WCCmean/CCmax, WCCmean·Dmin, WCCmean/Dvc

h5_e2_mdl_gen_50 CCg, CCg·CCmean, CCg/IDe, CCg/Dvc, CCmax, CCmax·CCmean, CCmax·CSmax,
CCmax·Dmin, CCmax·Se, CCmax/GCD/R, CCmean, CSmax·CSmean, CSmax·CSq25,
CSmax/Dmin, GCD/R/CCmax, GCD/R/WCCe, Dmin/CSmax, Dvc·IDe, Dvc/WCCmean,
Se, Se/CCmax, Se/Dmin, WCCe, WCCe·CSmax, WCCe·CSmean, WCCe·CSq25,
WCCmean, WCCmean/CCmax, WCCmean·Dmin, WCCmean/Dvc

h6_e2_mdl_bff CCg, CCg/CCmax, CCg·CCmean, CCmax, CCmax·CSmax, CCmax·Dmin,
CCmax·WCCe, CCmax/Dvc, CCmax/Sne, CCmax/WCCmean, CCmean, CCmean/CSmin,
CCmean/WCCmean, CSmax·CSmin, CSmax/Dmin, CSmin/CCmean, GCD/R, Dmin,
Dmin/Dvc, Dmin/Sen, Dvc/CCg, Dvc/CCmax, Dvc/WCCmean, Sen, Sen·Sne, Sen/Dmin,
WCCe, WCCe·CSmax, WCCe·CSq25, WCCmean, WCCmean/Dvc

h6_e2_mdl_gen_50 CCg, CCg·CCmean, CCmax, CCmax·CSmax, CCmax·Dmin, CCmax·Sen, CCmax/Dvc,
CCmean, CCmean/CSmin, CSmax/Dmin, CSmin/CCmean, GCD/R/GCR/D, Dmin·Sne,
Dmin/CSmax, Dmin/Sen, Dvc/CCmax, Dvc/WCCmean, Sen, Sen·Sne, Sen/Dmin,
Sne/CCmax, WCCe, WCCe·CSmax, WCCe·CSq25, WCCmean, WCCmean/Dvc

h7_e2_mdl_gen_50 BkUB
dist /CCg, BkUB

dist /CCmax, BkUB
dist /CCmean, BkUB

dist ·CSmax, BkUB
dist /Dmin, BkUB

dist /WCCmean,
Blu·CCg, Blu·CCmax, Blu·CCmean, Blu/IDmean, Blu/WCCmin, CCg, CCg/B

kUB
dist ,

CCg/Blu, CCg·CCmax, CCg·CCmean, CCg·Sen, CCg/Sne, CCmax, CCmax/B
kUB
dist ,

CCmax/CCg, CCmax·CSmax, CCmax·CSmean, CCmax·De, CCmax·Dmin, CCmax·Sen,
CCmax·WCCmin, CCmax/Dmin, CCmax/Sen, CCmax/Sne, CCmax/WCCmean,
CCmax/WCCmin, CCmean, CCmean/B

kUB
dist , CCmean·WCCmin, CCmean/WCCmean,

CSmax·GCR/D, CSmax·De, CSmax/GCD/R, CSmax/Dmin, CSmean·De, CSmean/CSq25,
CSq25·De, GCDSAT/Dmin, GCD/R, GCD/R/CSmax, GCD/R/GCR/D, GCD/R/WCCe,
GCD/R/WCCmin, GCR/D, GCR/D/WCCe, GCR/D/WCCmin, IDe, IDe/CCmean,
IDmean·GCDSAT, IDmean/De, IDmean/WCCe, IRmean/De, IRmean/WCCe, De/CCg,
De·GCDSAT, De/IDmean, De/Dmin, De/WCCmin, Dmin, Dmin/B

kUB
dist , Dmin/CCmax,

Dmin·IDmean, Dmin·IRmean, Dmin·Sne, Dmin/CSmax, Dmin/GCDSAT, Dmin/De,
Dmin/Sen, Dmin/Sne, Sen, Sen·Sne, Sen/Dmin, Sne/CCmax, Sne/WCCmin, WCCe,
WCCe·CSmax, WCCe·CSmean, WCCe·CSq25, WCCe·GCDSAT, WCCe·GCD/R,
WCCe·GCR/D, WCCe·IDe, WCCe·De, WCCe/GCD/R, WCCe/GCR/D, WCCmean,
WCCmean/B

kUB
dist , WCCmean/CCmax, WCCmean/CCmean, WCCmean·Sen, WCCmin,

WCCmin/Blu, WCCmin·GCD/R, WCCmin·GCR/D, WCCmin·Dmin, WCCmin·Sen,
WCCmin/GCD/R, WCCmin/GCR/D, WCCmin/De, WCCmin/Sne

Table A.11: Selected subsets of features discretized with the MDL criteria, based on the feature
selection on the data set mixed.

108

Setname Features

h6_e3_kon_gen CCg, CCg·CCmax, CCg·CCmean, CCg·GCD/R, CCg/CSmax, CCg/CSmin, CCg/GCR/D,
CCg/Dvc, CCg/WCCvc, CCmax, CCmax·CSmax, CCmax·CSmean, CCmax·CSmin,
CCmax·GCR/D, CCmax·Dmin, CCmax·Se, CCmax·Sen, CCmax·WCCe, CCmax·WCCmin,
CCmax/GCD/R, CCmax/Dvc, CCmax/Sne, CCmax/WCCmean, CCmean, CCmean·IRmin,
CCmean·WCCmin, CCmean/CSmax, CCmean/CSmin, CCmean/IRmin, CCmean/Dvc,
CSmax/CCmean, CSmax·CSmean, CSmax·GCR/D, CSmax/GCD/R, CSmax/Dmin, CSmin,
CSmin/CCg, CSmin/CCmean, GCD/R, GCD/R/CCmax, GCD/R·LSi, GCD/R/GCR/D,
GCD/R/WCCe, GCD/R/WCCmin, GCR/D/GCD/R, GCR/D/LSi, IRmin/CCmax, IRmin/CCmean,
IRmin/Se, IRmin/WCCmin, LSi, LSi/GCR/D, LSi/Dvc, LSi/WCCe, Dmin·IRmin, Dmin·Sne,
Dmin/Sen, Dvc/CCmax, Dvc/CCmean, Dvc/LSi, Dvc/WCCmean, Se/IRmin, Se/Sne, Sen·Se,
Sen·Sne, Sen/CSmin, Sen/Dmin, Sne/CCmax, Sne·Se, Sne/Se, WCCe, WCCe·CSmax,
WCCe·CSmean, WCCe·CSmin, WCCe·GCR/D, WCCe·LSi, WCCe·Dvc, WCCe/WCCvc,
WCCmean, WCCmean/CCmax, WCCmean/Dvc, WCCmean/WCCvc, WCCmin·IRmin,
WCCmin/GCD/R, WCCmin/IRmin, WCCvc/CCg, WCCvc/CCmax, WCCvc/CCmean,
WCCvc·Se, WCCvc/WCCmean

h7_b_kon_bff CCg, CCmax, CCmean, CSmax, CSmin, CSq25, GCD/R, IRmin, LSi, Sen, WCCe, WCCmean,
WCCmin, WCCvc

h7_e3_kon_bff CCg, CCg·CCmean, CCg/WCCvc, CCmax, CCmax·CSmax, CCmax·CSmin, CCmax·Sen,
CCmax·WCCe, CCmax·WCCmin, CCmax/GCD/R, CCmax/Sne, CCmax/WCCmean, CCmean,
CCmean·IRmin, CCmean·WCCmin, CCmean/CSmax, CCmean/CSmin, CCmean/IRmin,
CSmax/CCmean, CSmin, CSmin/CCmean, CSq25, CSq25·Sen, CSq25/Sne, GCD/R,
GCD/R·LSi, GCD/R/Sen, GCD/R/WCCe, GCD/R/WCCmin, GCD/R/WCCvc, GCR/D,
IRmin/CCmean, IRmin·Sen, IRmin/WCCmin, IRmin/WCCvc, LSi/WCCe, Sen·Sne, Sne/CCg,
Sne/WCCmin, WCCe, WCCe·CSmax, WCCe·CSq25, WCCe·LSi, WCCe/IRmin,
WCCe/WCCvc, WCCmean, WCCmean/LSi, WCCmean/WCCvc, WCCmin·IRmin,
WCCmin·LSi, WCCmin/GCD/R, WCCvc/CCg, WCCvc/CCmean, WCCvc/WCCmean

h7_e3_kon_gen CCg, CCg·CCmean, CCg/CSmin, CCg/WCCvc, CCmax, CCmax·CSmax, CCmax·CSmin,
CCmax·GCR/D, CCmax·WCCe, CCmax·WCCmin, CCmax/Sne, CCmean, CCmean·WCCmin,
CCmean/CSmax, CCmean/CSmin, CCmean/IRmin, CCmean/WCCvc, CSmax/CCmean,
CSmin/CCmean, GCD/R/WCCe, GCD/R/WCCmin, IRmin/CCmean, LSi/WCCe, Sen·Sne,
Sne/CCg, Sne/CCmax, Sne/CSq25, WCCe, WCCe·CSmax, WCCe·CSq25, WCCe·LSi,
WCCmean/WCCvc, WCCmin·GCR/D, WCCmin·IRmin, WCCmin/GCD/R, WCCvc/CCg,
WCCvc/CCmean, WCCvc/WCCmean

Table A.12: Selected subsets of features discretized with the KON criteria, based on the feature
selection on the data set mixed.

109

A.4 Most-Selected Features

Name # (%) Name # (%) Name # (%)

GCD/R 70 95.89 GCD/R/GCR/D 25 34.25 CCmean/CCvc 19 26.03
GCR/D 65 89.04 Blu ·Bul 24 32.88 IRe 19 26.03
LScne 61 83.56 CSq75 ·Dvc 24 32.88 BkUB

dist /LScne 18 24.66
CCmax 47 64.38 Dvc/CCmax 24 32.88 BkUB

dist · CCg 17 23.29
CStime 44 60.27 GCD/R/LScne 24 32.88 CCmean/CCmed 17 23.29
Dvc 44 60.27 CCe 23 31.51 CSmean ·Dvc 17 23.29

WCCmean 42 57.53 CCmax/Dvc 23 31.51 Dvc/B
kUB
dist 17 23.29

WCCvc 40 54.79 CCmed 23 31.51 LScne/GCR/D 17 23.29
CCvc 38 52.05 Blu/IRvc 22 30.14 Bul · IRvc 16 21.92
Blu 36 49.32 CCg 22 30.14 CCg/WCCvc 16 21.92
BkLB

dist 36 49.32 WCCmin 22 30.14 CCmed/CCvc 16 21.92
BkUB

dist · CCmean 34 46.58 WCCvc/B
kUB
dist 22 30.14 CCvc/CCmean 16 21.92

BkUB
dist 33 45.21 CSq75 22 30.14 CSmean 16 21.92

CCmean 33 45.21 CStime · LScee 22 30.14 BkLB
dist /LScne 15 20.55

IDe 31 42.47 GCR/D/GCD/R 22 30.14 CCe/Dvc 15 20.55
CCmean/Dvc 29 39.73 IRvc 22 30.14 CCe/LScee 15 20.55
BkUB

dist /WCCvc 27 36.99 Dvc/CCmean 21 28.77 CSe 15 20.55
GCD/R · LScne 27 36.99 BkUB

dist /Dvc 20 27.4 Dvc · IRe 15 20.55
Bul 26 35.62 BkUB

dist · CCmax 20 27.4 IDe/LScne 15 20.55
WCCmean · LScne 26 35.62 BkUB

dist · CCmed 20 27.4
LScee 26 35.62 CCg/Dvc 19 26.03

Table A.13: Selected features for the instance set chi500 which have been selected in at least
20% of the subsets.

110

Name # (%) Name # (%) Name # (%)

CCg 40 83.33% CCmax 19 39.58% CCg · CCmean 11 22.92%
CCmean 36 75.00% CCmin · CStime 19 39.58% CCmin · CSq25 11 22.92%
CCmin 34 70.83% CCg · CStime 17 35.42% CSvc 11 22.92%

WCCmean 32 66.67% CSq25 17 35.42% GCbest 11 22.92%
Dmean 28 58.33% Dvc 17 35.42% CCmean/WCCe 10 20.83%
CCvc 26 54.17% GCR/D 16 33.33% CCmean · CSvc 10 20.83%

WCCe 26 54.17% IDe 15 31.25% WCCe/CCmin 10 20.83%
WCCmed 26 54.17% IRmin 15 31.25% LSi 10 20.83%
CStime 24 50.00% CCmin/WCCe 12 25.00% Se 10 20.83%
GCD/R 23 47.92% WCCvc · IRmin 12 25.00% TDwidth 10 20.83%
WCCvc 21 43.75% Dq75 12 25.00% TDwidth/CCg 10 20.83%

LSce 20 41.67% Sd 12 25.00%

Table A.14: Selected features for the instance set chi1000 which have been selected in at least
20% of the subsets.

Name # (%) Name # (%) Name # (%)

CCmax 68 86.08% Sen 25 31.65% CCmax/Sne 19 24.05%
CCmean 65 82.28% GCD/R/WCCe 24 30.38% WCCmin/GCD/R 19 24.05%
WCCe 64 81.01% IRmax/Dvc 24 30.38% IRmax/WCCvc 19 24.05%
GCD/R 64 81.01% CCmean/CSmin 22 27.85% Sen · Sne 19 24.05%

WCCmean 61 77.22% CCmean ·WCCmin 22 27.85% CCe/WCCe 18 22.78%
CCg 51 64.56% WCCvc 22 27.85% CCmean · IRmin 18 22.78%
Dmin 46 58.23% Blu · CCmax 21 26.58% WCCmin 18 22.78%

GCR/D 40 50.63% Blu · CCmean 21 26.58% CSmin/CCmean 18 22.78%
CCmax ·Dmin 34 43.04% CCg/WCCvc 21 26.58% LSi 18 22.78%

CSmean 31 39.24% CCmean/WCCvc 21 26.58% IRmax 18 22.78%
CSmin 30 37.97% WCCmean/Dvc 21 26.58% Se 18 22.78%

Dmin/Sen 30 37.97% Dvc/IRmax 21 26.58% CCmax · CSmin 17 21.52%
Dvc 29 36.71% CCmax/GCD/R 20 25.32% WCCe · CSq25 17 21.52%

CCmax · CSmax 28 35.44% CCmax · CSmean 20 25.32% WCCvc/CCmean 17 21.52%
WCCe · CSmax 28 35.44% CCvc 20 25.32% WCCvc/IRmax 17 21.52%
Dmin · IRmin 28 35.44% WCCvc/CCg 20 25.32% Dvc · IDe 17 21.52%

IDe 28 35.44% CSmax 20 25.32% WCCe/CCe 16 20.25%
CCg · CCmean 27 34.18% GCD/R/WCCmin 20 25.32% Dmin · IRmax 16 20.25%
Sen/Dmin 26 32.91% GCD/R/GCR/D 20 25.32% Dmin · Sne 16 20.25%
CSq25 25 31.65% IRmin 20 25.32%

Table A.15: Selected features for the instance set mixed which have been selected in at least
20% of the subsets.

111

Bibliography

[1] R. Abbasian and M. Mouhoub. An efficient hierarchical parallel genetic algorithm for
graph coloring problem. In Proceedings of the 13th annual conference on Genetic and
evolutionary computation, GECCO ’11, pages 521–528, New York, NY, USA, 2011.
ACM.

[2] D. Achlioptas, A. Naor, and Y. Peres. Rigorous location of phase transitions in hard
optimization problems. Nature, 435:759–764, 2005.

[3] D. W. Aha. Generalizing from case studies: A case study. In Proceedings of the Ninth
International Conference on Machine Learning, pages 1–10. Morgan Kaufmann, 1992.

[4] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms. Machine
Learning, 6(1):37–66, Jan. 1991.

[5] R. K. Ahuja and J. B. Orlin. Use of representative operation counts in computational
testing of algorithms. INFORMS Journal on Computing, 8(3):318–330, 1996.

[6] J. Akbari Torkestani and M. R. Meybodi. A cellular learning automata-based algorithm
for solving the vertex coloring problem. Expert Systems with Applications, 38(8):9237–
9247, Aug. 2011.

[7] S. Ali and K. A. Smith. On learning algorithm selection for classification. Applied Soft
Computing, 6(2):119–138, Jan. 2006.

[8] E. Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition, 2010.

[9] E. Angel and V. Zissimopoulos. On the classification of np-complete problems in terms of
their correlation coefficient. Discrete Applied Mathematics, 99(1-3):261–277, Feb. 2000.

[10] W. Armstrong, P. Christen, E. McCreath, and A. P. Rendell. Dynamic algorithm selec-
tion using reinforcement learning. In Proceedings of the International Workshop on on
Integrating AI and Data Mining, AIDM ’06, pages 18–25, Washington, DC, USA, 2006.
IEEE Computer Society.

[11] C. Avanthay, A. Hertz, and N. Zufferey. A variable neighborhood search for graph color-
ing. European Journal of Operational Research, 151(2):379 – 388, 2003.

113

[12] V. C. Barbosa and R. G. Ferreira. On the phase transitions of graph coloring and inde-
pendent sets. Physica A: Statistical Mechanics and its Applications, 343:401–423, Nov
2004.

[13] R. S. Barr, B. L. Golden, J. P. Kelly, M. G. Resende, and W. R. Stewart. Designing and
reporting on computational experiments with heuristic methods. Journal of Heuristics,
1:9–32, 1995.

[14] R. S. Barr, B. L. Goldeny, J. Kellyz, W. R. Stewart, and M. G. C. Resende. Guidelines for
Designing and Reporting on Computational Experiments with Heuristic Methods. Tech-
nical report, Department of Computer Science and Engineering, Southern Methodist Uni-
versity, Dallas, TX, 2001.

[15] C. J. Beck and E. C. Freuder. Simple rules for low-knowledge algorithm selection. In
Proceedings of 1st CPAIOR, pages 50–64. Springer, 2004.

[16] M. R. Berthold and D. J. Hand, editors. Intelligent Data Analysis, An Introduction, 2nd
editon. Springer, 2003.

[17] M. Bessedik, R. Laib, A. Boulmerka, and H. Drias. Ant colony system for graph color-
ing problem. In Proceedings of the International Conference on Computational Intelli-
gence for Modelling, Control and Automation and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce Vol-1 (CIMCA-IAWTIC’06) - Volume
01, CIMCA ’05, pages 786–791, Washington, DC, USA, 2005. IEEE Computer Society.

[18] M. Bessedik, B. Toufik, and H. Drias. How can bees colour graphs. International Journal
of Bio-Inspired Computation, 3(1):67–76, Feb. 2011.

[19] M. Birattari. On the estimation of the expected performance of a metaheuristic on a class
of instances. How many instances, how many runs? Technical Report TR/IRIDIA/-2004-
001, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium, 2004.

[20] I. Blöchliger and N. Zufferey. A graph coloring heuristic using partial solutions and a
reactive tabu scheme. Computers & Operations Research, 35(3):960–975, Mar. 2008.

[21] C. Blum and R. Battiti, editors. Learning and Intelligent Optimization, 4th International
Conference, LION 4, Venice, Italy, January 18-22, 2010. Selected Papers, volume 6073
of Lecture Notes in Computer Science. Springer, 2010.

[22] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the 5th Annual ACM Workshop on Computational Learning
Theory, pages 144–152. ACM Press, 1992.

[23] R. R. Bouckaert, E. Frank, M. Hall, R. Kirkby, P. Reutemann, A. Seewald, and D. Scuse.
Weka manual (3.6.6), Oct. 2011.

114

[24] N. Bouhmala and O.-C. Granmo. Solving graph coloring problems using learning au-
tomata. In Proceedings of the 8th European conference on Evolutionary computation
in combinatorial optimization, EvoCOP’08, pages 277–288, Berlin, Heidelberg, 2008.
Springer-Verlag.

[25] H. Bouziri, K. Mellouli, and E.-G. Talbi. The k-coloring fitness landscape. Journal of
Combinatorial Optimization, 21(3):306–329, Apr. 2011.

[26] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology, 25(2):163–177, 2001.

[27] P. Brazdil and C. Soares. A comparison of ranking methods for classification algorithm
selection. In Proceedings of the 11th European Conference on Machine Learning, ECML
’00, pages 63–74, London, UK, UK, 2000. Springer-Verlag.

[28] P. B. Brazdil, C. Soares, and J. P. Da Costa. Ranking learning algorithms: Using ibl
and meta-learning on accuracy and time results. Machine Learning, 50(3):251–277, Mar.
2003.

[29] D. Brélaz. New methods to color the vertices of a graph. Commun. ACM, 22:251–256,
apr 1979.

[30] C. E. Brodley. Addressing the selective superiority problem: Automatic algorithm/model
class selection. In 10th International Machine Learning Conference(ICML’93), pages
17–24, 1993.

[31] K. L. Brown, E. Nudelman, G. Andrew, J. Mcfadden, and Y. Shoham. Boosting as a
Metaphor for Algorithm Design. In F. Rossi, editor, Principles and Practice of Con-
straint Programming - CP 2003, 9th International Conference, CP 2003, Kinsale, Ire-
land, September 29 - October 3, 2003, Proceedings, volume 2833 of Lecture Notes in
Computer Science, pages 899–903. Springer, 2003.

[32] K. L. Brown, E. Nudelman, and Y. Shoham. Empirical hardness models: Methodology
and a case study on combinatorial auctions. J. ACM, 56(4):1–52, 2009.

[33] E. K. Burke, J. Marecek, A. J. Parkes, and H. Rudová. On a clique-based integer pro-
gramming formulation of vertex colouring with applications in course timetabling. CoRR,
abs/0710.3603, 2007.

[34] E. K. Burke, J. Mareček, A. J. Parkes, and H. Rudová. On a clique-based integer program-
ming formulation of vertex colouring with applications in course timetabling. Technical
Report NOTTCS-TR-2007-10, The University of Nottingham, Nottingham, 2007.

[35] E. K. Burke, B. Mccollum, A. Meisels, S. Petrovic, and R. Qu. A graph-based hyper-
heuristic for educational timetabling problems. European Journal of Operational Re-
search, 176:177–192, 2007.

115

[36] M. Campelo, V. A. Campos, and R. C. Corrêa. On the asymmetric representatives for-
mulation for the vertex coloring problem. Discrete Applied Mathematics, 156(7):1097 –
1111, 2008.

[37] M. Caramia and P. Dell’Olmo. A fast and simple local search for graph coloring. In
Proceedings of the 3rd International Workshop on Algorithm Engineering, WAE ’99,
pages 316–329, London, UK, UK, 1999. Springer-Verlag.

[38] M. Caramia and P. Dell’Olmo. Bounding vertex coloring by truncated multistage branch
and bound. Networks, 44(4):231–242, Dec. 2004.

[39] M. Caramia and P. Dell’Olmo. Coloring graphs by iterated local search traversing feasible
and infeasible solutions. Discrete Applied Mathematics, 156(2):201–217, Jan. 2008.

[40] M. Caramia and P. Dell’Olmo. Embedding a novel objective function in a two-phased
local search for robust vertex coloring. European Journal of Operational Research,
189(3):1358 – 1380, 2008.

[41] M. Caramia, P. Dell’Olmo, and G. F. Italiano. Checkcol: Improved local search for graph
coloring. Journal of Discrete Algorithms, 4(2):277 – 298, 2006.

[42] T. Carchrae and J. C. Beck. Low-knowledge algorithm control. In D. L. McGuinness and
G. Ferguson, editors, AAAI, pages 49–54. AAAI Press / The MIT Press, 2004.

[43] R. Caruana, N. Karampatziakis, and A. Yessenalina. An empirical evaluation of super-
vised learning in high dimensions. In Proceedings of the 25th international conference
on Machine learning, ICML ’08, pages 96–103, New York, NY, USA, 2008. ACM.

[44] G. Chaitin. Register allocation and spilling via graph coloring. SIGPLAN Not., 39(4):66–
74, Apr. 2004.

[45] D. Chalupa. Population-based and learning-based metaheuristic algorithms for the graph
coloring problem. In Proceedings of the 13th annual conference on Genetic and evolu-
tionary computation, GECCO ’11, pages 465–472, New York, NY, USA, 2011. ACM.

[46] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard problems are. In
Proceedings of the 12th international joint conference on Artificial intelligence - Volume
1, IJCAI’91, pages 331–337, San Francisco, CA, USA, 1991. Morgan Kaufmann Pub-
lishers Inc.

[47] M. Chiarandini. Stochastic Local Search Methods for Highly Constrained Combinatorial
Optimisation Problems. PhD thesis, TU Darmstadt, aug 2005.

[48] M. Chiarandini, I. Dumitrescu, and T. Stützle. Stochastic local search algorithms for
the graph colouring problem. In T. F. Gonzalez, editor, Handbook of Approximation
Algorithms and Metaheuristics, Computer & Information Science Series, pages 63.1–
63.17. Chapman & Hall/CRC, Boca Raton, FL, USA, 2007.

116

[49] M. Chiarandini, I. Dumitrescu, and T. Stützle. Very large-scale neighborhood search:
Overview and case studies on coloring problems. In C. Blum, M. J. B. Aguilera, A. Roli,
and M. Sampels, editors, Hybrid Metaheuristics, volume 114 of Studies in Computational
Intelligence, pages 117–150. Springer, 2008.

[50] M. Chiarandini, G. Galbiati, and S. Gualandi. Efficiency issues in the RLF heuristic for
graph coloring. In L. D. Gaspero, A. Schaerf, and T. Stützle, editors, Proceedings of the
9th Metaheuristics International Conference, MIC 2011, pages 461–469, Udine, Italy,
2011. Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica, Università di Udine.

[51] M. Chiarandini and T. Stützle. An application of iterated local search to graph coloring. In
D. S. Johnson, A. Mehrotra, and M. A. Trick, editors, Proceedings of the Computational
Symposium on Graph Coloring and its Generalizations, pages 112–125, Ithaca, New
York, USA, sep 2002.

[52] M. Chiarandini and T. Stützle. An analysis of heuristics for vertex colouring. In P. Festa,
editor, Experimental Algorithms, volume 6049 of Lecture Notes in Computer Science,
pages 326–337. Springer Berlin / Heidelberg, 2010.

[53] M. Chiarandini and T. Stützle. Online compendium to the article: An analysis of heuris-
tics for vertex colouring. http://www.imada.sdu.dk/~marco/gcp-study/,
2010.

[54] N. Christofides. An algorithm for the chromatic number of a graph. The Computer
Journal, 14(1):38–39, 1971.

[55] G. F. Cooper and E. Herskovits. A bayesian method for constructing bayesian belief
networks from databases. In Proceedings of the seventh conference (1991) on Uncertainty
in artificial intelligence, pages 86–94, San Francisco, CA, USA, 1991. Morgan Kaufmann
Publishers Inc.

[56] G. F. Cooper and E. Herskovits. A bayesian method for the induction of probabilistic
networks from data. Machine Learning, 9(4):309–347, Oct. 1992.

[57] C. Cortes and V. N. Vapnik. Support-vector networks. Machine Learning, 20:273–297,
1995.

[58] T. Cover and P. Hart. Nearest neighbor pattern classification. Information Theory, IEEE
Transactions on, 13(1):21–27, Jan. 1967.

[59] J. Culberson and A. Beacham. Hiding our colors. In CP’95 Workshop on Studying and
Solving Really Hard Problems, pages 31–42, 1995.

[60] J. C. Culberson. On the futility of blind search: An algorithmic view of “no free lunch”.
Evolutionary Computation, 6(2):109–127, June 1998.

117

http://www.imada.sdu.dk/~marco/gcp-study/

[61] J. C. Culberson and F. Luo. Exploring the k-colorable landscape with iterated greedy. In
Dimacs Series in Discrete Mathematics and Theoretical Computer Science, pages 245–
284. American Mathematical Society, 1995.

[62] J. C. Culberson and F. Luo. Exploring the k-colorable landscape with iterated greedy. In
Dimacs Series in Discrete Mathematics and Theoretical Computer Science, pages 245–
284. American Mathematical Society, 1995.

[63] V. Cutello, G. Nicosia, and M. Pavone. A hybrid immune algorithm with information
gain for the graph coloring problem. In Proceedings of the 2003 international conference
on Genetic and evolutionary computation: PartI, GECCO’03, pages 171–182, Berlin,
Heidelberg, 2003. Springer-Verlag.

[64] M. Dash and H. Liu. Feature selection for classification. Intelligent Data Analysis, 1:131–
156, 1997.

[65] L. Davis. Order-based genetic algorithms and the graph coloring problem. In Handbook
of Genetic Algorithms, pages 72–90. Van Nostrand Reinhold; New York, 1991.

[66] A. de Carvalho and A. Freitas. A tutorial on multi-label classification techniques. In
A. Abraham, A.-E. Hassanien, and V. Snášel, editors, Foundations of Computational In-
telligence Volume 5, volume 205 of Studies in Computational Intelligence, pages 177–
195. Springer Berlin / Heidelberg, 2009.

[67] C. Demetrescu and G. F. Italiano. What do we learn from experimental algorithmics?
In Proceedings of the 25th International Symposium on Mathematical Foundations of
Computer Science, MFCS ’00, pages 36–51, London, UK, UK, 2000. Springer-Verlag.

[68] A. Dermaku, T. Ganzow, G. Gottlob, B. J. McMahan, N. Musliu, and M. Samer. Heuristic
methods for hypertree decomposition. In A. F. Gelbukh and E. F. Morales, editors, MICAI,
volume 5317 of Lecture Notes in Computer Science, pages 1–11. Springer, 2008.

[69] I. Devarenne, H. Mabed, and A. Caminada. Intelligent neighborhood exploration in local
search heuristics. In Proceedings of the 18th IEEE International Conference on Tools
with Artificial Intelligence, ICTAI ’06, pages 144–150, Washington, DC, USA, 2006.
IEEE Computer Society.

[70] A. Di Blas, A. Jagota, and R. Hughey. Energy function-based approaches to graph color-
ing. Transactions on Neural Networks, 13(1):81–91, Jan. 2002.

[71] A. Di Blas, A. Jagota, and R. Hughey. A range-compaction heuristic for graph coloring.
Journal of Heuristics, 9(6):489–506, Dec. 2003.

[72] M. Dorigo and T. Stützle. Ant colony optimization. MIT Press, 2004.

[73] R. Dorne and J.-K. Hao. A new genetic local search algorithm for graph coloring. In Pro-
ceedings of the 5th International Conference on Parallel Problem Solving from Nature,
PPSN V, pages 745–754, London, UK, UK, 1998. Springer-Verlag.

118

[74] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of
continuous features. In MACHINE LEARNING: PROCEEDINGS OF THE TWELFTH
INTERNATIONAL CONFERENCE, pages 194–202. Morgan Kaufmann, 1995.

[75] K. A. Dowsland and J. M. Thompson. An improved ant colony optimisation heuristic for
graph colouring. Discrete Applied Mathematics, 156(3):313–324, Feb. 2008.

[76] S. Droste, T. Jansen, and I. Wegener. Optimization with randomized search heuristics
- the (a)nfl theorem, realistic scenarios, and difficult functions. Theoretical Computer
Science, 287(1):131 – 144, 2002.

[77] A. E. Eiben, J. K. Van der Hauw, and J. Van Hemert. Graph coloring with adaptive
evolutionary algorithms. Journal of Heuristics, 4(1):25–46, June 1998.

[78] D. Eppstein. Small maximal independent sets and faster exact graph coloring. In Pro-
ceedings of the 7th International Workshop on Algorithms and Data Structures, WADS
’01, pages 462–470, London, UK, UK, 2001. Springer-Verlag.

[79] A. E. Eraghi, J. A. Torkestani, and M. R. Meybodi. Cellular learning automata-based
graph coloring problem. In Machine Learning and Computing: Selected, Peer Reviewed
Papers from the 2009 International Conference on Machine Learning and Computing
(ICMLC 2009), Perth, Australia, 2011. IPCSIT.

[80] R. Ewald. Experimentation methodology. In Automatic Algorithm Selection for Complex
Simulation Problems, pages 203–246. Vieweg+Teubner Verlag, 2012.

[81] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-valued at-
tributes for classification learning. In R. Bajcsy, editor, IJCAI, pages 1022–1029. Morgan
Kaufmann, 1993.

[82] U. Feige and J. Kilian. Zero knowledge and the chromatic number. Journal of Computer
and System Sciences, 57(2):187–199, Oct. 1998.

[83] E. Fink. How to solve it automatically: Selection among problem solving methods. In
R. G. Simmons, M. M. Veloso, and S. F. Smith, editors, AIPS, pages 128–136. AAAI,
1998.

[84] D. Fotakis, S. D. Likothanassis, and S. K. Stefanakos. An evolutionary annealing ap-
proach to graph coloring. In Proceedings of the EvoWorkshops on Applications of Evolu-
tionary Computing, pages 120–129, London, UK, UK, 2001. Springer-Verlag.

[85] L. C. Freeman. A Set of Measures of Centrality Based on Betweenness. Sociometry,
40(1):35–41, Mar. 1977.

[86] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine
Learning, 29(2-3):131–163, 1997.

119

[87] M. Gagliolo and J. Schmidhuber. Dynamic algorithm portfolios, jan 2006. AI&MATH
’06 — Ninth International Symposium on Artificial Intelligence and Mathematics.

[88] M. Gagliolo and J. Schmidhuber. Learning dynamic algorithm portfolios. Annals of
Mathematics and Artificial Intelligence, 47(3):295–328, aug 2006.

[89] M. Gagliolo and J. Schmidhuber. Algorithm selection as a bandit problem with un-
bounded losses. In Blum and Battiti [21], pages 82–96.

[90] P. Galinier and J.-K. Hao. Hybrid evolutionary algorithms for graph coloring. Journal of
Combinatorial Optimization, 3:379–397, 1999.

[91] P. Galinier and A. Hertz. A survey of local search methods for graph coloring. Computers
and Operations Research, 33(9):2547–2562, Sept. 2006.

[92] P. Galinier, A. Hertz, and N. Zufferey. An adaptive memory algorithm for the k-coloring
problem. Discrete Applied Mathematics, 156(2):267–279, Jan. 2008.

[93] A. Gamst. Some lower bounds for a class of frequency assignment problems. Vehicular
Technology, IEEE Transactions on, 35(1):8 – 14, feb 1986.

[94] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[95] M. R. Garey, D. S. Johnson, and S. C. Hing. An application of graph coloring to printed
circuit testing. Circuits and Systems, IEEE Transactions on, 23(10):591 – 599, oct. 1976.

[96] D. Gassen and J. Carothers. Graph color minimization using neural networks. In Neural
Networks, 1993. IJCNN ’93-Nagoya. Proceedings of 1993 International Joint Conference
on, volume 2, pages 1541 – 1544 vol.2, oct. 1993.

[97] C. Gebruers, A. Guerri, B. Hnich, and M. Milano. Making choices using structure at
the instance level within a case based reasoning framework. In CPAIOR, pages 380–386.
Springer Verlag, 2004.

[98] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. T. Schneider, and S. Ziller. A
portfolio solver for answer set programming: preliminary report. In Proceedings of the
11th international conference on Logic programming and nonmonotonic reasoning, LP-
NMR’11, pages 352–357, Berlin, Heidelberg, 2011. Springer-Verlag.

[99] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365–385, 1991.

[100] S. Ghodke and T. Baldwin. An investigation into the interaction between feature selection
and discretization: Learning how and when to read numbers. In M. Orgun and J. Thorn-
ton, editors, AI 2007: Advances in Artificial Intelligence, volume 4830 of Lecture Notes
in Computer Science, pages 48–57. Springer Berlin / Heidelberg, 2007.

120

[101] K. Giaro, M. Kubale, and P. Obszarski. A graph coloring approach to scheduling of mul-
tiprocessor tasks on dedicated machines with availability constraints. Discrete Applied
Mathematics, 157(17):3625–3630, 2009.

[102] C. Glass. Bag rationalisation for a food manufacturer. Journal of the Operational Re-
search Society, 53(5):544–551, 2002.

[103] F. Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, Jul 1990.

[104] F. Glover, M. Parker, and J. Ryan. Coloring by tabu branch and bound. In Johnson and
Trick [136], pages 285–307.

[105] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

[106] C. P. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence, 126(1-2):43–62,
Feb. 2001.

[107] S. Gualandi and F. Malucelli. Exact solution of graph coloring problems via constraint
programming and column generation. INFORMS Journal on Computing, 2011. Published
online.

[108] A. Guerri and M. Milano. Learning Techniques for Automatic Algorithm Portfolio Se-
lection. In R. L. de Mántaras and L. Saitta, editors, Proceedings of the 16th Eureopean
Conference on Artificial Intelligence, ECAI’2004, including Prestigious Applicants of In-
telligent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004, pages 475–479. IOS
Press, 2004.

[109] H. Guo. Algorithm selection for sorting and probabilistic inference: a machine learning-
based approach. PhD thesis, Kansas State University, Manhattan, KS, USA, 2003.

[110] H. Guo and W. H. Hsu. A learning-based algorithm selection meta-reasoner for the real-
time mpe problem. In Proceedings of the 17th Australian joint conference on Advances in
Artificial Intelligence, AI’04, pages 307–318, Berlin, Heidelberg, 2004. Springer-Verlag.

[111] H. Guo and W. H. Hsu. A machine learning approach to algorithm selection for np-hard
optimization problems: a case study on the mpe problem. Annals of Operations Research,
156:61–82, 2007.

[112] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. The Journal
of Machine Learning Research, 3:1157–1182, Mar. 2003.

[113] P. Hage and F. Harary. Eccentricity and centrality in networks. Social Networks, 17(1):57
– 63, 1995.

[114] R. Halin. S-functions for graphs. Journal of Geometry, 8:171–186, 1976.

[115] M. A. Hall. Correlation-based Feature Subset Selection for Machine Learning. PhD
thesis, University of Waikato, Hamilton, New Zealand, 1998.

121

[116] J.-P. Hamiez and J.-K. Hao. Scatter search for graph coloring. In Selected Papers from
the 5th European Conference on Artificial Evolution, pages 168–179, London, UK, UK,
2002. Springer-Verlag.

[117] P. Hansen, M. Labbé, and D. Schindl. Set covering and packing formulations of graph
coloring: Algorithms and first polyhedral results. Discrete Optimization, 6(2):135 – 147,
2009.

[118] J.-k. Hao and D. Porumbel. Recent advances in graph vertex coloring. In Handbook of
Optimization: From Classical to Modern Approach, 2012.

[119] A. K. Hartmann and M. Weigt. Statistical mechanics of the vertex-cover problem. Journal
of Physics A: Mathematical and General, 36(43):11069–11093, Oct 2003.

[120] D. Heckerman. A tutorial on learning with bayesian networks. Technical report, Learning
in Graphical Models, 1996.

[121] S. Held, W. Cook, and E. C. Sewell. Safe lower bounds for graph coloring. In Pro-
ceedings of the 15th international conference on Integer programming and combinatoral
optimization, IPCO’11, pages 261–273, Berlin, Heidelberg, 2011. Springer-Verlag.

[122] A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Computing,
39(4):345–351, Dec. 1987.

[123] A. Hertz, M. Plumettaz, and N. Zufferey. Variable space search for graph coloring. Dis-
crete Applied Mathematics, 156(13):2551–2560, July 2008.

[124] A. Hertz and M. Widmer. Guidelines for the Use of Meta-Heuristics in Combinatorial
Optimization. European Journal of Operational Research, 151:247–252, 2003.

[125] T. K. Ho. Random decision forests. In ICDAR, pages 278–, 1995.

[126] T. K. Ho. The random subspace method for constructing decision forests. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 20(8):832–844, Aug. 1998.

[127] J. N. Hooker. Testing heuristics: We have it all wrong. Journal of Heuristics, 1:33–42,
1995.

[128] E. Horvitz and J. Breese. Ideal partition of resources for metareasoning. Technical report,
Knowledge Systems Laboratory, Stanford University, February 1990.

[129] E. N. Houstis, A. C. Catlin, J. R. Rice, V. S. Verykios, N. Ramakrishnan, and C. E.
Houstis. Pythia-ii: a knowledge/database system for managing performance data and
recommending scientific software. ACM Trans. Math. Softw., 26(2):227–253, June 2000.

[130] B. A. Huberman, R. M. Lukose, and T. Hogg. An economics approach to hard computa-
tional problems. Science, 27:51–53, 1997.

122

[131] G. H. John. Enhancements to the data mining process. PhD thesis, Stanford University,
Stanford, CA, USA, 1997.

[132] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection
problem. In MACHINE LEARNING: PROCEEDINGS OF THE ELEVENTH INTER-
NATIONAL, pages 121–129. Morgan Kaufmann, 1994.

[133] D. J. Johnson and M. A. Trick, editors. Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, Workshop, October 11-13, 1993. American Mathe-
matical Society, Boston, MA, USA, 1996.

[134] D. S. Johnson. A theoretician’s guide to the experimental analysis of algorithms. Data
structures, near neighbor searches, and methodology: fifth and sixth dimacs implementa-
tion challenges, 59:215–250, 1996.

[135] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by simulated
annealing: an experimental evaluation; part ii, graph coloring and number partitioning.
Operations Research, 39(3):378–406, May 1991.

[136] D. S. Johnson and M. Trick, editors. Cliques, Coloring, and Satisfiability: Second DI-
MACS Implementation Challenge, volume 26 of DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science. American Mathematical Society, Providence, RI,
USA, Boston, MA, USA, 1996.

[137] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann. Algorithm
selection and scheduling. In J. H.-M. Lee, editor, CP, volume 6876 of Lecture Notes in
Computer Science, pages 454–469. Springer, 2011.

[138] J. Kanda, A. Carvalho, E. Hruschka, and C. Soares. Selection of algorithms to solve
traveling salesman problems using meta-learning. Neural Networks, 8(3):117–128, 2011.

[139] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, The IBM Research Symposia
Series, pages 85–103. Plenum Press, New York, 1972.

[140] S. Kirkpatrick, D. C. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, Number 4598, 13 May 1983, 220, 4598:671–680, May 1983.

[141] D. Kirovski and M. Potkonjak. Efficient coloring of a large spectrum of graphs. In
Proceedings of the 35th annual Design Automation Conference, DAC ’98, pages 427–
432, New York, NY, USA, 1998. ACM.

[142] D. E. Knuth. Big omicron and big omega and big theta. SIGACT News, 8(2):18–24, Apr.
1976.

[143] D. E. Knuth. The art of computer programming. Number Bd. 3 in Addison-Wesley series
in computer science and information processing. Addison-Wesley, 1981.

123

[144] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence,
97(1-2):273–324, Dec. 1997.

[145] I. Kononenko. On biases in estimating multi-valued attributes. In Proceedings of the
14th international joint conference on Artificial intelligence - Volume 2, IJCAI’95, pages
1034–1040, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[146] L. Kotthoff. Algorithm selection for combinatorial search problems literature summary.
http://www.cs.st-andrews.ac.uk/~larsko/assurvey/, 2012. [Online;
accessed 03-October-2012].

[147] L. Kotthoff. On Algorithm Selection, with an Application to Combinatorial Search Prob-
lems. PhD thesis, University of St Andrews, 2012.

[148] L. Kotthoff, I. P. Gent, and I. Miguel. A preliminary evaluation of machine learning in
algorithm selection for search problems. In D. Borrajo, M. Likhachev, and C. L. López,
editors, SOCS. AAAI Press, 2011.

[149] F. Krzakala and J. Kurchan. Landscape analysis of constraint satisfaction problems. Phys-
ical Review E, 76(2), Aug. 2007.

[150] M. Kubale. Graph Colorings. Contemporary mathematics - American Mathematical
Society. American Mathematical Society, 2004.

[151] M. Kuramochi and G. Karypis. Gene classification using expression profiles: A feasibility
study. In Proceedings of the 2nd IEEE International Symposium on Bioinformatics and
Bioengineering, BIBE ’01, pages 191–, Washington, DC, USA, 2001. IEEE Computer
Society.

[152] M. G. Lagoudakis and M. L. Littman. Algorithm selection using reinforcement learning.
In Proceedings of the Seventeenth International Conference on Machine Learning, ICML
’00, pages 511–518, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[153] M. G. Lagoudakis and M. L. Littman. Learning to Select Branching Rules in the DPLL
Procedure for Satisfiability. Electronic Notes in Discrete Mathematics, 9:344–359, June
2001.

[154] M. G. Lagoudakis, M. L. Littman, and R. E. Parr. Selecting the right algorithm. In
C. Gomes and T. Walsh, editors, Proceedings of the 2001 AAAI Fall Symposium Series:
Using Uncertainty within Computation, Cape Cod, MA, USA, November 2001, 2001.

[155] M. Laguna and R. Martí. A grasp for coloring sparse graphs. Computational Optimization
and Applications, 19(2):165–178, July 2001.

[156] P. Langley and S. Sage. Scaling to domains with irrelevant features. In R. Greiner,
T. Petsche, and S. J. Hanson, editors, Computational learning theory and natural learning
systems: Volume IV, pages 51–63. MIT Press, Cambridge, MA, USA, 1997.

124

http://www.cs.st-andrews.ac.uk/~larsko/assurvey/

[157] F. T. Leighton. A graph coloring algorithm for large scheduling problems. Journal of
Research of the National Bureau of Standards, 84(6):489–506, 1979.

[158] R. Leite, P. Brazdil, and J. Vanschoren. Selecting classification algorithms with active
testing. In Proceedings of the 8th international conference on Machine Learning and
Data Mining in Pattern Recognition, MLDM’12, pages 117–131, Berlin, Heidelberg,
2012. Springer-Verlag.

[159] D. Ler, I. Koprinska, and S. Chawla. A proposed meta-learning framework for algo-
rithm selection utilising. Technical report, University of Sydney, School of Information
Technologies, 2005.

[160] R. Lewis, J. Thompson, C. L. Mumford, and J. W. Gillard. A wide-ranging computational
comparison of high-performance graph colouring algorithms. Computers & Operations
Research, 39(9):1933–1950, Sept. 2012.

[161] H. Liu and R. Setiono. A probabilistic approach to feature selection - a filter solution. In
13th International Conference on Machine Learning, pages 319–327, 1996.

[162] L. Lobjois and M. Lemaître. Branch and bound algorithm selection by performance pre-
diction. In Proceedings of the fifteenth national/tenth conference on Artificial intelli-
gence/Innovative applications of artificial intelligence, AAAI ’98/IAAI ’98, pages 353–
358, Menlo Park, CA, USA, 1998. American Association for Artificial Intelligence.

[163] S. Loudni. Intensification/diversification-driven ils for a graph coloring problem. In
Proceedings of the 12th European conference on Evolutionary Computation in Combi-
natorial Optimization, EvoCOP’12, pages 160–171, Berlin, Heidelberg, 2012. Springer-
Verlag.

[164] Z. Lü and J.-K. Hao. A memetic algorithm for graph coloring. European Journal of
Operational Research, 203(1):241 – 250, 2010.

[165] D. R. Luce and A. D. Perry. A method of matrix analysis of group structure. Psychome-
trika, 14:95–116, 1949.

[166] C. Lucet, F. Mendes, and A. Moukrim. An exact method for graph coloring. Computers
& Operations Research, 33(8):2189–2207, 2006.

[167] D. Mahjoub and D. W. Matula. Constructing efficient rotating backbones in wireless
sensor networks using graph coloring. Computer Communications, 35(9):1086–1097,
May 2012.

[168] E. Malaguti. The Vertex Coloring Problem and its Generalizations. PhD thesis, University
of Bologna, may 2007.

[169] E. Malaguti, M. Monaci, and P. Toth. A metaheuristic approach for the vertex coloring
problem. INFORMS Journal on Computing, 20(2):302–316, Apr. 2008.

125

[170] E. Malaguti and P. Toth. A survey on vertex coloring problems. International Transac-
tions in Operational Research, pages 1–34, 2009.

[171] Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann. Non-model-based algo-
rithm portfolios for sat. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6695 LNCS:369–
370, 2011.

[172] M. Maratea, L. Pulina, and F. Ricca. Applying machine learning techniques to asp solv-
ing. In A. Dovier and V. S. Costa, editors, ICLP (Technical Communications), volume 17
of LIPIcs, pages 37–48. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[173] M. Maratea, L. Pulina, and F. Ricca. The multi-engine asp solver me-asp. In L. F.
del Cerro, A. Herzig, and J. Mengin, editors, JELIA, volume 7519 of Lecture Notes in
Computer Science, pages 484–487. Springer, 2012.

[174] S. McConnell. Code Complete, Second Edition, chapter 28. Microsoft Press, Redmond,
WA, USA, 2004.

[175] A. Mehrotra and M. A. Trick. A column generation approach for graph coloring. IN-
FORMS Journal on Computing, 8:344–354, 1995.

[176] I. Méndez-Díaz and P. Zabala. A branch-and-cut algorithm for graph coloring. Discrete
Applied Mathematics, 154(5):826–847, Apr. 2006.

[177] I. Méndez-Díaz and P. Zabala. A cutting plane algorithm for graph coloring. Discrete
Applied Mathematics, 156(2):159–179, Jan. 2008.

[178] T. Messelis and P. De Causmaecker. An algorithm selection approach for nurse rostering.
In Proceedings of the 23rd Benelux Conference on Artificial Intelligence,, pages 160–166.
Nevelland, Nov. 2011.

[179] M. Mézard, M. Palassini, and O. Rivoire. Landscape of solutions in constraint satisfaction
problems. CoRR, abs/cond-mat/0507451, 2005.

[180] K. Mizuno and S. Nishihara. Toward ordered generation of exceptionally hard instances
for graph 3-colorability. In D. S. Johnson, A. Mehrotra, and M. A. Trick, editors, Pro-
ceedings of the Computational Symposium on Graph Coloring and its Generalizations,
pages 1–8, Ithaca, New York, USA, 2002.

[181] K. Mizuno and S. Nishihara. Constructive generation of very hard 3-colorability in-
stances. Discrete Applied Mathematics, 156(2):218–229, Jan. 2008.

[182] M. Morak, N. Musliu, R. Pichler, S. Rümmele, and S. Woltran. Evaluating tree-
decomposition based algorithms for answer set programming. In Y. Hamadi and
M. Schoenauer, editors, Learning and Intelligent Optimization, Lecture Notes in Com-
puter Science, pages 130–144. Springer Berlin Heidelberg, 2012.

126

[183] B. M. E. Moret. Towards a discipline of experimental algorithmics. DIMACS Monographs
in Discrete Mathematics and Theoretical Computer Science, 2002.

[184] C. Morgenstern. Distributed coloration neighborhood search. In Johnson and Trick [136],
pages 335–357.

[185] P. Moscato. On evolution, search, optimization, genetic algorithms and martial arts -
towards memetic algorithms. Technical report, California Institute of Technology, 1989.

[186] N. Musliu. An iterative heuristic algorithm for tree decomposition. In C. Cotta and
J. I. van Hemert, editors, Recent Advances in Evolutionary Computation for Combinato-
rial Optimization, volume 153 of Studies in Computational Intelligence, pages 133–150.
Springer, 2008.

[187] N. Musliu and W. Schafhauser. Genetic algorithms for generalised hypertree decomposi-
tions. European Journal of Industrial Engineering, 1(3):317–340, 2007.

[188] C. Nadeau and Y. Bengio. Inference for the generalization error. Machine Learning,
52(3):239–281, Sept. 2003.

[189] M. Nikolic, F. Maric, and P. Janicic. Simple algorithm portfolio for sat. Artificial Intelli-
gence Review, pages 1–9, 2011. 10.1007/s10462-011-9290-2.

[190] E. Nudelman. Empirical approach to the complexity of hard problems. PhD thesis, Stan-
ford University, Stanford, CA, USA, 2006.

[191] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan. Using case-based
reasoning in an algorithm portfolio for constraint solving. In 19th Irish Conference on AI,
2008.

[192] A. Pahlavani and K. Eshghi. A hybrid algorithm of simulated annealing and tabu search
for graph colouring problem. International Journal of Operational Research, 11(2):136,
2011.

[193] L. Paquete and T. Stützle. An experimental investigation of iterated local search for color-
ing graphs. In Proceedings of the Applications of Evolutionary Computing on EvoWork-
shops 2002: EvoCOP, EvoIASP, EvoSTIM/EvoPLAN, pages 122–131, London, UK, UK,
2002. Springer-Verlag.

[194] P. M. Pardalos and J. Xue. The maximum clique problem. Journal of Global Optimiza-
tion, 4:301–328, 1994.

[195] V. T. Paschos. Polynomial approximation and graph-coloring. Computing, 70:41–86,
2003. 10.1007/s00607-002-1468-7.

[196] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. Meta-learning by landmarking vari-
ous learning algorithms. In Proceedings of the Seventeenth International Conference on
Machine Learning, pages 743–750. Morgan Kaufmann, 2000.

127

[197] W. J. M. Philipsen and L. Stok. Graph coloring using neural networks. In Circuits and
Systems, 1991., IEEE International Sympoisum on, pages 1597 –1600 vol.3, jun 1991.

[198] E. Pitzer, M. Affenzeller, and A. Beham. A closer look down the basins of attraction. In
Computational Intelligence (UKCI), 2010 UK Workshop on, pages 1 –6, sept. 2010.

[199] J. C. Platt. Fast training of support vector machines using sequential minimal optimiza-
tion. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in kernel
methods, pages 185–208. MIT Press, Cambridge, MA, USA, 1999.

[200] M. Plumettaz, D. Schindl, and N. Zufferey. Ant local search and its efficient adaptation
to graph colouring. JORS, 61(5):819–826, 2010.

[201] D. C. Porumbel, J.-K. Hao, and P. Kuntz. Diversity control and multi-parent recombi-
nation for evolutionary graph coloring algorithms. In Proceedings of the 9th European
Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP ’09,
pages 121–132, Berlin, Heidelberg, 2009. Springer-Verlag.

[202] D. C. Porumbel, J.-K. Hao, and P. Kuntz. Position-guided tabu search algorithm for
the graph coloring problem. In T. Stützle, editor, Learning and Intelligent Optimization,
pages 148–162. Springer-Verlag, Berlin, Heidelberg, 2009.

[203] D. C. Porumbel, J.-K. Hao, and P. Kuntz. An evolutionary approach with diversity guar-
antee and well-informed grouping recombination for graph coloring. Computers and
Operations Research, 37(10):1822–1832, Oct. 2010.

[204] D. C. Porumbel, J.-K. Hao, and P. Kuntz. A search space "cartography" for guiding graph
coloring heuristics. Computers and Operations Research, 37(4):769–778, Apr. 2010.

[205] P. Prakasam, M. Toulouse, G. T. Crainic, and R. Qu. Design of a multilevel cooperative
heuristic for the graph coloring problem. In LION 2009 (III), Lecture Notes in Computer
Science. Springer, 2009.

[206] L. Pulina and A. Tacchella. A multi-engine solver for quantified boolean formulas. In
Proceedings of the 13th international conference on Principles and practice of constraint
programming, CP’07, pages 574–589, Berlin, Heidelberg, 2007. Springer-Verlag.

[207] L. Pulina and A. Tacchella. Aqme’10. JSAT, 7(2-3):65–70, 2010.

[208] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, Mar. 1986.

[209] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1993.

[210] N. J. Radcliffe and P. D. Surry. Fundamental Limitations on Search Algorithms: Evolu-
tionary Computing in Perspective. In Lecture Notes in Computer Science 1000, volume
1000, pages 275–291, 1995.

128

[211] R. L. Rardin and R. Uzsoy. Experimental evaluation of heuristic optimization algorithms:
A tutorial. Journal of Heuristics, 7(3):261–304, May 2001.

[212] I. Rebollo-Ruiz and M. G. Romay. Further results of gravitational swarm intelligence for
graph coloring. In NaBIC, pages 183–188. IEEE, 2011.

[213] I. Rebollo-Ruiz and M. G. Romay. Gravitational swarm approach for graph coloring.
In D. A. Pelta, N. Krasnogor, D. Dumitrescu, C. Chira, and R. I. Lung, editors, NICSO,
volume 387 of Studies in Computational Intelligence, pages 159–168. Springer, 2011.

[214] J. R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976.

[215] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall Series
in Artificial Intelligence. Prentice Hall, 2010.

[216] E. Salari and K. Eshghi. An aco algorithm for graph coloring problem. In Computational
Intelligence Methods and Applications, 2005 ICSC Congress on, pages 1–5, 2005.

[217] H. Samulowitz and R. Memisevic. Learning to solve qbf. In Proceedings of the 22nd na-
tional conference on Artificial intelligence - Volume 1, AAAI’07, pages 255–260. AAAI
Press, 2007.

[218] J. Silberholz and B. Golden. Comparison of metaheuristics. In M. Gendreau and J.-
Y. Potvin, editors, Handbook of Metaheuristics, volume 146 of International Series in
Operations Research & Management Science, pages 625–640. Springer US, 2010.

[219] B. Silverthorn and R. Miikkulainen. Latent Class Models for Algorithm Portfolio Meth-
ods. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010.

[220] D. Singh, N. Mehta, and P. Purohit. Text based image recognition using multilayer percep-
tron. Special issues on IP Multimedia Communications, (1):143–146, oct 2011. Published
by Foundation of Computer Science, New York, USA.

[221] S. N. Sivanandam, S. Sumathi, and T. Hamsapriya. A hybrid parallel genetic algorithm
approach for graph coloring. International Journal of Knowledge-based and Intelligent
Engineering Systems, 9(3):249–259, Aug. 2005.

[222] K. Smith-Miles and L. Lopes. Measuring instance difficulty for combinatorial optimiza-
tion problems. Computers & OR, 39(5):875–889, 2012.

[223] K. Smith-Miles, J. I. van Hemert, and X. Y. Lim. Understanding tsp difficulty by learning
from evolved instances. In Blum and Battiti [21], pages 266–280.

[224] K. A. Smith-Miles. Towards insightful algorithm selection for optimisation using meta-
learning concepts. In Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on
Computational Intelligence). IEEE International Joint Conference on, pages 4118–4124.
IEEE, june 2008.

129

[225] K. A. Smith-Miles. Cross-disciplinary perspectives on meta-learning for algorithm selec-
tion. ACM Computing Surveys, 41(1):6:1–6:25, Jan. 2009.

[226] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the condor
experience. Concurrency - Practice and Experience, 17(2-4):323–356, 2005.

[227] S. B. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. D. Jong, S. Dzeroski,
S. E. Fahlman, D. Fisher, R. Hamann, K. Kaufman, S. Keller, I. Kononenko, J. Kreuziger,
R. Michalski, T. Mitchell, P. Pachowicz, Y. Reich, H. Vafaie, W. V. D. Welde, W. Wenzel,
J. Wnek, and J. Zhang. The monk’s problems a performance comparison of different
learning algorithms. Technical report, Computer Science Department, Carnegie Mellon
University, Pittsburgh, 1991.

[228] O. Titiloye and A. Crispin. Quantum annealing of the graph coloring problem. Discrete
Optimization, 8(2):376–384, 2011.

[229] J. A. Torkestani and M. R. Meybodi. Graph coloring problem based on learning au-
tomata. In Information Management and Engineering, 2009. ICIME ’09. International
Conference on, pages 718 –722, april 2009.

[230] J. A. Torkestani and M. R. Meybodi. A new vertex coloring algorithm based on variable
action-set learning automata. Computing and Informatics, 29(3):447–466, 2010.

[231] M. A. Trick and H. Yildiz. A large neighborhood search heuristic for graph coloring. In
Proceedings of the 4th international conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, CPAIOR ’07, pages
346–360, Berlin, Heidelberg, 2007. Springer-Verlag.

[232] B. Uestuen, W. Melssen, and L. Buydens. Facilitating the application of Support Vector
Regression by using a universal Pearson VII function based kernel. Chemometrics and
Intelligent Laboratory Systems, 81:29–40, 2006.

[233] A. Van Gelder. Another look at graph coloring via propositional satisfiability. Discrete
Applied Mathematics, 156(2):230–243, 2008.

[234] V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag New York, Inc.,
New York, NY, USA, 1995.

[235] V. Vasilikos and M. G. Lagoudakis. Optimization of heuristic search using recursive
algorithm selection and reinforcement learning. Annals of Mathematics and Artificial
Intelligence, 60:119–151, 2010. 10.1007/s10472-010-9217-7.

[236] M. N. Velev. Exploiting hierarchy and structure to efficiently solve graph coloring as
sat. In Proceedings of the 2007 IEEE/ACM international conference on Computer-aided
design, ICCAD ’07, pages 135–142, Piscataway, NJ, USA, 2007. IEEE Press.

130

[237] R. Venkatesan and L. Levin. Random instances of a graph coloring problem are hard.
In Proceedings of the twentieth annual ACM symposium on Theory of computing, STOC
’88, pages 217–222, New York, NY, USA, 1988. ACM.

[238] C. Voudouris and E. Tsang. Guided local search. Technical report, European Journal of
Operational Research, 1995.

[239] C. C. Wang. An algorithm for the chromatic number of a graph. J. ACM, 21(3):385–391,
July 1974.

[240] D. J. Watts and S. H. Strogatz. Collective dynamics of /‘small-world/’ networks. Nature,
393(6684):440–442, June 1998.

[241] D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph
and its application to timetabling problems. The Computer Journal, 10(1):85–86, 1967.

[242] I. Witten and E. Frank. Data mining: practical machine learning tools and techniques
with Java implementations. The Morgan Kaufmann series in data management systems.
Morgan Kaufmann, 2000.

[243] D. H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural
Computation, 8(7):1341–1390, Oct. 1996.

[244] D. H. Wolpert and W. G. Macready. No free lunch theorems for search. JPL, pages 1–38,
1996.

[245] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE
TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 1(1):67–82, 1997.

[246] C. W. Wu. Graph coloring via synchronization of coupled oscillators. Circuits and Sys-
tems I: Fundamental Theory and Applications, IEEE Transactions on, 45(9):974 –978,
sep 1998.

[247] H. Wu and P. v. Beek. On portfolios for backtracking search in the presence of dead-
lines. In Proceedings of the 19th IEEE International Conference on Tools with Artificial
Intelligence - Volume 01, ICTAI ’07, pages 231–238, Washington, DC, USA, 2007. IEEE
Computer Society.

[248] Q. Wu and J.-K. Hao. Coloring large graphs based on independent set extraction. Com-
puters and Operations Research, 39(2):283–290, Feb. 2012.

[249] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan,
A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg. Top 10
algorithms in data mining. Knowledge and Information Systems, 14(1):1–37, Dec. 2007.

[250] X.-F. Xie and J. Liu. Graph coloring by multiagent fusion search. Journal of Combinato-
rial Optimization, 18(2):99–123, Aug. 2009.

131

[251] L. Xu, H. Hoos, and K. Leyton-Brown. Hydra: Automatically configuring algorithms for
portfolio-based selection. In M. Fox and D. Poole, editors, AAAI. AAAI Press, 2010.

[252] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. Evaluating component solver contri-
butions to portfolio-based algorithm selectors. In Proceedings of the 15th international
conference on Theory and Applications of Satisfiability Testing, SAT’12, pages 228–241,
Berlin, Heidelberg, 2012. Springer-Verlag.

[253] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla: portfolio-based algorithm
selection for sat. Journal of Artificial Intelligence Research, 32:565–606, jun 2008.

[254] L. Xu, F. Hutter, J. Shen, H. Hoos, and K. Leyton-Brown. SATzilla2012: Improved
algorithm selection based on cost-sensitive classification models. Solver description, SAT
Challenge 2012, 2012.

[255] S. R. Yadav, R. R. M. R. Muddada, M. K. Tiwari, and R. Shankar. An algorithm portfolio
based solution methodology to solve a supply chain optimization problem. Expert Systems
with Applications, 36(4):8407–8420, May 2009.

[256] Y. Yang and G. Webb. On why discretization works for naive-bayes classifiers. In
T. Gedeon and L. Fung, editors, AI 2003: Advances in Artificial Intelligence, volume
2903 of Lecture Notes in Computer Science, pages 440–452. Springer Berlin / Heidel-
berg, 2003. 10.1007/978-3-540-24581-0_37.

[257] C.-W. Yeh and K.-R. Wu. A novel dna-based parallel computation for solving graph
coloring problems. In Software Engineering, 2009. WCSE ’09. WRI World Congress on,
volume 2, pages 213 –217, may 2009.

[258] G. Zäpfel, R. Braune, and M. Bögl. Metaheuristic Search Concepts: A Tutorial with
Applications to Production and Logistics. Springer, 2010.

[259] E. Zemel. Measuring the Quality of Approximate Solutions to Zero-One Programming
Problems. Mathematics of Operations Research, 6:319–332, 1981.

[260] M. Zlochin and M. Dorigo. Model-based search for combinatorial optimization: A
comparative study. In Parallel Problem Solving from Nature - PPSN VII: 7th Interna-
tional Conference, volume 2439 of Lecture Notes in Computer Science, pages 651–661,
Granada, Spain, Sept. 2002. Springer Berlin / Heidelberg.

[261] N. Zufferey, P. Amstutz, and P. Giaccari. Graph colouring approaches for a satellite range
scheduling problem. Journal of Scheduling, 11(4):263–277, Aug. 2008.

132

	Introduction
	Objectives
	Main Results
	Organization

	Background
	NP-Problems
	(Meta)heuristics
	Experimental Aspects
	Machine Learning

	Algorithm Selection
	What is a good algorithm?
	No Free Lunch Theorem
	The Algorithm Selection Problem
	Algorithm Selection: Basic Concept

	Algorithm Selection for the GCP
	The Graph Coloring Problem
	Features
	Proposed Approach

	Experimental Setup and Environment
	Algorithms for the Graph Coloring Problem
	Benchmark Graphs
	Test Methodology & Experimental Environment
	Discretization
	Chosen Classification Algorithms
	Feature Selection

	Experimental Results and Evaluation
	Heuristics Evaluation
	Solvers based on Algorithm Selection

	Conclusion and Future Work
	Appendix
	Weka Commands
	Detailed Results
	Feature Subsets
	Most-Selected Features

	Bibliography

