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The minimum shift design problem (MSD) is a scheduling problem that commonly arises in
workforce management activities. Given a collection of shifts and workforce requirements,
the problem consists in finding a minimum cardinality set of work shifts, and the number of
workers to assign to each shift, in order to meet (or minimize the deviation from) prespecified
staff requirements. This problem reduces to a special case of the minimum edge-cost flow
problem (MECF ) for which a logarithmic hardness of approximation lower bound can be
shown. We propose a two-stage heuristic for MSD . The first stage, inspired by the relation
between the MSD and MECF problems, is based on a greedy heuristic that relies on a min-
cost max-flow (MCMF ) subroutine. The second stage is a composite tabu search procedure
based on the interleaving of different neighborhood definitions. We compare our heuristic with

Kyoto, Japan, August 25–28, 2003



mic03-067-2 MIC2003: The Fifth Metaheuristics International Conference

Start End MonTueWenThuFriSatSun
06:00 08:00 2 2 2 6 2 0 0
08:00 09:00 5 5 5 9 5 3 3
09:00 10:00 7 7 7 13 7 5 5
10:00 11:00 9 9 9 15 9 7 7
11:00 14:00 7 7 7 13 7 5 5
14:00 16:00 10 9 7 9 10 5 5
16:00 17:00 7 6 4 6 7 2 2
17:00 22:00 5 4 2 2 5 0 0
22:00 06:00 5 5 5 5 5 5 5

Shift type Possible start times Possible length
M (morning) 06:00 – 08:00 7h – 9h
D (day) 09:00 – 11:00 7h – 9h
A (afternoon) 13:00 – 15:00 7h – 9h
N (night) 22:00 – 24:00 7h – 9h

Table 1: Sample workforce requirements (left side), typical set of shift types (right side).

previous results on publicly available instances. The outcome of the comparison shows that
our heuristic significantly outperforms the previous approach.

1 Introduction

The requirements in an MSD problem are given for h days, which usually span a small multiple
of a week, and are valid for a certain amount of time ranging from a week up to a year. Each
day j is split into n equal-size smaller intervals [ti, ti+1), called timeslots, which can last from
a few minutes up to several hours. The staffing requirement for the ith timeslot (identified by
its starting time ti, i = 0, . . . , n − 1), on day j ∈ {0, . . . , h − 1} is fixed. For every i and j we
are given an integer value bi,j representing the number of persons needed at work from time
ti until time ti+1 on day j, with cyclic repetions after h days.

An example of workforce requirements with h = 7 is shown on the left side of Table 1,
the first day being labeled ‘Mon’ etc. In the table, for conciseness, timeslots with same
requirements are grouped together (the example is adapted from a real call-center). When
designing shifts, not all starting times are feasible, nor are all lengths allowed. For this reason,
the input also includes a collection of shift types, each of them characterized by a minimum
and maximum starting time, a mimimum and maximum length, and time granularity equal to
the length of the timeslots. The right side of Table 1 shows an example of a set of shift types.
Each shift Is,l with starting time ts (s ∈ {0, . . . , n − 1}) and length l, belongs to a type, i.e.,
its length and starting times must necessarily lie inside the intervals defined by one type. In
the following, the type of shift I is denoted by T (I).

The goal of the MSD problem is to decide how many persons xj(Is,l) are going to work
in each shift Is,l for each day j, so that bi,j people will be present at time ti for all i and
j. Let Iti be the collection of shifts that include the timeslot ti. A feasible solution consists
of h numbers xj(I) assigned to each shift I = Is,l so that pi,j :=

∑
I∈Iti

xj(I) = bi,j. That
is, the number of workers present at time ti for all values of i ∈ {0, . . . , n − 1} for all days
j ∈ {0, . . . , h − 1} meets the staffing requirements. However, in practical cases this constraint
is relaxed, so that small deviations are allowed.

To this aim, each solution of the MSD problem is evaluated by means of an objective
function to be minimized. The objective function is a weighted sum of three components,
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in which the weights depend on the instance at hand. The first and second components are,
naturally, the staffing excess and shortage, namely, the sums

∑
i,j(max(0, pi,j − bi,j)) and∑

i,j(max(0, bi,j −pi,j)). The third component of the objective function is the number of shifts
selected. In fact, it is important to have only few shifts as they lead to schedules easier to
read, check, manage, and administer.

There is a large body of literature on shift scheduling problems (see [2] for a recent survey).
Heuristics for the selection of shifts that bear some similarity to MSD have been studied by
[4]. However, the only paper that, to our knowledge, deals exactly with MSD is [3]. In
Section 2, the problem is defined and the equivalence between MSD and a restricted version
of MECF is shown. In Section 3, a heuristic method for MSD is introduced. In Section 4, we
compare our heuristic with the results presented in the cited paper by applying it to a set of
benchmark instances.

2 Theory

A restricted version of MSD is equivalent to the UDIF problem (the infinite capacities flow
problem on a direct acyclic graph, or DAG), which, in turn, is a restricted variant of MECF .
The UDIF problem is defined as follows: (1) Every edge not touching the sink or the source,
called proper edge, has infinite capacity. Non-proper edges, namely edges touching the source
or the sink, have arbitrary capacities. (2) The costs of proper edges is 1. The cost of edges
touching the source or the sink is zero. (3) The underlying flow network is a DAG. (4) The goal
is, as in the general problem, to find a maximum flow f(e) over the edges (obeying the capacity
and flow conservation laws) and among all maximum flows to choose the one minimizing the
cost of edges carrying non-zero flow. Hence, in this case, minimize the number of proper edges
carrying nonzero flow (namely, minimizing |{e : f(e) > 0, e is proper}|).

Thanks to the equivalence of MSD and UDIF , a hardness of approximation result for UDIF
carries over to MSD : there is a constant c < 1 so that approximating the UDIF problem within
c ln n is NP-hard (all proofs are omitted for brevity).

3 A heuristic for MSD

Our heuristic is divided into two stages, namely a greedy construction for the initial solution
and a tabu search procedure [1] that iteratively improves it, which are described in Section 3.1
and 3.2, respectively. We found empirically that the combination of the two heuristics for
MSD was superior to the two individual heuristics taken by themselves.

3.1 GreedyMCMF

Based on the equivalence of the (non-cyclic) MSD problem to UDIF for which no efficient
algorithm is known (see Section 2), and the relationship with the MCMF problem, we propose
a new greedy heuristic GreedyMCMF() that uses a polynomial min-cost max-flow subroutine
(MCMF()). The algorithm is based on the observation that the MCMF subroutine can easily
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compute the optimal staffing with minimum (weighted) deviation when slack edges have as-
sociated costs corresponding, respectively, to the weights of shortage and excess. Note that,
however, the algorithm is not able to minimize the number of shifts that are used.

As the MCMF() subroutine cannot consider cyclicity, we must first perform a preprocessing
step that determines a good split-off time where the cycle of h days should be broken. This
is done by calling MCMF() with different starting times chosen between 5:00 and 8:00 on the
first day of the cycle (in practice, there is usually a complete exchange of workforce between
5:00 and 8:00 on the mornings of the first day). All possibilities in this interval are tried
while eliminating all shifts that span the chosen starting point when translating from MSD
to the network flow instances. The number of possibilities depends on the length of the
timeslots of the instance (i.e., the time granularity). The starting point with the smallest cost
as determined by MCMF() is used as the split-off time for the rest of the calls to MCMF() in
GreedyMCMF. This method has shown to provide adequate results in practice.

In the main loop, the greedy heuristic then removes all shifts that did not contribute to
the MSD instance corresponding to the current flow computed with MCMF(). It randomly
chooses one shift (without repetitions) and tests whether removal of this shift still allows the
MCMF() to find a solution with the same deviation. If this is the case, that shift is removed
and not considered anymore, otherwise it is left in the set of shifts used to build the network
flow instances, but it will not be considered for removal again.

Once no shifts can be removed anymore without increasing the deviation, a postprocessing
step restores cyclicity. It consists of a simple repair step performed by a fast hill-climbing
runner that uses the ExchangeStaff (ES) (one employee in a given day is moved from one shift
to another one of the same type) neighborhood relation (see Section 3.2). The runner selects
at each iteration the best neighbor, with a random tie-break in case of same cost. It stops as
soon as it reaches a local minimum, i.e., when it does not find any improving move.

3.2 The Tabu Search Procedure

We consider as a state S for MSD a set of shifts {I1, I2, . . .} with their staff assigned. The
shifts of a state are split into two kinds: Active shifts: non-zero staff is assigned to it, that
is, at least one employee is assigned to the shift at some day. Inactive shifts: they have no
employees for all days in the week. This kind of shifts does not contribute to the solution and
to the objective function. The active shifts of the initial solution are those built by the greedy
algorithm, and the solution is completed with a set of random distinct inactive shifts. The
number of inactive shifts has been selected experimentally, and it has been set to 2 inactive
shifts per shift type.

Local search methods rely on the definition of neighborhood relation, which is the core
feature for the exploration of the search space. The neighborhood of a solution S is the set
of solutions which are obtained applying a set of local perturbations, called moves, on S. In
this work we consider three different neighborhood relations: ChangeStaff (CS): The staff of a
shift is increased or decreased by one employee. ExchangeStaff (ES): This is the neighborhood
relation mentioned above where one employee in a given day is moved from one shift to another
one of the same type. ResizeShift (RS): The length of the shift is increased or decreased by 1
time-slot, either on the left-hand side or on the right-hand side.
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We combine the different neighborhoods in a compound tabu search algorithm, that uses
them selectively in different phases of the search. We have chosen tabu search as the driving
meta-heuristic of our local search algorithm, since it has shown to give the better results in a
preliminary experimentation phase.

In detail, our procedure interleaves three different tabu search runners using the ES alone,
the RS alone, and the union of the two neighborhoods CS and RS, respectively. The runners
are invoked circularly and each one starts from the best state obtained from the previous one.
The overall process stops when a full round of all of them does not find an improvement. Each
single runner stops when it does not improve the current best solution for a given number of
iterations (called idle iterations). The interleaving pattern (i.e. CS → RS → ES+RS) has been
obtained experimentally, by evaluating various different combinations on many instances.

The reason for using limited neighborhood relations is not directly related to the saving
of computational time, which could be obtained in other ways, for example by clever ordering
of promising moves. The main reason, instead, is the introduction of a certain diversification
in the search. In fact, some move types would be selected very rarely in a full-neighborhood
exploration strategy, even though they could help to escape from local minima. For example,
a runner that uses all three neighborhood relations together would almost never perform a CS
move that worsens the objective function, simply because it can always find an ES move that
worsens it by a smaller amount, although the CS move could lead to a more promising region
of the search space.

For all three runners, the size of the tabu list is kept dynamic by assigning to each move
a number of tabu iterations randomly selected within a given range. The ranges vary for the
three runners, and they are selected experimentally.

4 Computational results

For our analysis we consider the 30 instances that where described and investigated in [3]
available at www.dbai.tuwien.ac.at/proj/Rota/benchmarks.html. These instances were
generated by [3] by constructing feasible solutions and then taking the resulting staffing num-
bers as workforce requirements. This implies that a solution with zero deviation from workforce
requirements is known which is referred to as the ‘best known’ solution.

Although our solver reaches good solutions, for some instances it shows running times that
might be unacceptable in interactive sessions. For this reason, we analyzed how it performs
within a given time bound of 10 seconds.

In addition, in order to study the behaviour of our solver for increasing sizes of the solution,
we grouped the results on the instances based on the number of shifts in the ‘best known’
solution. In order to have a relevant number of instances for each size, we added 30 more
instances constructed to feature a number of shifts that ranges from 8 to 20.

The X axis of Figure 1 reports the number of shifts in the best known solution, and the
results on instances of equal number are averaged. The Y axis shows the difference of the
average (min and max) cost to the best cost divided by the best cost.
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Figure 1: Results for 10 seconds bound

The above experiments show that the relative degradation of performance is very small
(about 0.2%) and only moderately increases for larger instances.

Finally, in order to understand the relative importance of the two stages of the algorithm,
we performed other tests (omitted for brevity) using them in isolation. That is, we evaluated
the solution of GreedyMCMF and the one of tabu search starting from a random initial solution.
Not surprisingly, GreedyMCMF is generally fast but it does not always find the best solution;
on the other hand tabu search finds all the best solutions, but is it slower. The combined
solver presented in this paper outperforms them both and thus can be thus considered, among
them, the best general-purpose solver.
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