
An Improved Memetic Algorithm for Break
Scheduling

Magdalena Widl and Nysret Musliu

Institute of Information Systems, Vienna University of Technology, Austria
{widl, musliu}@dbai.tuwien.ac.at

Abstract. In this paper we consider solving a complex real life break
scheduling problem. This problem of high practical relevance arises in
many working areas, e.g. in air traffic control and other fields where
supervision personnel is working. The objective is to assign breaks to
employees such that various constraints reflecting legal demands or er-
gonomic criteria are satisfied and staffing requirement violations are min-
imised.
In our previous work we proposed a memetic algorithm for the assign-
ment of breaks. We improve in this paper the previous method by propos-
ing a new memetic representation, a new crossover and selection opera-
tor, and a penalty system that helps to select memes that have a better
chance to be improved by a local search. Our approach is influenced
by various parameters, for which we experimentally evaluate different
settings. The impact of each parameter is statistically assessed. We com-
pare our algorithm to state of the art results on a set of existing real
life and randomly generated instances. Our new algorithm returns im-
proved results on 28 out of the 30 benchmark instances. To the best
of our knowledge, these results constitute current upper bounds for the
respective instances.

1 Introduction

Breaks are periods during work shifts where staff is allowed, or in some cases
obliged, to discontinue work in order to recover and to perform personal activi-
ties like having meals or using facilities. In many countries constraints for work
and break periods are governed by federal law. Some employers might grant ad-
ditional or extended breaks to comply with ergonomic needs of staff members
and in some working areas breaks after certain working periods might even be
crucial due to security related issues. While each employee is supposed to take
breaks according to the mentioned constraints, also staffing requirements are to
be fullfilled at all time, i.e. enough staff must be available to perform a specific
task during a given timeslot.

Consider, for instance, airport security staff in charge of monitoring baggage
x-ray machines: The person working in front of the monitor is required to keep
high concentration in order to prevent mistakes that might result in hazardous
items passing through. Thus, for all staff, breaks are mandatory to properly

recover after given periods of working time. Additionally, suppose there are esti-
mated staffing requirements according to scheduled aircraft take-offs. Now breaks
are to be scheduled such that all employees take breaks within given intervals,
but at the same time a minimum number of employees is monitoring the screens.
Instead of a minimum, we might even consider an exact number of employees to
be present in order to minimize personnel costs.

Our particular problem statement origins from a real world scenario in the
area of supervision personnel. We regard a shiftplan that consists of consecutive
timeslots and of shifts. Each shift starts and ends in a specific timeslot and
must contain a given amount of breaktime. Shifts may overlap in time. There
are several constraints concerning the distribution of breaktime within a single
shift such as minimum and maximum values limiting the length of breaks and
worktime, to which we will refer as temporal constraints. Additionally, during
each timeslot a given number of staff is required to be working. The breaktime
for each shift is to be scheduled such that the temporal constraints are satisfied
and staffing requirement violations are minimised.

We denote our formulation as Break Scheduling Problem and abbreviate it
with Bsp.

In literature, the break assignment problem has mainly been addressed as
part of the so-called shift scheduling problem, where shifts are scheduled along
with breaks (see [2], [1], [6], [17], [15], [7], and [14]). However, these approaches
consider up to 3-4 breaks per shifts while our problem definition does not restrict
the number of breaks (the instances tested contain up to 11 breaks) and imposes
several additional constraints. Recently, Di Gaspero et al [9] proposed a hybrid
LS-CP solver for solving simultaneously the shift design and Bsp. This work gives
promising results, but the best results for benchmark problems are still obtained
by solving shift design and Bsp in two phases with a help of an expert. Bsp has
been previously investigated in [4] and [13]. A similar problem for call centers,
which additionally considers meetings and slightly different constraints, has been
investigated in [3]. Beer et al. [4] applied a min-conflict based heuristic to solve
the Bsp. We note that scheduling breaks considering only temporal constraints
and leaving aside the staffing requirements can be formulated as simple temporal
problem (STP) [8], which is solvable in polynomial time. In practical applications
however the consideration of staffing requirements is crucial.

The main goal of this paper is to improve the memetic algorithm we proposed
in [13]. Our current algorithm is based on the concept of memetic algorithms in-
troduced by Moscato [12]. Memetic algorithms are also known as Hybrid Genetic
Algorithms as presented by Goldberg [10]. The idea is to imitate cultural evolu-
tion on a pool of different solutions for an instance of an optimisation problem
in order to obtain improved solutions. In contrast to purely genetic algorithms,
local improvements are integrated in addition to the standard operators of bio-
logical evolution. It can thus be seen as a hybridisation of genetic operators with
a local improvement method.

To solve Bsp we propose a new memetic representation, new crossover and
selection mechanisms, and a penalty system to avoid local optima. We experi-

mentally evaluate the parameters that influence the optimisation process. The
impact of each parameter is statistically verified. We finally compare our new
memetic algorithm with the best existing results for this problem in the litera-
ture.

2 Problem Definition

Definition 1 (Timeslot t). A time period of fixed length. In our real life prob-
lem, one timeslot corresponds to a period of five minutes.

Definition 2 (Shift S). A set of consecutive timeslots S = {ti, ti+1, ..., ti+n},
∀j(i ≤ j < i + n) : tj+1 − tj = 1. Ss = ti denotes the shift start and Se = ti+n
denotes the shift end. Each shift represents exactly one employee on duty.

Definition 3 (Slot). A timeslot in a particular shift. A slot can be either a
break slot, a work slot or a re-acquaintance slot. The latter are those and only
those slots that directly follow a sequence of break slots and stand for an employee
getting familiar with an altered working situation after a break. During such a
slot, the employee is not consuming breaktime but neither counted as working
staff regarding staffing requirements.

Definition 4 (Break B). A set of consecutive break slots within a particular
shift. The first slot in the set is referred to as break start, and the last slot as
break end. A break is associated to exactly one shift.

Definition 5 (Work period W). A set of consecutive work slots and the sub-
sequent re-acquaintance slot.

Definition 6 (Breaktime). The number of required break slots in a shift S.
The breaktime depends on the shift’s length |S| and is given as input by a function
τ(|S|).

Definition 7 (Temporal constraints). A set of global restrictions regarding
lengths and locations of breaks and worktime within shifts. The following set of
temporal constraints is part of our problem formulation:

C1 Break positions, defined by (d1, d2). The first d1 and the last d2 slots of each
shift must be work slots, i.e. a break may start earliest d1 timeslots after the
start and end latest d2 timeslots before the end of its associated shift.

C2 Lunch breaks, defined by (h, g, l1, l2). Each shift S with |S| > h must contain
a lunch break L with |L| ≤ g. The break may start earliest l1 timeslots and
end latest l2 timeslots after the start of its associated shift.

C3 Work periods, defined by (w1, w2). For each work period W , w1 ≤ |W | ≤ w2.
C4 Minimum break duration, defined by (w, b). A work period W with |W | ≥ w

must be followed by a break B with |B| ≥ b.
C5 Break lengths, defined by (b1, b2). For each break B, b1 ≤ |B| ≤ b2.

Definition 8 (Break pattern DS). A set DS ⊂ S of timeslots defining an
assignment of breaks for a shift S satisfying breaktime τ(|S|) (|DS | = τ(|S|))
and the set of constraints C.

Definition 9 (Staffing requirements). Number of required work slots for
each timeslot t ∈ T .

Bsp is formally defined as follows:

Instance A tuple (k,S, τ, ρ, C):
k: Number of timeslots defining a set of consecutive timeslots T = {t1, t2, ..., tk}.
S: Collection of shifts, each shift taking place within T , ∀S ∈ S : S ⊆ T .
τ(|S|): Function mapping each shift length to a value denoting its breaktime.
ρ(t): Function mapping each timeslot t to its staffing requirements.
C: Set of temporal constraints {C1, C2, ..C5}, as defined above.

A sample instance of Bsp with a possible solution is depicted in Fig. 1 for
instance (k,S, τ, ρ, C) with k = 30, S = {S1, S2, ..S7}, τ(|S|) = 3 if |S| ≤
15; 4 otherwise, ρ as stated in the second line, C1 = (3, 3), C2 = (25, 4, 7, 7),
C3 = (3, 6), C4 = (5, 2), C5 = (1, 3)

ρ(ti)

T

S1

S2

S3

S4

S5

S6

S7

t1 t2 t3 t4 t5 t6 t7 t8 t9t10t11t12t13t14t15t16t17t18t19t20t21t22t23t24t25t26t27t28t29t30

2 2 2 1 0 2 3 3 3 2 1 1 4 4 5 7 3 4 5 3 5 5 2 3 2 2 4 2 2 2

1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1

1 1 1 1 0 0 1 1 1 0 0 0 1 1 1

1 1 1 1 0 0 1 1 1 0 0 0 1 1 1

1 1 1 1 0 0 1 1 1 0 0 0 1 1 1

1 1 1 1 0 0 0 1 1 1 0 0 1 1 1

1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1

1 2 3 4 6 2 3 2 2 2

work periodbreakwork slot

re-acquaintance slot

overcover undercover

Fig. 1. A sample instance of Bsp with solution

Objective Let P = (k,S, τ, ρ, C) be an instance of BSP. The objective is to find
a mapping B relating each shift S ∈ S to a break pattern DS , s.t. the following
objective function is minimised:

F (B,P) = wo ·O(B,P) + wu · U(B,P)

– wo and wu weights for over- and undercover violations respectively.
– O(B,P) =

∑
t∈T

max(0, ω(B, t)− ρ(t)) i.e. sum of overcover

– U(B,P) =
∑
t∈T

max(0, ρ(t)− ω(B, t)) i.e. sum of undercover

– ω(B, t) number of work slots in timeslot t ∈ T according to B

3 A New Memetic Algorithm for the Break Scheduling
Problem (MAPBS)

We propose a new memetic algorithm that differs in several aspects from the al-
gorithm in [13]. This new algorithm uses a memetic representation that regards
shifts which have many timeslots in common as memes. The new crossover op-
erator uses memes of the whole generation to create an offspring instead of only
two parents. The selection mechanism is included in the crossover operator. The
mutation and local search procedures consider only breaks contained in a subset
of an individual’s memes. Memes keep a memory to track data about their search
history. The new algorithm is abbreviated MAPBS for Memetic Algorithm with
Penalty System for Break Scheduling. Algorithm 1 outlines the new proposed
method with the components explained in the following.

Algorithm 1 Memetic Algorithm with Penalty System
1: buildBreakPatterns
2: I ← initialise
3: repeat
4: E ← fittest I ∈ I
5: for all individuals I ∈ I \ E do
6: I ← penalty-update(I)
7: I ← crossover-select(I)
8: E ← fittest I ∈ I
9: M′ ← fittest M′ ⊂M

10: I ← mutate(I,M′)
11: B ← all breaks contained in M′

12: I ← search(I, B)
13: end for
14: until timeout
15: return fittest I ∈ I

3.1 A new memetic representation

In the previous work [13] a memetic algorithm for Bsp was introduced. In this al-
gorithm a meme M was represented by exactly one shift S ∈ S and its associated
breaks according to B, as depicted in Fig. 2.

This representation implies a strong interference between memes regarding
the satisfaction of staffing requirements, which makes the design of effective ge-
netic operators, especially crossover operators, difficult. Although this algorithm
could give competitive results to the literature for the random instances, we fur-
ther investigated other representations and added other features to the algorithm
to improve results in literature.

We propose a new memetic representation that overcomes the problem of the
previous representation by regarding sets of interfering shifts as memes. Shifts

t1 t2 t3 t4 t5 t6 t7 t8 t9t10t11t12t13t14t15t16t17t18t19t20t21t22t23t24t25t26t27t28t29t30t31t32t33t34t35

ρ
T

3 3 2 2 2 2 2 2 2 3 3 3 4 4 3 3 2 2 3 3 3 3 3 3 4 3 2 2 2 2 2 2 3 3 3

S1

S4

S5

S6

S7

S8

S9

S10

S2

S31 1 1 1 0 0 1 1 1 1 0 0 1 1

1 1 1 0 0 1 1 0 0 1 1 1

1 1 0 0 1 1 1 0 0 1 1 1

1 1 1 1 0 0 0 1 1 1 1 1

1 1 1 1 0 0 1 1 1 1 0 0 1 1

1 1 1 1 0 0 1 1 1 1 0 0 1 1

1 1 1 1 0 0 0 1 1 1 1 1

1 1 1 0 0 1 1 1 0 0 1 1

1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1

Fig. 2. Previous memetic representation

interfere if they have the bigger part of their timeslots in common and thus may
assign breaks to the same timeslots.

Definition 10 (Memetic representation). A meme M ∈ M is defined by
a period [m′,m′′), with (m′,m′′) ∈ T 2 and contains those and only those shifts
S ∈ S where m′ ≤ b(Se + Ss)/2c ≤ m′′, Ss and Se denoting shift start and end,
as well as the breaks associated to these shifts. Each shift S ∈ S is thus contained
in exactly one meme: ∀Mi,Mj ∈M : Mi ∩Mj = ∅, M1 ∪M2 ∪ · · · ∪Mm = S.

We use the following heuristic to determine the periods that induce the set
of memes: For each t ∈ T let a set of shifts St ⊂ S s.t. ∀S : S ∈ St iff t ∈ S, i.e.
the set of shifts taking place during t. We assign a value p(t) to each t ∈ T :

p(t) =
∑
S∈St



0 if t < Ss + d1

0 if t > Se − d2

1 if Ss + d1 < t < Ss + d1 + b1 + w1

1 if Se − d2 > t > Se − d2 − b1 − w1

10 otherwise
.

Recall that Ss and Se denote start and end of shift S, d1, d2 denote the
number of timeslots after Ss and before Se respectively, to which no breaks can
be assigned, b1 stands for the minimal length of a break and w1 for the minimal
length of a work period, as described in Section 2.

p(t) serves as an indicator for the number of breaks that can be assigned to
t. A low value for p(t) tells us that there will be little intereferences between
breaks regarding the staffing requirements, usually because a small number of
shifts is taking place or many of them are ending or starting. This makes t a
good point to separate one meme from another.

We determine a set of timeslots T ′ ⊂ T with size |T ′| given by a parameter
s.t.

–
∑
t′∈T ′

p(t′) is minimised

– ∀t′i, t′j ∈ T ′ :
∣∣t′i − t′j∣∣ > d with d = b(min

S∈S
|S|)/2c, i.e. the distance between

each pair of timeslots is at least half of the smallest shift length

To retrieve this set, we start with adding timeslot t′0 to T ′ with t′0 = t, t ∈ T
with minimal value p(t), ties broken randomly, and continue by adding timeslots
t′i = t, t ∈ T \ T ′ with minimal value p(t) and ∀t′k, t′j ∈ T ′ ∪ t :

∣∣t′k − t′j∣∣ > d. We
obtain a setM of memes with |M| = |T ′| − 1 by sorting the elements in T ′ and
defining each meme Mi by period [t′i, t

′
i+1).

Fig. 3 depicts the new memetic representation on a solution represented by a
set of memes M = {M1,M2,M3}, M1 = ({S1, S2, S3},m′ = 1,m′′ = 12), M2 =
({S4, S5, S6, S7},m′ = 13,m′′ = 23) and M3 = ({S8, S9, S10},m′ = 24,m′′ =
35).

Definition 11 (Meme fitness). We define the fitness F (M) of a meme M
as the weighted sum of staffing requirement violations in all timeslots that are
covered by the shifts contained in M , or more formally: Let T ′ =

⋃
S, ∀S ∈ M ,

then F (M) = F (B,P, T ′) = wo ·O(B,P, T ′) + wu · U(B,P, T ′)

– wo and wu the same weights for over- and undercover defined in Section 2.
– O(B,P, T ′) =

∑
t∈T ′

max(0, ω(B, t)− ρ(t)) i.e. sum of overcover

– U(B,P, T ′) =
∑
t∈T ′

max(0, ρ(t)− ω(B, t)) i.e. sum of undercover

– ω(B, t) the number of work slots in timeslot t ∈ T ′ according to B

t1 t2 t3 t4 t5 t6 t7 t8 t9t10t11t12t13t14t15t16t17t18t19t20t21t22t23t24t25t26t27t28t29t30t31t32t33t34t35

ρ
T

3 3 2 2 2 2 2 2 2 3 3 3 4 4 3 3 2 2 3 3 3 3 3 3 4 3 2 2 2 2 2 2 3 3 3

S1

S4

S5

S6

S7

S8

S9

S10

S2

S31 1 1 1 0 0 1 1 1 1 0 0 1 1

1 1 1 0 0 1 1 0 0 1 1 1

1 1 0 0 1 1 1 0 0 1 1 1

1 1 1 1 0 0 0 1 1 1 1 1

1 1 1 1 0 0 1 1 1 1 0 0 1 1

1 1 1 1 0 0 1 1 1 1 0 0 1 1

1 1 1 1 0 0 0 1 1 1 1 1

1 1 1 0 0 1 1 1 0 0 1 1

1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1

M1 M2 M3

Fig. 3. New memetic representation

Definition 12 (Individual). A solution B for an instance P and fitness value
F (I), which is the value of the objective function F (B,P).

Definition 13 (Population). A set I of individuals.

Definition 14 (Generation). Population during an iteration of the algorithm.

Definition 15 (Memepool). The set of all memes in a generation.

Definition 16 (Elitist). The individual E ∈ I with the best fitness value.

3.2 Initialisation

We first precalculate a set D′S of break patterns for each shift S using the small
temporal problem model presented by [8]. Details on this procedure are given in
[18].

Each individual in the population is initialised in two steps: First, for each
shift S ∈ S a valid break pattern D ∈ D′S is selected randomly. This provides us
with a first solution satisfying the temporal constraints C. Second, a simple local
search using Neighbourhood N1, as described in 3.5, is executed on the solution.

3.3 Penalty system

For each meme M we keep the following values:

Best fitness value B(M): The best value for F (M) the meme ever reached
Penalty value P (M): Number of iterations since last update of B(M)

The higher P (M), the longer the meme was not able to improve. This means
it is more likely to be stuck in a local optima. We use this value at two points
of the algorithm: The crossover operator prefers memes with low P (M), thus
memes stuck in local optima are likely to be eliminated, disregarding their fit-
ness value F (M). Second, the subset of memes used for the mutation and local
search also prefers memes with low P (M) and this way focuses on areas within
a solution where improvements can be found more easily. After each iteration,
the values for B(M) and P (M) are updated for each M ∈M′:{

B(M) = F (M), P (M) = 0, if B(M) < F (M)
P (M) = P (M) + 1 otherwise

3.4 Crossover and selection

First, an individual is created by selecting for each period the meme M with the
best current fitness value F (M) out of the current memepool. This individual is
likely to become the elitist in the current population. However, shifts overlapping
different memes might prevent this to happen. Using this procedure we make
sure to keep the best memes.

Second, each of |I|−1 individuals is created as follows: For all sets of memes
M, each containing all memes with the same period [m′,m′′) in the current
memepool, we perform a k-tournament selection [5]: We select k memes out of
M. Out of these k memes, the meme with the lowest penalty value P (M) is
inherited to the offspring. The parent individuals are deleted and the algorithm
continues using only the offsprings and their memes.

The first part assures to survive the best memes in the current memepool.
The second part forms the actual crossover procedure. Using P (M) as selection
criteria, we get rid of memes that have been stuck in local optima for too long. If

a local optimum constitutes in fact a global optimum, then it survives through
the first step of the crossover operator as described above.

Fig. 4 depicts the crossover operator: The first offspring is created by choosing
only the fittest memes, i.e. M1 from I2 and M2 from I1. The remaining offsprings
are created applying a k-tournament selection on memes with the same period.
Different values for F after the crossover may occur from shifts overlapping into
different memes.

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

I4

I3

I2

I1

I2, I1

I1, I3

I3, I4

I3, I2

F = 56, P = 3 F = 70, P = 3

F = 80, P = 3 F = 72, P = 3

F = 46, P = 2 F = 74, P = 4

F = 58, P = 3 F = 50, P = 4

F = 80, P = 3 F = 74, P = 4

F = 80, P = 3 F = 70, P = 3

F = 58, P = 3 F = 72, P = 3

F = 46, P = 2 F = 50, P = 4

Fig. 4. Crossover operator

3.5 Mutation and local search

On each individual I ∈ I \E the following steps are performed. A set M′ ∈M
of memes is defined s.t. M′ contains the memes with the lowest penalty values
(ties are broken randomly).

Each M ′ ∈ M′ is mutated as follows: A set of shifts S ′ ∈ M ′ is chosen at
random. Then for each shift S′ ∈ S ′ its current break pattern is replaced by
a pattern selected randomly out of the set D′S′ of break patterns computed in

the beginning (see Section 3.2). The size of S ′ is a parameter for which different
values are evaluated in Section 4.

The local search is executed on each individual using set B of all breaks
contained in M′ for the respective individual. In each iteration of the local
search the following steps are performed on an individual I: First, a break b is
selected at random out of B. Second, a neighbourhood N out of three neighbour-
hoods {N1,N2,N3} is chosen at random with a probability given by parameter
η = (η1, η2, η3). Then the set N of all neighbours according to the chosen neigh-
bourhood is computed. For each N ∈ N let δ(N, I) = F (N) − F (I), i.e. the
difference between the fitness values. Let N ′ = {N ∈ N : δ(N, I) ≤ 0}. If
|N ′| > 0 then I = N with N being the best neighbour, i.e. neighbour N ∈ N ′

with minimal δ(N, I), ties broken randomly. Otherwise nothing happens. The
local search terminates when for µ subsequent iterations |N ′| = 0, i.e. no neigh-
bours with better or equal fitness could be found. This procedure is influenced
by three parameters: The size of B, the search intensity determined by µ and
the probabilities η of the different neighbourhoods. Different values for these
parameters and their evaluation are described in Section 4. Algorithm 2 outlines
the local search procedure.

Algorithm 2 Local Search (Individual I, Breaks{}B)
1: c← 0
2: repeat
3: b← select break b ∈ B randomly
4: N ← select and compute one of {N1,N2,N3} as moves from b
5: N ′ ← {N ∈ N : δ(N, I) ≤ 0}
6: if |N ′| > 0 then
7: I ← N ∈ N ′ with minimal δ(N, I)
8: c← 0
9: else

10: c← c+ 1
11: end if
12: until c == µ
13: return I

Neighborhoods N1, N2, N3 are generated by the following three moves re-
spectively: Single Assignment, Double Assignment, and Shift Assignment. The
single assignment move assigns a break b to a different set of timeslots under con-
sideration of C. This includes appending b to its predecessor or successor, b′ or b′′

respectively, resulting in one longer break. The double assignment move involves
two breaks. We consider a break b and both its predecessor b′ and successor b′′,
or only b′ respectively b′′ if b is the last or first break within its shift. A double
assignment move is a re-assignment of b and b′ or b and b′′ under consideration
of C. Like single assignment moves, two breaks might be joined to form a longer
break. Two breaks of different length may also be swapped. A shift assignment

move assigns a whole break pattern D ∈ D′S to the shift b is associated to. A
detailed description of all moves and neighborhoods is given in [18].

4 Evaluation

We evaluated a set of parameters for which a preliminary analysis showed an
impact on the solution qualities. Due to the execution time of the algorithm, it
was not possible to do an exhaustive analysis. We thus started with a reasonable
initial parameter setting and consecutively decreased and increased the value of
each parameter while the other parameter values remained the same. The impact
of each parameter was assessed using the Kruskal-Wallis test [11]. Details on the
evaluations and values for each parameter setting are available in [18].

The parameter tests were conducted on six different instances among the 30
instances presented by Beer at al. [4], which are publicly available in [16]. 20 of
the 30 instances in [4] were retrieved from a real life application without known
optimal solutions, and ten selected among 60 randomly generated instances with
known optimal solutions. Details regarding the random generation are provided
by the same authors [16].

The input data C (constraints) and k (number of timeslots) are the same for
all random and real life instances with k = 2016 and C defined as follows:

C1 Break positions: d1 = d2 = 6.
C2 Lunch breaks: h = 72, g = 6, l1 = 42, l2 = 72.
C3 Duration of work periods: w1 = 6, w2 = 20.
C4 Minimum break times: w = 10, b = 4.
C5 Break durations: b1 = 2, b2 = 12.

All measures are given in timeslots with one timeslot corresponding to five
minutes. k thus represents an entire calendar week.

The timeout was normalised to 3046 seconds according to a benchmark of the
machine of [4] and ours. This allows us a more reliable comparison of our results
to those of [4]. We ran the algorithm ten times for each instance and parameter
value. Each run was performed on one core with 2.33Ghz of a QuadCore Intel
Xeon 5345 with three runs being executed simultaneously, i.e. three cores being
fully loaded. The machine provides 48GB of memory.

All experiments and the final runs we compare with [4] have been conducted
using the mentioned timeout and hardware resources.

4.1 Parameter evaluation for our new algorithm (MAPBS)

The evaluated parameter values for our algorithm are given below:

|I| Population size, values tested: 1, 4, 6, 10, 20, best |I| = 4
λ Defines number of memes |M′| being mutated and improved for each individ-

ual: max(1, |M| · λ), 0 ≤ σ ≤ 1, values tested: 0.05, 0.1, 0.2, 0.3, 0.5, best
λ = 0.05

σ Mutation weight, number of shifts being mutated: max(1, |S′| · σ), 0 ≤ σ ≤ 1,
values tested: 0.01, 0.05, 0.1, 0.3, 0.5, best σ = 0.05

κ Selection: Number of memes performing a tournament in the crossover oper-
ator, values tested: 1, 2, best κ = 1 with significantly different results only
for one out of six instances

µ Search intensity: Number of iterations the local search continues without find-
ing improvements, this value is multiplied by the number of breaks |B| avail-
able to the local search, values tested: 10, 20, 30, 40, best µ = 20

(η1, η2, η3): Probability for each neighbourhood to be selected in local search
iterations, values tested: (0, .5, .5), (.5, 0, .5), (.5, .5, 0), (.2, .8, 0), (.8, .2, 0),
(.3, .3, .3), (1, 0, 0), (0, 1, 0), best η = (.8, .2, 0)

The algorithm performs best with a small population size. We also tested
a population size of |I| = 1 to make sure that the population based approach
is indeed necessary to obtain good solutions. In this case no selection and no
crossover is performed and thus the algorithm is reduced to a local search with
mutation acting as perturbation. The search intensity µ was set to 20, the same
value used for the population-based approach. After 20 iterations the algorithm
performs a mutation on the individual as described in Section 3.5. The mutation
prevents the search from getting trapped in a local optimum. Since mutation
may worsen a solution during the progress of the algorithm, the best obtained
solution is kept in memory. The results showed clearly that there is indeed the
need for a population based approach, as the results with runs applying local
search only, i.e. with |I| = 1, gave the worse results.

To verify the need for hybridisation of the genetic operators with a local
search mechanism, we additionally conducted experiments leaving out the local
search. The rest of the algorithm was executed as described in the previous
sections. The parameter settings for this experiment correspond to the settings
for the final runs. On all tested instances the solution qualities significantly
worsened.

The mutation and search rate λ determining |M′| led to the best results when
kept low. On many instances, λ = 0.05 leads to only one meme being mutated
and searched. The mutation weight σ also worked well with a low value. Different
values for κ did not have a significant impact on most instances tested.

The local search intensity µ was set relative to the number of breaks |B|
taking part in the search. MAPBS considers only a subset of all breaks, namely
those contained in M′, which, according to the low value for λ are only a small
subset. All runs where N3 participated gave worse results than those where we
used only N2 and N1. The best performing combination was η1 = 0.8, η2 = 0.2
and η3 = 0.

4.2 Final results and comparison with literature

Based on our experiments we used the following settings for the final runs:
|I| = 4, λ = 0.05, σ = 0.05, µ = 20, κ = 1 and η = (0.8, 0.2, 0.0). We

note that MAPBS outperforms significantly the results obtained with our pre-
vious memetic algorithm [13] and therefore we compare only results of our new
memetic algorithm with the best existing results in the literature. Table 1 com-
pares the results of MAPBS to state of the art results from [4]. Columns “Best”
and “Average” respectively show best, average values of the objective function
presented in the problem definition based on ten runs. Solutions provided by [4]
have shown to be very good in practice and are currently in use in real life appli-
cations. Based on Table 1 we can conclude that our algorithm (MAPBS) returns
improved results on all random instances and 18 out of 20 real life instances
compared to results from literature.

The improvements for some random instances are striking. It is not clear if
this is due to the algorithm itself or due to the initialisation process: Authors
in [4] initialised their algorithm for the random instances without taking into
account the set of constraints C. The constraints were resolved, or partly resolved,
in course of their algorithm. Our algorithm uses the approach proposed by [8] to
initialise the solutions, and this possibly had an impact on these very significant
improvements.

5 Conclusions

In this paper we introduced a new memetic algorithm to solve the break schedul-
ing problem Bsp. We proposed a new memetic representation of Bsp, genetic
operators and a local search heuristic. The local search heuristic with three dif-
ferent neighborhoods is applied only on selected memes. Further, we introduced
a method based on penalty values to avoid local optima for parts of solutions.

We conducted a set of experiments for different parameter settings. The
impact of each parameter was assessed with statistical methods. The use of
genetic operators combined with the local search heuristic returned better results
than using only local search. Applying the local search only on small parts of
each individual significantly improved the qualities of the solutions compared
to applying the local search on entire individuals. Focusing on neighbourhoods
N1 and N2 returned better solutions than using only one neighbourhood. The
largest neighbourhood, N3, performed worst. The use of a penalty system along
with focusing the local search only on memes that are not likely to be stuck in
local optima significantly improved the solution qualities.

The results of the algorithm with parameter values performing best according
to our experiments were compared to the results in literature on 30 publicly
available benchmarks. Our algorithm returned improved results for 28 out of 30
instances. To the best of our knowledge, our method gives currently best results
for the Bsp.

Acknowledgments: The research herein is partially conducted within the com-
petence network Softnet Austria (http://www.soft-net.at/) and funded by the Aus-
trian Federal Ministry of Economics (bm:wa), the province of Styria, the Steirische
Wirtschaftsförderungsgesellschaft mbH. (SFG), and the City of Vienna in terms of the
center for innovation and technology (ZIT).

References

1. T. Aykin. A comparative evaluation of modelling approaches to the labour shift
scheduling problem. European Journal of Operational Research, 125:381–397, 2000.

2. S. Bechtold and L. Jacobs. Implicit modelling of flexible break assignments in
optimal shift scheduling. Management Science, 36(11):1339–1351, 1990.

3. A. Beer, J. Gärtner, N. Musliu, W. Schafhauser, and W. Slany. Scheduling breaks
in shift plans for call centers. In The 7th International Conference on the Practice
and Theory of Automated Timetabling, Montral, Canada, 2008.

4. A. Beer, J. Gärtner, N. Musliu, W. Schafhauser, and W. Slany. An AI-based break-
scheduling system for supervisory personnel. IEEE Intelligent Systems, 25(2):60–
73, 2010.

5. A. Brindle. Genetic algorithms for function optimisation. PhD thesis, University
of Alberta, Department of Computer Science, Edmonton, Canada, 1981.

6. C. Canon. Personnel scheduling in the call center industry. 4OR: A Quarterly
Journal of Operations Research, 5(5(1)):89–92, 1989.

7. M.-C. Côté, B. Gendron, C.-G. Quimper, and L.-M. Rousseau. Formal languages
for integer programming modeling of shift scheduling problems. Constraints, 2009.

8. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intel-
ligence, 49:61–95, 1991.

9. L. Di Gaspero, J. Gärtner, N. Musliu, A. Schaerf, W. Schafhauser, and W. Slany.
A hybrid LS-CP solver for the shifts and breaks design problem. In The 7th
International Workshop on Hybrid Metaheuristics (HM 2010). Lecture Notes in
Computer Science. To appear, Vienna, Austria, 2010.

10. D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Publishing Company, 1989.

11. D. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, 6
edition, 2005.

12. P. Moscato. On evolution, search, optimization, gas and martial arts: Towards
memetic algorithms. Technical Report Caltech Concurrent Comput. Prog. Rep.
826, California Institute of Technology, 1989.

13. N. Musliu, W. Schafhauser, and M. Widl. A memetic algorithm for a break schedul-
ing problem. In 8th Metaheuristic International Conference, Hamburg, Germany,
2009.

14. C.-G. Quimper and L.-M. Rousseau. A large neighbourhood search approach to
the multi-activity shift scheduling problem. Journal of Heuristics, 16(3):373–391,
2010.

15. M. Rekik, J. Cordeau, and F. Soumis. Implicit shift scheduling with multiple
breaks and work stretch duration restrictions. Journal of Scheduling, 13:49–75,
2010.

16. http://www.dbai.tuwien.ac.at/proj/SoftNet/Supervision/Benchmarks/, 2008.
17. P. Tellier and G. White. Generating personnel schedules in an industrial setting

using a tabu search algorithm. In H. R. E. K. Burke, editor, PATAT 2006, pages
293–302, 2006.

18. M. Widl. Memetic algorithms for break scheduling. Master’s thesis, Vienna Uni-
versity of Technology, Vienna, Austria, 2010.

Instance
Best existing results [4] Results of MAPBS

Best Average σ Best Average σ

2fc04a 3,094 3,224 84 2,816 2,961 71

2fc04a03 3,100 3,200 61 2,834 2,934 54

2fc04a04 3,232 3,342 68 2,884 2,954 60

2fc04b 1,822 2,043 92 1,884 1,948 49

3fc04a 1,644 1,767 102 1,430 1,533 67

3fc04a03 1,632 1,759 87 1,440 1,514 40

3fc04a04 1,932 1,980 40 1,614 1,718 48

3si2ji2 3,626 3,667 35 3,177 3,206 17

4fc04a 1,694 1,817 126 1,478 1,540 29

4fc04a03 1,666 1,795 87 1,430 1,502 42

4fc04a04 1,918 2,017 95 1,606 1,674 48

4fc04b 1,410 1,489 49 1,162 1,233 48

50fc04a 1,672 1,827 81 1,548 1,603 36

50fc04a03 1,686 1,813 84 1,402 1,514 67

50fc04a04 1,790 1,917 64 1,480 1,623 89

50fc04b 1,822 2,012 91 1,818 1,900 56

51fc04a 2,048 2,166 89 1,886 2,074 87

51fc04a03 1,950 2,050 86 1,886 1,949 46

51fc04a04 2,058 2,191 64 1,958 2,039 52

51fc04b 2,244 2,389 94 2,306 2,367 43

random1-1 728 972 177 346 440 48

random1-2 1,654 1,994 172 370 476 65

random1-5 1,284 1,477 99 378 418 29

random1-7 860 1,077 154 496 583 42

random1-9 1,358 1,658 213 318 423 51

random1-13 1,264 1,535 245 370 445 55

random1-24 1,586 1,713 74 542 611 43

random1-28 1,710 2,020 233 222 318 71

random2-1 1,686 1,855 142 724 889 75

random2-4 1,712 2,053 242 476 535 45

Table 1. Comparison with literature: Real life and random instances

