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Kurzfassung

Ziel von Personalplanungsproblemen ist es, Dienstpläne zuerstellen, damit
Unternehmen den Bedarf nach ihren Produkten und Dienstleistungen unter Einhaltung
arbeitsrechtlicher Bestimmungen erfüllen können. Optimale oder nahezu optimale
Lösungen für Personalplanungsprobleme verbessern die Arbeitsbedingungen für
Mitarbeiter und helfen Betrieben, ihr Personal effizient und kostensparend einzusetzen.
Unglücklicherweise sind Personalplanungsprobleme im Allgemeinen NP-hart und
können daher nicht in polynomieller Zeit gelöst werden. DasEntwickeln guter
Algorithmen für Personalplanungsaufgaben ist eine Kunst für sich selbst, und
normalerweiser sind solche Algorithmen sehr stark auf einebestimmte Problemstellung
zugeschnitten. Diese stark angepassten Lösungen können inder Regel nur
sehr schwer für andere Probleme wiederverwendet werden, dabereits wenige
geringfügige Änderungen in einem Problem zu vielen gravierenden Abänderungen und
Erweiterungen in einem stark angepassten Algorithmus führen.

Ziel dieser Dissertation ist es, eine Modellierungssprache zu entwickeln, mit der wir
Personalplanungsprobleme auf sehr natürliche, einfache und intuitive Weise modellieren
und lösen können. Infolgedessen werden neue Lösungen für Personalplanungsprobleme
wesentlich schneller entwickelt und bereits exisitierende Lösungen viel einfacher
geändert und erweitert.

Um dieses Ziel zu erreichen, betrachten wir zuerst zwei konkrete
Personalplanungsprobleme. Das erste stammt aus einem CallCenter, das zweite
Problem betrachtet eine ähnliche Aufgabenstellung für Überwachungspersonal.
Für diese beiden Probleme entwickeln wir zwei maßgeschneiderte Lokale Suche
Algorithmen, die in vertretbarer Zeit qualitiativ hochwertige Lösungen erzielen.
Basierend auf diesen beiden Lösungen identifizieren wir grundlegende Bestandteile
von Personalplanungsproblemen und Lokale Suche Algorithmen und entwickeln die
Modellierungssprache TEMPLE, in welcher diese Bestandteile realisiert werden. Des
Weiteren implementieren wir einen TEMPLE-Übersetzer mit dessen Hilfe wir für jedes
Problemmodell in TEMPLE drei Lokale Suche Algorithmen erzeugen können. Diese
Algorithmen können sofort, ohne weitere Nutzereingabe aufein konkretes Problem
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angewandt werden, um optimierte Lösungen zu erzeugen.

Wir demonstrieren die Zweckmäßigkeit unseres Ansatzes, indem wir
das Personalplanungsproblem aus dem Bereich Überwachungspersonal in
TEMPLE modellieren und lösen, und zeigen, dass wir mit unserem Ansatz
konkurrenzfähige Ergebnisse erzielen. Abschließend modellieren wir ein vielschichtiges
Personalplanungsproblem in TEMPLE, in welchem wir zuerst ein legales, hinsichtlich
des Personalbedarf optimiertes Pausenmuster berechnen, und anschließend
konkrete Arbeitsaufgaben den einzelnen Mitarbeitern unter Berücksichtigung
ihrer Qualifikationen zuweisen. Die Lokale Suche Algorithmen, die wir aus
unserem TEMPLE Modellen generiert haben, sind Bestandteileines kommerziellen
Personalplanungs Tools, das bereits erfolgreich kundenseitig eingesetzt wird.



Abstract

Staff scheduling is the process of creating work timetables for personnel so that compa-
nies can satisfy the demands for their goods and services. Optimal or close to optimal so-
lutions for staff scheduling tasks help companies to deploy their staff efficiently and cost
savingly, and improve the working conditions for deployed staff as well. Unfortunately,
staff scheduling problems are NP-hard in general, thus, they cannot be solved to optimal-
ity in polynomial time. As a consequence, the design of solutions for staff scheduling
problems is an art in itself and results in algorithms which are strongly customized to a
specific staff scheduling task. Customized solutions are usually very difficult to adapt,
extend, and reuse for other problems.

In this thesis we develop a modeling language to formulate and solve staff schedul-
ing tasks in a very natural, simple, and intuitive manner. Consequently, new algorithms
for staff scheduling problems can be obtained more quickly, and already existing solu-
tions can be modified and extended easily.

To achieve that goal, we first consider two real-life staff scheduling problems, one
originating in a call center, the other arising from the areaof supervisory personnel, and
we develop two customized local search algorithms, which are able to generate high-
quality solutions for the two problems in reasonable time. On the basis of these two
customized solutions we abstract common features and basicbuilding blocks of staff
scheduling problems and local search techniques. Then, to model staff scheduling prob-
lems with reduced effort, we design a novel, domain specific language called TEMPLE.
Furthermore, we develop and implement a TEMPLE compiler which transforms TEM-
PLE models of staff scheduling tasks into three generic local search algorithms, which
can be executed instantaneously to optimize a considered staff scheduling problem.

To deliver a proof of concept, we model the staff scheduling problem for super-
visory personnel in TEMPLE, and we show that our approach is able to achieve com-
petitive results of acceptable quality in reasonable time.Finally, we model and solve
a multilayered, real-life break scheduling and task assignment problem in TEMPLE.
The local search algorithms obtained from our TEMPLE model represent the core of a
commercial staff scheduling tool which is already used successfully on customer’s site.
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Chapter 1

Introduction

The goal of staff scheduling problems is the creation of work timetables in order that
companies can satisfy the demands for their goods and services. Staff scheduling is
a very complex process, encompassing several different phases, such as determining
staffing requirements, constructing shift plans and break schedules, creating rosters for
individual employees, and assigning tasks or services to beperformed. In each single
step we must obtain solutions which on the one hand are consistent with legal require-
ments and labor regulations, and on the other hand deploy staff efficiently. Thus, op-
timal or close to optimal solutions for staff scheduling problems improve the working
conditions for employees, and help companies to deploy their personnel cost savingly.
Unsurprisingly, staff scheduling problems are of high practical relevance and represent
hot topics of basic as well as applied research.

Unfortunately, many staff scheduling problems are NP-hard, and as a consequence,
they cannot be solved to optimality in polynomial time. Therefore, staff scheduling prob-
lems are solved by using mathematical programming, or sophisticated AI-techniques,
such as constraint programming, heuristics, meta-heuristic methods, or branch and
bound algorithms. No matter which of these approaches we follow, the design of al-
gorithms for staff scheduling problems is an art in itself and we end up with a solution
that is strongly customized to a specific task.

Strongly customized solutions are usually very difficult to adapt, extend and main-
tain. A few minor changes within a problem’s specification can result in many ma-
jor modifications or a completely new implementation of a customized algorithm, and
while developing solutions for staff scheduling problems, changes will occur constantly
and inevitably, for the following reasons:

⊲ The very same staff scheduling problem will never occur in two or several com-
panies. Even though two companies deal with a similar staff scheduling problem,

1
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each company has its own, specific criteria which have to be considered. Often,
these special requests are the direct result of negotiations between the management
board and the workers’ council, or they reflect working conditions prevailing in a
particular industry.

⊲ An exact problem specification does not exist in advance, instead the problem
specification is developed and evolved together with the solution. Due to the mul-
tilayered nature of staff scheduling problems, it is not possible to define all criteria
involved in a specific problem at the beginning of the software engineering pro-
cess. Thus, it is advisable to develop solutions for staff scheduling problems by
following modern, agile software engineering paradigms. Agile software devel-
opment approaches are characterized by many short development cycles, between
which additional criteria or modifications requested by users can be realized.

To sum up, the reasons why staff scheduling problems represent very interesting
tasks are their high practical relevance, their general NP-hardness, and the great efforts
associated with the development of effective, customized solutions.

1.1 Research Questions of This Thesis

The main intention of this thesis is to model and solve real-life staff scheduling problems
at reduced development effort. To achieve that goal we have to answer the following
research questions:

⊲ We want to develop a domain specific language to model staff scheduling prob-
lems in a very natural, simple, and intuitive manner. By the help of these tech-
niques, new software solutions for staff scheduling problems shall be obtained
more quickly, and already existing solutions shall be modified and extended eas-
ily.

⊲ With the domain specific language not only we want to model staff scheduling
problems effectively but also we wish to solve them efficiently. For that purpose,
we desire to design and implement a solver for our domain specific language
which optimizes staff scheduling problems by the help of generic local search
algorithms.

⊲ The proposed domain specific modeling language shall hide any domain-specific
knowledge of staff scheduling tasks or optimization algorithms. In that manner
they can be used by any ordinary developer or end-user, who must not be neces-
sarily a domain-expert.



CHAPTER 1. INTRODUCTION 3

⊲ We want to deliver a proof of concept that our domain specific modeling language
can be applied successfully to real-life staff scheduling problems in practice.

1.2 Main Results of This Thesis

To answer the previously mentioned questions within this thesis, we first consider two
real-life staff scheduling problems. The first problem is a real-life break scheduling
problem for supervisory personnel, the second one is another break scheduling problem
originating from a call center. In both problems we are givenstaffing requirements and
already designed shift plans, and we must schedule breaks within these shift plans in
order that several constraints concerning the legality of break times and break patterns
are satisfied, and shortage of staff is reduced to a minimum degree. For these two tasks
we develop two customized local search algorithms and we successfully obtain solutions
of acceptable quality within acceptable time.

On the basis of these two specific tasks we identify common features and basic
building blocks of general staff scheduling problems, such as time intervals, links be-
tween time intervals, and curves. Furthermore, we observe,that in staff scheduling
tasks, properties, curves, and constraints, can be derivedfrom each other, step by step, in
a modular manner. Thus, we require from a domain specific modeling language for staff
scheduling problems, to provide abstractions and notations reflecting these basic build-
ing blocks and to enable a stepwise formulation of properties and constraints. Moreover,
since we want to solve staff scheduling problems via local search techniques, a domain
specific language shall also incorporate essential components of local search algorithms,
i.e., initial solutions, objective functions, and moves.

We review state-of-the-art modeling languages [56, 22, 23,31, 32, 38] and meta-
heuristic frameworks [9, 27, 30], and we examine whether basic building blocks of staff
scheduling problems and local search algorithms are offered by these approaches. In nei-
ther of the considered modeling languages staff scheduling problems can be modeled as
we desire it to do, either they are aimed at general combinatorial optimization problems
and do not support basic building blocks of staff scheduling tasks, or they are targeted
at a slightly different problem domain. As to metaheuristic frameworks, theyrequire
from potential user detailed knowledge of a framework’s structure, of object orientated
programming, and of local search techniques, thus, they areless suited to be applied
by non-domain-experts. Therefore, we decide to develop TEMPLE, a novel domain
specific language for modeling and solving staff scheduling problems at reduced effort.
With TEMPLE we achieve the following design goals:

Modularity: A TEMPLE model consists of small, concise building blocks reflecting
common features of staff scheduling problems. New building blocks are derived
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from already existing ones. By this principle users are forced to formulate a com-
plex problem in small, concise and traceable steps. Consequently, the resulting
problem models are well-structured, easy to understand, modify and maintain.

Adaptability and Extensibility: Problems modeled in TEMPLE can be adapted eas-
ily. A few small changes in the problem formulation result only in a few small
changes in the corresponding TEMPLE program.

Simplicity: TEMPLE requires only basic programming skills from its users. Anybody
familiar with a third generation programming language should be able to under-
stand and use TEMPLE.

Automatic Optimization: Once a problem is modeled in TEMPLE it can be optimized
in an instant without requiring additional coding from the user.

Openness: In contrast to other constraint-based modeling languages,TEMPLE is not
restricted to a finite set of predefined features or constraints. We can model arbi-
trary features or constraints of staff scheduling problems in TEMPLE.

Efficiency: TEMPLE’s intrinsic computational overhead is kept as little as possible.
Thereby we ensure that problems cannot only be modeled effectively but also
solved efficiently with TEMPLE.

To enable automatic optimization of staff scheduling problems we develop a TEM-
PLE compiler which transforms the TEMPLE model of a staff scheduling problem
into three executable local search algorithms: a simulatedannealing algorithm [36], a
hill-climbing based approach [39], and an iterated local search algorithm [37]. These
algorithms can be applied instantaneously and do not require any further user input or
modifications.

The key idea behind local search techniques is to repeatedlyapply small changes
to intermediate solutions in order to find higher-quality solutions. In each step, local
search techniques examine solutions closely related to thecurrent one, a so-called local
neighborhood, and select one solution within that local neighborhood to be the next
current solution. Usually the local neighborhood is computed by applying small changes,
also denoted as moves, to the current solution. Although there are significant differences
among the local search algorithms generated by the TEMPLE compiler they basically
apply the same three main steps in each iteration:

1. They compute a set of moves to obtain a local neighborhood of the current solu-
tion.
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2. They evaluate the effect of each move on the current solution. When evaluating
a move they check whether the move is feasible, i.e., it does not cause any hard
constraint violations, and they determine the difference in the problem’s objective
function resulting from the move.

3. They select a feasible move and execute it to obtain a new solution.

In local search algorithms, most computational effort is spent on the evaluation and
execution of moves. To ensure that these two steps are carried out efficiently, we apply
the following strategies in the local search algorithms created by the TEMPLE compiler:

Lazy Evaluation: If we observe that a move violates a hard constraint we will not eval-
uate the move’s effect on other hard and soft constraints.

Caching: We use a move cache to store the result of each evaluation of a move on a
property, curve or constraint. With that move cache we can avoid that a move is
evaluated several times for the same derived element.

Efficient Move Evaluation and Execution: When evaluating a move’s effect on a so-
lution we only evaluate those properties, curves and constraints that are affected
by the move. Similarly, when performing a move we update onlythose solution
elements which are actually changed by a move.

Efficient Data Structures: To evaluate a move’s effect on curves efficiently we devel-
oped and implemented a speed-up strategy. This strategy ensures that only those
curve positions are evaluated which are affected by a move. By applying that
speed-up strategy we could reduce the computational costs associated with curves
significantly.

To demonstrate TEMPLE’s modularity, simplicity, and openness, we reconsider the
real-life break scheduling problem for supervisory personnel, and model it in TEMPLE.
The resulting TEMPLE program consists of only 500 lines of code and is written in a
very concise, understandable and modular manner. In total we needed one man-week
to develop a suitable TEMPLE model for the considered break scheduling problem. An
experimental evaluation of the iterated local search algorithm on real-life and randomly
generated benchmark instances reveals that TEMPLE is able to compute solutions of
high quality in acceptable time.

Finally, we consider a multilayered break scheduling and task assignment problem.
In this staff scheduling problem we are given task requirements for an entire day, an
already existing shift plan and the qualifications of each employee. To obtain a solution
we must compute a break schedule which is completely consistent with a set of legal
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requirements and labor regulations, and in addition, we must also assign the required
tasks to available employees in accordance with their qualifications. Furthermore, task
assignments must satisfy several criteria. For instance, each task must be performed by
the same employee for a certain number of minutes and employees should not be forced
to change the task they carry out.

Since the considered problem is very complex as a whole we decompose it into
three separate phases each of which is modeled and solved by aseparate TEMPLE pro-
gram. In the first phase we compute a break schedule which is consistent with all legal
requirements. In the second phase we optimize the break schedule with respect to the
task requirements. In the third phase we assign the requiredtasks to available employees
and we optimize the task assignment with respect to the imposed criteria.

For the considered break scheduling and task assignment problem, we extend and
adapt the TEMPLE program for the break scheduling problem for supervisory personnel
to solve the first and the second phase of the decomposed problem. By modeling tasks
as intervals linked with employees we also succeed in modeling phase three in a very
natural way.

The three resulting TEMPLE models represent the core of a break scheduling and
task assignment tool. With a prototype of that tool we deliver a proof of concept that au-
tomated break scheduling and task assignment was possible within a reasonable amount
of time, i.e., approximately five minutes on a state of the artcomputer. The prototype
has been extended into a commercial application, which is already used successfully by
decision makers in their day-to-day business.

To sum up, at this point we state explicitly the main results achieved within this
thesis:

⊲ We develop and implement a min-conflicts based algorithm fora real-life break
scheduling problem for supervisory personnel. Thanks to that algorithm we can
generate high-quality solutions that fulfill labor rules and legal requirements, and
at the same satisfy staffing demands.

⊲ We adapt the min-conflicts based algorithm for a related problem arising in a
real-life call center. Computational results on randomly generated benchmark
instances reveal that the modified algorithm is able to create close to optimal
solutions within reasonable time. The min-conflicts based algorithm is applied
successfully at the call center where it computes the daily break schedules for call
center agents.

⊲ We propose TEMPLE, a novel domain specific language designedto model staff
scheduling problems in a very modular and natural manner. For that purpose we
identify common features and basic building blocks of staff scheduling tasks and
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local search techniques which are reflected by the abstractions, notations, and lan-
guage elements offered in the TEMPLE language. Thanks to TEMPLE, ordinary
developer and end users can model staff scheduling problems more concisely, and
the obtained programs can be easily modified and adapted to similar staff schedul-
ing tasks.

⊲ We develop and implement a TEMPLE compiler transforming TEMPLE models
of staff scheduling problems into three executable local search algorithms. These
algorithms can be applied instantaneously and do not require any further user input
or modifications. To ensure that the obtained algorithms arecarried out efficiently,
we implement several strategies within the compiler, in order that only as many
computations as necessary are performed.

⊲ We reconsider the break scheduling problem for supervisorypersonnel and model
it with TEMPLE. We show that the obtained model is indeed built in a modular
manner by using small concise building blocks, and that the iterated local search
algorithms generated by our TEMPLE compiler is able to produce competitive
results of acceptable quality in reasonable time.

⊲ We present a multilayered, real-life break scheduling and task assignment prob-
lem, and solve it with TEMPLE. Thereby we deliver a proof of concept that TEM-
PLE can be applied successfully to real-life staff scheduling problems. The local
search algorithms obtained from our TEMPLE model representthe core of a com-
mercial staff scheduling tool which is currently used successfully on customer’s
site to generate daily break schedules and task assignmentsand to react on intra-
day changes.

The results presented in Chapter 3 and Chapter 4 of this thesis have already been
published in the journal "IEEE Intelligent Systems" and in the proceedings of the "7th
International Conference for the Practice and Theory of Automated Timetabling". In
addition, some of the ideas and figures described in Chapter 5through Chapter 8 have
been submitted to the "26th ACM Symposium on Applied Computing (SAC)" and the
journal "Engineering Applications of Artificial Intelligence".

1.3 Further Organization of This Thesis

Chapter 2 gives preliminary information about staff scheduling problems and local
search algorithms. In Chapter 3 we address a real-life staff scheduling problem for super-
visory personnel and solve it with a min-conflicts-based local search strategy. Chapter
4 presents a similar problem originating from a call center.In Chapter 5 we identify
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common features and basic building blocks of staff scheduling problems and design
the domain specific modeling language TEMPLE. Chapter 6 reviews related modeling
languages as well as metaheuristic frameworks and comparesthese approaches with
TEMPLE. In Chapter 7 we design and implement a TEMPLE compiler transforming
TEMPLE models into three generic local search algorithms which can be executed in-
stantaneously to solve the underlying staff scheduling tasks. In Chapter 8 we model and
solve two real-life staff scheduling problems, and we report on the application of TEM-
PLE within a commercial staff scheduling software. Finally, Chapter 9 concludes and
describes future work.



Chapter 2

Preliminaries

2.1 A Classification of Staff Scheduling Problems

The goal of staff scheduling problems is the creation of work timetables for personnel
so that companies can satisfy legal requirements as well as the demands for their goods
and services. Staff scheduling is a multilayered process, usually consisting of several
different subtasks, each of which representing a complex problem taken by itself. In the
following, we will give an overview of the different facets of the overall staff scheduling
process, whereby we refer to a classification given by Ernst et al. [19].

2.1.1 Demand Modeling

Demand modeling is the process of determining or estimatinghow many staff must be
deployed over a certain planning period. The staff are needed to perform activities, tasks
or services during that time, thus, we have to assess which activities, tasks and services
are required to be performed. Then we must derive the number of employees required
to carry out these duties. As a result we obtain staffing requirements over a planning
period, specifying for each time point the number of employees that should be working
at that time. Ernst et al. [19] mention three different categories of demand modeling
problems which frequently occur in practice:

Task based demand modeling.Staffing requirements are derived directly from a series
of individual tasks to be performed. Task based demand modeling is usually ap-
plied in areas where tasks and the exact times when they have to be performed are
known in advance, like in transport applications or productassembly. Figure 2.1
(a) sketches how staffing requirements are obtained via task based modeling.

9
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Flexible demand modeling. In that case activities, tasks or services to be performed
are not known exactly beforehand, thus, they must be estimated with forecasting
techniques. For instance, flexible demand modeling is frequently applied to obtain
the staffing requirements for call centers, retail stores or airport check-in counters.

Shift based demand modeling.Above all, shift based demand modeling is applied
within the health care sector, where staffing requirements can be derived directly
from a specification of the number of staff that are required to be on duty during
different shifts.

2.1.2 Shift and Break Scheduling

Typically, in shift scheduling problems we generate shift plans in accordance with given
staffing requirements. For that purpose we must decide what kinds of shifts are used
within a shift plan and we must determine the number of employees that should be
working in each single shift on each single day. Good shift plans satisfy staffing re-
quirements, thereby they avoid shortage and excess of staff and guarantee that required
activities, tasks or services can be carried out effectively, and personnel are deployed
cost-savingly.

As a further aspect of shift scheduling problems, we must often schedule work
and meal breaks for shifts or single employees. The obtainedbreak schedules shall be
consistent with legal requirements, labor rules resultingfrom agreements between the
labor council and the management board, and ergonomic criteria. Break scheduling tasks
arise pre-eminently in working areas where employees spendtheir working time in front
of computer monitors, such as call centers. The combined problem of scheduling shifts
and breaks at the same time represents a very complex task, thus, the entire problem is
often solved in two phases. In the first step a shift plan without any breaks is constructed,
and then, breaks are inserted in a subsequent phase.

Figure 2.1 (b) presents the staffing requirements and a (suboptimal) solution for a
sample shift and break scheduling problem. In Figure 2.1 (b)we see that shortage and
excess of staff still occur at some periods of time.

2.1.3 Line of Work Construction

After a shift plan has been obtained we must combine single shifts or duties to single
lines of work. A line of work represents the shift or duty pattern for a single, individual
employee. Also when constructing lines of work, we have to satisfy legal requirements
and ergonomic criteria, e.g., in a feasible line of work, a night shift must not be followed
immediately by a day shift. Figure 2.1 (c) shows three feasible lines of work constructed
for an entire week.
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2.1.4 Staff Assignment

During the process of staff assignment we assign individual employees to single lines
of work (see Figure 2.1 (d)). Line of work construction and staff assignment are often
solved together as a single staff scheduling problem.

2.1.5 Task Assignment

In task assignment problems we must assign activities or tasks required to be carried out
to shifts or individual staff (see Figure 2.1 (e)). Thereby, we often have to consider the
qualifications of employees and obtain a task assignment which is consistent with staff
skills.

2.1.6 Further Surveys of Staff Scheduling Problems

Besides the article on general staff scheduling and rostering by Ernst et al. [19] there ex-
ist several surveys of staff scheduling problems focussed on specific industries. Burkeet
al. [8] survey problems and solution approaches in the field of nurse rostering. A further
overview of different models and methodologies for nurse rostering is givenby Cheang
et al. [14]. Arabeyre et al. [2] and Barnhart et al. [5] present a review of the literature,
problems, and solutions techniques in the area of airline crew scheduling. Considering
railway crew scheduling problems, many effective models and solution approaches have
been proposed by Caprara et al. [12, 13, 11]. The reader is referred to Aksin [1] and
Ernst [18] for an overview of different staff scheduling tasks and problems appearing in
the modern call center industry.

2.2 State-of-the-Art in Break Scheduling Problems

The staff scheduling problems considered in this thesis are largely break scheduling
problems. Thus, at this point, we give a short review on previous work performed in the
area of break scheduling.

Break scheduling has been mainly considered in the literature as part of the shift
scheduling problem. Dantzig developed the original set-covering formulation [15]. In
this formulation there exists a variable for each feasible shift. Feasible shifts are enumer-
ated based on possible shift starts, shift lengths, breaks,and time windows for breaks.
When the number of shifts increases rapidly, this formulation is not practical. Bechtold
and Jacobs proposed a new integer programming model [6]. In their formulation, the
modeling of break placements is done implicitly. Authors reported superior results with
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Figure 2.1: Subtasks involved in the overall staff scheduling process according to Ernst
et al. [19].
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their model compared to the set covering model. However, their approach is limited to
scheduling problems of less than 24 hours per day. Thompson introduced a fully implicit
formulation of the shift scheduling problem [53]. A comparison of different modeling
approaches is given by Aykin [4]. Rekik et al. [48] developedtwo other implicit models
and improved upon previous approaches including AykinŠs original [3] by up to about
10 percent.

A greedy algorithm for scheduling breaks after generating shifts has been presented
in [25]. The authors propose a simple algorithm which includes the phase of assigning
the breaks greedily based on the information for the largestexcess, and then applying
simple repair steps on the assigned breaks.

Tellier and White present a tabu search based approach in order to solve a schedul-
ing problem originating from call centers [52]. They aim at minimizing the squared
deviation of working employees from staffing requirements while various constraints
are required to be satisfied. In [52] there is a correspondence between shifts and real
employees of the contact center, and the constraints on a feasible solution restrict the
position of breaks within shifts, the position and lengths of single shifts within the entire
schedule, and the minimum and maximum number of paid workinghours per employee.
Canon investigates also the use of tabu search for the shift design problem including
breaks [10].

Thompson and Pullman [54] argue that scheduling breaks simultaneously with
shifts increases the quality of obtained shift plans. Although this is reasonable, in many
real-life scenarios, like in our problem, it is required to just schedule breaks in already
existing fixed shift plans.

The break scheduling problem we will adress in Chapter 3 has recently also been
investigated in [44, 58, 59]. A memetic algorithm for this problem is presented in [44].
The moves applied in [44] are based on on our work, that will beshown in Chapter
3. Moreover, the memetic algorithms for that problem have been further improved by
applying a new memetic representation and a penalty mechanism for memes [58, 59].

2.3 Local Search Algorithms

The great drawback in staff scheduling problems is that they are NP-hard in general. Ex-
amples of NP-hard staff scheduling problems are shift scheduling problems, such asthe
min-shift design problem of which even a logarithmic approximation is NP-hard [26],
or break scheduling problems [58]. Due to their general NP-hardness, staff scheduling
tasks cannot be solved to optimality in polynomial time at the present, and most likely
not in future either. Therefore, staff scheduling problems are solved using mathematical
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programming or sophisticated AI-techniques, such as constraint programming, heuris-
tics, metaheuristics, or branch and bound algorithms.

Algorithm 1 Basic Local Search

1: computean initial solutionx
2: repeat
3: selecta solutionx′ ∈ N(x) within the local neighborhood ofx
4: x = x′

5: end select
6: until termination conditionis satisfied
7: return best solution found by the search algorithm

Local search techniques are a class of metaheuristic algorithms, which have been
applied successfully to various staff scheduling tasks. The key idea behind local search
algorithms is to repeatedly apply small changes to intermediate solutions in order to
find higher-quality solutions. Algorithm 1 presents a the basic priciples of a local
search algorithm in pseudo code notation. In the following we introduce and describe
frequently used terms within the area of local search algorithms:

Search space.The search space is the set of all solutions for a particular optimization
problem.

Objective function. An objective function, also referred to as fitness function,maps
solutions within the search space to real values. The overall goal of a local search
algorithm is to find a solution minimizing or maximizing the objective function of
the considered problem.

Initial solution. A solution or point within the search space at which a local search
algorithm starts.

Move. A move is a small change which is applied to obtain a further solution.

Local neighborhood. The local neighborhood of a current solution is a set of solutions
closely related to the current one. A local neighborhood is obtained by applying
different moves to the current solution.

Local optimum. A local optimum is a solution having a better objective valuethan
any other solution within its local neighborhood. When constructing local search
algorithms a crucial point is to develop and implement strategies to escape local
optima and explore further regions within the search space.
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Global optimum. A global optimum is an optimal solution of a considered optimization
problem.

Figure 2.2 presents the search space of a fictitious maximization problem. The
height associated with a point encodes the objective value of the corresponding solution.
Further we see a possible execution of a local search algorithm: Starting at an initial
solution, the algorithm visits solutions of improved objective value until a local optimum
is reached. After escaping the local optimum the algorithm explores new regions of the
search space, and finally, it reaches a globally optimal solution.

Figure 2.2: A fictitious execution of a local search algorithm in a two dimensional
search space.

2.3.1 An Overview of Local Search Techniques Used in This Thesis

In this thesis we develop a domain specific language to model and solve staff schedul-
ing problems. For that purpose we design and implement a compiler which transforms
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problem models written in the domain specific language into three generic local search
algorithms that can be executed instantaneously without requiring any further user in-
put. In the following, we will describe the basic principlesof these three local search
algorithms in detail.

Hill Climbing with Random Noise

The first local search algorithm is presented in Algorithm 2 in pseudo code notation.
[39]. As input the algorithm is given a small probabilitypnoisecontrolling the behaviour
of the local search process. After an initial solution is obtained, the algorithm applies
either a hill climbing strategy [39] with high probability 1− pnoiseor performs a random
noise move with small probabilitypnoise. The hill climbing strategy computes a local
neighborhood and selects the best feasible solution havinga better objective function
value. If the search reaches a local optimum, i.e., a solution better than any other solution
within that solution’s local neighborhood, hill climbing will not proceed any further,
since it will not find solutions of better quality. To escape local optima, we introduce the
local noise process, which accepts any feasible solution ina local neighborhood, even a
solution of minor quality.

Iterated Local Search

Iterated local search algorithms [37] consist of three components, a local search strategy
used to reach locally optimal solutions, a so-called pertubation mechanism which is
applied to escape from local optima and an acceptance criterion deciding whether the
search process will continue from the current solution or a previously obtained one.
Figure 2.3 illustrates the interaction between local search and perturbation in a local
search algorithm.

The iterated local search algorithm generated by our compiler is presented in Al-
gorithm 3. First the iterated local search algorithm tries to reach a local optimum by
applying the hill climbing strategy presented in Algorithm4. The hill climbing algo-
rithm terminates if no improvement has been achieved forH iterations and returns the
obtained locally optimal solutionx∗.

Then, the locally optimal solutionx∗ is passed to the pertubation process presented
in Algorithm 5. The pertubation proceeds with any arbitraryfeasible solution within
a local neighborhood, and it terminates afterP solutions of minor quality have been
visited. Afterwards hill climbing is applied again until a new local optimumx′∗ has been
reached.

Finally, the algorithm decides whether the search should continue from the current
local optimumx′∗ or if the previously obtained local optimumx∗ should be restored.
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Algorithm 2 Hill Climbing with Random Noise(t, pnoise, s)

1: computean initial solutionx
2:

3: repeat
4:

5: //hill climbing
6: with probability 1− pnoisedo
7: computeN(x, s) a local neighborhood ofx of sizes
8: evaluateN(x, s)
9: selectthe best feasible solutionx′ ∈ N(x, s)

10: if x′ < x then
11: x = x′

12: end if
13: end select
14: end with
15:

16: //random noise
17: with probability pnoisedo
18: selecta random feasible solutionx′ in a local neighborhood ofx
19: x = x′

20: end select
21: end with
22:

23: until a time limit t has been reachedor an optimal solution has been found
24: return best solution found by the search algorithm

In our local search algorithm we implemented the following three different acceptance
criteria taking that decision:

Accept Always. The search continues with the last obtained local optimumx′∗.

Accept Best. The search continues with the better local optimum.

Accept Percentage.The search continues with solutionx′∗ if it is better or its loss of
quality does not exceed a certain threshold.

Simulated Annealing

Simulated annealing [36] is based on an analogy from metallurgy. To grow crystals of
high quality several substances are first melted and cooled in a controlled way after-
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Figure 2.3: Interaction between local search and perturbation in an iterated local search
algorithm.

Algorithm 3 Iterated Local Search(t,H,P, s)

1: computean initial solutionx0

2: x∗ = Hill Climbing(x0,H)
3: repeat
4: x′ = Perturbation(x∗ ,P)
5: x′∗ = Hill Climbing(x′ ,H)
6: x∗ = Acceptance Criterion(x∗, x′∗)
7: until a time limit t has been reachedor an optimal solution has been found
8: return best solution found by the search algorithm

wards. Appropriate cooling reduces the defects in the resulting crystal. This strategy has
been applied successfully to many optimization problems.

The basic principle of the simulated annealing technique implemented in this thesis
are described in Algorithm 6 in pseudo code notation. The algorithm creates an initial
solution for the considered optimization problem and determines an initial and final cool-
ing temperature,Tinit andT f inal, as well as a decay rateα. In each iteration we consider
a neighborhood consisting of a single solution. If that solution is better than the current
one it will be accepted for the next iteration. Otherwise, the generated neighborhood
solution is accepted with a probability depending on the temperature and the quality of
the solution. Typically the temperature is very large in thebeginning of the search and
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Algorithm 4 Hill Climbing(x,H, s)

1: repeat
2: computeN(x, s) a local neighborhood ofx of sizes
3: evaluateN(x, s)
4: selectthe best feasible solutionx′ ∈ N(x, s)
5: if x′ < x then
6: x = x′

7: end if
8: end select
9: until solution has not been improved within lastH iterations

10: return best solution found by the search algorithm

Algorithm 5 Perturbation(x,P)

1: repeat
2: selecta random feasible solutionx′ in a local neighborhood ofx
3: x = x′

4: end select
5: until P moves worsening the quality ofx have been performed
6: return x

the simulated annealing behaves like a random search technique. Toward the end of the
search the temperature decreases and simulated annealing behaves like an ordinary hill
climbing strategy, meaning that it accepts only neighboring solutions of better quality.

Our implementation of a simulated annealing algorithm is controlled by three pa-
rameters, the initial temperatureTinit , the final temperatureT f inal and the decay rateα
determining how fast the temperature is lowered. At the start of the algorithm these pa-
rameters are determined as follows: First of all we apply a series of moves, to the initial
solution and store the fitness loss resulting from each move.Moreover we also record
the running times needed to compute and evaluate each move. From the observed fitness
losses we compute the average fitness loss per move.Tinit is chosen such that a move
with an average fitness loss has a probability ofpinit to be performed at the beginning of
the simulated annealing algorithm.T f inal is computed such that a move with an average
fitness loss will be performed with probabilitypf inal at the end of the simulated annealing
strategy. From the recorded running times we estimate roughly how many moves will be
computed and evaluated until our algorithm has consumed half of its running time. The
value for the decay parameterα is chosen in such a manner that the final temperature
will be reached approximately at the middle of the simulatedannealing algorithm.
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Algorithm 6 Simulated annealing(t, pinit , pf inal)

1: computean initial solutionx
2: computeTinit ,T f inal andα on the basis ofpinit , pf inal andtime limit
3:

4: T = Tinit

5: repeat
6:

7: selecta random feasible solutionx′ in the local neighborhood ofx
8: if x′ ≤ x then
9: x = x′

10: else
11: p = e−

x′−x
T

12: with probability p do
13: x = x′

14: end with
15: end if
16: end select
17:

18: T = max(T × α,T f inal)
19:

20: until time limit t has reachedor an optimal solution has been found
21: return the best solution found by the search algorithm



Chapter 3

A Break Scheduling Problem for
Supervisory Personnel

In this chapter, we address a complex real-world break-scheduling problem for supervi-
sory personnel. Supervisory personnel spend most of their workday in front of computer
monitors, addressing critical and constantly changing situations. For employees working
under such conditions to always maintain high levels of concentration, it is essential that
they take occasional breaks. Usually, the amount of break time, as well as the position
and duration of breaks within their work time (shift) are regulated by labor rules that
must be satisfied by a feasible shift plan. Moreover, to guarantee effective supervision,
a minimum number of employees must be working at any given time. In our particular
problem, we had to design shift plans over one week containing more than a hundred
shifts and more than a thousand breaks. The problem’s size and complexity made it im-
possible for a professional planner to reach a good solutionin a reasonable amount of
time. Thus, automatic or computer-aided break scheduling was the only way to obtain
high-quality shift plans that could both fulfill legal requirements and reduce cost. So,
we developed a min-conflicts-based local search algorithm to help planners design such
shift plans in the area of supervisory personnel. This heuristic mimics human experts
when solving break-scheduling problems and obtains good results. The heuristic is part
of a commercial product called Operating Hours Assistant 3.6.

3.1 Formal Inputs to the Break-Scheduling Problem for Su-
pervisory Personnel

In this break-scheduling problem, we are concerned with shift plans for supervisory
personnel in which each shift must contain a certain amount of break time. Our goal

21
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is to schedule breaks within the shifts in a solution that minimizes a weighted sum of
constraint violations representing legal demands, staffing requirements, and ergonomic
criteria. Formally, the break-scheduling problem for supervisory personnel has the fol-
lowing inputs:

⊲ A planning period is formed by T consecutive time slots
[a1, a2), [a2, a3), ..., [aT , aT+1], all having the same length (typically 5 min-
utes). Time pointsa1 andaT+1 represent the beginning and end of the planning
period.

⊲ Shifts (s1, s2, ..., sn) representing employees working within the planning period.
Each shift,si , has an adjoined parameter,si .breaktime, that specifies the required
amount of break time forsi in time slots.

⊲ The staffing requirements for the planning period are defined as follows. For each
time slot, [at, at+1), an integer valuert indicates the required number of employees
that should be working during that time slot. An employee is considered to be
working during time slot [at, at+1) if that employee neither has a break during time
slot [at, at+1) nor has stopped working at time point at. After a break, an employee
needs a full time slot, usually 5 minutes, to become reacquainted with the altered
situation. Thus, during the first time slot following a break, an employee is not
considered to be working.

Shifts and breaks are characterized by two parameters, start and end, representing
the time slots in which a shift or break starts and ends. Subtracting the value for start
from the value for end gives the duration of shifts and breaksin time slots. The durations
of shifts and breaks are stored in an additional parameter, duration. Moreover, each break
is associated with a certain shift in which it is scheduled. We distinguish between two
different types of breaks: lunch breaks and monitor breaks.

3.2 Feasible Break-Scheduling Solution

Given a planning period, a set of shifts, the associated total break times, and the staffing
requirements, a feasible solution to the break-schedulingproblem is a set of breaks with
the following characteristics:

⊲ Each break,b j , lies entirely within its associated shift,si . That is,

si .start ≤ b j .start≤ b j .end= si .end
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⊲ Two distinct breaks (b j , bk) associated with the same shift,si , do not overlap in
time:

b j .start≤ b j .end≤ bk.start ≤ bk.endor

bk.start≤ bk.end≤ b j .start ≤ b j .end

⊲ In each shift,si , the sum of durations of its associated breaks equals the required
amount of break time:

∑

bj∈si
b j .duration= si .breaktime

3.3 Criteria for Finding an Optimal Solution

Among all feasible solutions for the break-scheduling problem, we try to find an optimal
one according to seven criteria, which we model as soft constraints on a solution.

C1: Break Positions. Each break,b j , may start, at the earliest, a certain number of time
slots after the beginning of its associated shiftsi , and may end, at the latest, a
given number of time slots before the end of its shift:

b j .start ≥ si .start + distance to shi f t start
b j .end ≤ si .end − distance to shi f t end

C2: Lunch Breaks. A shift si can have several lunch breaks, each required to last a
specified number of time slots (min lunch break duration), and should be located
within a certain time window after the shift start. Letblb be a lunch break. Then,

blb.start ≥ si .start + distance to shi f t start lb
blb.end ≤ si .end − distance to shi f t end lb

C3: Duration of Work Periods. Breaks divide a shift into several work and rest peri-
ods. The duration of work periods within a shift must range between a required
minimum and maximum duration:

min work duration ≤ b1.start − si .start ≤ max work duration
min work duration ≤ b j+1.start − b j .end ≤ max work duration
min work duration ≤ si .end − bm.end ≤ max work duration

where (b1, ..., b j , b j+1, ..., bm) are the breaks ofsi in temporal order.
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C4: Minimum Break Times after Work Periods. If the duration of a work period ex-
ceeds a certain limit, the break following that period must last a given minimum
number of time slots (min ts count):

b1.start − si .start ≥ work limit ⇒ b1.duration ≥ min ts count
b j+1.start − b j .end ≥ work limit ⇒ b j+1.duration ≥ min ts count

where, once again, (b1, ..., b j , b j+1, ..., bm) are the breaks ofsi in temporal order.

C5: Break Durations. The duration of each break,b j , must lie within a specified mini-
mum and maximum value:

min duration ≤ b j .duration ≤ max duration

C6: Shortage of Employees.In each time slot, [at, at+1), at leastrt employees should
be working.

C7: Excess of Employees.In each time slot, [at, at+1), at mostrt employees should be
working.

3.4 Objective Function

For each constraint, we define a violation degree,violation(Ck), specifying the deviation
(in time slots or employees) from the requirements stated bythe respective constraint.
The importance of each criterion and its corresponding constraint varies from task to
task. Consequently, the break-scheduling problem’s objective function is the weighted
sum of the violation degrees of all the constraints:

F(solution) =
∑7

k=1 Wk × violation(Ck)

whereWk is a weight indicating the importance assigned to constraint Ck. Given an
instance of the break-scheduling problem, our goal is to finda feasible solution that
minimizes this objective function.

3.5 Solving the Break-Scheduling Problem

Widl [58] has shown that the break scheduling problem for supervisory problem is
NP-complete, if all possible break patterns are given explicitly in the input. Local-
search techniques represent one possible way to obtain solutions of sufficient quality for
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complex optimization tasks. Therefore, we developed a local-search algorithm for the
break-scheduling problem, namely a minimum-conflicts-based heuristic [42]. Obtaining
a minimum-conflicts-based heuristic for the break-scheduling problem required

⊲ developing a representation of a solution for the break-scheduling problem,

⊲ finding a method to generate an initial solution for this problem,

⊲ defining an objective function to map solutions to real values, and

⊲ developing moves for the break-scheduling problem to compute the local neigh-
borhood of solutions.

3.6 Solution Representation

We represent a solution of this problem as a set of breaks. Foreach shift,si, the breaks
to be scheduled are instantiated at the beginning of a local-search algorithm. So, we first
generate lunch breaks, and then we distribute the remainingbreak time among monitor
breaks until the total amount of break time insi equalssi .breaktime. Hence, the duration
of each lunch break is set to the exact number of time slots required by constraintC2

(lunch breaks), and the duration of each monitor break lies within the specified minimum
and maximum limits imposed by constraintC5 (break durations). Table 3.1 describes
which breaks are created for an 8-hour shift in a problem instance with the settings
presented in Figure 3.2.

In the min-conflicts-based algorithm, the start of a break,b j .start, is a variable
integer value that can be altered during the search process.In contrast, we require that
the duration of a break,b j .duration, remains unchanged and keeps its initially assigned
value. We allow that two or more breaks may be scheduled consecutively so that breaks
of longer duration can be created.

3.7 Initial Solution and Objective Function

Once the breaks are created, they must be placed in the given shift plan. We implemented
two methods to schedule breaks within their associated shifts. The first simply schedules
breaks randomly so that they do not overlap. The second schedules breaks so that the
resulting break pattern completely satisfies constraintsC1 throughC5. We formulated
this task as a simple temporal problem (STP) [16] and we solved this problem by apply-
ing a randomized version of the Floyd-Warshall shortest-path algorithm [45] which has
a polynomial runtime.
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Shift and break information Time No. of time slots
Shift si

si .duration 8 hrs. 96
si .breaktime 90 min. 18
Created breaks
1 lunch break 30 min. 6
6 monitor breaks 10 min.× 6 = 1 hr. 12

Table 3.1: Example describing which breaks are created for an 8-hour shift with the
settings of Figure 3.2.

An STP consists of a set of variablesX = X1, ...,Xn and a set of constraints on those
variables. The variables of an STP represent time points having continuous domains.
Each constraint is represented as an interval that either restricts the domain values for a
single variableXi or restricts the difference (X j − Xi) of two distinct variables (Xi ,X j).

To schedule breaks correctly with respect to constraintsC1 throughC5, we modeled
the start and end parameters of shifts and breaks as variables of an STP. For the various
limits imposed on break positions and on the duration of breaks and work periods, we
introduced the following constraints into the STP for constraintsC1 throughC4.

C1: b j .start ∈ [(si .start+ distance to shi f t start), si .end]
b j .end ∈ [si .start, (si .end− distance to shi f t end)]

C2: blb.start ∈ [(si .start+ distance to shi f t start lb), si .end]
blb.end ∈ [si .start, (si .end− distancetoshi f tendlb)]

C3: b1.start − si .start ∈ [min work duration, max work duration]
b j+1.start − b j .end ∈ [min work duration, max work duration]
si .end − bm.end ∈ [min work duration, max work duration]

C4: i f b1.duration≤ min ts count
b1.start− si .start ∈ [min duration, work limit)

i f b j+1.duration≤ min ts count
b j+1.start− b j .end∈ [min duration, work limit)

The two temporal constraints forC4 are inserted if and only if (b1.duration≤ min
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length) and (b j+1.duration ≤ minlength), respectively. ConstraintC5 is automatically
satisfied by the obtained solution, because we created only breaks whose durations
ranged between the required minimum and maximum break time limits. The criteria
for a feasible solution are implicitly covered by the constraints just described. As the
objective function, we use the weighted sum of the violationdegrees of all constraints,
F(solution), as discussed earlier.

3.8 Moves and Local Neighborhood

We developed two types of moves for the break-scheduling problem. The first move
(called assignment) assigns to a break a new start within itsrespective shift. The second
move (denoted swap) exchanges the start times of two breaks associated with the same
shift, meaning those breaks are actually swapped. Figure 3.1 illustrates these two moves.
Given a feasible solutionS to the break-scheduling problem, the neighborhoodN(S) is
the set of all solutions obtained by applying an assignment to a single break inS or by
swapping two breaks within the same shift inS.

Figure 3.1: The two moves developed for the break-scheduling problem. The
assignment move assigns to a break a new start within its respective shift.
The swap move exchanges the start times of two breaks associated with the
same shift.
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3.9 Minimum-Conflicts Heuristics

The minimum-conflicts heuristics tries to improve the current solution by concentrating
only on the parts that cause constraint violations. During an iteration, the minimum-
conflicts-based heuristic selects a break that violates a constraint and determines a move
to minimize, or at least not worsen, the current solution’s violation degree. If such a
move exists, it is applied to the current solution, and the search continues until some
halting condition is satisfied.

The minimum-conflicts search method applies only moves thatdo not decrease the
current solution’s quality. Thus, if the search reaches a local-optimum solution that is
better than any solution within that solution’s neighborhood, the algorithm will not pro-
ceed any further, since it will not find solutions of better quality than the local optimum.
To avoid this undesirable behavior, we apply an additional strategy named random walk,
which has been used successfully in algorithms for satisfiability problems [50].

The random-walk strategy also selects a break that violatesa constraint. However,
unlike the minimum-conflicts-based heuristic, random walkapplies an arbitrary move
to that break. On the one hand, the violation degree of the resulting solution could be
worse than the previous one. But, on the other hand, performing such moves can help
the algorithm escape from local optima. We call the combination of both strategies min-
conflicts-random-walk. The random-walk strategy is carried out with a small probability
of p, whereas the ordinary minimum-conflicts search is carried out with a high probabil-
ity of 1 − p. The concrete value ofp is determined experimentally.

3.10 Benchmark Instances for the Break-Scheduling Problem

To evaluate the min-conflicts-random-walk heuristic, we tested it with 20 real-world
instances originating from a consulting project. In each instance, we were given the
staffing requirements for one week and a shift plan consisting of 120 to 150 shifts, re-
sulting in more than a thousand breaks to be scheduled for each instance.

In addition to the real-world examples, we created a series of randomly gener-
ated benchmarks for the break-scheduling problem, which are available atwww.dbai.
tuwien.ac.at/proj/SoftNet/Supervision/Benchmarksand can be used by other
researchers to compare their results with ours. (This Web site also details how the ran-
dom instances are generated.) For random instances, an optimal solution without any
constraint violation is known. Thus, we can determine the degree to which the results
returned by the min-conflicts-random-walk algorithm deviate from the optimal solution.
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3.11 Experimental Settings

In our experiments, the goal of optimization was to obtain solutions that both satisfy
labor rules and avoid periods of employee shortages. Labor rules for supervisory per-
sonnel are modeled by constraintsC1 (break positions), C3 (duration o f work periods),
andC4 (minimum break times a f ter work periods). So, we assigned the highest weights
to these constraints in the objective function. We also gavea high weight to constraintC6

(shortage o f employees) andC2 (lunch breaks), and we gave all other constraints lower
values. The summary form presented in Figure 3.2 states the exact weights assigned to
each constraint.

We conducted our experiments on several computers and normalized all runtimes
to a Genuine Intel T2400 laptop running at 1.8 GHz with 2 Gbytes of RAM. For each
instance, we performed 10 runs of the min-conflicts-random-walk heuristic, and a single
run took 1 hour. In a preliminary series of experiments, we determined the value for
the random-walk probability. We considered five different percentages (0, 1, 2.5, 5, and
10) and applied them to our benchmark instances. The best results were obtained with
a random-walk probability ofp = 2.5 percent, so we used this random-walk probability
for our further experiments.

3.12 Tests on Real-World Instances

For the 20 real-world benchmarks, we experimented with two variants of initial solutions
to assess whether the initial solution affected our algorithm’s outcome. The first variant
uses an initial solution that randomly places breaks. The second variant begins with a
solution that already satisfies constraintsC1 throughC5 by solving the corresponding
STP [16].

Table 3.2 presents the results for these benchmarks from 10 runs of the min-
conflicts-random-walk algorithm. The mean objective values of the initial solutions
obtained by scheduling breaks randomly were six to nine times worse than those of solu-
tions created by solving the corresponding STP. Nevertheless, the min-conflicts-random-
walk algorithm can return good solutions for both variants.On the basis of these results,
we conclude that the initial solution does not significantlyimpact the outcome of the
solution computed by the min-conflicts-random-walk algorithm.
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Figure 3.2: Common constraint settings for the considered break-scheduling problem.
We used these settings for the experimental evaluation of the
min-conflicts-random-walk algorithm.



CHAPTER 3. A BREAK SCHEDULING PROBLEM FOR SUPERVISORY. . . 31

min-conflicts-random-walk heuristic min-conflicts-random-walk heuristic with

with randomly generated initial solutions initial solutions created by solving the

(objective-function values) corresponding STP (objective-function values)

Initial- Initial-
solution Standard solution Standard

Instance Shifts Breaks mean Best Mean deviation mean Best Mean deviation
2fc04a 135 1,113 95,898.6 3,094 3,248.0 83.6 13,058.8 3,1123,224.2 86.1
2fc04a03 134 1,130 93,753.8 3,100 3,229.0 60.9 13,092.0 3,138 3,199.6 38.7
2fc04a04 137 1,144 97,175.0 3,232 3,371.2 67.9 12,962.0 3,234 3,342.1 59.5
2fc04b 126 1,064 88,225.6 2,017 2,104.1 91.5 13,639.6 1,8222,042.8 99.1
3fc04a 124 1,048 90,065.8 1,746 1,809.0 49.1 13,420.0 1,6441,767.0 101.6
3fc04a03 123 1,052 88,824.6 1,632 1,804.2 87.0 13,202.8 1,670 1,759.2 53.1
3fc04a04 128 1,075 90,801.0 1,942 2,032.0 51.0 12,802.8 1,932 1,980.2 40.4
3si2ji2 151 1,182 98,761.2 3,626 3,692.2 35.2 10,724.4 3,646 3,666.6 14.5
4fc04a 124 1,050 85,808.6 1,694 1,850.6 125.8 13,345.6 1,730 1,817.1 48.2
4fc04a03 123 1,053 89,474.2 1,666 1,795.0 86.8 13,061.2 1,748 1,834.2 55.5
4fc04a04 127 1,068 90,357.4 1,918 2,016.6 94.9 12,808.4 1,982 2,063.6 62.3
4fc04b 125 1,048 89,000.4 1,440 1,526.6 56.3 12,934.4 1,4101,489.2 48.7
50fc04a 130 1,091 94,776.6 1,750 1,860.6 94.9 14,161.6 1,672 1,827.3 80.6
50fc04a03 130 1,101 92,295.5 1,718 1,847.0 96.3 14,127.3 1,686 1,813.2 84.1
50fc04a04 131 1,112 93,427.4 1,790 1,985.4 83.3 13,930.8 1,792 1,917.2 64.1
50fc04b 126 1,069 91,969.6 1,854 2,012.2 90.9 14,857.6 1,822 1,953.9 77.1
51fc04a 129 1,081 90,374.2 2,048 2,204.2 89.4 14,535.2 2,054 2,166.2 62.3
51fc04a03 129 1,089 92,096.6 2,004 2,096.2 60.4 14,337.2 1,950 2,050.4 86.5
51fc04a04 130 1,101 94,761.6 2,058 2,194.8 64.4 14,319.2 2,116 2,191.4 53.1
51fc04b 126 1,065 89,693.2 2,380 2,513.6 106.2 14,956.4 2,244 2,389.4 93.9

Table 3.2: Test results for 20 real-life benchmark instances from 10 runs of the
min-conflicts-random-walk algorithm for randomly generated initial
solutions and for solutions created by solving the corresponding simple
temporal problem (STP).

3.13 Tests on Random Instances with a Known Optimal Solu-
tion

For the experiments with randomly created benchmarks, we selected 10 instances having
between 120 and 180 shifts, since that was also the typical instance size of our bench-
marks. To these instances, we applied only the min-conflicts-random-walk algorithm
using a randomly scheduled initial solution. We created the10 instances by model-
ing and solving STPs, so we did not want to create an initial solution using the same
technique. Table 3.3 reports the best and mean objective values returned by the min-
conflicts-random-walk algorithm in 10 runs and presents thecorresponding standard
deviations. Given that we assigned high values to single constraints in our objective
function, the returned mean and best objective values are quite satisfactory, although
an optimum solution avoiding any constraint violations could not be found by the min-
conflicts-random-walk algorithm.
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Standard
Instance Shifts Breaks Optimal Best Mean deviation
random1-1 137 962 0 1,728 1,972.4 176.9
random1-2 164 1,060 0 1,654 1,994.0 172.1
random1-5 141 950 0 1,284 1,477.0 199.0
random1-7 157 1,089 0 1,860 1,077.2 153.9
random1-9 151 985 0 1,358 1,658.0 212.8
random1-13 124 884 0 1,264 1,535.2 245.2
random1-24 137 928 0 1,586 1,712.8 74.5
random1-28 124 809 0 1,710 2,020.0 233.0
random2-1 179 1,255 0 1,686 1,855.2 142.1
random2-4 162 1,075 0 1,712 2,052.8 242.0

Table 3.3: Test results (objective-function values) for 10benchmark instances with a
known optimal solution from 10 runs of the min-conflicts-random-walk
algorithm for randomly generated initial solutions.

3.14 Quality of Obtained Solutions

Table 3.4 summarizes the properties of the best solutions obtained by the min-conflicts-
based heuristic in our previous experiments. For each instance and constraint, we pro-
vide the number of shifts in which the corresponding constraint was violated. We also
present the total number of violated shifts per instance, aswell as the number of time
slots in which employee shortages or excesses occurred.

For the 20 real-world benchmarks, the constraints reflecting legal requirements -C1

(break positions), C3 (duration o f work periods), andC4 (minimum break times a f ter
work periods) - were completely satisfied in nearly all instances, and thepercentage of
shifts violating a constraint was less than 5 percent for each instance. In fact, most con-
straint violations were due to lunch breaks that were not scheduled within their preferred
region. In practice, these violations obviously are not considered as serious as violating
legal requirements.

Considering the shortage of employees for the real-world examples, we observe
that in most instances shortages occurred in less than 5 percent of the entire planning
period. Only for instances 50fc04b, 51fc04a, and 51fc04b was the min-conflicts-based
heuristic unable to compute a solution under a 5 percent shortage threshold. Also, the
high excess of employees reported for some instances was dueto the characteristics of
the given shift plan for that problem; hence, high excess percentages were unavoidable
for those instances.

Regarding the best solutions for the 10 randomly created instances, constraints
reflecting legal requirements were completely satisfied in three instances (random1-1,
random1-5, and random 1-24). Moreover, for six other instances, those constraints were
violated only in a few shifts. Only for instance random1-9 did the obtained best solution
have seven shifts violating constraintC3 (duration o f work periods) or C4 (minimum
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No. of shifts violating constraint

Duration Minimum Shifts with Time slots with

Break Lunch of work break Break violations Shortage Excess

Instance Shifts positions breaks periods times durations No. % No. % No. %

2fc04a 135 0 2 0 0 0 2 1.5 55 2.7 658 32.3
2fc04a03 134 0 3 0 0 0 3 2.2 55 2.7 684 33.6
2fc04a04 137 0 3 0 0 0 3 2.6 53 2.2 726 35.5
2fc04b 126 0 0 0 0 1 1 0.8 72 3.5 379 18.6
3fc04a 124 0 3 0 0 0 3 2.4 37 1.8 410 20.1
3fc04a03 123 0 1 0 0 0 1 0.8 27 1.3 463 22.7
3fc04a04 128 0 0 0 0 0 0 0 27 1.3 524 25.7
3si2ji2 151 0 0 0 0 0 0 0 2 0.1 1,093 53.7
4fc04a 124 0 3 0 0 0 3 2.4 41 2.0 412 20.2
4fc04a03 123 0 0 0 0 0 0 0 31 1.5 445 21.8
4fc04a04 127 0 2 0 0 0 2 1.6 28 1.4 538 26.3
4fc04b 125 0 0 0 0 0 0 0 37 1.8 357 17.5
50fc04a 130 0 2 0 0 0 2 1.5 74 3.6 284 13.9
50fc04a03 130 0 3 0 0 0 3 2.3 55 2.7 343 16.8
50fc04a04 131 0 5 0 0 0 5 3.8 50 2.5 402 19.7
50fc04b 126 0 1 1 0 0 1 0.8 117 5.7 196 9.6
51fc04a 1 29 0 2 0 0 0 2 1.6 108 5.3 263 12.9
51fc04a03 129 0 2 0 0 1 3 2.3 85 4.2 309 15.2
51fc04a04 130 0 3 0 0 0 3 2.3 85 4.2 363 17.8
51fc04b 126 0 2 1 0 0 3 2.4 137 6.7 198 9.7
random1-1 137 0 0 0 0 0 0 0 38 2.0 114 6.0
random1-2 164 0 0 0 3 0 3 1.8 89 4.4 196 9.7
random1-5 141 0 0 0 0 0 0 0 89 4.6 182 9.4
random1-7 157 0 0 0 1 0 1 0.6 43 2.2 142 7.1
random1-9 151 0 2 6 1 0 9 6 67 3.3 162 8.0
random1-13 124 0 0 1 1 0 2 1.6 73 3.6 162 8.0
random1-24 137 0 1 0 0 0 1 0.7 106 5.3 178 8.9
random1-28 124 0 0 0 1 0 1 0.8 100 5.0 169 8.4
random2-1 179 0 0 2 0 0 2 1.1 100 5.0 238 11.8
random2-4 162 0 1 1 1 0 3 1.9 93 4.6 174 8.6

Table 3.4: Constraint violations of the best solutions obtained by the
min-conflicts-based heuristic for real-life and randomly generated
benchmark instances.

break times a f ter work periods). In nine instances, the percentage of time slots with a
shortage of employees did not exceed 5 percent, and in random1-24 the percentage of
understaffed time slots (5.3 percent) was very close to this threshold.

Finally, Figure 3.3 presents part of the best solution obtained for instance 2fc04a04
and shows the curve of required, present, and working employees for that time period.
The minimum staffing requirements were violated only once, for 5 minutes, during this
time period. Other than two lunch breaks not in their preferred time ranges, all con-
straints, including those modeling labor rules, were satisfied completely.
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Figure 3.3: Part of the best solution found for instance 2fc04a04: (a) the number of
required, present, and working employees, and (b) the shiftplan for this
same time period. All constraints were satisfied completelyexcept for two
lunch breaks that were not in their preferred time ranges.



Chapter 4

Scheduling Breaks in Shift Plans of
Call Centers

In this section we consider a further real-life break scheduling problem originating from
a call center. Although the addressed problem has similar characteristics as the break
scheduling problem for supervisory personnel from Chapter3 there are significant dif-
ferences in the constraints involved in the problem.

4.1 Problem Description

Formally, as input for the call center break scheduling problem we are given:

⊲ a planning period formed by T consecutive time slots
[a1, a2), [a2, a3), ..., [aT , aT+1) all having the same lengthslotlength (in min-
utes). Time pointsa1 andaT+1 represent the beginning and end of the planning
period. All time points have the same formatday:hour:minute.

⊲ n shifts(s1, s2, ..., sn) representing employees working within the planning period.
Each shiftsi has the adjoined parameters,si .start andsi .duration representing its
start and its duration. Each shift corresponds to exactly one employee.

⊲ break quantitiesandbreak typesto be scheduled for each shift. We distinguish
between two different types of breaks: lunch breaks and monitor breaks. The
parametersi .lunchstores the duration of a shift’s lunch break in minutes, whereas
the parametersi .monitorspecifies a shift’s monitor break quantity.
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⊲ thestaffing requirementsfor the planning period. Each time slot [at, at+1) has an
adjoined integer valuert indicating the optimal number of employees that should
be working during time slot [at, at+1). An employee is considered to beworking
during time slot [at, at+1) if in its corresponding shift no break is scheduled during
time slot [at, at+1).

A break bis characterized by the parameters,b.shi f t specifying its associated shift, its
start b.start and its durationb.duration. We assume that all parameters representing
time points coincide with a time pointat defining the start or the end of a time slot of the
planning period. Moreover we expect each parameter representing a duration or a break
quantity to be a multiple ofslotlength.

Given a planning period, a set of shifts, the associated break quantities, and the
staffing requirements, afeasible solutionto the break scheduling problem is a set of
breaks such that:

1. Each break lies entirely within its associated shift.

2. Two distinct breaks associated with the same shift do not overlap in time.

3. For each shift the sum of all its associated break durations is exactly the specified
break quantity for the shift, that issi .lunch+ si .monitor=

∑

bj∈si
d j .duration.

4. If si .lunch> 0 then there is one break insi whose duration is at leastsi .lunch.

Among all feasible solutions for the break scheduling problem we aim at finding
an optimal one according to various criteria. These criteria are modeled as constraints
on feasible solutions. Basically we distinguish between four main groups of constraints,
namely constraints on:

1. The position of breaks within shifts.

2. The duration of breaks.

3. The distances between breaks.

4. The excesses and shortages of working employees according to staffing require-
ments.
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4.1.1 Constraints on the Position of Breaks within Shifts

C1 : MinimumDistanceToShiftBegin: Each break may start not earlier than a given
number of minutes after the beginning of its associated shift.

C2 : MinimumDistanceToShiftEnd: Each break must end not later than a given num-
ber of minutes before the end of its associated shift.

C3 : MaximumDistanceToShiftBegin: The earliest break of a shift must not start later
than a given number of minutes after the beginning of the shift.

C4 : MaximumDistanceToShiftEnd: The latest break of a shift must not end earlier
than a given number of minutes before the end of the shift.

4.1.2 Constraints on the Distances Between Breaks

C5 : MinimumDistanceBetweenBreaks: The temporal distance between two consecu-
tive breaks must be at least a given minimum number of minutes.

C6 : MaximumDistanceBetweenBreaks: The temporal distance between two consec-
utive breaks must not exceed a given maximum number of minutes.

4.1.3 Constraints on the Duration of Breaks

C7 : MinimumBreakDuration: The duration of each break must be at least a given
minimum number of minutes.

C8 : MaximumBreakDuration: The duration of each break must not exceed a given
maximum number of minutes.

C9. OptimumBreakDuration: The duration of each break should be equal to a given
optimum number of minutes.

C10 : MinimumDurationAfterDistance: If the distance between two consecutive
breaks reaches or exceeds a certain number of minutes the duration of the latter
break must be at least of a given minimum duration.

4.1.4 Constraints on the Excess and Shortage of Working Employees

C11 : NoExcess: In each time slot [at, at+1) the number of working employees, i.e., the
employees who are not assigned a break in that time slot, should not exceedrt.



CHAPTER 4. SCHEDULING BREAKS IN SHIFT PLANS OF CALL CENTERS38

C12: NoShortage: In each time slot [at, at+1) the number of working employees should
be at leastrt.

CS D : NoSquaredDeviation: In many practical instances for the break scheduling prob-
lem the staffing requirements are significantly higher or lower than the number
of scheduled employees during the overall planning period.Consequently, each
solution will always produce the same amount of excess or shortage. For such
instances we introduced an additional constraint aimed at minimizing the squared
deviation from staffing requirements in each time slot. Informally speaking, this
constraint prefers solutions whose curve of working employees has a shape similar
to the curve representing the staffing requirements.

4.1.5 Extending the Problem with Breaks of Fixed Duration

When scheduling breaks within shift plans it is sometimes necessary to constrain a single
break differently from the remaining breaks within its shift. For instance, employees
prefer to have a one hour lunch break at the middle of their duty or between 11:00 and
14:00. Therefore we introduce a constraint defined on a single break within a shift.

C13 : FixedBreak: Each shift can contain a break of a certain specified duration, which
may differ from the durations required by other constraints. Optionally, this break
must lie within some givenallowed time range, preferably within a givenoptimum
time range. The break must not be scheduled within a givenforbidden time range.

Note: The criteria required by the constraintFixedBreakmay contradict the require-
ments of several previously introduced constraints. For that reason, the following
constraints are not applied to that single break of desired length: MinimumDistance-
ToShiftBegin(C1), MinimumDistanceToShiftEnd(C2), MinimumBreakDuration(C7),
MaximumBreakDuration(C8), andOptimumBreakDuration(C9).

4.1.6 Extending the Problem with Meetings

Call center employees can take part in meetings during theirworking time. While attend-
ing meetings call center agents do not process incoming phone calls. Thus, during the
time a meeting takes place the participating employees are not considered to be working
with respect to staffing requirements.

Example 1. In the shift plan given in Figure 4.1 call center employees represented by
shifts s2, s3, and s4 take part in meetingm1 taking place from 12:30 until 13:30. Em-
ployees working in shiftss1 ands4 attend meetingm2 from 17:30 to 18:30.
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Figure 4.1: A shift plan containing meetings.

In order to handle meetings we have to extend the break scheduling problem further.
Moreover we introduce an additional constraint concerningthe break time scheduled in
meetings. In addition to the input for our basic problem we are given:

⊲ k meetingsm1,m2, ...,mk. Each meetingmj has two adjoined parametersmj .start
andmj .duration, specifying its start time and its duration. Moreover, eachmeeting
has an adjoined setmj .S. Setmj .S contains shifts and indicates that employees
assigned to these shifts participate in meetingmj. Additionally we are given an
integer valueq j specifying the break time required to be scheduled during meeting
mj .

C14 : BreakQuantityInMeeting: For each employee participating in a meetingmj we
require that exactlyq j minutes of break time are scheduled within meetingmj.

Meetings have the following side effects on several constraints of the basic break
scheduling problem:

C5,C6,C10: These constraints are only relevant for breaks not scheduled during the
same meeting. In other words, these constraints are ignoredfor consecutive breaks
ending and starting during the same meeting.

C7,C8,C9: We consider only those parts of breaks which are scheduled outside the time
range of a meeting, disregard breaks of a certain fixed duration, and refer to these
breaks asbreaks outside a meeting. The constraints on the minimum, maximum,
and optimum break duration are only applied to these breaks outside a meeting.

C11,C12,CS D: While participating in meetings employees are not considered to be
working. Breaks scheduled during meetings do not further decrease the number
of working employees.
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4.2 Adapting the Min-Conflicts-Based Heuristic for the Call
Center Break Scheduling Problem

To solve the call center break scheduling problem we adaptedand modified the min-
conflicts based heuristic from Section 3.9 as follows:

⊲ We extended our solution representation with meetings, monitor breaks, lunch
breaks and fixed breaks.

⊲ We modified existing constraints, implemented new constraints, and formulated a
new objective function for the call center break schedulingproblem.

⊲ We adapted our definition of feasible moves in accordance with the changed prob-
lem structure.

4.2.1 Representation of Solutions for the Break SchedulingProblem

We represent the solution for the call center break scheduling problem as a set of breaks.
Each break has a variable start and constant duration. Moreover, each break is associated
with a certain shift and must lie entirely within that shift’s range. Given a shift and its
quantities of lunch and monitor breaks we distribute the break time among the following
three types of breaks:

fixed breaks: For each break required by constraintFixedBreak(C13) we generate a so-
called fixed break having the desired duration. If possible the entire lunch break
quantity is part of a single fixed break.

lunch break: If it is not possible to schedule the lunch break within a fixedbreak we
generate a lunch break. Each shift may contain at most one lunch break compris-
ing its total lunch time quantity.

monitor breaks: The remaining time not planned as fixed breaks and lunch breaks is
scheduled within monitor breaks. We try to assign a monitor break the optimal
break duration as required by constraintOptimalBreakDuration(C9) to each mon-
itor break but the last monitor break may be shorter than the desired optimum
duration.

The obtained breaks are scheduled randomly in their respective shifts
such that the the obtained solution is feasible and satisfiesthe constraints
MinimumDistanceToS hi f tBegin(C1) and MinimumDistanceToS hi f tEnd(C2). This
solution acts as the initial solution for our proposed localsearch techniques.
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4.2.2 Objective Function

The break scheduling problem can be modeled as a multi-criteria optimization problem
where an objective function is to be minimized. The importance of a single criterion
and the corresponding constraint varies from task to task. Thus, the break scheduling
problem’s objective function can be modeled as a weighted sum of the violation degree
of each constraint, or more formally:

F(S olution) =
∑14

i=1 Wi · violations(Ci ) +
violations(CS D)

2·ub(CS D)

In the objective function presented above,ub(CS D) denotes an upper bound on the vi-
olation degree of the constraintNoSquaredDeviation. If two solutions have the same
objective value according to constraintsC1, ...,C14 the objective function prefers the so-
lution with a smaller squared deviation from staffing requirements.

4.2.3 Moves and Local Neighborhood

Given a feasible solutionS to the break scheduling problem we define its neighborhood
N(S) to be the set of all solutions obtained by applying an assignment on a single break
in S or by swapping two breaks within the same shift inS as described in Section 3.8.
As a legal movewe consider any assignment or swap guaranteeing that after the move:

1. The breaks in the affected shifts are not overlapping.

2. The lunch break is not scheduled in a meeting.

3. The affected breaks lie within their allowed time regions specifiedby the con-
straintsMinimumDistanceToShiftBegin(C1), MinimumDistanceToShiftEnd(C2)
and FixedBreak (C13).

4. Fixed breaks are not preceded or succeeded by any other break after the move.

4.3 Computational Results

4.3.1 Randomly Generated Instances

To assess the quality of solutions returned by the min-conflicts-random-walk heuristic,
we wanted to generate instances for which we know that almostall constraints can be
satisfied completely. To this aim we built a generator which first builds a solution and
derives an instance from it afterwards.
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For building a solution we consider the randomly created benchmark instances for
the min-shift-design problem ([43]), which can be found under http://www.dbai.
tuwien.ac.at/proj/Rota/benchmarks.html. From these instances we obtain a
shift plan by extracting the shifts in the provided sample solutions starting on the first
day.

For each shift we generate a certain number of breaks using the settings of the
real-life examples. Breaks are scheduled within their shifts such that all constraints
exceptC9 OptimumBreakDurationare satisfied. The optimum break duration can be
violated by some breaks, since the total amount of break timeneed not be a multiple
of the given optimum break duration. The problem of scheduling breaks correctly in a
shift is formulated as a simple temporal problem (STP) ([16]) and is solved by applying
Floyd-Warshall’s all-pairs-shortest algorithm ([45]).

After scheduling breaks we randomly insert meetings in the shift plan. For that
purpose we create a meeting lasting 30, 40, 50 or 60 minutes and place it randomly in
the planning period. Then we determine the shifts which may contain that meeting and
assign the meeting to a random number (two at least) of these shifts . The total number
of break time which has to be scheduled in each meeting is set to the amount of break
time scheduled in meetings in the current solution.

Finally, for each time slot we set the staffing requirements to the number of work-
ing employees (available workers minus workers in meetingsor breaks). So we may
guarantee that the staffing requirements may be satisfied. The generated instances have
a solution satisfying all constraints except the constraint C9 OptimumBreakDuration. A
detailed description of the instance generator and the created benchmark instances are
available athttp://www.dbai.tuwien.ac.at/proj/SoftNet/Benchmarks/.

We applied the min-conflicts-random-walk algorithm on 44 randomly generated
instances. For each instance we performed ten runs on a Genuine Intel T2400 laptop
running at 1.8 GHz with 2 Gbytes of RAM. A single run was executed with a ten minute
runtime limit. Table 4.2 provides for each instance the violation degree of the best known
solution and the violation degree of the best solution returned in ten runs by the min-
conflicts based heuristic. In addition Table 4.2 presents the violation degree of each
single constraint for the best solution returned per instance. Note that these violation
degrees are not multiplied by their respective weights. To obtain the value in column
’Best Solution Found’ those violations must be multiplied by their respective weight.

Considering excess and shortage of working employees the obtained solutions de-
viate from the known optimal one only by a few percent.

Regarding the various constraints on break positions, distances, durations, fixed
breaks and meetings we observe that only the constraintsC5 MinimumDistanceBetween-
Breaks, C8 MaximumBreakDurationandC9 OptimumBreakDurationare violated. This
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Constraint WeightWi

C1 MinimumDistanceToS hi f tBegin 10
C2 MinimumDistanceToS hi f tEnd 10
C3 MaximumDistanceToS hi f tBegin 100
C4 MaximumDistanceToS hi f tEnd 100
C5 MinimumDistanceBetweenBreaks 10
C6 MaximumDistanceBetweenBreaks 100
C7 MinimumBreakDuration 3
C8 MaximumBreakDuration 3
C9 OptimumBreakDuration 3
C10 MinimumDurationA f terDistance 100
C11 NoExcess 20
C12 NoS hortage 20
C13 FixedBreak 10
C14 BreakQuantityInMeeting 60

Table 4.1: Weights of constraints for the considered real-life instances.

is acceptable because we considered these constraints to beless important and conse-
quently we have assigned smaller weights to them in our evaluation function (see Table
4.1). We also know that constraintC9 OptimumBreakDurationcan not be satisfied
completely even within an optimal solution.

Any other constraint, in particular the very crucial constraints C3

MaximumDistanceToS hi f tBegin, C4 MaximumDistanceToS hi f tEnd, C6

MaximumDistanceBetweenBreaks, C10 MinimumDurationA f terDistance and
C14 BreakQuantityInMeetingare satisfied completely for each instance. For the
reasons just mentioned we conclude that our min-conflicts based heuristic returns
solutions of acceptable quality for each of the regarded benchmark instances.

4.3.2 Real-Life Application

The min-conflicts-based algorithm has been applied successfully at a call center, where it
is used to compute daily break schedules within a few seconds. At this point we present
one solution for a real-life instance. In Figure 4.2 we see the curve of required employees
(solid curve) and the curve of working employees (dashed curve) resulting from the best
solution found for that problem. The required minimum number of employees is not
violated at any time. Table 4.3 presents the objective function value of each constraint
for the best solution for the considered instance. We observe that nearly all constraints
are completely satisfied. Only the optimum break duration has been violated for some
breaks and there exists some excess of working employees, which cannot be avoided due
to the characteristics of the considered real-life instance. Moreover, for that particular
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Ex. Number of Cost of Timeslots with Violation Degree of

Minimum Maximum Optimum Any

Best Best Distance Break Break Other

Known Solution Between Duration Duration Constraint

Shifts Breaks Solution Found Excess % Shortage % Breaks

1 24 95 33 135 2 1.4 2 1.4 1 - 15 -
2 13 47 30 50 - - - - 2 - 10 -
3 9 30 48 48 - - - - - - 16 -
4 29 102 72 222 - - - - 15 - 24 -
5 17 63 0 62 - - - - 5 - 4 -
6 39 141 36 258 2 1.3 2 1.3 10 - 26 -
7 31 109 21 123 1 0.7 1 0.7 5 - 11 -
8 29 108 45 195 2 1.3 2 1.3 4 - 25 -
9 15 51 15 15 - - - - - - 5 -
10 24 87 24 44 - - - - 2 - 8 -
11 9 28 30 30 - - - - - - 10 -
12 24 95 33 123 1 0.7 1 0.7 5 - 11 -
13 13 52 18 48 - - - - 3 - 6 -
14 9 35 42 102 - - - - 6 - 14 -
15 29 114 78 506 2 0.7 2 0.7 33 - 32 -
16 17 63 15 95 1 0.7 1 0.7 4 - 5 -
17 39 147 63 325 1 0.6 1 0.6 18 1 34 -
18 31 109 66 345 4 2.7 4 2.7 11 - 25 -
19 29 108 75 215 2 1.3 2 1.3 6 - 25 -
20 15 56 30 89 1 0.7 1 0.7 1 - 13 -
21 24 95 27 77 - - - - 5 - 9 -
22 9 33 30 30 - - - - - - 10 -
23 46 170 51 421 4 2.6 4 2.6 15 - 37 -
24 49 192 84 422 1 0.6 1 0.6 25 - 44 -
25 52 184 36 404 2 1.3 2 1.3 21 - 38 -
26 53 185 144 1130 13 4.1 13 4.1 37 - 80 -
27 50 170 48 334 4 2.7 4 2.7 9 - 28 -
28 45 163 48 318 3 2 3 2 12 - 26 -
29 45 163 30 378 6 3.7 6 3.7 3 - 36 -
30 60 211 156 1332 18 5.8 18 5.8 36 - 84 -
31 38 136 72 556 5 1.6 5 1.6 26 - 32 -
32 52 182 33 351 1 0.7 1 0.7 23 - 27 -
33 65 240 48 582 6 3.7 6 3.7 21 - 44 -
34 46 170 93 348 2 1.3 2 1.3 13 - 46 -
35 49 196 93 459 3 1.9 3 1.9 18 1 52 -
36 52 184 105 373 2 1.3 2 1.3 17 - 41 -
37 53 206 162 1180 10 3.2 10 3.2 54 - 80 -
38 50 181 102 420 2 1.3 2 1.3 19 1 49 -
39 45 172 63 265 2 1.3 2 1.3 11 - 25 -
40 45 163 84 422 5 3.1 5 3.1 9 1 43 -
41 60 234 192 1612 16 5.2 16 5.2 66 - 104 -
42 38 146 126 738 6 1.9 6 1.9 33 - 56 -
43 52 182 111 467 3 2 3 2 20 - 49 -
44 65 240 108 620 3 1.9 3 1.9 23 3 87 -

Table 4.2: Best solutions obtained for 44 randomly created instances with known
optimum solution.
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instance the break durations may not be further improved. Consequently, also for that
real-life benchmark instance the quality of the computed solution is almost optimal.

Figure 4.2: Curve of required and working employees resulting from the best solution
for a real-life instance of the call center break schedulingproblem.

Constraint Viol. Deg. Weight Product

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

MinimumDistanceToShiftBegin
MinimumDistanceToShiftEnd
MaximumDistanceToShiftBegin
MaximumDistanceToShiftEnd
MinimumDistanceBetweenBreaks
MaximumDistanceBetweenBreaks
MinimumBreakDuration
MaximumBreakDuration
OptimumBreakDuratioin
MinimumDurationAfterDistance
NoExcess
NoShortage

0
0
0
0
0
0
0
0

12
0

094
0

10
10

100
100
10

100
3
3
3

100
20
20

0
0
0
0
0
0
0
0

36
0

1880
0

CS D NoSquaredDeviation 128 1/9576 0.01

Objective function value 1916.01

Table 4.3: Detailed results for a real-life instance of the call center break scheduling
problem.
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Chapter 5

TEMPLE - A Domain Specific
Language for Staff Scheduling
Problems

In this chapter we design the domain specific language TEMPLEin order to reduce the
effort for developing solutions for staff scheduling problems. The name TEMPLE was
inspired by Figure 5.1 reflecting our desire to model complexstaff scheduling problems
in the same modular manner as ancient temples are built-up bymany single building
blocks. With TEMPLE we want to model staff scheduling tasks in an easy and natural
manner, and we would like to solve them via local search algorithms. For that purpose
TEMPLE must satisfy the following two demands:

1. TEMPLE must offer abstractions and notations reflecting common features of
resource planning and staff scheduling problems. These abstractions and notations
must support a user in creating accurate problem models in short time.

2. TEMPLE must provide abstractions and notations corresponding to essential
building blocks of local search techniques. These essential building blocks must
be sufficient to obtain ageneric local search algorithmfor a particular resource
planning and staff scheduling problem. Any further knowledge or information on
local search techniques beyond those key building blocks must be masked from
an end-user.
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5.1 Design Goals for TEMPLE

Modularity In TEMPLE, a problem instance is modeled by small, concise building
blocks reflecting common features of staff scheduling problems (Figure 5.1 (a)).
New building blocks are derived from already existing ones.By this principle
a user is forced to formulate a complex problem in small, concise and traceable
steps. Consequently, the resulting problem models are well-structured, easy to
understand, modify and maintain.

Adaptability and Extensibility Problems modeled in TEMPLE can be adapted easily.
A few small changes in a problem’s formulation may result only in a few small
changes in the model written in the domain specific language (Figure 5.1 (b)).
Building blocks that are not affected by changes must remain unchanged. Addi-
tional requirements shall be able to be added easily withoutinterfering with other
building blocks (Figure 5.1 (c)).

Simplicity TEMPLE demands only basic programming skills from end-users. Any-
body familiar with a third generation programming languageshould be able to
understand and use TEMPLE. Concepts of advanced programming paradigms,
e.g., object orientation, or knowledge on local search techniques, are not required
from a user.

OpennessIn contrast to other constraint-based modeling languages,TEMPLE is not
restricted to a finite set of predefined features or constraints. With TEMPLE arbi-
trary features or constraints of staff scheduling problems can be modeled.

Automatic Optimization Once a problem is modeled in TEMPLE it can be optimized
immediately without requiring additional coding from the user.

Efficiency TEMPLE represents an additional layer atop a general purpose program-
ming language, providing abstractions and notations focused on a staff scheduling
problems. Consequently, staff scheduling tasks can be modeled more easily, con-
cisely and quickly. The drawback of TEMPLE is a certain computational over-
head that could be avoided at a lower level of implementation. Thus an important
design goal for TEMPLE is that its intrinsic computational overhead is kept as lit-
tle as possible. Thereby, we ensure that problems are not only modeled effectively
but also solved efficiently.
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(a) Modularity and Derivation - A problem model is built up bysmall and simple
building blocks. From basic building blocks a user can derive further properties,
curves and finally constraints.
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(b) Adaptability - A few small changes in the problem formulation result in a few
small changes in the problem model. Building blocks not affected by changes are not
altered at all.
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(c) Extensibility - Additional requirements can be added easily without interfering
with previously defined building blocks.

Figure 5.1: Selected design goals which are achieved by the TEMPLE modeling
language.
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5.2 Building Blocks of Staff Scheduling Problems

5.2.1 Intervals and Links between Intervals

Intervals are central building blocks of staff scheduling problems. Figure 5.2 shows the
intervals occurring in the call center break scheduling problem from Section 4. Shifts,
breaks, meetings, the time slots of a planning period, and even the entire problem itself
can be considered as intervals. As shown in 5.3, every interval is characterized by three
basic properties:Start, Duration, andEnd.

06:00 07:00 09:0008:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

Shift

Break Break Break

Break Break Break

Shift

Problem

Time Slot Time Slot Time Slot Time Slot Time Slot Time Slot Time Slot Time Slot Time Slot Time Slot

Meeting

Figure 5.2: The different kinds of intervals and links between intervals involved in the
call center break scheduling problem from Section 4.

In addition, we observe that in staff scheduling problems intervals are linked with
each other. Figure 5.2 depicts the links between the intervals occurring in the call center
break scheduling problem from Section 4. Breaks are linked to the shifts in which they
are scheduled, there is a link between a meeting and the shifts representing the employees
participating in that meeting, and the entire problem is linked to all shifts as well as the
time slots forming the planning period.

Design Decision. In TEMPLE it must be possible to declare different kinds of
intervals and links between intervals. Each kind of interval must have three basic
properties,Start, Duration andEnd.
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Shift

06:00 07:00 09:0008:00 10:00 11:00 12:00 13:00 14:00

06:00

Start

08:00

Duration

14:00

End

Figure 5.3: A time interval is characterized by three basic properties,Start, Duration
andEnd.

5.2.2 Derived Properties and Constraints

A characteristic of staff scheduling problems is that their features and constraintscan
be derived step by step one after the other. For instance, in many real-life applications
it is common to require that a minimum percentage of break time, e.g., 20%, must be
scheduled in each shift. Figure 5.4 shows how the violation degree of that constraint can
be computed for a single shift in several steps:

1. We compute the break time scheduled in the shift. For that purpose we con-
sider the two breaks linked with the shift, and sum up the values for their ba-
sic propertyDuration. In that way we derive a new property of the shift called
TotalBreakTime .

2. We compute the shift’s break time percentage, by dividinga shift’s property
TotalBreakTime by its Duration. Again, we derive a new property of the shift
calledTotalBreakTimeInPercent.

3. We impose the constraint, requiring that a shift’s break time percentage must be
at least 20%. The violation degree of that constraint is computed by checking
a shift’s propertyTotalBreakTimeInPercent. The constraint, derived in that
manner, is calledMinimumBreakTime and is associated to the shift.

Design Decision. In TEMPLE it must be possible toderive new properties and
constraintsstep by step one after the other. Property values or constraint violation
degrees must be computed from already existing properties of an interval or its linked
intervals.
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SATISFIED

MinimumBreakTime

Figure 5.4: In staff scheduling problems properties and constraints are derived step by
step from already existing properties.

5.2.3 Derived Curves

Curves represent further central building blocks of staff scheduling problems, which can
be used to model many features of staff scheduling tasks such as staffing requirements
or available staff. Formally, in the context of this thesis, a curve is a function, mapping
each time slot of a considered planning period to a specific value. A curve is derived
from intervals, by incrementing or decrementing the curve’s values over the duration of
single intervals.

For instance, Figure 5.5 presents how the time periods during which an employee
is actually working and not having a break can be representedas a curve over time. The
curve is incremented over the duration of the shift and decremented along the duration
of breaks. Moreover, curves can also be derived from other, already existing curves, e.g.,
by subtracting staffing requirements from available staff we obtain a curve representing
the deviations from staffing requirements.

Design Decision.TEMPLE must providederived curvesas further basic building
blocks. Curves are derived from basic properties associated to intervals or from other
curves. Moreover, it should also be possible to derive properties or constraints from
already existing curves associated with an interval.



CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. . . 53

06:00 07:00 09:0008:00 10:00 11:00 12:00 13:00 14:00

1

Shift  +1 Break -1 Break -1

Figure 5.5: A curve modeling the periods while an employee isactually working and
not having a break.

5.2.4 Building Blocks of Local Search Techniques

To identify the basic building blocks of local search techniques we reconsider the basic
steps within a local search algorithm :

1. We compute aninitial solution for a specific problem instance.

2. As long as a certain termination condition is not fulfilledwe perform the following
three steps.

(a) We compute a set of small changes, also denoted asmoves, to obtain a local
neighborhood of the current solution.

(b) We evaluate the effect of each move on the current solution. When evaluating
a move we determine the change within the problem’sobjective function
resulting from the move.

(c) We select a move and apply it to obtain a new solution. Usually, a move is
selected according to a selection criterion considering the change within the
problem’s objective function caused by a move.

3. At the end of a local search algorithm we return the best solution that has been
found by the local search algorithm.

Considering these basic steps of a local search algorithm weidentify the following four
basic building blocks of local search algorithms: an initial solution, a set of moves,
which are applied to a current solution in order to compute a local neighborhood, an
objective function, and a selection criterion choosing a move to obtain the next solution.
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Design Decision.TEMPLE must provide abstractions and notations to describehow
to compute aninitial solution andmovesfor a particular staff scheduling problem
instance. Moreover, we must be able to define a problem’sobjective functionin
TEMPLE. Selection criteria should not be a part of the TEMPLEmodeling language,
to keep it as simple as possible.
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5.3 The TEMPLE Modeling Language

5.3.1 Interval Declaration

To model a particular resource planning and staff scheduling problem we must declare
the different kinds of intervals a problem consists of. Each interval has four basic proper-
ties: Start, Duration, End, and a boolean basic propertyActive, indicating whether
an interval is part of a problem’s solution or not. If necessary, we can further define
additional basic properties for intervals. For instance, in the following code sample we
declare that a staff scheduling problem consists of shifts, breaks and time slots, the latter
having an additional property modeling staffing requirements:

Interval Shift;

Interval Break;

Interval TimeSlot with StaffingRequirement;

5.3.2 Links Declaration

In TEMPLE links between intervals are declared by using arrows or the keyword
contains in the following manner:

//Declaration of a uni-directional link:

//Each shift is linked to zero or several breaks but NOT vice versa.

Shift -> Break;

//Declaration of a bi-directional link:

//Each shift is linked to zero or several breaks and vice versa.

Shift <-> Break;

//Declaration of a bi-directional link:

//Each shift is linked to zero or several breaks and vice versa.

//If a shift is not active its associated breaks are also inactive.

Shift contains Break;

//Declaration of a bi-directional link with rolenames:

Employee[Trainer] <-> Employee[Trainee];

5.3.3 Derived Properties

In TEMPLE, we can derive additional interval properties on the basis of basic properties
or previously defined ones. For instance, to derive a property reflecting the total break
time scheduled in a shift, as shown in Figure 5.4, we have to insert the following lines
of code into a TEMPLE program:
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Property Shift::TotalBreakTime( Shift.Break[] scheduledBreak)

{

TotalBreakTime = sum(i in scheduledBreak.getRange()) (scheduledBreak[i].Duration);

}

This code snippet specifies that each shift has an additionalproperty called
TotalBreakTime. This property is derived from all breaks linked to a single shift
Shift.Break[], which can be accessed through the aliasscheduledBreak. The value
of propertyTotalBreakTime is computed by summing up the durations of each break
scheduled within the shift. Similarly, we can also derive a shift’s break time percentage:

Property<float> Shift::TotalBreakTimeInPercent(Shift thisShift)

{

TotalBreakTimeInPercent = (thisShift.TotalBreakTime * 100.0 ) / thisShift.Duration;

}

Since percentages are not necessarily integer values, we use the tag<float> to
ensure that a floating point value is used to represent this property.

5.3.4 Derived Constraints

So far we have already specified the two derived properties from Section 5.2.2 and Figure
5.4. To model that example completely we have to insert a constraint on the minimum
break time to be scheduled in a shift.

In TEMPLE we distinguish between two kinds of constraints, hard constraints and
soft constraints. Hard constraints specify the criteria which must be satisfied completely
by any feasible solution. Except for the keywordHardConstraint the violation degree
of a hard constraint is derived in the same manner as the valueof a derived property.
The following hard constraint definition checks whether a shift’s break time percentage
is not below a required twenty percent threshold:

HardConstraint Shift::MinimumBreakTime(Shift thisShift)

{

if(thisShift.TotalBreakTimeInPercent < 20) MinimumBreakTime = VIOLATED;

}

Soft constraints on the other hand model the objectives thatshall be minimized
by a good solution. The importance of a soft constraint within an entire staff scheduling
problem is expressed in terms of integer weights, as shown within the following example:

SoftConstraint<float> Shift::MinimumBreakTime(Shift thisShift) weight(10)

{

MinimumBreakTime = max( 0, 20 - thisShift.TotalBreakTimeInPercent);

}
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Curve Operation Description

void Pulse(int start, int end, bool active) If active is true the curve is incremented
in each time slot fromstart to end by one
unit.

void Pulse(int start, int end, bool active, int value) If active is true the curve is incremented
in each time slot fromstart to end by
value units.

void Value(int position, int value) A curve’s entry at indexposition is set to
value.

int Value(int position) Returns thevalue stored in the curve at
position.

void Add(Curve otherCurve) The values ofotherCurve are added to the
curve.

void Subtract(Curve otherCurve) The values ofotherCurve are subtracted
from the curve.

void CyclicAdd(Curve otherCurve, int cycleLength) The values ofotherCurve are added to the
curve. A value at positioni in otherCurve
is added to the value at positioni %
cycleLength in the curve. This operation
is used in problems having a cyclic planning
period.

void CyclicSubtract(Curve otherCurve, int cycleLength) The values ofotherCurve are subracted
from the curve. A value at positioni in
otherCurve is subtracted from the value at
positioni % cycleLength in the curve. This
operation is used in problems having a cyclic
planning period.

void AddPositiveValues(Curve otherCurve) Only positive values ofotherCurve are
added to the curve.

void AddNegativeValues(Curve otherCurve) Only negative values ofotherCurve are
added to the curve.

void SubtractPositiveValues(Curve otherCurve) Only positive values ofotherCurve are
subtracted from the curve.

void SubtractNegativeValues(Curve otherCurve) Only negative values ofotherCurve are
subtracted to the curve.

Table 5.1: Methods provided by TEMPLE to derive a curve from already existing
elements.
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5.3.5 Derived Curves

In TEMPLE, we can derive curves from intervals and previously formulated curves, by
using a predefined set of curve operations. These operationsincrement or decrement
a curve over a certain period, they write or read a value at a specific position, or they
add and subtract other, already existing curves. These methods are described in detail
in Table 5.1. For instance, the curve presenting an employee’s actual working time, as
depicted in Figure 5.5, can be modeled in the following way:

Curve Shift::WorkingTimePattern(Shift thisShift, Shift.Break[] scheduledBreak)

{

//Increment curve from shift start until shift end.

WorkingTimePattern.Pulse( thisShift.Start, thisShift.End, thisShift.Active);

//Decrement curve along each break.

forall(i in scheduledBreak.getRange())

{

WorkingTimePattern.Pulse( scheduledBreak[i].Start,

scheduledBreak[i].End,

scheduledBreak[i].Active,

-1 );

}

}

5.3.6 Initial Solution

After we have modeled the structure of a particular staff scheduling problem by the
help of intervals, links, derived properties, curves and constraints, we have to specify
an initial solution for a particular staff scheduling problem. In TEMPLE, the initial
solution is formulated in three different steps. First of all, in each TEMPLE program
we specify an input XML-file. That XML-file contains a list of intervals and stores the
initial basic properties of each interval. This initialization step as well as the underlying
XML-format will be described in detail at a later point in Section 7.2. Secondly, we can
force the instantiation of further intervals. To do so we define how many intervals of one
type are instantiated for each interval of another kind. Forinstance, the following lines
of code cause the instantiation of four breaks in each shift:

Instantiate Shift.Break[] ()

{

Shift.Break[].Count = 4;

}

Thirdly, we may compute and assign initial values to the basic interval properties
Start, Duration, andActive. The initial values are derived from already existing
properties or curves of linked intervals. Furthermore, we can also restrict the domains
of basic properties and we can introduce additional links between intervals:
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Initialize Shift::BreakSchedule(Shift thisShift, Shift.Break[] breakToSchedule)

{

forall(i in breakToSchedule.getRange())

{

//1. Assign initial values to basic break properties

breakToSchedule[i].Start = thisShift.Start;

breakToSchedule[i].Duration = 30 minutes;

breakToSchedule[i].Active = true;

//2. Restrict the variable domain of a break’s start and its duration

forall(j in thisShift.Start .. thisShift.End)

breakToSchedule[i].Start.Domain.Add(j);

breakToScheduled[i].Duration.Domain.Add(30 minutes);

//3. Link the shift with each break scheduled within it.

breakToSchedule[i].AddLink(thisShift, "Shift");

}

}

5.3.7 Moves

To define moves in TEMPLE we must compute and assign new valuesto basic interval
properties. For instance, the following code snippet specifies a move placing a break at
a new, randomly chosen, position in its associated shift:

Move Shift::PutBreakAtNewPosition(Shift thisShift, Shift.Break[] scheduledBreak)

{

range S = thisShift.Start .. thisShift.End;

select(i in scheduledBreak.getRange())

select(newPosition in S) scheduledBreak[i].Start = newPosition;

}

5.3.8 Further Language Details

For the sake of completeness, we describe which additional information must be spec-
ified to obtain a compilable TEMPLE program: an input XML-filecontaining input
intervals and initial basic property values, a solution XML-file in which the obtained
solution of a problem shall be saved, the local search algorithm which shall be applied
to a particular problem, a limit on the algorithm running time and the granularity of the
planning period.

input = "./input_data.xml";

solution = "./solution.xml";

algorithm = iterated local search;

algorithm running time = 1 minute;

time slot = 10 minutes;
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5.3.9 Optimization Goal and Objective Function

In TEMPLE we use hard and soft constraints to define the optimization goals of a
considered staff scheduling problem. IfS denotes the set of all soft constraints andH
the set of all hard constraints defined in a particular TEMPLEprogram, the local search
algorithms generated by our TEMPLE compiler try to solve thefollowing optimization
problem:

min
∑

s∈S
s.Weight× s.ViolationDegree

s.t. ∀h ∈ H : h.ViolationDegree= 0

5.4 A First TEMPLE Model

In this section we consider a small toy example to derive a first complete TEMPLE
model. Despite its conciseness, the considered problem hasall common characteristics
of staff scheduling problems. To solve it we will use all language elements provided by
TEMPLE. As input for the sample staff scheduling problem we are given:

1. The staffing requirements over a planning period from 06:00 until 17:00. The
planning period is divided into 54 time slots of ten minutes length. The staffing
demandrt for time slott requires that during thet-th time slot at leastrt employees
must be working.

2. A sample shift plan consisting of three shifts all having the same duration of 8
hours.

Our optimization goal is to schedule breaks in each shift such that the five following
requirements hold:

Requirement1 : A single break must last 30 minutes at least.

Requirement2 : Breaks must not be placed outside a shift.

Requirement3 : Each shift must contain at least 25% break time.

Requirement4 : Two distinct breaks must not overlap with each other.

Requirement5 : In each point of time the staffing requirements must be satisfied completely.
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required employees working employees

Figure 5.6: Problem input for our sample resource planning and staff scheduling
problem.

Figure 5.6 depicts the input shift plan and staffing requirements for our small sample
staff scheduling task. The staffing requirements were chosen in such a manner that they
can be satisfied completely if the percentage of break time scheduled in each shift is
exactly 25%. All experiments in the remainder of this sections will be carried out on a
Genuine Intel T2400 laptop running at 1.8 GHz with 2 Gbytes ofRAM.

5.4.1 Intervals and Links

At first glance, our sample problem consists of three kinds ofintervals: shifts, breaks
and time slots. In addition to the basic properties of intervals,Start, Duration, End,
andActive, each time slot has an additional property calledStaffingRequirement.
This extra property encodes the number of employees that should be working between
a time slot’sStart and itsEnd. Further, we introduce a single interval named Prob-
lem into model for our sample task. Problem acts as a kind of root interval to which
properties, curves and constraints regarding the entire problem will be associated. These
considerations lead to the following interval declarations in our first TEMPLE program:

Interval Problem;

Interval Shift;

Interval Break;

Interval TimeSlot with StaffingRequirement;

Considering the relations between time intervals, there isobviously a link between
a shift and the breaks placed within it and vice versa. Since the entire problem consists



CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. . . 62

of several shifts and time slots we also connect the single problem root interval with each
shift and time slot.

Problem -> Shift;

Shift <-> Break;

Problem -> TimeSlot;

5.4.2 The First Constraints

Right now, we are already able to define our first constraint ona feasible solution. Each
break is required to last at least 30 minutes. Consequently,for each break we introduce
a hard constraint calledMinimumDuration, which depends solely on the break itself.
This hard constraint is violated whenever a break is shorterthan 30 minutes:

//Requirement 1: A single break must last 30 minutes at least.

HardConstraint Break::MinimumDuration(Break thisBreak)

{

if(thisBreak.Duration < 30 minutes) MinimumDuration = VIOLATED;

}

In the same manner we ensure that breaks must not be scheduledoutside a shift.
For each shift we impose a hard constraint namedScheduleBreaksWithinShift,
depending on the shift itself and all breaks scheduled within it. The constraint
ScheduleBreaksWithinShift is violated if a break starts before or ends after the shift
it is scheduled within:

//Requirement 2: Breaks must not be placed outside a shift.

HardConstraint Shift::ScheduleBreaksWithinShift(Shift thisShift, Shift.Break[] scheduledBreak)

{

forall(i in scheduledBreak.getRange())

{

if(scheduledBreak[i].Start < thisShift.Start)

ScheduleBreaksWithinShift = VIOLATED;

if(thisShift.End < scheduledBreak[i].End)

ScheduleBreaksWithinShift = VIOLATED;

}

}
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5.4.3 Properties

So far, we have already specified two hard constraints directly. Let’s consider the re-
quirement that each shift must contain not less than 25% break time. We are now going
to define this constraint in several steps. First of all, for each shift we derive a property
TotalBreakTime encoding a shift’s total amount of break time:

Property Shift::TotalBreakTime( Shift.Break[] scheduledBreak)

{

TotalBreakTime = sum(i in scheduledBreak.getRange()) (scheduledBreak[i].Duration);

}

Secondly, for each shift we define another derived property named
TotalBreakTimeInPercent, which simply converts a shift’s absolute amount of
break time into the corresponding percentage value. Note, that since a percentage needs
not to be an integer value the property is declared to be of type float:

Property<float> Shift::TotalBreakTimeInPercent(Shift thisShift)

{

TotalBreakTimeInPercent = (thisShift.TotalBreakTime * 100.0 ) / thisShift.Duration;

}

Finally, for each shift we impose a hard constraint, which requires that a shift’s
percentage of break time must be at least 25%:

//Requirement 3: Each shift must contain at least 25 % break time.

HardConstraint Shift::MinimumBreakTime(Shift thisShift)

{

if(thisShift.TotalBreakTimeInPercent < 25) MinimumBreakTime = VIOLATED;

}

5.4.4 Curves

The next requirement we consider requires that two distinctbreaks must not overlap with
each other. One possible way of modeling that constraint might be to check for any pair
of distinct breaks if they overlap in time. However, at this point we choose a different
approach. In an intermediate step we use a curve to model a shift’s break pattern. For
each shift we introduce a curveBreakPattern that is derived from the breaks scheduled
within the shift:

Curve Shift::BreakPattern(Shift.Break[] scheduledBreak)

{

forall(i in scheduledBreak.getRange())

BreakPattern.Pulse( scheduledBreak[i].Start,

scheduledBreak[i].End,

scheduledBreak[i].Active);

}



CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. . . 64

If two or more breaks overlap at a certain point of time, the curve value is incre-
mented several times, resulting in a value strictly greaterthan one. Thus the hard con-
straintNoOverlappingBreaks, requiring that breaks do not overlap with each other, is
violated as soon as the break pattern curve contains a value greater than one:

//Requirement 4: Two distinct breaks must not overlap with each other.

HardConstraint Shift::NoOverlappingBreaks(Shift thisShift)

{

Curve breakPattern = thisShift.BreakPattern;

forall(i in breakPattern.Period())

if(breakPattern.Value(i) > 1)

NoOverlappingBreaks = VIOLATED;

}

5.4.5 The Complete Problem Model

There is only one requirement left to be defined in TEMPLE. At any time, the number
of working employees must not under-run the staffing requirements. Again, we use a
multi-step approach to model this constraint. Firstly, forthe entire problem we derive
a curve namedStaffingRequirements. This curve reflects the staffing requirements
over the entire planning period.

Curve Problem::StaffingRequirements(Problem.TimeSlot[] timeSlot)

{

forall(i in timeSlot.getRange())

StaffingRequirements.Pulse( timeSlot[i].Start,

timeSlot[i].End,

timeSlot[i].Active,

timeSlot[i].StaffingRequirement);

}

Secondly, we derive a curve encoding the number of working employees in each
time slot. This curve is obtained by summing up all availableemployees and subtracting
each employee’s break time.

Curve Problem::WorkingStaff(Problem.Shift[] scheduledShift)

{

forall(i in scheduledShift.getRange())

{

WorkingStaff.Pulse ( scheduledShift[i].Start,

scheduledShift[i].End,

scheduledShift[i].Active);

WorkingStaff.Subtract ( scheduledShift[i].BreakPattern);

}

}



CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. . . 65

Thirdly, by subtracting the curve representing staffing requirements from
the curve reflecting the actually working employees, we obtain a curve
DeviationFromStaffingRequirements that gives us the deviation of staffing
requirements in each time slot.

Curve Problem::DeviationFromStaffingRequirements(Problem thisProblem)

{

DeviationFromStaffingRequirements.Add (thisProblem.WorkingStaff);

DeviationFromStaffingRequirements.Subtract(thisProblem.StaffingRequirements);

}

A positive curve value at a point of time indicates that more employees than re-
quired are working, a negative curve value reports shortageof staff. According to our
problem definition, we are only interested in avoiding shortage of employees. Therefore
we derive another curveShortage from DeviationFromStaffingRequirements
which highlights only understaffed time slots in our planning period.

Curve Problem::Shortage(Problem thisProblem)

{

Shortage.SubtractNegativeValues(thisProblem.DeviationFromStaffingRequirements);

}

Finally, we impose the soft constraintNoShortage to reduce shortage of employees
during optimization. The violation degree of soft constraint NoShortage is obtained by
summing all values from curveDeviationFromStaffingRequirements.

Requirement 5: In each point of time the staffing requirements must be satisfied completely.

SoftConstraint Problem::NoShortage(Problem thisProblem)

{

Curve shortage = thisProblem.Shortage;

NoShortage = sum(i in shortage.Period()) (shortage.Value(i));

}

5.4.6 Initial Solution

Right now we have succeeded to model each requirement of our sample resource plan-
ning and scheduling problem, by introducing four hard constraints and one soft con-
straint. In the next two major steps we have to provide:

⊲ The number of breaks to be scheduled in each shift.

⊲ An initial feasible break schedule that satisfies all hard constraints of our problem
model.
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To compute the number of breaks to be scheduled in each shift we again rely on a
step-wise approach. For each shift we derive a property named RequiredBreakTime
which is the minimum amount of break time above the required 25% threshold.

Property Shift::RequiredBreakTime(Shift thisShift)

{

RequiredBreakTime = (int) ceil((thisShift.Duration * BREAK_TIME_PERCENTAGE) / 100.0);

}

Then, for each shift we derive the number of (30-minute) breaks that must be sched-
uled in order to exceed the minimum amount of break time.

Property Shift::NumberOfBreaks(Shift thisShift)

{

float breakTimeToSchedule = thisShift.RequiredBreakTime;

NumberOfBreaks += (int) ceil(breakTimeToSchedule / MINIMUM_BREAK_DURATION);

}

Finally, we specify that the recently computed number of (30-minute) breaks is
scheduled per each shift.

Instantiate Shift.Break[] (Shift thisShift)

{

Shift.Break[].Count = thisShift.NumberOfBreaks;

}

In TEMPLE, all hard constraints must be satisfied by the initial solution obtained
for a particular problem instance. The information on how tocompute a feasible initial
solution must be provided by the user. With regard to our sample problem, we must place
the breaks in each shift such that we create a legal break pattern, i.e., the break pattern is
consistent with all hard constraints. For that purpose we set each break’s duration to be
30 minutes. In that manner we guarantee the minimum break time percentage as well as
the required minimum break duration. The first break is scheduled one hour after shift
start. All other breaks start one hour after their predecessor break has started. Since
each break lasts 30 minutes, we can ensure that there is at least half an hour between
each break and they do not overlap. Moreover, breaks are scheduled entirely in their
corresponding shifts. We further restrict the domain for each break start to lie within the
start and end of the corresponding shift, and we link each break to the shift it is scheduled
within.
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Initialize Shift::BreakSchedule(Shift thisShift, Shift.Break[] breakToSchedule)

{

range S = thisShift.Start .. thisShift.End;

forall(i in breakToSchedule.getRange())

{

breakToSchedule[i].Start = thisShift.Start + i * 1 hour;

breakToSchedule[i].Duration = 30 minutes;

breakToSchedule[i].Active = 1;

breakToSchedule[i].Start.Domain.Clear();

forall(j in S) breakToSchedule[i].Start.Domain.Add(j);

breakToSchedule[i].AddLink(thisShift, "Shift");

}

}

5.4.7 Moves

For our sample problem it suffices to specify only one single move, that will be applied
iteratively to improve the quality of an incumbent solution. This single move is defined
for each shift and it is namedPutBreakAtNewPosition. The move selects a break and
a position within the shift at random and moves the break to that newly selected position.

Move Shift::PutBreakAtNewPosition(Shift thisShift, Shift.Break[] scheduledBreak)

{

range S = thisShift.Start .. thisShift.End;

select(i in scheduledBreak.getRange())

select(newPosition in S) scheduledBreak[i].Start = newPosition;

}

5.4.8 Solving the Problem

Now we have nearly finished our first TEMPLE program. Before running it we add
information on the input XML-file containing the staffing requirements and shift plan
and we specify the file in which the best solution found will bestored. As local search
strategy we select iterated local search and impose a one-minute running time limit to it.
Finally, we declare that our planning period is divided into10-minute time slots.

input = ".\Example-1-input.xml";

solution = ".\Example-1-output.xml";

algorithm = iterated local search;

algorithm running time = 1 minute;

time slot = 10 minutes;
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Finally, we invoke the TEMPLE compiler, which will be described in detail in
Chapter 7, to translate our TEMPLE program into executable code. The obtained local
search algorithms terminates within one second and returnsa solution which satisfies
all hard constraints and avoids shortage of staff with respect to staffing requirements.
Figure 5.7 shows the obtained break schedule. Each break last exactly 30 minutes, is
scheduled within its associated shift, and does not overlapwith any other break. Each
of the eight-hour shifts contains four 30-minute breaks, having two hours of break time
in total which is exactly the required 25% required. Moreover, at each point in time
there are exactly as many employees working as demanded by the staffing requirements.
Thus, we conclude that TEMPLE was able to compute a feasible solution with optimal
quality.
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Figure 5.7: Solution obtained with our TEMPLE program for our sample resource
planning and scheduling problem.

5.4.9 An Extended Problem

In the solution for our sample problem shown in Figure 5.7 breaks are scheduled very
irregularly in each shift. It might occur, that employees work for three hours or even
longer without having a break. This can lead to stress and exhaustion which must be
avoided by a reasonably designed break schedule. Consequently, we will extend our
TEMPLE program to obtain a break schedule in which employeesdo not work longer
than 100 minutes without having a break. Thereby, we demonstrate that, thanks to their
modular style, TEMPLE programs can be modified and extended easily, to react quickly
to changes in requirements or user needs.

First of all, for each break we derive a property computing the distance between the
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break and its predecessor. If a break is the first break of a shift, the property will have a
value of zero:

Property Break::DistanceToPredecessor(Break thisBreak, Break.Shift().Break() allBreaksInShift)

{

//Determine the index of predecessor break

selectMax(i in allBreaksInShift.getRange() :

allBreaksInShift[i].End <= thisBreak.Start) (allBreaksInShift[i].End)

{

//Compute distance to predecessor.

DistanceToPredecessor = thisBreak.Start - allBreaksInShift[i].End;

}

}

Secondly, for each shift we introduce a property measuring the time elapsing from
a shift’s start until the first break of the shift:

Property Shift::DistanceToFirstBreak(Shift thisShift, Shift.Break[] scheduledBreak)

{

//Determine first break in shift

selectMin(i in scheduledBreak.getRange()) (scheduledBreak[i].Start)

{

DistanceToFirstBreak = scheduledBreak[i].Start - thisShift.Start;

}

}

Thirdly, we introduce a property modeling the time between ashift’s last break and
the shift end:

Property Shift::DistanceToLastBreak(Shift thisShift, Shift.Break[] scheduledBreak)

{

//Determine last break in shift

selectMax(i in scheduledBreak.getRange()) (scheduledBreak[i].End)

{

DistanceToLastBreak = thisShift.End - scheduledBreak[i].End;

}

}

Finally, we are able to derive a soft constraint which requires that employees should
not work longer than 100 minutes in a row. This soft constraint regards the duration of
each working period in the shift. If a working period lasts longer then 100 minutes, the
deviation from 100 minutes is added to the soft constraint’sviolation degree:

//Additional requirement: Employees should not work longer than 100 minutes in a row.

SoftConstraint Shift::WorkingPeriodDuration(Shift thisShift, Shift.Break[] scheduledBreak)

{

WorkingPeriodDuration += max(thisShift.DistanceToFirstBreak - 100 minutes, 0);

WorkingPeriodDuration += max(thisShift.DistanceToLastBreak - 100 minutes, 0);

forall(i in scheduledBreak.getRange())

WorkingPeriodDuration += max(scheduledBreak[i].DistanceToPredecessor - 100 minutes, 0);

}
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The local search algorithm obtained from the extended TEMPLE program returns
an optimal solution after eight seconds. Figure 5.8 shows the obtained break schedule.
We observe that our additional restriction on working periods is completely satisfied.
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Figure 5.8: In this solution for our sample problem no working period lasts longer than
100 minutes.

In a last revision step we will extend our TEMPLE problem evenfurther. It is
common in many companies to assign lunch breaks to their employees, and these lunch
breaks usually last longer than ordinary breaks. We extend our sample problem by an
additional hard constraint, which requires that each shiftmust contain a one-hour lunch
break. Not only does this additional criterion require to insert additional properties and
constraints, but it has also side-effects to already existing elements within our TEMPLE
program. Once again, we will see, that we will extend and modify our existing TEMPLE
program by adding and changing only a few lines of code, thus,TEMPLE programs are
very robust against changes, as they frequently occur in anydaily working area.

First of all, for each break we insert an additional propertyspecifying whether a
break is a lunch break or not. Thus property will be set to trueif a break reaches or
exceeds the limit of sixty minutes required for a lunch break.

Property Break::IsLunchBreak(Break thisBreak)

{

if(thisBreak.Duration >= 60 minutes) IsLunchBreak = true;

}

Secondly, for each shift we derive a property indicating thenumber of lunch breaks
scheduled per shift.
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Property Shift::LunchBreakCount(Shift.Break[] scheduledBreak)

{

forall(i in scheduledBreak.getRange() : scheduledBreak[i].IsLunchBreak == true)

LunchBreakCount++;

}

Finally, for each shift we introduce a hard constraint, which is violated whenever a
shift lacks a lunch break.

//Additional requirement: A shift must contain at least one lunch break.

HardConstraint Shift::LunchBreak(Shift thisShift)

{

if(thisShift.LunchBreakCount < 1) LunchBreak = VIOLATED;

}

By introducing additional properties and a hard constraintwe are not done yet. As
we remember when scheduling an initial break pattern in a shift we have only used 30-
minutes breaks. When scheduling an initial break pattern wemust guarantee that at least
one break’s duration is set to 60 minutes. Fortunately, thischange can be implemented by
inserting only one additional line of code into our originalinitialization block. Among all
breaks we select a break at random and extend its duration to 60 minutes, thus, making
it a lunch break.

Initialize Shift::BreakSchedule(Shift thisShift, Shift.Break[] breakToSchedule)

{

range S = thisShift.Start .. thisShift.End;

forall(i in breakToSchedule.getRange())

{

breakToSchedule[i].Start = thisShift.Start + i * 1 hour;

breakToSchedule[i].Duration = 30 minutes;

breakToSchedule[i].Active = 1;

breakToSchedule[i].Start.Domain.Clear();

forall(j in S) breakToSchedule[i].Start.Domain.Add(j);

breakToSchedule[i].AddLink(thisShift, "Shift");

}

//Select an arbitrary break and make it a lunch break

select(i in breakToSchedule.getRange()) breakToSchedule[i].Duration = 60 minutes;

}

Furthermore, we must also modify the code for property
Shift::NumberOfBreaks. In two intermediate steps we set the number of breaks that
will be created per shift to one and subtract 60 minutes, the duration for the lunch break,
from the break time to be scheduled. The remaining break timeis then distributed
among 30-minute breaks.
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Property Shift::NumberOfBreaks(Shift thisShift)

{

float breakTimeToSchedule = thisShift.RequiredBreakTime;

NumberOfBreaks = 1; //Create a lunch break

breakTimeToSchedule -= 60 minutes; //Subtract lunch break time

//Distribute remaining break time among 30-minute breaks

NumberOfBreaks += (int) ceil(breakTimeToSchedule / 30 minutes);

}

So far, we added an additional hard constraint requiring a one-hour lunch break
per shift to our problem model, and we modified the TEMPLE codeeffecting how an
initial feasible break schedule is computed for our problem. Since from now, shifts
contain breaks of different duration, 30 minutes, and 60 minutes, we introduce an ad-
ditional move for our local search algorithm which swaps lunch break with an ordinary
30-minute break.

Move Shift::SwapTwoBreaks(Shift thisShift, Shift.Break[] scheduledBreak)

{

select(i in scheduledBreak.getRange())

{

select(j in scheduledBreak.getRange() :

scheduledBreak[i].Duration != scheduledBreak[j].Duration)

{

int t = scheduledBreak[i].Start;

scheduledBreak[i].Start = scheduledBreak[j].Start;

scheduledBreak[j].Start = t;

}

}

}

After recompiling our TEMPLE program the iterated local search algorithm is able
to return an optimal solution to our small problem after 40 seconds. Figure 5.9 shows
the obtained break schedule containing a 60-minute lunch break in each shift.
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Figure 5.9: Solution for our sample problem, in which each shift contains one
60-minute lunch break.
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Chapter 6

Related Work

In this chapter we review state-of-the-art modeling languages and metaheuristic frame-
works aimed at scheduling tasks or general combinatorial optimization problems. In
particular, we examine whether the basic building blocks ofstaff scheduling problems
and local search algorithms, are supported within these approaches. Moreover, we an-
alyze if our design goals for a modeling language for staffs scheduling problems from
Section 5.1 can be realized by these approaches.

6.1 Related Modeling Languages

6.1.1 ESRA - An Executable Symbolism for Relational Algebra

Flener et al. developed the language ESRA [56], an Executable Symbolism for Rela-
tional Algebra, to model combinatorial optimization problems on the basis of sets, enti-
ties and relations. This approach has been successfully applied in general modeling and
specification languages like ALLOY [34], the Object Constraint Language (OCL) [57]
of the Unified Modeling Language (UML) [49], or in entity relationship (ER) diagrams.

In ESRA combinatorial optimization problems are specified by declaringdomains,
constantsanddecision variablesinvolved in the considered task. For optimization prob-
lems we also have to define acost functionwhich shall be minimized or maximized.
Domains, constants and decision variables are declared on the basis of sets and enumer-
ation types, and complex data types. Complex data types are defined by using relations
and cardinalities between simpler data types. The constraints imposed on a particular
problem are formulated in first order logic. ESRA provides a fixed set of predicates
and functions which can be used within constraint formulations. Figure 6.1 presents an
ESRA model of the traveling salesman problem taken from [56].

75
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dom Cities
cst Distance: (Cities×Cities)→ N
var Next: Cities→1 Cities
minimise:

∑

c∈Cities Distance(c,Next(c))
such that: ∀ (c1 ∧ c2 ∈ Cities) Next∗(c1) = c2

Figure 6.1: ESRA model of the traveling salesman problem [56].

6.1.2 ESSENCE

ESSENCE [22] is aproblem specification languagefor combinatorial problems. The
main motivation for ESSENCE was to create a language in whichboth decision problems
and optimization problems can be specified in a very natural,concise way at a very
abstract level. The formal problem specification shall thenbe mapped automatically to
a constraint satisfaction problem (CSP) model and finally besolved by a corresponding
solver. According to Frisch et al. [22], three main goals were realized in ESSENCE:

1. ESSENCE is a very natural language that is understandableto anyone having basic
knowledge in discrete mathematics. No background in constraint programming is
required by a potential user.

2. ESSENCE provides a high level of abstraction. A few statements are sufficient to
specify a combinatorial problem.

3. A problem specified in ESSENCE can be effectively mapped to constraint satis-
faction problems (CSPs).

ESSENCE specifications a very similar to the those specifications of combinato-
rial problems given by Johnson and Garey [24]. An ESSENCE specification consists of
seven kinds of statements, each of which starting with one ofthe following keywords:
given, where, letting, find, minimising, maximising andsuch that. given
statements are used to specify the input parameters of a combinatorial problem.where
statements define allowed input parameter values.letting statements introduce con-
stant identifiers and user defined types.find statements are used to declare the decision
variables of a combinatorial problem.minimising and maximising statements are
used to define the objective functions of a combinatorial optimization problem.such
that statements are used to specify the constraints involved in acombinatorial problem.

Figure 6.2 presents an ESSENCE specification of the well-known knapsack prob-
lem. In the knapsack problem we are given a set of items, each having a specific weight
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and value. To solve the knapsack problem we must find a collection of items such that
their total value is as large as possible and their total weight must not exceed a certain up-
per bound. Considering the ESSENCE specification presentedin Figure 6.2 we see that
the ESSENCE specification is very similar to the specification of the knapsack problem
given in natural language.

given U enum (...), Given a set of items each of which
w : U → int (...), having a specific weight
v : U → int (...), and value
B : int and given limit on the total weight

find U′ : set of U find a collection of items

maximising
∑

u∈U′ v(u) of maximum value

such that
∑

u∈U′ w(u) ≤ B such that the limit on the total
weight is not exceeded.

Figure 6.2: ESSENCE specification of the knapsack problem formulated as
optimization problem [22].

Frisch et al. [22] report that a suite of 58 problems, 26 drawnfrom CSPLib, 32 from
the literature, could be specified successfully in ESSENCE by an undergraduate student
in computer science having no background on constraint programming. Moreover Frisch
et al. implemented a rule-base system called CONJURE that can translate a fragment
of the ESSENCE language into a constraint programming model. These models were
further mapped to ECLiPSe [55] and Minion [28]. For future work Frisch et al. want to
translate the complete ESSENCE language into constraint satisfaction problem models
and in that manner they plan to make a significant steps forward into the directions of
fully-automated modeling.
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6.1.3 The Zinc Modeling Language

Zinc [38] is a high-level modeling language for combinatorial optimization problems.
Zinc is a declarative, functional language using a mathematical-like notation. The Zinc
language has been designed as simple as possible, offering only a manageable amount
of data types, predefined predicates, functions and constraints. However, in contrast
to many other specification or modeling languages, e.g., ESRA and ESSENCE, Zinc
enables the definition of user-defined predicates, functions, and constraints. With these
user-defined language constructs the Zinc language can be extended and adapted to new
application domains.

The most important design goal of Zinc was that Zinc must be a solver indepen-
dent modeling language. Each problem formulated in Zinc canbe transformed into a
constraint programming model, a mixed integer programmingmodel, or a local search
based model. Afterwards developers can experiment with different, already existing,
optimizations algorithms and they may chose the solving technique which proved to
perform best for a given problem instance.

Rafeh et al. successfully implemented a Zinc compiler [47] which translates a given
Zinc program into an intermediate representation in the slightly different language flat-
tened Zinc. This intermediate model is finally transformed into an executable constraint
programming model, mixed integer programming model, and local search model by ap-
plying appropriate rewriting rules.

With their Zinc compiler Rafeh et al. delivered a prove of concept that solver in-
dependent modeling is indeed feasible in Zinc. They formulated a series of well-known
combinatorial optimization problems in Zinc: the minimisation of open stacks problem
(MOSP), the social golfers problem, perfect squares, the N-queens problem, the knap-
sack problem, job shop scheduling and the production scheduling problem. Each Zinc
formulation of these problems could be transformed into a design model of different
solving techniques. A comparison with equivalent, manually written problem models,
revealed that the models automatically generated by the Zinc compiler needed only a
little bit more running time to achieve the same results. Therefore, Rafeh et al. conclude
that Zinc introduces only a negligible computational overhead.
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6.1.4 OPL - The Optimization Programming Language

As indicated by its name, the Optimization Programming Language (OPL) [31] was
developed to model and solve optimization problems. OPL attempts to combine the
advantages of mathematical modeling languages and constraint programming languages:

⊲ Mathematical modeling languages, such as AMPL [21] and GAMS[7], provide
high-level algebraic and set notations and they enable the formulation of concise
problem models. Moreover, mathematical modeling can be applied by a wide au-
dience, because users formulate constraints solely by the help of equations and
inequation and no information concerning the optimizationprocess must be spec-
ified.

⊲ On the other hand constraint programming languages, such usCHIP [17] and OZ
[33], provide logical, high-order and global constraints and they allow a user to
affect the way the solution space is explored by specifying search procedures.

An industrial implementation of OPL has been realized within the software IBM
ILOG CPLEX Optimization Studio. However, in IBM ILOG CPLEX Optimization Stu-
dio only those parts of OPL concerning the modeling of problems have been imple-
mented, the abstractions and notations concerning search procedures are not available in
that industrial implementation. Problem models obtained via OPL are solved either by
the IBM ILOG CPLEX Optimizer engine (for mathematical programming models) or
by the IBM ILOG CPLEX CP Optimizer engine (for constraint programming models).

As an additional feature IBM ILOG OPL provides further language elements to
facilitate the development of scheduling models. In this respect IBM ILOG OPL is
closely related to TEMPLE, thus, we will present the basic scheduling building blocks
of IBM ILOG OPL in more detail:

Time intervals. In addition to ordinary decision variables an IBM ILOG OPL schedul-
ing model contains time intervals. Like decision variablesalso time intervals are
subject to optimization, i.e., start or duration of time intervals are variable and con-
sequently positions and durations of time intervals are changed during the search
process. In a scheduling model, time intervals usually represent activities or tasks.

Cumulative functions. In IBM ILOG OPL, a cumulative function is a function rep-
resenting the sum of individual contributions of intervals. Usually, cumulative
functions are used to model the usage or consumption of a specific resource over
time, e.g., an interval may increase the value of a cumulative function at its start or
over its duration. Cumulative functions are very similar tothe concept of derived
curves within the domain-specific language TEMPLE.
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State functions. In IBM ILOG OPL, state functions are used to represent the evolution
of a given feature of the environment over time. The main difference between state
functions and cumulative functions is that interval variables have an incremen-
tal effect on cumulative functions (increasing or decreasing the function value)
whereas they have an absolute effect on state functions (requiring the function
value to be equal to a particular state or in a set of possible states).

Temporal constraints. IBM ILOG OPL offers a set of temporal constraints concern-
ing the relationships between two or several time intervals. These constraints
comprise precedence constraints regulating the relative positions of intervals, no
overlap constraints requiring that intervals are disjointin time, span constraints en-
suring that one interval is contained within the other, and synchronize constraints
demanding that two or several intervals start and end at the same time.

Specialized constraints.Specialized constraints are imposed on state functions andcu-
mulative functions. They specify legal upper and lower bounds on the value a
cumulative constraint may have during a certain period or they require that the en-
vironment must be in a particular state such that a specific task can be performed.

If we compare TEMPLE with IBM ILOG OPL and its scheduling features we
recognize some similarities between the two modeling languages. The central element of
both languages are time intervals, and curves in TEMPLE are similar to the cumulative
functions available in IBM ILOG OPL.

6.1.5 Comet

The programming language Comet [32] was developed to combine the advantages of
constraint programming and local search algorithms. Constraint programming repre-
sents an elegant way to model complex optimization tasks, involving various different
criteria and objectives. In a constraint programming language such a problem can be
modeled by imposing each criterion and objective one by another by using logical, high-
order and global constraints. However, before Comet was proposed, state of the art
constraint solvers had used solely global search algorithms, which more or less explore
the entire search space to solve a given optimization task.

Local search algorithms proved to return very good results for many different prob-
lems from the literature and from real-life. However, the design of local search algo-
rithms is an art in itself. For instance, a developer must choose an appropriate solution
representation, an adequate objective function, and sophisticated data structures to en-
sure an efficient performance of a local search algorithm. To simplify the design and
implementation of local search algorithms, Michel and Van Hentenryck proposed the
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modeling language LOCALIZER [40], where local search algorithms can be specified
in a manner similar to their pseudo-code representations given in scientific papers.

Later Michel and Van Hentenryck developed a constraint-based architecture for lo-
cal search algorithms [41]. That architecture included several high-level concepts to
model the constraints and objectives of a given optimization problem, and to formulate
model-independent local search algorithms applicable to any arbitrary problem model
obtained within that architecture. Further Michel and Van Hentenryck presented the
constraint-based modeling and optimization language Comet [41] incorporating the pro-
posed architecture. A comprehensive introduction on the Comet language and a detailed
overview on the concepts involved in Comet is given in [32].

In the recent past the Comet language has evolved strongly. Besides constraint-
based local search algorithms, also constraint programming models and mixed inte-
ger linear programs can be specified and solved in Comet. The Comet language and
a corresponding just-in-time compiler represent the core of a commercial optimization
platform, called the Comet Hybrid Optimization Platform, which is distributed by the
company Dynadec Inc (www.dynadec.com).

At this point we want to present the high-level modeling concepts [41] realized in
Comet which distinguish it from other modeling languages. These concepts are also used
within the code generated by our TEMPLE compiler to obtain anexecutable program
for a specific staff scheduling problem:

Incremental Variables In Comet incremental variables are used to model the dynamic
features of the solution to an optimization problem. By dynamic features we un-
derstand all aspects of a solution which can be changed during a local search
algorithm, e.g., basic decision variables, objective function values or constraint
violation degrees.

Invariants Invariants define functional dependencies between incremental variables,
and Comet ensures that these functional dependencies are always kept valid during
a local search algorithm. For instance, the Comet statementtaken from [41],

var{int} totalSum(ls) <- sum(i in 1..10) (variableToSum[i]);

declares an incremental integer variabletotalSum and an in-
variant requiring that totalSum is always the summation of
variableToSum[1],...,variableToSum[10]. totalSum is the target vari-
able of that invariant whereasvariableToSum[1],...,variableToSum[10]
are source variables. If a new value is assigned to any sourcevariable
variableToSum[i] the value oftotalSum will be updated accordingly so that
the functional dependency specified by that invariant is maintained.
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Complex Invariants To specify a functional dependency which cannot be declared
within a single statement a user must write an entire class file implementing the
Invariant<LS> interface. Figure 6.3 presents such a user defined invariantensur-
ing that the value of an incremental variabletotalSum is always the summation of
ten other incremental variablesvariableToSum[1],...,variableToSum[10].
In methodpostwe specify thatvariableToSum[1],...,variableToSum[10]
are the source variables of that invariant whereastotalSum is the single target
variable. In methodinitPropagationwe compute the sum of all ten source vari-
ables and store it intotalSum. This method will be executed only once at the start
of the local search algorithm written in Comet. Finally, methodpropagateInt
updates the target variable, whenever one of the source variables is changed. We
compute only the difference in the value of the changed variables and update the
sum accordingly. If only a single or a few source variables are changed within
an iteration of the local search algorithm,propagateInt can be carried out more
efficiently than a complete re-computation of the sum from the scratch.

Differentiable Functions In Comet differentiable functions are used to model features
of the solution of a given optimization problem. Further they assess the effects
that local changes have on these features. Figure 6.4 presents the most relevant
methods of interfaceFunction<LS>which must be implemented by each specific
differentiable function. Each differentiable function maintains the value of a (pos-
sibly) complex function, which is computed and maintained by an invariant. The
current function value can be accessed at any time through methodvalue. More-
over, through methodgetAssignDelta we evaluate the variation of the function
value under local changes, i.e., if one or several basic decision variables are as-
signed new values.

Differentiable Constraints As shown in Figure 6.5, differentiable constraints are very
similar to differentiable functions. A differentiable constraint maintains a con-
straint violation degree which is computed and maintained by an invariant. A dif-
ferentiable constraint reports whether it is satisfied or violated (methodisTrue)
and it can be queried for its current violation degree (method violations). As
differentiable functions a differentiable constraint can evaluate the effect of local
changes on its violation degree through a method calledgetAssignDelta.
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class SumOfVariables implements Invariant<LS>

{

Solver<LS> _ls;

var{int}[] _variableToSum;

var{int} _totalSum;

bool _posted;

//gets incremental variables that shall be summed up

//and the incremetal variable that shall contain the computed sum.

SumOfVariables(Solver<LS> ls, var{int}[] variableToSum, var{int} totalSum)

{

//passed arguments are stored in local class member variables.

_ls = ls;

_variableToSum = variableToSum;

_totalSum = totalSum;

_posted = false;

//sets source and target variables.

post();

}

//sets source and target variables.

void post(InvariantPlanner<LS> invariantPlanner)

{

if(!_posted)

{

//source variables.

forall(i in 1..10)

invariantPlanner.addSource(_variableToSum[i]);

//target variable.

invariantPlanner.addTarget(_totalSum);

}

}

//computes the sum of source variables and stores it in target variable.

void initPropagation()

{

_totalSum := 0;

forall(i in 1..10)

_totalSum := _totalSum + _variableToSum[i];

}

//updates target variables efficiently.

void propagateInt(bool notLastInvocation, var{int} changedVariable)

{

//compute change in source variable value.

int delta = changedVariable - changedVariable.getOld();

//update sum by computed change.

_totalSum := _totalSum + delta;

}

...

}

Figure 6.3: Invariant maintaining the sum of several sourcevariables within one target
variable.
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interface Function<LS>

{

//returns the current function value.

var{int} value();

//computes the change in function value if variablesToBeChanged are assigned newValuesToBeAssigned.

int getAssignDelta (var{int}[] variablesToBeChanged, int[] newValuesToBeAssigned);

...

}

Figure 6.4: Interface for differentiable functions.

interface Constraint<LS>

{

//indicates whether a constraint is satisfied or violated.

var{bool} isTrue();

//returns the current constraint violation degree.

var{int} violations();

//computes the change in violation degree if variablesToBeChanged are assigned newValuesToBeAssigned.

int getAssignDelta (var{int}[] variablesToBeChanged, int[] newValuesToBeAssigned);

...

}

Figure 6.5: Interface for differentiable constraints.
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In Comet a problem model of a given optimization is obtained in the following manner:

1. We model the basic decision variables of an optimization problem by the help of
incremental variables.

2. We model further features of a problem by using invariantsand differentiable func-
tions.

3. Finally, we impose the constraints and objectives of a problem by using invariants
and differentiable constraints. All constraints are collected in aconstraint system,
implementing the differentiable constraint interface.

In Comet local search algorithms operate only with methods provided by differen-
tiable constraints. Consequently, the resulting local search algorithms can be applied to
arbitrary problem models consisting of differentiable constraints. Thus, Comet supports
the separation of local search algorithms from specific problem models and contributes
to the development of general local search algorithms.

6.1.6 ASPEN - An Automated Scheduling and Planning Environment

ASPEN [23] is a modular, reconfigurable application framework which was developed
by the Artificial Intelligence Group of the Jet Propulsion Laboratory to model and solve
a wide variety of planning and scheduling applications arising at NASA. In particular
ASPEN has been applied within the domain of spacecraft operations.

While operating a spacecraft several different high-level science and space craft
engineering goals must be achieved. These high-level goalsresult in a series of low-level
spacecraft operations which are required to be scheduled inaccordance with a variety of
constraints, concerning the availability of resources, the current state of the aircraft and
temporal restrictions.

For instance, a high-level goal of a space craft might be to observe and photograph
planets, stars, and galaxies. To make a single observation,a series of low-level opera-
tions have to be carried out: the space craft must be adjusted, a picture must be taken, the
obtained data must be temporarily stored at the space craft and eventually the data must
be transmitted to earth. To carry out each single operation successfully one or several
conditions need to be satisfied: to take a picture a certain amount of power is required,
to save the obtained data enough free storage must be available, and information can be
transmitted only at certain down-link times.
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The ASPEN Modeling Language

ASPEN provides a modeling language [51] which is used by domain experts to model
high-level goals, low-level operations and the constraints imposed on a desired solution.
The ASPEN modeling language offers abstractions and notations reflecting these opera-
tions and constraints in a very natural way. Consequently, domain experts can formulate
planning models very easily and quickly. Afterwards ASPEN schedules the single high-
level goals and low-level operations such that as many goalsas possible are achieved by
the resulting schedule. The scheduling of high-level goalsand low-level operations is
done automatically without requiring any input from the domain experts. This is par-
ticularly useful since the domain experts using ASPEN usually have no knowledge of
automated planning and scheduling techniques. The main elements of the ASPEN mod-
eling language areactivities, resources, andstates:

Activities. Activities are the central plan elements of ASPEN. Basically, an activity
represents a high-level goal or a low-level operation of a specific planning and
scheduling problem. A single activity can be decomposed into several subactiv-
ities. In that manner a domain expert can model the relation between high-level
goals and the low-level operations required to achieve thatgoal. Each activity has
three basic parameters,start, end, andduration, thus an activity can also be
considered as a time interval. The value of parameterduration usually remains
fixed, only the position of an activity is changed during optimization. In additional
to start, end, andduration, one can define further parameters for activities.

Resources.ASPEN distinguishes between depletable and non-depletable resources. A
depletable resources, e.g. propellent (fuel), is consumedby an activity which uses
the resource. A non-depletable resource, e.g. power, is removed from availability
only for the duration of an activity. If the activity ends a non-depletable resource
will become available again.

States. In ASPEN state timelines are used to represent the evolutionof some aspect of
a spacecraft over time. A state timeline is associated a set of discrete state values
that it can take on, and a list of legal state transitions.

In ASPEN, all constraints in a plan model result from activities. There are four
kinds of constraints which activities can impose on other plan elements:temporal con-
straints, functional dependencies, resource reservations, andstate reservations:

Temporal constraints. A temporal constraint is a temporal relation between a source
activity and a target activity. The relation must be satisfied by every pair of affected
activity instances in the plan. The ASPEN language defines six temporal relations:
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starts_before, starts_after, ends_before, ends_after, contains and
contained_by. A temporal relation can be modified by an optional interval spec-
ifying minimum and maximum distances between the pair of activities.

Functional dependencies.Functional dependencies require that the value of a param-
eter of an activity is a function of other parameter values. In ASPEN, a concrete
dependency function itself is written in the programming languageC.

Resource reservations.In ASPEN the resource requirements of activities are statedby
the help of resource reservations. A resource reservation specifies the resource
and the number of units needed by an activity along its duration.

State reservations.Activities can impose two kinds of state reservations. Amust_be
reservation requires that the state has a specific value for the duration of the activ-
ity. change_to reservations change a state to a certain value at the beginning of
the activity.

6.1.7 Optimization Algorithms

Usually, the planning and scheduling problems modeled in ASPEN are over-constrained.
Therefore, ASPEN tries to obtain a solution maximizing the number of high-level goals
which can be achieved without violating any constraints. For that purpose the ASPEN
application framework provides three different algorithms for optimizing a specific plan-
ning and scheduling task:

1. A greedy, constructive algorithm called forward dispatch.

2. A constructive backtracking algorithm called IRS.

3. A repair-based algorithm.

In practical applications of the ASPEN framework the repair-based algorithm
proved to perform best. The repair-based algorithm considers the current solution of
a planning and scheduling problem and selects a conflict resulting from the violation
of a temporal constraint, a functional dependency, or from aviolated resource and state
reservation. Then the algorithm tries to resolve that conflict by rescheduling, instantiat-
ing and deleting activities, or by assigning new values to parameters in accordance with
functional dependencies. A more detailed description on how the repair-based algorithm
is realized in ASPEN is given by Rabideau et al. in [46].
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ESRA ESSENCE Zinc ASPEN OPL Comet TEMPLE
Intervals × × × X X × X

Links × × × × × × X

Curves × × × × X × X

Derived Elements × × × X × X X

Openness × × X X × X X

Modularity × × X X × X X

Table 6.1: Comparison of TEMPLE and related modeling languages.

6.1.8 Comparison with Temple

To compare the previously presented modeling languages with TEMPLE we examined
whether they provide the basic building blocks of staff scheduling problems we identi-
fied in Section 5.2: intervals, links, curves, derived properties and constraints. Moreover,
we considered if the related modeling languages are open, inthe sense of the design
goal Openness stated in Section 5.1. In an open modeling language arbitrary aspects of
a problem can be modeled and the language is not restricted toa finite set of features
and constraints. As a last criterion for the modeling languages related with TEMPLE
we examined whether problems can be modeled in a modular manner, as required by out
design goal Modulariy in Section 5.1. Our comparison of different modeling languages
is summarized in Table 6.1.

ESRA, ESSENCE and Zinc were developed to specify or model general combina-
torial problems. Therefore, they do not provide any data structures or language elements
occurring in staff scheduling problems, such as intervals, links, curves, derived proper-
ties and constraints. ESRA and ESSENCE provide only a finite set of predefined func-
tions or constraints in order to model a problem, whereas Zinc allows to define additional
functions and predicates to adapt and extend the language toa specific combinatorial op-
timization problem.

Some aspects of the ASPEN language are akin to TEMPLE, for instance, activities
are similar to intervals and functional dependencies are comparable with derived proper-
ties. Furthermore, in ASPEN it is possible to model arbitrary functional dependencies by
user-defined code in the programming languageC, thus ASPEN is an open language in
our sense. Since in the ASPEN language high-level goals are decomposed into low-level
operations ASPEN is also a modular language. However, ASPENis strongly focused
on the characteristics of space craft operations and cannotbe applied directly to staff
scheduling problems.
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Like TEMPLE, IBM ILOG OPL provides further language elements to facilitate
the development of scheduling models such as intervals and cumulative functions which
are similar to curves. However, in IBM ILOG OPL the user must use a fixed set of tem-
poral or specialized constraints which cannot be extended further whereas in TEMPLE
arbitrary constraints can be defined. Moreover, in TEMPLE, auser can select between
different local search algorithms and he or she may influence the search process by spec-
ifying user defined moves. The IBM ILOG CPLEX CP Optimizer engine uses an exact
method to obtain a solution for a considered scheduling task. A user may adjust some
parameters of that method, but he cannot affect which regions of the search space shall
be pruned or shall be explored at first hand.

As for Comet, TEMPLE inherited some of its syntax and data structures, e.g., sets,
ranges and selectors, and Comet is the target language of ourTEMPLE compiler. Some
aspects of Comet’s modular architecture, such as user-defined invariants, differentiable
functions, and differentiable constraints, are similar to derived propertiesor constraints.
However, the implementation of invariants, differentiable functions and constraints, is far
more complex and time consuming in Comet, because entire classes have to be coded,
whereas in TEMPLE properties and constraints can be usuallydefined within several
lines of code. Comet is also an open language providing both predefined constraints
as well as the possibility to define arbitrary user-defined properties or constraints of a
problem. The main difference between TEMPLE and Comet is that TEMPLE of-
fers abstractions and notations of staff scheduling problems, namely intervals, links and
curves, reflecting common features of staff scheduling tasks. Moreover, we tried to de-
sign TEMPLE as simple as possible, thus, no knowledge about object orientation or any
details on local search techniques, is required from a user.
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6.2 Metaheuristic Frameworks

Beside modeling languages, metaheuristic frameworks represent a further possibility to
develop algorithms for combinatorial optimization problems. Within a metaheuristic
framework certain core functionalities of one or several metaheuristic techniques have
already been realized. To develop an algorithm for a particular combinatorial optimiza-
tion problem we have to extend the framework by providing problem specific informa-
tion, e.g., a solution representation, moves, or an objective function.

In recent years, several metaheuristic frameworks have been proposed by different
authors, e.g., OpenTS [30], EasyLocal++ [27], HOTFRAME [20], Templar [35] or Par-
adisEO [9]. We will shortly describe three frameworks whichwe looked at as possible
candidates for the design of generic solutions for staff scheduling problems before we
decided to develop a new domain specific language on our own.

6.2.1 OpenTS

OpenTS [30] is a Java-based framework to develop and implement Tabu Search algo-
rithms [29]. To obtain a Tabu Search algorithm for a particular combinatorial optimiza-
tion problem we must provide Java classes implementing the following items:

1. A solution representation.

2. An objective functionevaluating solutions of the considered problem.

3. One or severalMovesdefining the local neighborhood computed for a considered
problem.

4. If more than one kind of move should be used within the tabu search algorithm
a user must also provide a so-calledmove managerclass. Within that class the
user must specify how different types of moves are chosen to compute the local
neighborhood of a solution.

Optionally, we can further extend classes for the Tabu Search algorithm and the
tabu list which are already existing within the framework, and we can specify additional
aspiration criteria. In that way we can adapt the standard Tabu Search algorithm of
OpenTS to a particular problem. Finally, we compile our classes containing problem
specific information with the Java classes of the OpenTS framework and so we obtain
an executable Tabu Search algorithm.
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6.2.2 EasyLocal++

EasyLocal++ [27] is an object-oriented framework realized in the programming lan-
guageC++. In contrast to OpenTS EasyLocal++ is not restricted to tabu search. Easy-
Local++ provides several local search algorithms already existingwithin the framework,
such as tabu search and simulated annealing, and it supportsthe development of further
local search techniques. During the optimization process several local search techniques
can be combined with each other, thus, in EasyLocal++ it is very easy to obtain hybrid
metaheuristic algorithms.

According to Di Gaspero and Schaerf [27] the core of EasyLocal++ consists of
a set of classes which are responsible for different aspects of a local search algorithm.
These classes can be partitioned into the following five categories:

Data classesstore the basic data of a local search algorithm, namely a state or solution
in the search space, moves, input and out data.

Helpers are responsible for neighborhood computations, prohibition mechanisms, the
computation and dynamic adaption of an algorithm’s objective function, and for
the creation of output data.

Runners execute runs of local search algorithms. They start at an initial solution, per-
form a series of moves and end up in a final search state.

Solvers create an initial solution and they control the entire search process by executing
one or several runners.

Testers are used to debug algorithms, to tune parameters and to analyze local search
algorithms.

To develop a local search algorithm in EasyLocal++ we must extend some classes
and we must implement a few so-calledMustDef methods. In theseMustDef methods
we specify how initial solutions are created, how the objective function value and hard
constraint violations are obtained and how moves are computed. In addition, we can
further adapt a local search algorithm to a particular optimization problem by overriding
so-calledMayRedefmethods.

6.2.3 ParadisEO

ParadisEO [9], parallel and distributed evolving objects,is a metaheuristic framework
supporting the design of both local search techniques and evolutionary algorithms. Par-
adisEO has the same architecture as EasyLocal++ consisting of helper, runner and solver
classes:
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⊲ Helpers perform low-level actions related to the evolutionor local search process,
e.g., such as evolutionary operations or neighborhood exploration.

⊲ Runners implement a certain metaheuristic technique themselves. They perform
the run of an algorithm from an initial solution or population to the final one.

⊲ Solvers are responsible for the control of the evolution process or the local search
process, or a combination of both.

As in OpenTS and EasyLocal++, in ParadisEO we must provide at least informa-
tion on an initial solution, objective functions, moves or genetic operators, to obtain an
algorithm for a specific optimization problem, and by overriding already existing meth-
ods of the framework’s classes, we can adapt an algorithm further to the specifics of a
particular task.

In addition to OpenTS and EasyLocal++, in ParadisEO we can built hybrid algo-
rithms consisting of evolutionary and local search components. In that manner we can
combine the characteristics of both approaches within a single solution. Evolutionary al-
gorithms are better in exploring the entire search space whereas local search techniques
are more suited to intensify the search in particular regions.

Finally, ParadisEO enables the development of parallel anddistributed solutions.
Cost-intensive processes like neighborhood explorationsor population evaluations can
be distributed among several threads, multiple processor cores and different computers.

6.2.4 Comparison with TEMPLE

At the start of our research we considered metaheuristic frameworks as possible candi-
dates for the design of generic solutions for staff scheduling problems. However, after
it had become clearer to us, which design goals we wanted to achieve with our de-
sired generic solution, we decided to develop a new domain specific language for staff
scheduling problems on our own. Basically, we took that decision because of the two
differences between metaheuristic frameworks and TEMPLE:

1. Metaheuritic frameworks are aimed at general combinatorial optimization prob-
lems. They do not provide abstractions and notations reflecting basic building
blocks of staff scheduling problems, and thus, it is hard to realize the design goal
modularity in metaheuristic frameworks.

2. When implementing an algorithm within a metaheurstic framework a user must
possess knowledge of the architecture of the framework, object oriented program-
ming, and sometimes even of local search techniques. These requirements on a
potential user are in conflict with our design goal simplicity.
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The TEMPLE Compiler

We designed and implemented a TEMPLE compiler to transform TEMPLE programs
into executable local search algorithms that solve the staff scheduling problems. As input
the compiler is passed a problem model formulated in the TEMPLE modeling language
and an XML-file containing input information of a particularproblem instance. On the
basis of that input the TEMPLE compiler generates three local search algorithms for the
considered staff scheduling tasks: a simulated annealing algorithm [36], a hill climbing
strategy [39] and an iterated local search algorithm [37]. The three local search algo-
rithms are written in the constraint-based optimization language Comet [32]. To obtain
a solution for the considered staff scheduling problem the generated algorithms are ex-
ecuted by the Comet optimization engine. Finally, the best solution found during the
execution of a local search algorithm is returned as an XML-file. Figure 7.1 illustrates
the entire approach we followed to solve staff scheduling problems in TEMPLE. In de-
tail, the following files are generated by the TEMPLE compiler when transforming a
TEMPLE model into classes of the Comet optimization language:

⊲ For eachderived propertydefined in the TEMPLE problem the TEMPLE com-
piler creates two files, a class file representing the derivedproperty, and an in-
variant file. The class representing the derived property encapsulates the value it
is responsible for evaluating moves, i.e., it computes the new value the property
would take if a move was executed. On the other hand, the invariant file initializes
the value of a property at the beginning of a local search algorithm and updates
the property value whenever a move is actually performed.

⊲ Also, for eachderived curve and constraintthe TEMPLE compiler creates a
class file representing the derived curve or constraint and an invariant file. Again,
the class file encapsulates a curve’s state or a constraint’sviolation degree and
evaluates changes resulting from moves, whereas the invariant file initializes and

93
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Figure 7.1: A Temple compiler transforms Temple models intothree generic local
search algorithms, that can be executed instantaneously.

updates a specific curve or constraint violation degree during a local search algo-
rithm.

⊲ For eachinstantiation elementthe TEMPLE compiler generates an instantiator
class file to instantiate new additional intervals.

⊲ For eachinitialization elementthe TEMPLE compiler builds an initializer class
file which is used to compute initial values of basic intervalproperties, to restrict
the domains for basic interval properties, and to link intervals with each other.

⊲ For each definedmovethe TEMPLE compiler creates a corresponding Comet
class, responsible for computing, evaluating and executing moves.

⊲ For eachinterval declared in a TEMPLE model the TEMPLE compiler creates
an interval class file. That class contains the basic properties associated with a
specific interval and aggregates the derived properties, curves, constraints as well
as the moves, instantiators and initializers defined for that interval.

⊲ Finally, the TEMPLE compiler creates a class calledTimeIntervalModel,
which is the central management class of the compiled problem model. This class
aggregates all created intervals, and administers two constraint systems for hard
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and soft constraints. Each of the created local search algorithms interact only with
time interval model during their search.

While implementing the TEMPLE compiler we had to solve several problems to
ensure that the generated local search algorithms work correctly and efficiently. In the
remainder of this chapter we will describe these tasks in more detail and we will show
how we managed to solve them.

7.1 TEMPLE Model Analysis

As a first step, the TEMPLE compiler analyzes the structure ofa TEMPLE pro-
gram. Thereby, the compiler builds up a dependency graph storing the dependen-
cies between basic properties, derived properties, curves, constraints, instantiation el-
ements, and initialization elements. Figure 7.2 presents the dependency graph for the
sample resource planning and staff scheduling problem in section 5.4. For instance,
in Figure 7.2, the edge between a shift’s derived propertiesTotalBreakTime and
TotalBreakTimeInPercent indicates, that the latter property is derived from the for-
mer one. On the basis of a program’s dependency graph the TEMPLE compiler per-
forms the following two tasks:

1. The TEMPLE compiler detects superfluous elements, i.e., derived properties or
curves which cannot be reached from a node representing a constraint, and ex-
cludes them from further processing steps.

2. The TEMPLE compiler detects directed circles within the dependency graph.
Each derived element in a directed cycle depends transitively on itself, thus, the
computation of such an element will not terminate. If a directed cycle is detected
in a TEMPLE program, the compiler informs a user that the program cannot be
processed correctly and terminates.

7.2 Computing an Initial Solution

7.2.1 Creating Intervals from the Input XML-File

As input each TEMPLE program is passed an XML-file which can beconsidered as a
list of interval nodes, specifying the initial values and domains for each single interval
as well as links between intervals. For instance, the following code listing presents an
interval node of the input file for our sample resource planning and staff scheduling
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RequiredBreakTime

StartActive

StaffingRequirement

Duration

End

StartActive Duration

End

StartActive Duration

End

StartActive Duration

End

NumberOfBreaks

Shift.Break

BreakSchedule

BreakPattern

NoOverlappingBreaks

TotalBreakTime

TotalBreakTimeInPercent

MinimumBreakTime MinimumDuration

StaffingRequirements

WorkingStaff

DeviationFromStaffingRequirements

Shortage

NoShortage

TimeSlot

ProblemBreakShift

ScheduleBreaksWithinShift

Constraint Curve Property Instantiation/Initialization

Figure 7.2: Dependencies existing between TEMPLE elementsin the sample staff
scheduling problem from Section 5.4.
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problem. The node corresponds to the first shift of our sampleproblem. Initially, this
shift is active, starts at06:00, and lasts eight hours. The given domain values prohibit
any changes of the basic decision variables by a local searchalgorithm:

<interval id="1001" type="Shift" description="Shift from 06:00 - 14:00">

<basic-decision-variables>

<variable-start> <!-- shift starts at 06:00 = time slot 36 -->

<value>36</value>

<domain>

<domain-value>36</domain-value> <!-- shift start must not be changed -->

</domain>

</variable-start>

<variable-duration> <!-- shift lasts eight hours = 48 time slots -->

<value>48</value>

<domain>

<domain-value>48</domain-value> <!-- shift duration must not be changed -->

</domain>

</variable-duration>

<variable-activity> <!-- shift is active -->

<value>1</value>

<domain>

<domain-value>1</domain-value> <!-- shift may not be deactivated -->

</domain>

</variable-activity>

</basic-decision-variables>

<links>

<!-- here the intervals linked to a shift could be specified -->

</links>

</interval>

The information stored within the input XML-file is now transformed into interval ob-
jects as follows:

1. For each interval given in the input file a corresponding interval is instantiated.

2. The initial values specified within the XML-file are assigned to basic interval prop-
erties.

3. The domain values of basic properties are restricted to the domain values retrieved
from the input file.

4. Intervals are linked with each other according to the information given within the
input file.

After processing the data from the input XML-file we have created the first part
of an initial solution for a particular problem instance. Figure 7.3 depicts the status of
initialization after reading the input information for thesample staff scheduling problem
from Section 5.4. Shifts, time slots and the root interval representing a problem have
been instantiated and linked among each other. Moreover, the basic properties of the
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created intervals, i.e., all elements drawn below the red line, have already been initial-
ized. However, the bigger part of the initial solution, depicted with gray rectangles in
Figure 7.3, is still not initialized at this stage.

Feasible Initialization Orderings

To initialize the remaining elements of a solution in correct order, we must consider the
dependencies existing between them. In a feasible initialization ordering we initialize
a single element only after we have already initialized all other elements it depends on.
Within the TEMPLE compiler we obtain a feasible initialization ordering by traversing
the dependency graph of an underlying staff scheduling problem in a depth-first-search
order starting at the nodes representing constraints. Figure 7.4 shows a possible initial-
ization ordering for the sample staff scheduling problem from Section 5.4.
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RequiredBreakTime

StartActive

StaffingRequirement

Duration

End

StartActive Duration

End

StartActive Duration

End

StartActive Duration

End

NumberOfBreaks

Shift.Break

BreakSchedule

BreakPattern

NoOverlappingBreaks

TotalBreakTime

TotalBreakTimeInPercent

MinimumBreakTime MinimumDuration

StaffingRequirements

WorkingStaff

DeviationFromStaffingRequirements

Shortage

NoShortage

TimeSlot

ProblemBreakShift

ScheduleBreaksWithinShift

Unitialized element Initialized property

Figure 7.3: Initialized and uninitialized elements after processing the input data for our
sample problem.



CHAPTER 7. THE TEMPLE COMPILER 100

RequiredBreakTime

StartActive

StaffingRequirement

Duration

End

StartActive Duration

End

StartActive Duration

End

StartActive Duration

End

NumberOfBreaks

Shift.Break

BreakSchedule

BreakPattern

NoOverlappingBreaks

TotalBreakTime

TotalBreakTimeInPercent

MinimumBreakTime MinimumDuration

StaffingRequirements

WorkingStaff

DeviationFromStaffingRequirements

Shortage

NoShortage

TimeSlot

ProblemBreakShift

ScheduleBreaksWithinShift

��
nstraint Curve Property Instantiation/Initialization

Figure 7.4: A feasible initialization ordering for the sample staff scheduling problem
from Section 5.4.
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7.2.2 Single Initialization Step

During the initialization of a of a derived property, curve,or constraint, the following
two steps are performed:

1. We compute an initial property value, curve state, or constraint violation degree.

2. For each element we compute the basic decision variables which it depends on.
Basic decision variables are used to check whether or not an element is affected
by a move, and as we will see in Sections 7.4 and 7.5, they play acentral role in
the efficient evaluation and execution of moves.

The actual computation of initial property values, curves or constraint violation
degrees takes place in the invariant classes created by our TEMPLE compiler. For
each derived element the TEMPLE compiler analyzes the code snippet specifying how
an element is derived. The compiler identifies the properties and curves which a derived
element depends on and modifies the code snippet. The modifiedcode snippet is inserted
into an invariant’s methodinitPropagationwhich initializes the derived element. For
instance, the following code is inserted into an invariant to initialize a shift’s derived
curveBreakPattern in our sample staff scheduling problem from Section 5.4:

void InvariantCurveShiftBreakPattern::initPropagation()

{

BreakPattern.Clear();

forall ( i in scheduledBreak.getRange() )

BreakPattern.Pulse( scheduledBreak[i].Start().value(),

scheduledBreak[i].End().value(),

scheduledBreak[i].Active().value() );

}

Basic decision variables are those variables representingbasic interval properties
Start, Duration, Activity. All derived elements depend either directly or transi-
tively on basic properties. For a particular derived element we compute it’s associated
set of basic decision variable in the following manner:

1. If an element is a basic property, its associated set of basic decision variables
contains only the decision variable representing the basicproperty.

2. Otherwise, for derived elements, we build the union of allsets of basic decision
variables associated to the elements from which the considered element is derived.
The resulting set is then associated to the considered element.



CHAPTER 7. THE TEMPLE COMPILER 102

To compute the set of basic decision variables for each element, the TEMPLE
compiler recognizes on which intervals, properties and curves an element depends on.
In each class corresponding to a derived element the compiler creates a method called
Register and inserts the code necessary to determine all basic decision variables. For
a shift’s derived curveBreakPattern, depending on the propertiesStart, End, and
Active of the breaks scheduled in a shift, our TEMPLE compiler creates the following
method:

void CurveShiftBreakPattern::RegisterVariables()

{

forall(i in scheduledBreak.getRange())

Register(scheduledBreak[i].Start()) ;

forall(i in scheduledBreak.getRange())

Register(scheduledBreak[i].End()) ;

forall(i in scheduledBreak.getRange())

Register(scheduledBreak[i].Active()) ;

}

In Figure 7.5 we see a single shift with four breaks and the corresponding initial
values and sets of basic decision variables computed for basic break properties, the de-
rived curveBreakPattern, and constraintNoOverlappingBreaks, as defined in our
sample problem from Section 5.4. We see that for each elementthe set of basic decision
variables is consists of all basic decision variables associated to its child nodes.
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Figure 7.5: Initial values and sets of basic decision variables associated for basic and
derived properties, curves and constraints of a shift and four breaks.
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7.3 Move Computation

When specifying a move in TEMPLE, we consider the current solution of a particular
optimization problem and derive a slightly changed new solution from it. More precisely
we carry out the following steps:

1. We consider property values and curves of the current solution.

2. On the basis of the current property values and curve states we compute new val-
ues for basic interval properties,Start, Duration, Active or additional basic
properties.

3. We assign the newly computed values to basic interval properties to obtain a new
solution.

For instance, in movePutBreakAtNewPosition for our sample staff scheduling
problem from Section 5.4, we consider a shift’sStart andEnd in the current solution,
we use these properties to compute a new break start within the shift, and we assign the
new break start to a break’s basic propertyStart:

Move Shift::PutBreakAtNewPosition(Shift thisShift, Shift.Break[] scheduledBreak)

{

range S = thisShift.Start .. thisShift.End;

select(i in scheduledBreak.getRange())

select(newPosition in S)

scheduledBreak[i].Start = newPosition;

}

Since a basic interval property is represented by a basic decision variable, a com-
puted move consists of a set of basic decision variables and values that shall be assigned
to those variables. To ensure that moves are represented andcomputed in exactly that
manner our TEMPLE compiler analyzes the code specified for each move and detects
assignment statements in which basic interval properties are involved. For each move
our TEMPLE compiler generates a method calledCompute, which stores pairs of basic
decision variables and new values computed during its execution.
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The following code snippet represents the methodCompute, generated by the TEM-
PLE compiler, in order to compute the basic decision variables to be changed, and to
determine values to be assigned by movePutBreakAtNewPosition:

void MoveShiftPutBreakAtNewPosition::Compute()

{

range S = thisShift.Start().value() .. thisShift.End().value();

select ( i in scheduledBreak.getRange() )

{

select ( newPosition in S )

{

this.StoreVariableValuePair( scheduledBreak[i].Start().value(), newPosition );

}

}

}
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7.4 Move Evaluation

After computing a move we determine whether a move may be carried out at all, and
we assess to what degree the quality of the current solution is improved or worsened by
the move. To evaluate the impact of a move on the current solution, we carry out the
following three steps:

1. We clarify if a move isdomain consistent. For each basic decision variable of the
move we check whether the value that shall be assigned to the variable is contained
by the domain of the variable.

2. We determine whether or not a move violates any hard constraints of the consid-
ered optimization problem.

3. We compute the change in the soft constraint violation degree caused by the move.

If a move is domain consistent and satisfies all hard constraints, we call it afeasible
move. Only feasible moves are allowed within the local search algorithm provided by
TEMPLE to be carried out.

When executing a local search algorithm, the bigger part of running time is caused
by evaluating moves. For that reason we take the following measures to reduce the effort
for move evaluation and consequently increase the efficiency of local search:

⊲ If a move is not domain consistent we stop its evaluation. Since the move is
already classified to be infeasible and will not be carried out, we do not need to
determine its effects on hard and soft constraints.

⊲ When assessing a move’s impact on hard constraints we apply lazy evaluation,
i.e., if we observe that hard constraint is violated by the move we stop the further
evaluation of other hard constraints and soft constraints.

⊲ We use a move evaluation cache to avoid that a single move is evaluated several
times for the same part of a problem’s solution.

⊲ When evaluating a move’s effect on hard and soft constraints we only evaluate
those parts of a solution that are really affected by the move. Basic properties,
derived properties, curves and constraints are affected by a move if any of the
basic decision variables changed by a move is contained in the set of basic decision
variables associated with an element.
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Figure 7.6 shows how the impact of a move is evaluated on an instance of hard con-
straintNoOverlappingBreaks in a solution to our sample problem from Section 5.4.
Elements affected by the move are depicted in colors, unaffected elements are shaded
gray.

The move assigns the first break in the third shift a newStart, namely07:50.
Consequently, the move consists of a single basic decision variable,v2, representing the
break’s start, andv2 is assigned an integer value representing07:50.

To compute the new violation degree of constraintNoOverlappingBreaks we
have to recompute all elements from which the constraint is derived, in our case this
is curveBreakPattern. The curve itself depends on the propertiesStart, End, and
Active, of each break scheduled within the shift. Since only the basic propertiesStart
andEnd of one break depend on variablev2, we have to recompute only theStart and
End of that single break.

The re-computation of curveNoOverlapping reveals that if the move was exe-
cuted two breaks would be overlapping and consequently the hard constraint would be
violated. Thus, the considered move is an infeasible one.

To evaluate moves in that manner the TEMPLE compiler insertsmethods called
GetNewValue, GetNewCurve, andGetNewViolationDegree in every class represent-
ing a property, curve or constraint. When invoked these methods check whether a move
has an effect on the corresponding element. If that is the case the method looks into
the move evaluation cache to avoid multiple evaluations of the same element. Only if
the result of the considered move is not cached, the value, curve or violation degree is
recomputed. For that purpose the TEMPLE compiler inserts the user defined code used
to derive an element. For each property or curve the element depends on, the TEMPLE
compiler insertsGetNewValue or GetNewCurvemethods to trigger the re-computation
of these elements. The following code snippet shows the method GetNewCurve that is
inserted into the class representing the derived curveBreakPattern.

Curve CurveShiftBreakPattern::GetNewCurve(Move moveToEvaluate)

{

// 1. Check if move is affecting the Property

if (!_basicVariables.HasCommonVariables(moveToEvaluate))

return currentBreakPattern

// 2. Check if move has already been evaluated in this iteration.

if( this.IsCached(moveToEvaluate) )

return this.GetCachedValue(moveToEvaluate);

// 3. Recompute curve

Curve newBreakPattern = new Curve();

forall ( i in scheduledBreak.getRange() )

{
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newBreakPattern.Pulse( scheduledBreak[i].Start().GetNewValue(moveToEvaluate),

scheduledBreak[i].End().GetNewValue(moveToEvaluate),

scheduledBreak[i].Active().GetNewValue(moveToEvaluate) );

}

// Store recomputed curve in move evaluation cache

this.Cache(moveToEvaluate, newBreakPattern);

return newBreakPattern;

}

A single movemhas the following three adjoint parameters:m.IsFeasiblespecifies
if a move may be applied to the current solution.m.Fitnessindicates the fitness of
the solution obtained by applying a feasible move.m.Delta specifies the change of a
solution’s fitness if movemwill be applied.m.Delta is positive if the quality of a solution
is worsened whereas negative values form.Delta show that the fitness of a solution will
be improved when executing movem.
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Figure 7.6: In the local search algorithms obtained with TEMPLE moves are evaluated
only for those elements which they affect.
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7.5 Move Execution

If a move is domain consistent and feasible it might be executed by a generic local search
algorithm in order to obtain a new solution. The execution ofa move is very simple. To
each basic decision variable we assign the new value stored in the move.

Afterwards all elements hich depend on the basic decision variables must be up-
dated in order to obtain the solution of the considered problem. Again, to ensure effi-
ciency, we want only those parts of a solution to be updated that are actually affected by
the move.

Figure 7.7 shows the effects of an executed move on parts of the solution for our
sample resource planning and staff scheduling problem. The move places the fourth
break break of a shift at10:50. All elements not affected by the move are shaded gray
whereas those that are changed by the move are depicted with colored background. To
execute the move the variable representing the break’s start, v11, is assigned the new
start,10:50. Then all elements dependent on variablev11 are updated. We see that this
move changes only as few derived elements as necessary: a single break’sEnd, a single
shift’s BreakPattern. The updated hard constraintNoOverlappingBreaks indicates
that the constraint is still satisfied after the move has beenperformed.

To ensure that a solution is really updated in that efficient manner we exploit fea-
tures provided by Comet’s user-definable invariants. In Comet’s user-definable invari-
ants we can specify from which source variables a certain target variable depends on.
Whenever a source variable is changed by a move Comet automatically executes a prop-
erty calledpropagateInt to update the values of the target variable.

In our case the target variable is a variable representing a derived property’s value
or a constraint’s violation degree. For derived curves we introduced a trigger variable
which may be used as target variable. For each derived element our TEMPLE compiler
creates a user definable invariant and inserts code setting the source and target variables.
For instance, for a shift’s derived curveBreakPattern, the TEMPLE compiler creates
the following code:

void ICurveShiftBreakPattern::post(InvariantPlanner<LS> planner)

{

if (!_posted)

{

//source variables = properties on which BreakPattern depends on

forall( i in scheduledBreak.getRange() )

planner.addSource( scheduledBreak[i].Start().value() ) ;

forall( i in scheduledBreak.getRange() )

planner.addSource( scheduledBreak[i].End().value() ) ;

forall( i in scheduledBreak.getRange() )

planner.addSource( scheduledBreak[i].Active().value() ) ;
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//target variable = trigger variable of BreakPattern

planner.addTarget(BreakPattern.trigger());

_posted = true;

}

}

In addition our TEMPLE compiler also generates the code for method
propagateInt, which will be used to update the values, curves and violations degrees,
to obtain a new solution. For the derived curveBreakPatternmethodpropagateInt
looks as follows:

void ICurveShiftBreakPattern::propagateInt (boolean notLastInvokation, var{int} variable)

{

bool isLastInvokation = ! notLastInvokation;

//update curve only once, after all source variables have been changed

if(isLastInvokation)

{

BreakPattern.Clear();

forall ( i in scheduledBreak.getRange() )

BreakPattern.Pulse( scheduledBreak[i].Start().value(),

scheduledBreak[i].End().value(),

scheduledBreak[i].Active().value() );

//change the value of trigger variable

BreakPattern.pullTrigger();

}

}
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Figure 7.7: In the local search algorithms obtained with TEMPLE only those parts of a
solution are changed which are actually affected by the move.
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7.6 Efficient Curve Evaluation

7.6.1 Motivation

The costs for evaluating a move’s effect on derived curves are relatively high compared
to the effort for evaluating moves on derived properties or constraints. For instance, let
us consider the derived curveWorkingTime from Section 5.3.5, representing the times
when an employee is actually working and not having a break. This curve may be derived
in three steps as follows:

1. For a shift we derive a curve calledAttendanceTime, which is set to one along
the duration of a single shift.

Curve Shift::AttendanceTime(Shift thisShift)

{

AttendanceTime.Pulse ( thisShift.Start,

thisShift.End,

thisShift.Active );

}

2. We introduce a curve representing a shift’sBreakPattern, having a value of one
whenever a break occurs.

Curve Shift::BreakPattern(Shift.Break[] scheduledBreak)

{

forall(i in scheduledBreak.getRange())

{

BreakPattern.Pulse( scheduledBreak[i].Start,

scheduledBreak[i].End,

scheduledBreak[i].Active );

}

}

3. Finally, we derive the curve representing a single employee’sWorkingTime by
subtracting curveBreakPattern from curveAttendanceTime.

Curve Shift::WorkingTime(Shift thisShift)

{

WorkingTime.Add ( thisShift.AttendanceTime );

WorkingTime.Subtract ( thisShift.BreakPattern );

}

Figure 7.8 shows a single shift having two breaks and depictshow the curves
AttendenceTime, BreakPattern andWorkingTime are derived from that shift. To
illustrate the great computational costs associated with derived curves let us consider the
effects of a simple move on these three derived curves. Figure 7.9 highlights the posi-
tions which are changed if we schedule the one-hour break starting at11:00 at 13:00.
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Figure 7.8: Derived curvesAttendenceTime, BreakPattern andWorkingTime
resulting from a single shift having two breaks.

We see that only two time ranges from11:00 to 12:00 and from13:00 to 14:00 are
actually changed in curveBreakPattern andWorkingTime. However, under the as-
sumption that our planning period consists of ten minute time slots, the evaluation of
that simple move would require 108 arithmetic operations with the code generated by
our TEMPLE compiler:

No. of Operations
AttendanceTime 0 The curve is not affected by the move.
BreakPattern 12 Pulse is called for both one hour breaks.
WorkingTime 96 BreakPattern is subtracted fromAttendenceTime.
Total 108

The reasons for these great computational costs are twofold:

1. We recompute curves completely from the scratch.

2. We do not record, propagate and exploit the information onwhich positions have
been changed to what degree.

Therefore, we will develop a speed-up strategy and an appropriate data structure in order
to accelerate the evaluation of derived curves significantly.
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Figure 7.9: Changed positions (red shaded areas) in derivedcurves caused by a single
move.

7.6.2 A Speed-Up Strategy

Figure 7.10 (a) shows how the effects of a move on a particular curve are evaluated so
far. We consider an empty curveCurve0, containing exclusively zeros at each position,
carry out several operationso1, o2 and o3, and obtain the curve resulting from that
particular moveCurvemove.

Curvemove= Curve0 ◦ o1 ◦ o2 ◦ o3

Figure 7.10 (b) depicts an alternative way to computeCurvemove. Starting from a
curve’s current state in the current solutionCurvecurrent we apply a several operations
u1, u2 andu3 to transformCurvecurrent into Curve0. Afterwards we execute again the
operationso1, o2 ando3 and obtainCurvemoveas our final result:

Curvemove= Curvecurrent ◦ u1 ◦ u2 ◦ u3
︸                           ︷︷                           ︸

=Curve0

◦o1 ◦ o2 ◦ ◦o3

Obviously, the computational costs associated with that alternative approach are
much higher. However, under the assumption that the compositions of curve operations
is commutative and associative, we can simplify the computation in the following man-
ner:
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1. We change the order in which the operations are carried out.

Curvemove= Curvecurrent ◦ u1 ◦ o1 ◦ u2 ◦ o2 ◦ u3 ◦ o3

2. We substitute each operation pairui ◦ oi by two other methodsu′i ◦ o′i
having the same combined effect, but lower computational costs,
costs(u′j ◦ o′j) < costs(o j) < costs(u j ◦ o j).

Curvemove= Curvecurrent ◦ (u1 ◦ o1)
︸    ︷︷    ︸

=◦u′1◦o
′
1

◦ (u2 ◦ o2)
︸    ︷︷    ︸

=u′2◦o
′
2

◦ (u3 ◦ o3)
︸    ︷︷    ︸

=u′3◦o
′
3

Curvemove= Curvecurrent ◦ (u′1 ◦ o′1) ◦ (u′2 ◦ o′2) ◦ (u′3 ◦ o′3)

3. Finally, we again change the execution order of operations.

Curvemove= Curvecurrent ◦ u′1 ◦ u′2 ◦ u′3 ◦ o′1 ◦ o′2 ◦ o′3

The simplified approach is shown in Figure 7.10 (c). We see that the simplified com-
putation takes less running time than the re-computation ofa curve from the scratch.
Moreover, Figure 7.10 (d) shows that it even suffices to substitute only some method
pairs if the performance gain resulting from each single substitution is high enough.

7.6.3 Implementing the Speed-Up Strategy

To exploit the speed-up strategy for our purposes we developed a new class called
DeltaCurve and use it in eachGetNewCurve method to evaluate a move’s effect on
curves. In short classDeltaCurvemay be characterized as follows:

⊲ DeltaCurve provides the same operations as ordinary curves which are shown in
Table 5.1.

⊲ Additionally, for each ordinary operationDeltaCurve provides an undo opera-
tion, reverting the effects of its counterpart.

⊲ DeltaCurve wraps the state of a curve in the current solution. Instead ofchang-
ing the current state of the curve itselfDeltaCurve stores the positions that are
changed and records the difference, or delta, between the changed value and the
original one in a curve’s current state.
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Figure 7.10: Simplifying the evaluation of curves.

By the help of classDeltaCurve we can now implement our alternative ap-
proach shown in Figure 7.10 (b). In eachGetNewCurve method, we use an instance
of DeltaCurve to transform a curve from its current state into the curve resulting from
a particular move. Basically, in eachGetNewCurve method we perform the following
three tasks:

1. We create a new instance ofDeltaCurve wrapping a curve’s state in the current
solution.

2. We apply undo operations to revert the effects resulting from the current solution.
The arguments passed to undo operations are computed from the property values
and curves within the current solution. After this step the applied DeltaCurve
instance corresponds to a curve having only zero values at each position.

3. We obtain the curve resulting from a particular move by applying ordinary op-
erations. The arguments passed to these operations are computed from the new
property values and new (delta) curves resulting from the considered move. Fi-
nally, theDeltaCurve instance represents the curve resulting from that move.
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The following code snippet shows an implementation of method GetNewCurve
for the derived curveBreakPattern from section 7.6. Within this method we use
undo operations as well as ordinary operations to evaluate the changes resulting from
a move. We consider the move from Figure 7.8 shifting a break from 11:00 to 13:00
and in comments we report the changed positions and value differences recorded by
the DeltaCurve instance. The applied undo operations remove the breaks from their
positions in the current solution whereas original operations propagate the new break
positions resulting from the move.

DeltaCurve CurveShiftBreakPattern::GetNewCurve(Move moveToEvaluate)

{

//1. DeltaCurve wraps state of the curve in the current solution.

DeltaCurve deltaBreakPattern = new DeltaCurve(currentBreakPattern);

//2. Undo operations revert the effects resulting from current values.

forall(i in scheduledBreak.getRange())

{

//breaks at current positions are removed from curve

deltaBreakPattern.UndoPulse( scheduledBreak[i].Start().value(),

scheduledBreak[i].End().value(),

scheduledBreak[i].Active().value() );

}

//State of deltaBreakPattern.

//changed positions: [08:00, 09:00], [11:00, 12:00]

//delta: -1, -1

//no. of operations: 12

//3. Original operations propagate effects resulting from new values.

forall(i in scheduledBreak.getRange())

{

//breaks at new positions are added to curve

deltaBreakPattern.Pulse( scheduledBreak[i].Start().GetNewValue(moveToEvaluate),

scheduledBreak[i].End().GetNewValue(moveToEvaluate),

scheduledBreak[i].Active().GetNewValue(moveToEvaluate) );

}

//State of deltaBreakPattern.

//changed positions: [08:00, 09:00], [11:00, 12:00], [13:00, 14:00]

//delta: 0, -1, +1

//no. of operations: 12

deltaBreakPattern.RemoveUnchangedPositions();

//State of deltaBreakPattern.

//changed positions: [11:00, 12:00], [13:00, 14:00]

//delta: -1, +1

return deltaBreakPattern;

}

We see that an instance of classDeltaCurve records the changed positions
and the value differences caused by a move. Now, we will exploit that in-
formation to simplify the following operations and their corresponding undo op-
erations: Add, Subtract, CyclicAdd, CyclicSubtract, AddPositiveValues,



CHAPTER 7. THE TEMPLE COMPILER 119

AddNegativeValues, SubtractPositiveValues, andSubtractNegativeValues.
These operations add or subtract other, already computed delta curves to or from the
delta curve to be obtained. The computed delta curve contains the positions changed
by the move and the value differences at these positions, thus, ordinary operations must
only propagate these changes. The corresponding undo operations simply do not have
to do anything at all. Simplified undo operations and simplified original operations have
the same combined effect as their unsimplified counterparts. The following code sample
shows methodGetNewCurve of the derived curveWorkingTime applying simplified
undo operations and ordinary operations:

DeltaCurve CurveShiftWorkingTime::GetNewCurve(Move moveToEvaluate)

{

//1. DeltaCurve wraps state of the curve in the current solution.

DeltaCurve deltaWorkingTime = new DeltaCurve(currentWorkingTime);

//2. Simplified undo operations revert the effects resulting from current curves.

deltaWorkingTime.UndoAdd ( thisShift.AbsenceTime().Curve() );

deltaWorkingTime.UndoSubtract( thisShift.BreakPattern().Curve() );

//UndoAdd and UndoSubtract do not do anything.

//State of deltaWorkingTime.

//changed positions: -

//delta: -

//no. of operations: 0

//3. Simplified ordinary operations propagate effects resulting from new values.

deltaWorkingTime.Add ( thisShift.AbsenceTime().GetNewCurve(moveToEvaluate) );

deltaWorkingTime.Subtract( thisShift.BreakPattern().GetNewCurve(moveToEvaluate));

//AbsenceTime remains unchanged, thus Add does not propagate any changes.

//Subtract propagates the changes in BreakPattern

//State of deltaWorkingTime.

//changed positions: [11:00, 12:00], [13:00, 14:00]

//delta: +1, -1

//no. of operations: 12

deltaWorkingTime.RemoveUnchangedPositions();

return deltaWorkingTime;

}

Simplified undo operations do not perform any actions at all and consequently they
do not cause any computational costs. Simplified ordinary operations only propagate
the changes resulting from the evaluation of curveAbsenceTime andBreakPattern.
SinceAbsenceTime is not changed at all no changes have to be propagated by method
Add. Method Subtract propagates only those changes that took place in curve
BreakPattern at the positions between[11:00, 12:00] and[13:00, 14:00]. Due
to our speed-up strategy the evaluation of that curve needs now only 36 arithmetic oper-
ations:
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No. of Operations
AttendanceTime 0 The curve is not affected by the move.
BreakPattern 24 UndoPulse andPulse are called for both one hour breaks.
WorkingTime 12 Changes inBreakPattern are propagated toWorkingTime.
Total 36

The previous example illustrated that our modifications might indeed achieve a no-
table performance gain. In real-life staff scheduling problems we usually define curves
modeling staffing requirements or available staff for entire weeks, months or years. The
costs associated with the re-computation of such curves aremany times higher than in
our small example and, consequently, also the performance gain achieved by our speed-
up strategy is significantly bigger.

7.6.4 A Note on the Correctness of the Speed-Up Strategy

Finally, we want to argue that the modifiedGetNewCurve methods, implementing our
speed-up strategy, evaluate a move’s effect on curves correctly. To do so, we introduce
several restrictions on the code in methodGetNewCurve and also for the code within the
definition of derived curves. Under these restrictions we can guarantee the correctness
of our speed-up strategy:

1. The code must not contain any if-statements or any statements using if-statements
internally, e.g., min or max index selectors.

2. The code must not contain any loops except forall-loops.

3. Forall-loops must iterate over constant index ranges, i.e., index ranges do not de-
pend on basic interval properties, derived properties or derived curves.

4. The indices used to access intervals must be constant, i.e., they must not be com-
puted from basic interval properties, derived properties or derived curves.

Under these restrictions the same number of undo operationsand ordinary opera-
tions are carried out during a single invocation of a methodGetNewCurve. Moreover,
the i-th undo operation corresponds to the i-th ordinary operation. Each undo and ordi-
nary operation can be represented as a set of arithmetic operations< p,+, v >, increasing
the value of a curve at positionp by the valuev. Since the addition of real or integer
numbers is an associative and commutative operation, the composition of undo and or-
dinary operation is also associative and commutative. Thus, we may change the order
in which operations are carried out, we may substitute undo and ordinary operations by
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simplified operations, and we may reorder them again, as we doit in our speed-up strat-
egy proposed in Section 7.6.2. Consequently, with the proposed speed-up strategy the
evaluation of a move’s effect on a curve will be carried out correctly, if the definitionof
a curve satisfies the previously stated restrictions.
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7.7 Adaptive Local Neighborhood Computation

The generic local search algorithms generated by the TEMPLEcompiler compute a
local neighborhood of a current solution in the same manner.Internally, they represent
a local neighborhood as a set of moves, and these moves are computed from the input
specified by a user. In each iteration of a local search algorithm we have to decide which
concrete moves should enter a local neighborhood. One possible approach might be to
treat all moves equally, such that all moves would enter the local neighborhood with the
same likeliness. However, there are several reasons arguing against such a policy:

⊲ Some moves may perform better than others. Even a very experienced user can
only assess roughly how good a move will behave in practice. Thus, the moves
in a single TEMPLE program represent only a user’s believe onhow a solution
could be improved. Consequently, in each TEMPLE program there are some
moves improving solutions very strongly, other moves will improve solutions only
marginally, and even some moves might not be able to improve asolution at all.

⊲ The impact of a single move can vary over time. For instance, in our sample staff
scheduling problem in Section 5.4 we introduced a single move, repositioning
only a single break in each step. This move works well for our small example.
For larger problem instances it also performs very well at anearly stage, when
the solution is of quite poor quality. At a later point of timethis move becomes
less effective because it considers only single shifts and breaks. On the other
hand, moves considering the global state of the current solution, changing several
breaks in several shifts in accordance with each other, are more likely to improve
an already optimized solution at a later point of time.

⊲ Different moves are differently expensive in terms of computational cost. When
assessing the performance of a move we must consider both theimprovement of
the objective function value resulting from a move as well asthe time needed to
compute and evaluate a move.

Instead of selecting each move with the same likelihood at every point of time we
associate a selection probability that shall be adapted during the execution of a local
search algorithm. When computing a move’s selection probability we must satisfy the
following requirements:

1. Moves that caused more and bigger improvements should be selected with high
probability. Moves that did not perform so well shall be selected with low proba-
bility.
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2. A move’s selection probability shall be recomputed in each iteration of the local
search algorithm. Moreover it shall be based only on the recent history of the
local search algorithm, e.g., for the last 1,000 iterations. In that way the selection
probability of a move is dynamically adapted to the recent performance of a move.

3. The costs for computing and evaluating moves shall also bereflected by a move’s
selection probability.

4. A move’s selection probability shall be strictly greaterthan zero. Each move must
be given a chance to increase its associated selection probability. In that way we
prohibit that a single move is excluded completely from the local search algorithm.

In order to compute and adapt a move’s selection probabilitywe introduce a new
measure calledaverage improvement per second, reflecting the improvement of the ob-
jective function caused by a move as well as the computational costs associated with a
move. To compute the improvement per second each move has an attached history of
limited size, in our implementation that size is 1,000 iterations.

After a movem is computed and evaluated we store the resulting improvement
within its associated history. If the move is infeasible or worsens the quality of the cur-
rent solution the stored improvement will be zero. Moreoverwe record the computation
time in seconds needed to compute and evaluate the move. The average improvement
per second is derived from a move’s history by dividing the summed improvements of
objective function values by the summed computation times.

The average improvement per second is used to determine the selection probability
for each move. Each selection probability consists of a constant fraction and a dynamic
fraction. In our implementation, the constant fraction is obtained by dividing 30% of the
overall selection probability by the number of moves. In that way, we ensure that even
very badly performing moves can enter a local neighborhood and they have a chance to
increase their selection probability again. The dynamic fraction is obtained by distribut-
ing the remaining 70% proportionally among the moves according to their associated
average improvement per second. Consequently, moves that have performed better in
the past are more likely to enter the adaptive local neighborhood. The moves that en-
ter a local neighborhood at a certain iteration are chosen byroulette wheel selection in
accordance to their selection probability.

The obtained adaptive local neighborhood satisfies the fourrequirements we have
previously stated and is used by three generic local search algorithms provided by TEM-
PLE.
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Algorithm Parameter Description

Hill Climbing t Run time limit in seconds.
pnoise Probability for introducing random noise.
s Size of the local neighborhood computed in each iteration ofthe hill

climbing algorithm.

Iterated Local Search t Run time limit in seconds.
H The hill climbing component ends afterH iterations without any im-

provement of the objective value.
P The pertubation phase ends afterP moves worsening the objective func-

tion values have been performed.
s Size of the local neighborhood computed in each iteration ofthe hill

climbing algorithm.

Simulated Annealing t Run time limit in seconds.
pinit Selection probability of a worse solution with average fitness loss at the

beginning of the simulated algorithm.
pf inal Selection probability of a worse solution with average fitness loss at the

end of the simulated annealing algorithm.

Table 7.1: Control parameters of TEMPLE’s generic local search algorithms.

7.8 Control Parameters of the Generic Local Search Algo-
rithms

As mentioned in the previous sections each of the three generic local search algorithms
generated by our TEMPLE compiler is controlled by several parameters. Table 7.1
presents a short description of parameters involved in eachsingle algorithm.

In TEMPLE, we can specify parameter values explicitly within a TEMPLE pro-
gram. The following lines of code indicate how the parametervalues are chosen for each
single local search algorithm:

//hill climbing with random noise

algorithm running time = 5 minutes;

algorithm = hill climbing(0.05, 10);

//iterated local search

algorithm running time = 5 minutes;

algorithm = iterated local search(1000, 5, 10);

//simulated annealing

algorithm running time = 5 minutes;

algorithm = simulated annealing(0.5, 0.01);
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7.9 Solving Staff Scheduling Problems

Besides many other files, our TEMPLE compiler creates a file called Run.co which
contains all necessary information for optimizing a considered problem instance: the
XML-file containing the input data of a considered staff scheduling problem instance,
the local search algorithm that shall be applied to that instance, the control parameter
values chosen for that algorithm, and an output XML-file where the obtained solution
shall be stored. Thus, to apply a local search algorithm to a considered problem instance
we simply have to execute the fileRun.co on the Comet optimization engine within the
Windows command prompt:

C:\Dynadec\Comet 2.10\compiler\comet.exe Run.co
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Chapter 8

Practical Applications

In Chapter 5 we considered small, comprehensible sample staff scheduling problems
to introduce and illustrate the basic abstractions, notations and concepts of TEMPLE.
However, we developed TEMPLE to model and solve arbitrary real-life resource plan-
ning and staff scheduling problems. In this chapter we consider two complex real-life
staff scheduling problems and show that they can be both effectively modeled as well as
efficiently solved with TEMPLE.

First of all, we reconsider the break scheduling problem forsupervisory personnel
from Chapter 3 and we sketch how we managed to model it with TEMPLE. We compare
the features of our TEMPLE model with those of the algorithm presented in Chapter 3
and observe that in TEMPLE we can derive a very small, conciseand modular program
for the considered break scheduling task. Finally, we evaluate the iterated local search
algorithm obtained with TEMPLE on benchmark instances and compare the results
obtained with TEMPLE to those reported in Chapter 3. For the considered benchmark
instances the generic local search algorithm is able to return solutions of good quality in
acceptable time.

Secondly, we will consider a further real-life break staff scheduling problem in
which, like in the break scheduling problem for supervisorypersonnel, we have to com-
pute a legal break schedule for the deployed personnel. In addition, we must also assign
tasks to available employees in accordance with their qualifications. To tackle this com-
plex problem we decompose it into three phases: In the first phase we compute a legal
break schedule, in the second phase we optimize the break schedule with respect to task
requirements, and in the final phase we determine a suitable task assignment. Each of
these phases is modeled and solved by a separate TEMPLE program. The TEMPLE
programs represent the core of a commercial break scheduling and task assignment tool
which we developed for a customer of the consulting company Ximes Corp. We will re-
port how that software is used at the customer’s site in practice and we will demonstrate

127
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that our approach is able to create high quality solutions within reasonable time.

8.1 A TEMPLE Model of the Break Scheduling Problem for
Supervisory Personnel

The break scheduling problem for supervisory personnel could be modeled very easily
in TEMPLE. Nevertheless, at this point we spare the reader the entire program, instead
we illustrate the TEMPLE model in two structograms, shown inFigure 8.1 and Figure
8.2. These structograms depict each TEMPLE element involved in the model and show
how the single elements are derived from each other. Each single element is associated
a number specifying the lines of code which were needed to formulate the element. The
complete TEMPLE program is presented in Appendix A of this thesis.

Constraints

In our model the five criteria concerning the legality of the break pattern, constraintsC1

Break PositionsthroughC5 Break Durations, are formulated as hard constraints, whereas
shortage and excess of staff, constraintsC6 Shortage of EmployeesandC7 Excess of
Employeesare modeled as soft constraints. In addition, we introducedtwo additional
hard constraints,NoOverlappingBreaksandScheduleBreaksWithinShift, to ensure that
breaks are scheduled completely within the range of their shifts and to guarantee that
breaks do not overlap each other. The concrete constraint formulations are presented in
the appendix of this thesis, A.3 - A.10.

Figure 8.1 visualizes how we modeled each of these constraints. For instance, let us
consider the two soft constraintsC6 Shortage of EmployeesandC7 Excess of Employees,
requiring that shortage and excess of staff shall be reduced to a minimum degree within a
good solution. For each employee we introduce a curve representing the actual working
time. By summing up all these single curves we obtain a curve modeling the available
staff. In the next step we subtract the staffing requirements from the available staff and
so we obtain the deviations from staffing requirements. Then we extract the negative
deviations to obtain a curve representing the shortage of staff, determine the total amount
of shortage associated with a solution, and finally we imposea constraint requiring that
shortage of employees should be avoided. The constraint penalizing excess of employees
is derived in a similar manner.
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Figure 8.1: TEMPLE model of the constraints involved in the break scheduling
problem for supervisory personnel.
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Figure 8.2: TEMPLE model for instantiation elements, initialization elements, and
moves involved in the break scheduling problem for supervisory personnel.

Initialization and Instantiation

The initial solution for our problem is obtained with the heuristic proposed in Chapter
3 involving simple temporal problems (STPs) [16]. The applied heuristic constructs an
initial break pattern satisfying all hard constraints, i.e., C1 Break Positions- C5 Break
Durations, and constraintNoOverlappingBreaksand ScheduleBreaksWithinShift. All
TEMPLE elements defined to instantiate and initialize intervals are shown in the ap-
pendix of this thesis, A.11.

Moves

In our TEMPLE program we implemented two moves, the first assigns a new start to a
single break, the second one swaps two breaks of different duration within the same shift.
We further implemented two variations of these moves, whichapply these changes only
to breaks placed within understaffed regions. The four moves definitions are presented
within the appendix of this thesis, A.12.
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8.1.1 Conclusions Drawn from the TEMPLE Model

From our TEMPLE model for the break scheduling problem for supervisory personnel
we can draw the following conclusions:

⊲ In total we needed one man-week to develop a suitable TEMPLE model for the
break scheduling problem for supervisory personnel. The resulting TEMPLE pro-
gram consists only of 500 lines of code and it is formulated ina very modular
style. In contrast around 6000 lines of code were needed to implement the min-
conflicts based algorithm proposed in Chapter 3. The break scheduling problem
for supervisory personnel is modeled in a very compact manner in TEMPLE.

⊲ Concerning the size of each single TEMPLE element reported in Figure 8.1 and
Figure 8.2 we observe that nearly all components could be modeled with fewer
than twenty lines of code. On average we needed eleven lines of codes to formu-
late a TEMPLE element within the TEMPLE program of the break scheduling
problem for supervisory personnel. In TEMPLEelements can be formulated very
concisely, and the entire problem is built up in a very modular style, as requested
by our design goal modularity.

⊲ Only the formulation of the initialization elementShift::BreakSchedule re-
quired significantly more effort, namely 128 lines of code. The reason why
Shift::BreakSchedule is significantly larger in size than any other element
is that during within an initialization element we perform actually three tasks: We
assign initial values to basic interval properties, we restrict the allowed domain
values for basic properties and we link intervals with each other. Therefore, we
plan to modify the TEMPLE language, so that each of these three tasks is modeled
within a single element. In that way we hope to further increase the modularity of
TEMPLE and the simplicity of single language elements.

8.1.2 Computational Results

From the TEMPLE model for the break scheduling for supervisory personnel we created
an iterated local search algorithm with our TEMPLE compiler. To evaluate the obtained
algorithm we applied it to the twenty real-life benchmark instances, and 10 randomly
generated instances for the break scheduling problem for supervisory personnel. For
each instance we performed ten runs of the iterated local search algorithm. Each run
was carried out under the same conditions as the min-conflicts based algorithm from
Chapter 3, namely on a Genuine Intel T2400 laptop running at 1.8 GHz with 2 Gbytes
of RAM. A single test run was executed with a one-hour time limit.
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Table 8.1 reports the best and mean objective function valueand the corresponding
standard deviation of the initial solutions and the final results obtained by the iterated
local search algorithm in ten runs. Moreover, column MCRW ofTable 8.1 presents
again the results obtained with the min-conflicts based algorithm. We see that the iterated
local search algorithm is able to improve the quality of the initial solutions significantly
during the optimization. However, if we compare the resultsachieved by the iterated
local search algorithm with those of the min-conflicts basedalgorithm we see that the
min-conflicts based algorithm outperforms the iterated local search algorithm in every
instance.

The min-conflicts based algorithm performs better than the iterated local search al-
gorithm because it was customized toward the break scheduling problem for supervisory
personnel. With TEMPLE we introduce an additional programming language layer and
that layer causes a certain computational overhead that canbe avoided at a lower level
implementation of an algorithm. However, the advantage of TEMPLE is that we are
able to model problems faster and in that way we can reduce theeffort for developing
local search algorithms significantly.

Figure 8.3 presents parts of the best solutions obtained forthe three benchmark in-
stances, 2fc04a, 3si2ji2 and 50fc04a. Staffing requirements are shown as a red curve,
working employees are depicted as a blue curve over time. From the curves for solu-
tion 2fc04a and 3si2ji2 we see that shortage of employees could be avoided completely
whereas in the presented part of the solution for instance 50fc04a shortage occurs only
in three time slots. We conclude that with our TEMPLE model ofthe break schedul-
ing problem for supervisory personnel we are able to computesolutions of acceptable
quality in reasonable time.
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STP-Initial TEMPLE MCRW
Instance Best Mean SD Best Mean SD Best Mean SD
2fc04a 12772 13087.6 283.1 3550 3671.2 66.6 3112 3224.2 86.1
2fc04a03 13178 13529.6 334.0 3506 3676.4 93.4 3138 3199.6 38.7
2fc04a04 12938 13313.6 325.6 3658 3790.8 135.1 3234 3342.1 59.5
2fc04b 12996 13862.4 383.7 2574 2745.6 120.6 1822 2042.8 99.1
3fc04a 12938 13335.2 295.5 2404 2553.0 204.5 1644 1767.0 101.6
3fc04a03 13314 13762.8 314.0 2292 2461.6 81.9 1670 1759.2 53.1
3fc04a04 12680 13368.8 345.1 2464 2586.4 83.1 1932 1980.2 40.4
3si2ji2 10584 10986.0 310.2 3688 3741.4 29.0 3646 3666.6 14.5
4fc04a 12518 13388.0 484.2 2266 2437.8 97.9 1730 1817.1 48.2
4fc04a03 13176 13696.8 400.6 2264 2400.6 126.1 1748 1834.2 55.5
4fc04a04 13086 13687.2 359.4 2404 2542.6 66.7 1982 2063.6 62.3
4fc04b 12000 12888.0 422.4 1950 2089.4 86.8 1410 1489.2 48.7
50fc04a 13518 13999.2 279.2 2580 2740.0 87.1 1672 1827.3 80.6
50fc04a03 13572 14059.2 407.7 2386 2681.2 136.9 1686 1813.2 84.1
50fc04a04 13462 13967.2 373.4 2606 2772.8 106.1 1792 1917.2 64.1
50fc04b 14030 14897.6 449.0 2952 3053.4 92.8 1822 1953.9 77.1
51fc04a 14172 14517.6 223.6 2932 3169.0 167.1 2054 2166.2 62.3
51fc04a03 14176 14515.6 226.8 2898 3017.4 81.4 1950 2050.4 86.5
51fc04a04 14072 14747.6 460.6 2990 3211.0 136.7 2116 2191.4 53.1
51fc04b 14366 15077.6 311.3 3212 3484.6 148.8 2244 2389.4 93.9
Random1-1 15060 15464.4 291.9 1144 1281.2 108.8 728 972.4 176.9
Random1-13 14112 14462.4 247.1 2222 2473.2 177.8 1654 1994.0 172.1
Random1-2 16716 17025.6 218.1 3568 3973.2 235.8 1284 1477.0 99
Random1-24 15600 15814.8 171.3 1804 2129.0 260.0 860 1077.2 153.9
Random1-28 14400 14575.2 109.6 1984 2313.6 224.1 1358 1658.0 212.8
Random1-5 14652 16090.8 571.3 1778 2097.8 228.7 1264 1535.2 245.2
Random1-7 15072 15232.8 132.3 2310 2629.0 163.5 1586 1712.8 74.5
Random1-9 14292 14778.0 282.9 2474 2760.2 216.4 1710 2020.0 233
Random2-1 18540 18990.0 363.1 4146 5129.8 396.7 1686 1855.2 142.1
Random2-4 17412 17786.4 267.2 3864 4801.6 402.5 1712 2052.8 242

Table 8.1: Test results for the iterated local search algorithm generated with our
TEMPLE compiler and for the min-conficts-random-walk algorithm from
Section 3.
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Figure 8.3: Staffing requirements and curve of working employees for parts of the best
solutions obtained for the real-life benchmark instances 2fc04a, 3si2ji2 and
50fc04a.
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8.2 A Real-life Break Scheduling and Task Assignment Prob-
lem

TEMPLE has already been applied successfully in a commercial staff scheduling tool.
We built this tool in a research project together with the consulting company Ximes Corp.
for one of their customers. In the considered staff scheduling problem we are given task
requirements for an entire day, an already existing shift plan and the qualifications of
each employee. To obtain a solution we must again compute a break schedule which is
completely consistent with a set of legal requirements. In addition, we must also assign
the required tasks to available employees in accordance with their qualifications.

8.2.1 Problem Definition

Formally the problem has the following inputs:

⊲ A planning period which is formed by T consecutive time slots
[a1, a2), [a2, a3), ..., [aT , aT+1], all having the same length, typically 10 min-
utes. Time pointsa1 and aT + 1 represent the beginning and the end of the
planning period.

⊲ A shift plan consisting ofn shifts (s1, s2, ..., sn). Each shift represents a single
employee working within the planning period.

⊲ The task requirements, i.e., the tasks to be performed during the planning period,
which are defined as follows. For each time slots [at, at+1) we are given a set of
tasksTaskt that must be performed during that time slot. A single task must be
carried out by a group of two employees. One employee is the head of the group
whereas the other acts as the head’s assistant.

⊲ Thequalificationsof each employee (Q1,Q2, ...,Qn). The qualifications of the i-th
employeeQi is a list, specifying which tasks the i-th employee is allowed to carry
out as head or as assistant. For instance, ifQi contains the entryTAS K1 H, the
i-th employee will be qualified to perform taskTAS K1 as head of the group. The
entry TAS K1 A indicates that the i-th will be qualified to carry out taskTAS K1
as an assistant.

To obtain a solution for the considered staff scheduling problem we actually have to
achieve the following two goals:
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1. We must compute a break schedule for all employees. The obtained break sched-
ule must meet the criteria resulting from an agreement between the workers coun-
cil and the management board. These constraints must be satisfied completely in
order that a break schedule can be applied in practice.

2. We must assign tasks to employees. For each time slot and for each required task
we must determine two employees having the correct qualifications as a head and
as an assistant. Obviously, we may only assign employees nothaving a break
at the considered time slot. In each time slot we want to perform as many tasks
as possible. However, the resulting task assignment shouldalso satisfy several
constraints, reflecting ergonomic criteria.

Figure 8.4 shows an artificial sample problem instance for the considered problem. As
input we are given a planning period from08:00 to 18:00, a shift plan representing six
employees, each employee’s qualification list and the tasksrequirements for the entire
planning period. Moreover, Figure 8.4 also presents a solution for the depicted problem
instance. The breaks scheduled in each shift are consistentwith the agreement between
the works committee and the management board. During their working time each em-
ployee is assigned tasks in accordance with his qualifications. At any point of time,
each required task is performed by two employees one acting as head and the other as
assistant. From Figure 8.4 we also see that between13:30 and15:00 two employees
have additional rest periods. This is due to the fact that in that period four employees
are available but only one task is required to be carried out.In the following we want to
present the constraints imposed on the break pattern and task assignment in our real-life
staff scheduling problem.
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Figure 8.4: An artificial sample instance of the break scheduling and task assignment
problem.
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Constraints on the Break Schedule

No Overlapping Breaks: Two breaks scheduled within the same shift must not overlap
with each other.

Schedule Breaks Within Their Shifts: Each break must lie entirely within the shift it
is scheduled.

Minimum Break Time: Each shift must contain at least a minimum percentage of
break time,minimum break time.

Break Durations: Each break must last at least a certain number minutes,minimum
break duration.

Lunch Breaks: Each shift must contain at least one lunch break of a certain length,
minimum lunch break duration.

Legal Break Pattern: Generally, each employee may work longer thanmaximum
working timewithout having a break. Once per shift the duration of a work period
can be extended up toexceptional working timeminutes. This exceptional work
period must be followed by a lunch break.

Schedule Blocked Break in Night Shift: A shift starting before and ending after mid-
night is considered to be a night shift. Each night shift mustcontain a so-called
blocked break which lastsblocked break durationminutes.

Constraints on the Task Assignment

Perform Required Tasks: In each time slot [at, at+1) of the planning period all required
tasksTaskt should be carried out.

Minimum Task Time: A single employee should continuously perform the same task
for at leastminimum task timeminutes.

Avoid Task Changes: Employees should not change their task without having a break
or being on an additional rest period.

Avoid Rest Periods at Shift Borders: An employee should not have a rest period at the
start or the end of its shift.
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Training Units

To extend the qualifications of employees, training units can be entered into a shift plan.
During a training unit a trainee is instructed by a trainer how to handle a task for which
the trainee is not qualified yet. Trainer and trainee carry out together one single task,
either as head or as assistant. The last time slot of a training unit is used to review the
training. Afterwards both trainer and trainee are assigneda break. Figure 8.5 shows an
exemplary training unit including a review followed by a break. To plan training units
correctly our problem is extended by the following constraints:

Avoid Breaks in Trainings: Breaks must not be scheduled during training units.

Schedule Break After Training: Each training unit must be followed by a break.

Train Correct Tasks: Trainer and trainee must be assigned the task that is traineddur-
ing the training unit. Each training unit ends with ten minutes review time.

Intra-Day Absences

A further detail that we had to consider in our problem were intra-day absences of em-
ployees. The reasons for intra-day absences of employees are manifold: employees may
participate in meetings, they may have a doctor’s appointment, employees may fall ill,
etc. In a correct solution for our problem breaks must not be scheduled during intra-day
absences:

Avoid Breaks in AbsencesBreaks must not be scheduled during intra-day absences of
employees.
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8.2.2 A Three-Phase Approach

Due to different kinds of requirements and constraints the consideredproblem is very
complex as a whole. For this reason we decided to decompose the entire problem into
three separate phases each of which is modeled and solved by aseparate TEMPLE pro-
gram:

1. Break Schedule Initialization. We compute a legal break schedule which is con-
sistent with all constraints imposed on a break pattern, training units and intra-day
absences.

2. Break Schedule Optimization.From the given task requirements we derive sim-
pler staffing requirements. For each task to be performed during a specific time
slot we require that two people must be working at that time. Then we optimize
the break schedule according to these staffing requirements, whereby we ensure
that the break schedule remains always legal during and after this optimization
phase. The qualifications of employees are not considered inthis step.

3. Task Assignment and Optimization. For each time slot we assign the required
tasks to available employees heuristically. Afterwards wefurther try to reduce the
violations of constraints imposed on the task assignment toa minimum degree.
The break schedule is not changed further during this phase,thus break schedule
remains still legal. In the obtained task assignment employees carry out as many
tasks as possible. If any, only a few soft constraints concerning additional rest pe-
riods, tasks changes or minimum task times, are violated after the last optimization
phase.

Table 8.2 presents an overview on the hard and soft constraints involved in each
phase’s TEMPLE program.

8.2.3 Phase I - Break Schedule Initialization

In phase I we want to obtain a legal break schedule satisfyingall constraints on training
units and absences. To obtain an initial solution in phase I for each shift we determine
the minimum amount of break time to be scheduled and further derive the number of
breaks to be instantiated. In each shift the break time is distributed among lunch breaks,
ordinary breaks and each night shift gets a blocked break. Ineach day shift we obtain
an initial break pattern by solving the simple temporal problem (STP) resulting from
constraintLegal Break Pattern:
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Constraint Phase I Phase II Phase III
Schedule Breaks Within Their Shifts hard hard hard
Minimum Break Time hard hard hard
Lunch Breaks hard hard hard
Break Durations hard hard hard
Schedule Blocked Break in Night Shift hard hard hard
No Overlapping Breaks hard hard hard
Legal Break Pattern soft hard hard
Avoid Breaks In Trainings soft hard hard
Schedule Break After Training soft hard hard
Avoid Breaks In Absences soft hard hard
Reduce Shortage - soft -
Train Correct Tasks - - hard
Minimum Task Time - - soft
Avoid Task Changes - - soft
Avoid Rest Periods at Shift Borders - - soft

Table 8.2: Overview on the constraints involved in the threephases.

b1.S tart− si .S tart ∈ [minimum task time,maximum working time]
b j+1.S tart− b j .End ∈ [minimum task time,maximum working time]
si .End− bm.End ∈ [minimum task time,maximum working time]

where (b1, ..., b j , b j+1, ..., bm) are the breaks of shiftsi in temporal order. For night shifts
we solve a similar STP that also takes blocked four hour breaks into account. By solving
the simple temporal problems for each shift we obtain a breakpattern which is consistent
with all hard constraints of phase I (see Table 8.2). Since breaks may be scheduled in
absence times or training units, or there may be trainings which are not followed by a
break, the solutions generated via STPs may violate the softconstraintsAvoid Breaks In
Trainings, Schedule Break After Trainingand Avoid Breaks In Absences.

To eliminate these constraint violations we implemented several moves, depicted in
Figure 8.6, changing a single shift’s break pattern in our TEMPLE program for phase
I. The move in Figure 8.6 (a) repositions a single break in itsassociated shift, the move
shown in Figure 8.6 (b) shifts the entire break pattern for a single employee, and the
move in Figure 8.6 (c) swaps two breaks of different duration.

However, to eliminate constraint violations in shifts withtraining units effectively,
we introduced additional moves. Figure 8.6 (d) shows a move which detects a break
scheduled near a training unit and places them right after the training. The move pre-
sented in Figure 8.6 (e) recognizes a break scheduled illegally in a training unit, and
resolves that constraint violation by moving the break outside the training. Finally, the
move illustrated in Figure 8.6 (f) tries to compute a new break pattern by solving a simple
temporal problem, which also considers training units.
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Figure 8.6: Moves applied in phase I to obtain a legal break pattern.

8.2.4 Phase II - Break Schedule Optimization

In phase II we want to optimize the break schedule in order that at any time enough
people are available to carry out the required tasks. For that purpose we extend the
TEMPLE program of phase I in the following manner:

1. From the task requirements, we derive a curve representing staffing requirements.
For each required task this curve is incremented by two unitsbecause one task
actually must be performed by two employees, one head and oneassistant.

2. From the staffing requirements, shifts, and breaks, we can further derive the de-
viation of staffing requirements for a specific solution, the shortage of employees
caused by a specific break schedule, and finally we impose the soft constraint
Reduce Shortage. Reducing the shortage of employees is the single objectivein
phase II.
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3. All constraints on the break schedule, training units andabsence times from phase
I are reused again in phase II. However, all constraints thatwere soft constraints
in phase I are changed into hard constraints in phase II, as can be seen in Table
8.2. In that way we ensure that the break schedule obtained inphase I still remains
legal in phase II.

The break schedule computed in phase I acts as the initial solution of phase II. To
reduce shortage of employees we re-employ the three moves presented in Figure 8.6 (a)-
(c) which we have already used in phase I. In addition, we implemented two additional
moves, the first one, shown in Figure 8.7 (a) swaps the position of two breaks scheduled
in two distinct shifts. The second additional move, presented in Figure 8.7 (b), tries to
eliminate shortage of employees by changing break positions across shifts. This move
selects a time slot with shortage of employees and identifiesa break starting or ending in
that time slot. This break is shifted by one time slot, and with that break also the shortage
is shifted to a new time slot in the planning period. The movestries to shift breaks and
corresponding shortages until a break is moved to a task withexcess of employees. In
that manner shortage and excess are merged and eliminated.
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Figure 8.7: Additional moves applied in phase II to optimizea break schedule.
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8.2.5 Phase III - Task Assignment and Optimization

Modeling the Task Assignment Problem as Integer Program

In each time slot we want to assign as many tasks as possible toworking employees.
Figure 8.8 shows how this problem can be modeled as integer program:

⊲ Let Taskt = {task1, task2, ..., taskm} be the set of tasks required at time slot
[at, at+1).

⊲ For each task inTaskt = {task1, task2, ..., taskm} we introduce a binary variable
taskj . In a solutiontaskj = 1 if and only if the task corresponding totaskj is
carried out.

⊲ For each working employeei having the qualification to perform a required task
taskj acting as a head of group we introduce a binary variableeH

i j . In a solution

eH
i j = 1 if and only if employeei carries outtaskj as a head of group. We defineEH

i

to be a set containing all variableseH
i j which have been introduced for employeei

andTH
j to be the set of all variableseH

i j that have been introduced for a single task
taskj .

⊲ For each working employeei qualified to perform a required taskstaskj as a head’s
assistant we introduce a binary variableeA

i j . In a solutioneA
i j = 1 if and only if

employeei performs the task corresponding totaskj as an assistant. We defineEA
i

to be the set containing all variableseA
i j which have been introduced for employee

i andTA
j to be the set of all variables that have been introduced for a single task

taskj .

⊲ We introduce several restrictions to avoid that one task is carried out by several
heads or assistants (1)-(2), or that a single employee is assigned several tasks (3).
Moreover we state that each task must be carried out by a groupof two employees,
one acting as the head of group, the other as the head’s assistant (4).

⊲ As an objective we want to maximize the number of assigned tasks.

Initial Solution

By solving the IP-problems arising in each time slot we can guarantee that as many
tasks as possible can be assigned. However, already within an initial task assignment,
we want prevent employees from constantly changing their assigned tasks. For that
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max
∑m

j=1 taskj
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i j ≤ 1 j = 1, ...,m
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∑

eA
i j∈T

A
j
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∑
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A
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Figure 8.8: To obtain an initial task assignment, we solve aninteger problem in each
time slot to guarantee that as much tasks as possible are carried out.

purpose we obtain the initial solution of phase III with a heuristic approach trying to
reassign employees the same tasks again and again.

For each time slot [at, at+1) we assign tasks to employees as follows:

1. We determine the maximum number of tasksTaskmax that can be assigned.

2. We try to solve a more restricted integer program: Each employee must be as-
signed the same task again which he or she has carried out in the previous time
slot. Employees who had a break or rest period at the previoustime slot can be
assigned any task for which they are qualified. If it’s still possible to carry out
Taskmax tasks we will apply the obtained task assignment.

3. Otherwise we iteratively select an employee and allow himto carry out any tasks
he is qualified for until we can carry outTaskmax tasks. An employee changing
his task is selected as follows:

(a) If possible we select an employee that has carried out thesame task for at
leastminimum task timeminutes and has at leastminimum task timeminutes
left until the next break starts or the employee’s shift ends.

(b) Otherwise we select an arbitrary employee.

We implemented the proposed heurisitic as anInitialize element in the TEMPLE
model for phase III, and used an IP-solver integrated in Comet, to solve integer programs
arising during initialization.
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Constraints and Moves

To improve the initial solution returned by our heuristic wemodified the TEMPLE pro-
gram of phase II for our needs. Since the break schedule is notchanged while optimiz-
ing the task assignment, we removed the soft constraintReduce Shortage. Moreover,
we added a hard constraintTrain Correct Tasksto check that at any time employees are
assigned only those tasks which are actually required. Furthermore, we imposed three
additional soft constraintsMinimum Task Time, Avoid Task Changes, andAvoid Rest Pe-
riods at Shift Borders, to optimize the task assignment even further. Table 8.2 presents
all hard and soft constraints defined for phase III.

Figure 8.9 sketches the moves we developed to prevent employees from perform-
ing a single task for less thanMinimum Task Timeminutes. These moves analyze task
assignments, detect critical points where tasks are assigned for less thanminimum task
timeminutes to an employee, and exchange assigned tasks betweenseveral employees.
In addition, we implemented moves to reduce task changes andto avoid rest periods
assigned at shift borders. These moves are presented in Figure 8.10.
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Figure 8.9: Moves eliminating situations in which employees carry out a single task for
less thanminimum task timeminutes.



CHAPTER 8. PRACTICAL APPLICATIONS 150

06:00

07:00

08:00

09:00

10:00

11:00

12:00

13:00

TASK XTASK A

TASK X

TASK X

TASK B

TASK C TASK XTASK A

TASK B

TASK B

TASK C

TASK X

REST

TASK Y

TASK Y
REST

TASK Y

TASK X

TASK X
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8.2.6 Break Scheduling and Task Assignment Tool

The three phase optimization algorithm described in the previous section is included
in a commercial break scheduling and task assignment tool. We built this tool in a
project together with the consulting company Ximes Corp. for one of their customers.
The goal of the project was to develop a working prototype implementing our proposed
three phase approach. With that prototype we wanted to deliver a proof of concept that
automated break scheduling and task assignment is possiblein TEMPLE in reasonable
time.

Basically, the working prototype consists of two components: The first component
is a Microsoft Excel VBA application which gathers and processes user input and visu-
alizes the computed results. The second part is the three phase optimization algorithm
generated with TEMPLE computing a feasible break pattern and a high-quality task
assignment. Currently, the prototype is used by human decision makers on customer’s
site to manage and handle the following three cases:

1. The prototype is used to calculate a break schedule and task assignment at the start
of a working day. At this stage the decision maker might placetraining units to
be held in overstaffed periods and he or she places intra-day absences which are
already known in advance.

2. The prototype is used to asses the consequences of intra-day changes. Whenever
the task requirements are altered or an employee becomes spontaneously absent,
the decision maker triggers the computation of an updated break schedule or task
assignment. Breaks that have already been consumed or tasksthat have already
been performed are not changed by that re-computation but breaks and tasks lo-
cated in the future are reconfigured to perform as many tasks as possible.

3. The prototype is used to react on intra-day changes. If after a change one or several
tasks cannot be performed any longer the decision maker mustcancel training
units, or deploy additional employees. As a last resort the decision maker can
adapt the task requirements.

To illustrate the use cases just mentioned we will present a sample application of our
break scheduling and task assignment tool on the sample problem instance presented in
Figure 8.4. In that sample problem we are given a shift plan consisting of six employees
on duty, each employee’s qualifications and the task requirements for a planning period
from 06:00 to 17:00.
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Calculating a schedule at the start of a working day

At the start of the working day, the decision maker enters theshift plan and task re-
quirements into our break scheduling and task assignment tool. Since the employees’
qualifications do not change very frequently the qualifications are stored in a separated
file, where they are accessed by our break scheduling and taskassignment tool. Then the
decision maker starts the computation of a break schedule and task assignment for the
current working day. The screen shot in Figure 8.11 shows howthe obtained solution is
represented within our break and task assignment tool.

In each 10-minute time slot a single employee is assigned thetask which must
be performed during that time slot or an employee can be assigned a break (orange
rectangle) or rest periods (shaded orange rectangle). On the right hand side there are
three columns reporting how many tasks are required, how many are actually assigned
to employees, and how many tasks cannot be processed in each time slot. Unprocessed
tasks are highlighted with red color. In Figure 8.11 we see the task requirements are
satisfied completely.

Above the break and task schedule our tool reports the break time and rest period
percentages assigned in each employee’s shift. From these percentages a decision maker
can check whether enough break time is assigned to each single employee. From high
rest period percentages the decision maker can conclude that the current solution is over-
staffed, i.e., in certain periods actually more people than required are working.

In the schedule presented in Figure 8.11 the task requirements are satisfied com-
pletely and the assigned break times and the break schedule comply with all legal re-
quirements. Consequently, the obtained solution could be deployed in practice.

Considering the schedule presented in Figure 8.11 the decision maker recognizes
that in the period from12:30 until 15:30 the obtained solution is overstaffed. In that
time range rest periods are assigned very frequently to employees. Therefore, the deci-
sion maker exploits that excess of employees and inserts a training unit starting at12:00
and ending at13:30 into the schedule. In that training unit employeeE3 should train
employeeE4 on taskTASK3 H. After entering the training unit he computes a new solu-
tion from the scratch, part of which is presented in Figure 8.12. In the obtained solution
both trainer and trainee are assignedTASK3 H in the period from12:00 until 13:20
whereas the last ten minutes of the training unit are used to review the training. On
the right hand side we see that the task requirements are still satisfied. Therefore, the
obtained schedule will be applied during the current working day.
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Figure 8.11: The break and task schedule computed by our break scheduling and task
assignment tool for the problem given in Figure 8.4.
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Assessing the effect of intra-day changes

At 10:30 the decision maker is told that employeeE6must attend a meeting from12:30
until 13:30. Since according to the current schedule employeeE6 is supposed to be
working during that time the decision maker enters the meeting as an intra-day absence
and uses our tool to compute an updated schedule for the remaining day starting at
11:00. Figure 8.13 shows the updated schedule returned by the break scheduling and
task assignment tool. The meeting has been inserted correctly in the shift for employee
E6 between12:30 and13:30. However, between13:20 and13:30 one task cannot
be processed anymore, the corresponding entry in the bar on the right in Figure 8.13 is
marked red.

Reacting on intra-day changes

The decision maker must react on the arisen violation of the task requirements. Since
the unassigned task coincides with the scheduled training unit, he decides to remove that
training unit from the schedule and computes an updated schedule for the remaining day.
Figure 8.14 presents the schedule obtained after the removal of the training unit. We see
that the violation of task requirements has disappeared completely. Finally, the decision
maker informs the employees that their break and task schedule will be changed and
hands out the altered schedule to each affected employee.

8.2.7 A Note on the Quality of the Solutions Obtained with theBreak
Scheduler and Task Assigner

At this point we want to illustrate that the solutions computed by our break scheduling
and task assignment tool are of acceptable quality. For thatpurpose we constructed
an artificial problem instance having the comparable features and characteristics as the
problems solved at the industrial customer of Ximes Corp. :

⊲ The planning period of the considered problem comprises 31 hours, starting at
00:00 and ending at07:00 of the following day. The time granularity of the
planning period is set to 10-minutes time slots.

⊲ At the beginning of the planning period the task requirements require three tasks
to be performed. Then the requirements steadily increase during the morning and
between11:40 and14:00 they reach their maximum. During this period thir-
teen tasks must be assigned to available employees. Afterwards the requirements
decline again and fall back to three tasks around23:00.
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Figure 8.12: Schedule after a training unit has been inserted between 12:00 and 13:30.

Figure 8.13: Schedule after employee E6 must attend a meeting from 12:30 until 13:30.

Figure 8.14: Schedule after the removal of a training unit.
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⊲ The input shift plan consists of 63 shifts. The duration of shifts ranges between
six and ten hours, the average shift duration is about eight and a half hours.

⊲ In addition to the shift plan we are given eight night shifts starting at the previous
working day. For these night shifts we are already given a break schedule and task
assignment that must not be modified by our tool. Since these night shifts coincide
with the first seven hours of our input shift plan we must also consider these shifts
while generating a break schedule for input shift plan and while assigning tasks to
employees.

⊲ From the 63 deployed employees 53 are allowed to perform any task. The remain-
ing 10 employees may only act as a head’s assistant.

We computed a solution for this instance with our break scheduling and task as-
signment tool on a Genuine Intel T2400 laptop running at 1.8 GHz with 2 Gbytes of
RAM. We limited the overall running time to the usual runningtime at the customer’s
site, namely five minutes. Since the returned solution is toolarge to be presented within
one figure we divided it into several figures, Figure B.1 - Figure B.3, which are presented
in the Appendix of this thesis.

All legal requirements resulting from the agreement between the workers council
and the management board are satisfied completely by the obtained solution. Consider-
ing soft constraints we observe that the returned solution has the following features:

Unassigned Tasks: 0

Short Task Assignments: 9

Task Changes: 56

Rest Periods at Shift Border: 15

Most important of all, the task requirements are satisfied completely within our
solution. Each required task was assigned to a group of employees and can be processed
during the working day. Moreover, there are only a few situations in which an employee
performs the same task for less thanminimum task time.

There are 56 immediate task changes in the obtained solutionmeaning that on aver-
age about one immediate task changes per employee occurs. According to our customer,
in such large instances tasks changes could not be avoided completely. Moreover, with
regard to immediate task changes the solutions computed by our product have the same
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quality as the manually constructed ones, which were computed at the costumer’s site in
former times with significant larger effort.

The rest periods assigned at the start or end of an employee’sshift is not tragic at
all. The only consequences for the affected employees are that they may start or finish
their work ten or twenty minutes earlier or later.

For these reasons we conclude that the solution produced by the break scheduling
and task assignment tool is of high quality and the computational effort of five minutes
to generate it is quite acceptable considering the complex nature of the problem.
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Chapter 9

Conclusions

In this thesis we designed the domain specific language TEMPLE to model and solve
staff scheduling problems. Thanks to TEMPLE, new software solutions for staff schedul-
ing tasks can be obtained more quickly, and already existingsolutions can be modified
and extended more easily.

To approach the issue of staff scheduling we considered two real-life problems in
Chapter 3 and Chapter 4. The first problem was a real-life break scheduling problem
originating in the area of supervisory personnel. In this problem, breaks must be sched-
uled for a given shift plan in such a way that the obtained break schedules satisfy legal
requirements and reduce shortage of staff to a minimum degree. To achieve that goal
we developed a minimum-conflicts-based local search algorithm mimicking human ex-
perts when solving break scheduling problems. Computational results on real-life and
randomly generated benchmark instances revealed that the minimum-conflicts-based al-
gorithm can generate high-quality solutions that fulfill legal requirements and staffing
demands at the same time.

The second real-life task was a related break scheduling problem originating from
a call center. We adapted the min-conflicts-based algorithmto the additional and altered
constraints of the call center problem, and that modified algorithm could again compute
close-to-optimal solutions for real-life and randomly generated benchmark instances in
acceptable time. The min-conflicts based algorithm is applied successfully at the call
center where it is used to compute the daily break schedules for call center agents.

On the basis of the experience gathered from the two considered real-life tasks we
abstracted common features and basic building blocks of staff scheduling problems and
local search techniques in Chapter 5, and developed the domain specific language TEM-
PLE. In TEMPLE, a problem instance is modeled by small, concise building blocks
reflecting common features of staff scheduling problems and local search techniques.

159
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New building blocks are derived from already existing ones.By this principle a user is
allowed to formulate a complex problem in small, concise andtraceable steps. Conse-
quently, the resulting problem models are well-structured, easy to understand, modify
and maintain.

To transform TEMPLE models of staff scheduling problems into executable algo-
rithms we developed and implemented a TEMPLE compiler in Chapter 7. The TEM-
PLE compiler translates a TEMPLE model into three local search algorithms, a simu-
lated annealing algorithm, a hill-climbing based approach, and an iterated local search
algorithm. Each of these algorithms can be executed instantaneously without requiring
any further input from a user. To ensure that the obtained algorithms are carried out
efficiently, we implemented several strategies within the compiler, in order that only as
many computations as necessary are performed.

In Chapter 8 we delivered a proof of concept that real-life scheduling problems
can be both effectively modeled and efficiently solved with TEMPLE. For that purpose
we reconsidered the real-life break scheduling problem forsupervisory personnel, and
modeled it in TEMPLE. The resulting TEMPLE program was written in a very con-
cise, understandable and modular manner, and consists of only 500 lines of code. Only
one man-week was needed to develop the TEMPLE model for the break scheduling
problem for supervisory personnel. Our experimental results on real-life and randomly
generated benchmark instances revealed that with TEMPLE wecould obtain solutions
of acceptable quality at the same expenditure of time as the customized algorithm in
Chapter 3.

Finally, in Chapter 8 we considered a multilayered break scheduling and task as-
signment problem. The goal for that staff scheduling problem was to develop a break
schedule for a given shift plan and to assign tasks required to be performed by avail-
able employees in accordance with their qualifications. Again, many constraints were
imposed on the break schedule as well as on the task assignment. Since the considered
problem is very complex as a whole we decomposed it into threeseparate phases each
of which modeled and solved by a separate TEMPLE program. In the first phase we
computed a break schedule which is consistent with all legalrequirements. In the second
phase we optimized the break schedule with respect to the task requirements. In the third
phase we assigned the required tasks to available employeesand we optimized the task
assignment with respect to the imposed criteria.

The three resulting TEMPLE models represent the core of a commercial break
scheduling and task assignment tool. With a prototype of that tool we delivered a proof
of concept that automated break scheduling and task assignment was possible within a
reasonable amount of time, i.e., approximately five minuteson a state of the art computer.
The prototype has been extended into a commercial application, which is already used
successfully by decision makers in their day-to-day business.
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For future work we want to model and solve further staff scheduling problems with
our proposed domain specific language TEMPLE. In particularwe want to address prob-
lems originating in areas of staff scheduling that we have not considered in this thesis,
i.e., line of work construction and staff assignment. Moreover, we want to consider shift
scheduling and break scheduling as a combined problem and solve it as a whole. By
tackling these problems within one combined task we expect ourselves to be able to sat-
isfy staffing requirements even more accurately. As a further topic forfuture work we
want to make the TEMPLE modeling language even simpler in order that developers
and end users can apply TEMPLE even more easily.
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Appendix A

TEMPLE Model for the Break
Scheduling Problem for
Supervisory Personnel

A.1 General Settings and Constants

input = ".\2fc04a03.xml";

output = ".\sol-2fc04a03.xml";

algorithm = iterated local search;

algorithm running time = 60 minutes;

time slot = 5 minutes;

int CYCLE_LENGTH = 7 days;

//Constraint C1 Break Positions

int MINIMUM_DISTANCE_TO_SHIFT_BORDER = 30 minutes;

//Constraint C2 Lunch Breaks

int MINIMUM_DURATION_OF_LUNCH_BREAK = 30 minutes;

int MINIMUM_DISTANCE_LUNCH_BREAK_TO_SHIFT_START = 3 hours 30 minutes;

int MAXIMUM_DISTANCE_LUNCH_BREAK_TO_SHIFT_START = 6 hours;

int MINIMUM_DURATION_FOR_LUNCH_BREAK = 6 hours;

//Constraint C3 Duration of Work Periods

int MINIMUM_DURATION_OF_WORKING_PERIOD = 30 minutes;

int MAXIMUM_DURATION_OF_WORKING_PERIOD = 100 minutes;

//Constraint C4 Minimum Break Times after Work Periods

int CRITICAL_DURATION_OF_WORKING_PERIOD = 50 minutes;

int MINIMUM_BREAK_DURATION_AFTER_CRITICAL_WORKING_PERIODS = 20 minutes;
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//Break C5 Duration

int MINIMUM_BREAK_DURATION = 10 minutes;

int MAXIMUM_BREAK_DURATION = 1 hour;

int VIOLATED = 1;

int SATISFIED = 0;

int INITIAL_BREAK_DURATION = 10 minutes;

int MAXIMUM_NUMBER_OF_BREAKS = 10;

A.2 Intervals and Links

Interval Problem;

Interval Requirement with RequiredEmployees;

Interval Shift;

Interval Break;

Interval TimeSlot;

Problem -> Requirement;

Problem <-> Shift;

Shift <-> Break;

Problem -> TimeSlot;

Shift <-> TimeSlot;

Break <-> TimeSlot;

A.3 Constraint C1 - Break Positions

Property Break::DistanceToShiftStart(Break thisBreak, Break.Shift[] associatedShift)

{

DistanceToShiftStart = thisBreak.Start - associatedShift[1].Start;

}

Property Break::DistanceToShiftEnd(Break thisBreak, Break.Shift[] associatedShift)

{

DistanceToShiftEnd = associatedShift[1].End - thisBreak.End;

}

HardConstraint Break::BreakPositions(Break thisBreak)

{

if(thisBreak.DistanceToShiftStart < MINIMUM_DISTANCE_TO_SHIFT_BORDER)

BreakPositions = VIOLATED;

if(thisBreak.DistanceToShiftEnd < MINIMUM_DISTANCE_TO_SHIFT_BORDER)

BreakPositions = VIOLATED;

}
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A.4 Constraint C2 - Lunch Breaks

Property Break::DistanceEndToShiftStart(Break thisBreak, Break.Shift[] associatedShift)

{

DistanceEndToShiftStart = thisBreak.End - associatedShift[1].Start;

}

Property Break::IsLunchBreak(Break thisBreak)

{

IsLunchBreak = true;

if(thisBreak.Duration < MINIMUM_DURATION_OF_LUNCH_BREAK)

IsLunchBreak = false;

if(thisBreak.DistanceToShiftStart < MINIMUM_DISTANCE_LUNCH_BREAK_TO_SHIFT_START)

IsLunchBreak = false;

if(thisBreak.DistanceEndToShiftStart > MAXIMUM_DISTANCE_LUNCH_BREAK_TO_SHIFT_START)

IsLunchBreak = false;

}

Property Shift::LunchBreakCount(Shift.Break[] scheduledBreak)

{

LunchBreakCount = sum(i in scheduledBreak.getRange()) (scheduledBreak[i].IsLunchBreak);

}

HardConstraint Shift::LunchBreaks(Shift thisShift)

{

if(thisShift.Duration > MINIMUM_DURATION_FOR_LUNCH_BREAK && thisShift.LunchBreakCount == 0)

LunchBreaks = VIOLATED;

}

A.5 Constraint C3 - Duration of Work Periods

Property Break::TimeInPosition(Break thisBreak, Break.Shift[] associatedShift,

Break.Shift().Break() scheduledBreak)

{

TimeInPosition = thisBreak.Start - associatedShift[1].Start;

selectMax(i in scheduledBreak.getRange() : scheduledBreak[i].End <= thisBreak.Start)

(scheduledBreak[i].End)

{

TimeInPosition = thisBreak.Start - scheduledBreak[i].End;

}

}

Property Break::TimeInBreak(Break thisBreak, Break.Shift().Break() scheduledBreak)

{

TimeInBreak = thisBreak.Duration;

select(i in scheduledBreak.getRange() : scheduledBreak[i].Start == thisBreak.End)

TimeInBreak += scheduledBreak[i].Duration;

}
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Property Shift::LastTimeInPosition(Shift thisShift, Shift.Break[] scheduledBreak)

{

selectMax(i in scheduledBreak.getRange()) (scheduledBreak[i].End)

LastTimeInPosition = thisShift.End - scheduledBreak[i].End;

}

A.6 Constraint C4 - Minimum Break Times After Work Peri-
ods

HardConstraint Shift::MinimumBreakTimesAfterWorkPeriods(Shift.Break[] scheduledBreak)

{

forall(i in scheduledBreak.getRange())

{

if(scheduledBreak[i].TimeInPosition > CRITICAL_DURATION_OF_WORKING_PERIOD)

if(scheduledBreak[i].TimeInBreak < MINIMUM_BREAK_DURATION_AFTER_CRITICAL_WORKING_PERIODS)

MinimumBreakTimesAfterWorkPeriods = VIOLATED;

}

}

A.7 Constraint C5 - Minimum Break Durations

HardConstraint Break::BreakDurations(Break thisBreak)

{

if(thisBreak.Duration < MINIMUM_BREAK_DURATION)

BreakDurations = VIOLATED;

if(thisBreak.Duration > MAXIMUM_BREAK_DURATION)

BreakDurations = VIOLATED;

}

A.8 Constraint C6 - Shortage of Employees

Curve Problem::StaffingRequirements(Problem.Requirement[] staffingRequirement)

{

forall(i in staffingRequirement.getRange())

StaffingRequirements.Pulse(staffingRequirement[i].Start,

staffingRequirement[i].End, staffingRequirement[i].Active,

staffingRequirement[i].RequiredEmployees);

}

Property Break::HasSuccessor(Break thisBreak, Break.Shift().Break() scheduledBreak)

{

select(i in scheduledBreak.getRange() : scheduledBreak[i].Start == thisBreak.End)

HasSuccessor = true;

}
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Curve Shift::WorkingTime(Shift thisShift, Shift.Break[] scheduledBreak)

{

WorkingTime.Pulse(thisShift.Start, thisShift.End, thisShift.Active);

forall(i in scheduledBreak.getRange())

{

WorkingTime.Pulse(scheduledBreak[i].Start,

scheduledBreak[i].End,

scheduledBreak[i].Active, -1);

if(scheduledBreak[i].HasSuccessor == false)

WorkingTime.Pulse(scheduledBreak[i].End,

scheduledBreak[i].End + 1,

scheduledBreak[i].Active, -1);

}

}

Curve Problem::WorkingTime(Problem.Shift[] scheduledShift)

{

forall(i in scheduledShift.getRange())

WorkingTime.Add(scheduledShift[i].WorkingTime);

}

Curve Problem::DeviationCurve(Problem thisProblem, Problem.Shift[] scheduledShift)

{

forall(i in scheduledShift.getRange())

DeviationCurve.CyclicAdd(scheduledShift[i].WorkingTime, CYCLE_LENGTH);

DeviationCurve.Subtract(thisProblem.StaffingRequirements);

}

Curve Problem::ShortageCurve(Problem thisProblem)

{

ShortageCurve.SubtractNegativeValues(thisProblem.DeviationCurve);

}

Property Problem::Shortage(Problem thisProblem)

{

Curve shortageCurve = thisProblem.ShortageCurve;

Shortage = sum(i in shortageCurve.Period()) (shortageCurve.Value(i));

}

SoftConstraint Problem::ShortageOfEmployees(Problem thisProblem) weight(10)

{

ShortageOfEmployees = thisProblem.Shortage;

}

A.9 Constraint C7 - Excess of Employees

Curve Problem::ExcessCurve(Problem thisProblem)

{

ExcessCurve.AddPositiveValues(thisProblem.DeviationCurve);

}
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Property Problem::Excess(Problem thisProblem)

{

Curve excessCurve = thisProblem.ExcessCurve;

Excess = sum(i in excessCurve.Period()) (excessCurve.Value(i));

}

SoftConstraint Problem::ExcessOfEmployees(Problem thisProblem) weight(2)

{

ExcessOfEmployees = thisProblem.Excess;

}

A.10 Additional Constraints

Curve Shift::BreakPattern(Shift.Break[] scheduledBreak)

{

forall(i in scheduledBreak.getRange())

BreakPattern.Pulse(scheduledBreak[i].Start, scheduledBreak[i].End, scheduledBreak[i].Active);

}

HardConstraint Shift::NoOverlappingBreaks(Shift thisShift)

{

Curve breakPattern = thisShift.BreakPattern;

forall(i in breakPattern.Period())

if(breakPattern.Value(i) > 1)

NoOverlappingBreaks = VIOLATED;

}

HardConstraint Shift::ScheduleBreaksWithinShift(Shift thisShift, Shift.Break[] scheduledBreak)

{

forall(i in scheduledBreak.getRange())

{

if(scheduledBreak[i].Start < thisShift.Start)

ScheduleBreaksWithinShift = VIOLATED;

if(scheduledBreak[i].End > thisShift.End)

ScheduleBreaksWithinShift = VIOLATED;

}

}

A.11 Initialization

Property Shift::RequiredBreakTime(Shift thisShift)

{

if(thisShift.Duration <= 10 hours)

RequiredBreakTime = (int) (floor(((thisShift.Duration - 20 minutes) / 10.0)) * 2);

else

RequiredBreakTime = (int) (ceil(thisShift.Duration / 4.0));

}
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Property Shift::NumberOfBreaks(Shift thisShift)

{

int requiredBreakTime = thisShift.RequiredBreakTime;

if(thisShift.Duration > MINIMUM_DURATION_FOR_LUNCH_BREAK)

{

NumberOfBreaks++;

requiredBreakTime -= MINIMUM_DURATION_OF_LUNCH_BREAK;

}

NumberOfBreaks += (int) ceil (requiredBreakTime * 1.0 / MINIMUM_BREAK_DURATION);

if(NumberOfBreaks > MAXIMUM_NUMBER_OF_BREAKS)

NumberOfBreaks = MAXIMUM_NUMBER_OF_BREAKS;

}

Instantiate Shift.Break[] (Shift thisShift)

{

Shift.Break[].Count = thisShift.NumberOfBreaks;

}

Initialize Shift::BreakSchedule(Shift thisShift, Shift.Break[] scheduledBreak,

Shift.Problem[].TimeSlot[] timeSlot)

{

int numberOfBreaks = scheduledBreak.getRange().getUp();

int[] breakStartTime;

do

{

int requiredBreakTime = thisShift.RequiredBreakTime;

int lunchBreakIndex = -1;

//Schedule a 30-minutes lunch break.

if(thisShift.Duration > MINIMUM_DURATION_FOR_LUNCH_BREAK)

{

lunchBreakIndex = (int) floor((float) MINIMUM_DISTANCE_LUNCH_BREAK_TO_SHIFT_START /

(float) (CRITICAL_DURATION_OF_WORKING_PERIOD + INITIAL_BREAK_DURATION));

scheduledBreak[lunchBreakIndex].Duration = MINIMUM_DURATION_OF_LUNCH_BREAK;

scheduledBreak[lunchBreakIndex].Active = true;

requiredBreakTime -= MINIMUM_DURATION_OF_LUNCH_BREAK;

}

//Iterate over all other breaks and add 10 minutes to each break until entire break time is scheduled.

int i = 1;

while(requiredBreakTime >= INITIAL_BREAK_DURATION)

{

if(i > scheduledBreak.getRange().getUp()) i = 1;

if(i != lunchBreakIndex)

{

scheduledBreak[i].Duration += MINIMUM_BREAK_DURATION;

scheduledBreak[i].Active = true;

requiredBreakTime -= MINIMUM_BREAK_DURATION;

}

i++;

}
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if(requiredBreakTime > 0)

{

if(i > scheduledBreak.getRange().getUp()) i = 1;

scheduledBreak[i].Duration += requiredBreakTime;

scheduledBreak[i].Active = true;

}

//Determine an initial legal break pattern by solving the corresponding STP.

// + 2 because also shift start and shift end are variables of the STP.

int numberOfSTPVariables = numberOfBreaks + 2;

STPSolver stpSolver = new STPSolver(numberOfSTPVariables);

stpSolver.AddMinimumDistance(1, numberOfSTPVariables, thisShift.Duration);

stpSolver.AddMaximumDistance(1, numberOfSTPVariables, thisShift.Duration);

stpSolver.AddMinimumDistance(1, 2, MINIMUM_DISTANCE_TO_SHIFT_BORDER);

if(scheduledBreak[1].Duration >= MINIMUM_BREAK_DURATION_AFTER_CRITICAL_WORKING_PERIODS)

stpSolver.AddMaximumDistance(1, 2, MAXIMUM_DURATION_OF_WORKING_PERIOD);

else

stpSolver.AddMaximumDistance(1, 2, CRITICAL_DURATION_OF_WORKING_PERIOD);

forall(i in 2..numberOfBreaks)

{

stpSolver.AddMinimumDistance(i, i+1, scheduledBreak[i-1].Duration +

MINIMUM_DURATION_OF_WORKING_PERIOD );

if(scheduledBreak[i].Duration >= MINIMUM_BREAK_DURATION_AFTER_CRITICAL_WORKING_PERIODS)

stpSolver.AddMaximumDistance(i, i+1, scheduledBreak[i-1].Duration +

MAXIMUM_DURATION_OF_WORKING_PERIOD);

else

stpSolver.AddMaximumDistance(i, i+1, scheduledBreak[i-1].Duration +

CRITICAL_DURATION_OF_WORKING_PERIOD);

}

stpSolver.AddMinimumDistance(numberOfBreaks+1, numberOfBreaks+2,

MINIMUM_DISTANCE_TO_SHIFT_BORDER + scheduledBreak[numberOfBreaks].Duration);

stpSolver.AddMaximumDistance(numberOfBreaks+1, numberOfBreaks+2,

MAXIMUM_DURATION_OF_WORKING_PERIOD + scheduledBreak[numberOfBreaks].Duration);

if(thisShift.Duration > MINIMUM_DURATION_FOR_LUNCH_BREAK)

{

stpSolver.AddMinimumDistance(1, lunchBreakIndex + 1, MINIMUM_DISTANCE_LUNCH_BREAK_TO_SHIFT_START);

stpSolver.AddMaximumDistance(1, lunchBreakIndex + 1, MAXIMUM_DISTANCE_LUNCH_BREAK_TO_SHIFT_START -

scheduledBreak[lunchBreakIndex].Duration );

}

breakStartTime = stpSolver.GetRandomSolution();

}

while(breakStartTime == null);

forall(i in 1..numberOfBreaks)

scheduledBreak[i].Start = thisShift.Start + breakStartTime[i+1];

set{int} domainStart();
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forall(i in thisShift.Start .. thisShift.End)

domainStart.insert(i);

set{int} domainDuration ();

forall(i in 0 .. MAXIMUM_BREAK_DURATION)

domainDuration.insert(i);

set{int} domainActive();

forall(i in 0..1)

domainActive.insert(i);

forall(i in scheduledBreak.getRange())

{

scheduledBreak[i].Start.Domain.Add (domainStart);

scheduledBreak[i].Duration.Domain.Add (domainDuration);

scheduledBreak[i].Active.Domain.Add (domainActive);

scheduledBreak[i].AddRelatedInterval(thisShift, "Shift");

}

forall(t in timeSlot[1].getRange())

{

if(thisShift.Start <= timeSlot[1][t].Start && timeSlot[1][t].End <= thisShift.End)

{

timeSlot[1][t].AddRelatedInterval (thisShift, "Shift");

thisShift.AddRelatedInterval (timeSlot[1][t], "TimeSlot");

forall(i in scheduledBreak.getRange())

{

timeSlot[1][t].AddRelatedInterval (scheduledBreak[i], "Break");

scheduledBreak[i].AddRelatedInterval (timeSlot[1][t], "TimeSlot");

}

}

}

}

A.12 Moves

Move Problem::BreakAssignment(Problem thisProblem, Problem.TimeSlot[] ts,

Problem.TimeSlot[].Shift[] scheduledShift)

{

Curve shortage = thisProblem.ShortageCurve;

select(i in ts.getRange() : shortage.Value(ts[i].Start) > 0)

select(j in scheduledShift[i].getRange() : scheduledShift[i][j].WorkingTime.Value(ts[i].Start) == 0)

scheduledShift[i][j].BreakAssignment;

}
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Move Problem::BreakSwap(Problem thisProblem, Problem.TimeSlot[] ts,

Problem.TimeSlot[].Shift[] scheduledShift)

{

Curve shortage = thisProblem.ShortageCurve;

select(i in ts.getRange() : shortage.Value(ts[i].Start) > 0)

select(j in scheduledShift[i].getRange() : scheduledShift[i][j].WorkingTime.Value(ts[i].Start) == 0)

scheduledShift[i][j].BreakSwap;

}

Move Shift::BreakAssignment(Shift thisShift, Shift.Break[] scheduledBreak)

{

range T = thisShift.Start .. thisShift.End;

select(i in scheduledBreak.getRange())

select(newPosition in T : newPosition != scheduledBreak[i].Start)

scheduledBreak[i].Start = newPosition;

}

Move Shift::BreakSwap(Shift.Break[] scheduledBreak)

{

select(firstBreak in scheduledBreak.getRange())

{

select(secondBreak in scheduledBreak.getRange())

{

int t = scheduledBreak[firstBreak].Start;

scheduledBreak[firstBreak].Start = scheduledBreak[secondBreak].Start;

scheduledBreak[secondBreak].Start = t;

}

}

}
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Figure B.1: Part one of the solution generated by our break scheduling and task
assignment tool in Section 8.2.7.



APPENDIX B. BREAK SCHEDULING AND TASK ASSIGNMENT TOOL 175

Figure B.2: Part two of the solution generated by our break scheduling and task
assignment tool in Section 8.2.7.
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Figure B.3: Part three of the solution generated by our breakscheduling and task
assignment tool in Section 8.2.7.
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