TU

TECHNISCHE UNIVERSITAT WIEN

DISSERTATION

TEMPLE - A Domain Specific Language for Modeling
and Solving Real-Life Staff Scheduling Problems

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades eines Doktors
der technischen Wissenschaften unter der Leitung von

Priv.-Doz. Dipl.-Ing. Dr.techn. Nysret Musliu
Institut fiir Informationssysteme (184/2)
Abteilung fiir Datenbanken und Artificial Intelligence

eingereicht an der Technischen Universitat Wien
Fakultat fir Informatik

von

Werner Schafhauser
0126332
Schelleingasse 17/6, A-1040 Wien

Wien, am 18. Oktober 2010

Kurzfassung

Ziel von Personalplanungsproblemen ist es, Dienstplane egstellen, damit
Unternehmen den Bedarf nach ihren Produkten und Diertsifigien unter Einhaltung
arbeitsrechtlicher Bestimmungen erfillen konnen. Ogeémader nahezu optimale
Losungen fir Personalplanungsprobleme verbessern dieitdibledingungen flr
Mitarbeiter und helfen Betrieben, ihr Personfilzient und kostensparend einzusetzen.
uUnglucklicherweise sind Personalplanungsprobleme ingekiieinen NP-hart und
kénnen daher nicht in polynomieller Zeit gelést werden. DEswickeln guter
Algorithmen fur Personalplanungsaufgaben ist eine Kurist dich selbst, und
normalerweiser sind solche Algorithmen sehr stark auf bestimmte Problemstellung
zugeschnitten. Diese stark angepassten Ldsungen konnemelin Regel nur
sehr schwer fur andere Probleme wiederverwendet werdenpettaits wenige
geringfiigige Anderungen in einem Problem zu vielen graviden Abanderungen und
Erweiterungen in einem stark angepassten Algorithmusefuhr

Ziel dieser Dissertation ist es, eine Modellierungsspeaahentwickeln, mit der wir
Personalplanungsprobleme auf sehr natirliche, einfactiéntuitive Weise modellieren
und l6sen konnen. Infolgedessen werden neue Losungenrfoizdplanungsprobleme
wesentlich schneller entwickelt und bereits exisitiegenddsungen viel einfacher
geédndert und erweitert.

Um dieses Ziel zu erreichen, betrachten wir zuerst zwei k&Bk
Personalplanungsprobleme. Das erste stammt aus einemCeater, das zweite
Problem betrachtet eine &hnliche Aufgabenstellung fir rivaehungspersonal.
Fur diese beiden Probleme entwickeln wir zwei malRgesckrteidLokale Suche
Algorithmen, die in vertretbarer Zeit qualitiativ hochwige Loésungen erzielen.
Basierend auf diesen beiden Losungen identifizieren windjagende Bestandteile
von Personalplanungsproblemen und Lokale Suche Algoeithomd entwickeln die
Modellierungssprache TEMPLE, in welcher diese Bestaldtealisiert werden. Des
Weiteren implementieren wir einen TEMPLE-Ubersetzer ragskn Hilfe wir fur jedes
Problemmodell in TEMPLE drei Lokale Suche Algorithmen eigen konnen. Diese
Algorithmen konnen sofort, ohne weitere Nutzereingabe enfkonkretes Problem

KURZFASSUNG

angewandt werden, um optimierte Losungen zu erzeugen.

Wir demonstrieren die ZweckmaRigkeit unseres Ansatzegjenn wir
das Personalplanungsproblem aus dem Bereich Uberwagiersgsal in
TEMPLE modellieren und l6sen, und zeigen, dass wir mit wreerAnsatz
konkurrenzfahige Ergebnisse erzielen. Abschlie3end ik wir ein vielschichtiges
Personalplanungsproblem in TEMPLE, in welchem wir zueirstegales, hinsichtlich
des Personalbedarf optimiertes Pausenmuster berechnaed, anschliel3end
konkrete Arbeitsaufgaben den einzelnen Mitarbeitern runBerlcksichtigung
ihrer Qualifikationen zuweisen. Die Lokale Suche Algoridim die wir aus
unserem TEMPLE Modellen generiert haben, sind Bestandir#és kommerziellen
Personalplanungs Tools, das bereits erfolgreich kundensengesetzt wird.

Abstract

Stdt scheduling is the process of creating work timetables fesg®el so that compa-
nies can satisfy the demands for their goods and servicasm@lr close to optimal so-
lutions for stdt scheduling tasks help companies to deploy theit sfaciently and cost
savingly, and improve the working conditions for deployéatsas well. Unfortunately,
stef scheduling problems are NP-hard in general, thus, theyatdoansolved to optimal-
ity in polynomial time. As a consequence, the design of smhst for stét scheduling
problems is an art in itself and results in algorithms which strongly customized to a
specific st&f scheduling task. Customized solutions are usually vefficdlt to adapt,
extend, and reuse for other problems.

In this thesis we develop a modeling language to formulatesaive st& schedul-
ing tasks in a very natural, simple, and intuitive mannemgaguently, new algorithms
for steff scheduling problems can be obtained more quickly, and@lreaisting solu-
tions can be modified and extended easily.

To achieve that goal, we first consider two real-lifefissgheduling problems, one
originating in a call center, the other arising from the avkaupervisory personnel, and
we develop two customized local search algorithms, whiehadrle to generate high-
quality solutions for the two problems in reasonable timen tfe basis of these two
customized solutions we abstract common features and basding blocks of st
scheduling problems and local search techniques. Thenptielstdf scheduling prob-
lems with reducedféort, we design a novel, domain specific language called TERIPL
Furthermore, we develop and implement a TEMPLE compilectvhiansforms TEM-
PLE models of st scheduling tasks into three generic local search algosthmhich
can be executed instantaneously to optimize a consideagdsiheduling problem.

To deliver a proof of concept, we model the fBtscheduling problem for super-
visory personnel in TEMPLE, and we show that our approactblis 8o achieve com-
petitive results of acceptable quality in reasonable tifamally, we model and solve
a multilayered, real-life break scheduling and task ass@mt problem in TEMPLE.
The local search algorithms obtained from our TEMPLE modptesent the core of a
commercial st scheduling tool which is already used successfully on coet& site.

ABSTRACT

Acknowledgments

First and foremost | would like to thank my supervisor Nysdvktsliu for the excellent
support he gave me while pursuing my PhD. Due to his very niwgacter and his
readiness to listen and help me at any time writing this thesis indeed a great pleasure
for me.

My thanks goes also to Johannes Gartner and Wolfgang Slatlydin discussions
within our research project which opened my mind to noveh&end approaches. Fur-
thermore, | would like to thank Sabine Wahl, Ruth Sigéar, amdiiK Boonstra-Horwein,
for the perfect cooperation we had while developing creaddlutions for complex sfia
scheduling tasks. Moreover, | say thanks to Michael Jakhfsrexpertise on ANTLR
as well as to Toni Pisjak for the technical support he gave aning the last years. Fi-
nally, | would like to thank Pascal Van Hentenryck, Laurenthl, and the Dynadec
Support Team, for answering my questions and satisfying equests concerning the
Comet optimization language.

The research herein was partially conducted within the @iemze network Soft-
net Austriahttp://www.soft-net.at/)and funded by the Austrian Federal Ministry
of Economics (bm:wa), the province of Styria, the SteirestMirtschaftsforderungsge-
sellschaft mbH. (SFG), and the city of Vienna in terms of taater for innovation and
technology (ZIT).

ACKNOWLEDGMENTS

Vi

Conten

ts

Kurzfassung [
Abstract i
Acknowledgments Y
1 Introduction 1
1.1 Research Questionsof ThisThesis 2
1.2 MainResultsof ThisThesis 3
1.3 Further Organization of This Thesis 7
2 Preliminaries 9
2.1 A Classification of StiScheduling Problems 9
211 DemandModeling 9
2.1.2 Shiftand Break Scheduling 10
2.1.3 Lineof Work Construction 10
214 St&Assignment e 11
215 TaskAssignment 11
2.1.6 Further Surveys of Ste&cheduling Problems 11
2.2 State-of-the-Art in Break Scheduling Problems 11
2.3 Local Search Algorithms 13
2.3.1 An Overview of Local Search Technigues Used in Thissithe 15

Vii

CONTENTS viii

3 A Break Scheduling Problem for Supervisory Personnel 21
3.1 Formal Inputs to the Break-Scheduling Problem for Suipery Personnel 21
3.2 Feasible Break-Scheduling Solution 22
3.3 Criteria for Finding an Optimal Solution 23
3.4 Objective Function 24
3.5 Solving the Break-Scheduling Problem 24
3.6 Solution Representation 25
3.7 Initial Solution and Objective Function 25
3.8 Moves and Local Neighborhood 27
3.9 Minimum-Conflicts Heuristics 28
3.10 Benchmark Instances for the Break-Scheduling Problem. 28
3.11 Experimental Settings e 29
3.12 Testson Real-World Instances 29
3.13 Tests on Random Instances with a Known Optimal Solution 31
3.14 Quality of Obtained Solutions 32

4 Scheduling Breaks in Shift Plans of Call Centers 35
4.1 Problem Description e 35

4.1.1 Constraints on the Position of Breaks within Shifts 37
4.1.2 Constraints on the Distances Between Breaks 37
4.1.3 Constraints on the Duration of Breaks 37
4.1.4 Constraints on the Excess and Shortage of Working &reps 37
4.1.5 Extending the Problem with Breaks of Fixed Duration 38
4.1.6 Extending the Problem with Meetings 8 3
4.2 Adapting the Min-Conflicts-Based Heuristic for the Gaénter Break
Scheduling Problem, 40
4.2.1 Representation of Solutions for the Break SchedWimplem . 40
4.2.2 Objective Function 41
4.2.3 Moves and Local Neighborhood 41
4.3 Computational Results 41
4.3.1 Randomly Generated Instances 41

4.3.2 Real-Life Application, 43

CONTENTS

5 TEMPLE - A Domain Specific Language for Stdf Scheduling Problems 47

5.1 Design GoalsforTEMPLE 48
5.2 Building Blocks of St& Scheduling Problems 50
5.2.1 Intervals and Links between Intervals 50
5.2.2 Derived Properties and Constraints 51
5.23 DerivedCurves e 52
5.2.4 Building Blocks of Local Search Techniques 53
5.3 The TEMPLE Modeling Language 55
5.3.1 Interval Declaration 55
5.3.2 LinksDeclaration 55
5.3.3 Derived Properties e 55
534 DerivedConstraints 56
535 DerivedCurves 58
5.3.6 Initial Solution 58
5.3.7 Moves e 59
5.3.8 FurtherLanguageDetails 59
5.3.9 Optimization Goal and Objective Function 60
5.4 AFirst TEMPLE Model 60
541 IntervalsandlLinks 61
5.4.2 TheFirstConstraints 62
543 Properties 63
544 Curves 63
5.45 The Complete ProblemModel 64
5.4.6 Initial Solution 65
547 MoOVeS. e e 67
5.4.8 Solvingthe Problem 67

54.9

An Extended Problem 68

CONTENTS X
6 Related Work 75
6.1 Related ModelingLanguages 5 7
6.1.1 ESRA - An Executable Symbolism for Relational Algebra . 75
6.1.2 ESSENCE 76
6.1.3 TheZinc ModelingLanguage 78
6.1.4 OPL - The Optimization Programming Language 79
6.1.5 Comet 80
6.1.6 ASPEN - An Automated Scheduling and Planning Enviremm 85
6.1.7 Optimization Algorithms 87
6.1.8 ComparisonwithTemple 88
6.2 Metaheuristic Frameworks o oo 09
6.2.1 0penTS e 90
6.2.2 EasyLocal+ 91
6.2.3 ParadisEO 91
6.2.4 Comparisonwith TEMPLE 92
7 The TEMPLE Compiler 93
7.1 TEMPLE Model Analysis 95
7.2 Computing an Initial Solution 95
7.2.1 Creating Intervals from the Input XML-File 95
7.2.2 Single Initialization Step oo oL 011
7.3 Move Computation 104
7.4 Move Evaluation 106
7.5 Move Execution 110
7.6 Hhcient Curve Evaluation 113
7.6.1 Motivation 113
7.6.2 ASpeed-UpStrategy, 115
7.6.3 Implementing the Speed-Up Strategy 16 1
7.6.4 A Note on the Correctness of the Speed-Up Strategy120
7.7 Adaptive Local Neighborhood Computation 122
7.8 Control Parameters of the Generic Local Search Algogth 124

7.9 Solving St& Scheduling Problems, 125

CONTENTS Xi

8 Practical Applications 127
8.1 A TEMPLE Model of the Break Scheduling Problem for Sujmary
Personnel e 128
8.1.1 Conclusions Drawn from the TEMPLE Model 131
8.1.2 ComputationalResults 131
8.2 A Real-life Break Scheduling and Task Assignment Proble. 135
8.2.1 Problem Definition 135
8.2.2 AThree-Phase Approach 141
8.2.3 Phase | - Break Schedule Initialization 141
8.2.4 Phase Il - Break Schedule Optimization 143
8.2.5 Phase lll - Task Assignment and Optimization 146
8.2.6 Break Scheduling and Task Assignment Tool 151
8.2.7 A Note on the Quality of the Solutions Obtained with Break
Scheduler and Task Assigner 154
9 Conclusions 159

A TEMPLE Model for the Break Scheduling Problem for Supervisory Per-

sonnel 163
A.1 General Settingsand Constants 163
A.2 IntervalsandLinks 164
A.3 ConstraintCq - Break Positions 164
A.4 ConstraintC, - LunchBreaks 165
A.5 ConstraintCs - Duration of Work Periods 165
A.6 ConstraintC4 - Minimum Break Times After Work Periods 166
A.7 ConstrainlCs - Minimum Break Durations 166
A.8 ConstrainlCg - Shortage of Employees 166
A.9 ConstrainlC; - Excess of Employees 167
A.10 Additional Constraints 168
A.l11 Initialization a6
A12 MOVES e e e 171

B Break Scheduling and Task Assignment Tool 173

List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

4.1
4.2

5.1

5.2

Subtasks involved in the overall Stacheduling process according to
Ernstetal. [19]. 12
A fictitious execution of a local search algorithm in a wimensional
searchspace. e 15
Interaction between local search and perturbation iiteaated local

search algorithm. 18
The two moves developed for the break-scheduling pnobl&he as-

signment move assigns to a break a new start within its réspeshift.
The swap move exchanges the start times of two breaks assbuidh
thesameshift. 27

Common constraint settings for the considered breh&ekding prob-
lem. We used these settings for the experimental evaluafitimee min-
conflicts-random-walk algorithm. 30

Part of the best solution found for instance 2fc04a0¥th@number of
required, present, and working employees, and (b) the glaifi for this
same time period. All constraints were satisfied completslyept for
two lunch breaks that were not in their preferred timeranges. . . . 34

A shift plan containing meetings. 39

Curve of required and working employees resulting fromlest solu-
tion for a real-life instance of the call center break scliedyroblem. . 45

Selected design goals which are achieved by the TEMPLEelmg
language. e e 49

The diferent kinds of intervals and links between intervals inedin
the call center break scheduling problem from Section4. 50

Xii

LIST OF FIGURES Xiii

5.3

5.4

5.5

5.6

5.7

5.8

59

6.1
6.2

6.3

6.4
6.5

7.1

7.2

7.3

7.4

7.5

7.6

A time interval is characterized by three basic propsytStart,
DurationandEnd. 51
In stdf scheduling problems properties and constraints are dksiep

by step from already existing properties. 52

A curve modeling the periods while an employee is actuabrking
andnothavingabreak., 53
Problem input for our sample resource planning anff stdneduling
problem. e 61
Solution obtained with our TEMPLE program for our sammgleource
planning and scheduling problem. 68
In this solution for our sample problem no working periasts longer

than 100 minutes. 70
Solution for our sample problem, in which each shift eorg one 60-

minute lunch break.o oo 73
ESRA model of the traveling salesman problem [56]. 76
ESSENCE specification of the knapsack problem formdlate opti-
mization problem [22]. 77
Invariant maintaining the sum of several source vagmhlithin one tar-
getvariable. 83
Interface for dferentiable functions. 84
Interface for dterentiable constraints. 84
A Temple compiler transforms Temple models into thremege local

search algorithms, that can be executed instantaneously.. 94

Dependencies existing between TEMPLE elements in timglsastdt
scheduling problem from Section5.4. 6 9

Initialized and uninitialized elements after procagdie input data for
oursampleproblem. 99

A feasible initialization ordering for the samplefS&cheduling problem
from Section5.4. 100

Initial values and sets of basic decision variablesaatm for basic and
derived properties, curves and constraints of a shift andlfceaks. . . 103

In the local search algorithms obtained with TEMPLE nsoee eval-
uated only for those elements which thefeat. 109

LIST OF FIGURES Xiv

7.7

7.8

7.9

7.10

8.1

8.2

8.3

8.4

8.5
8.6
8.7
8.8

8.9

8.10
8.11

8.12
8.13
8.14

B.1

B.2

In the local search algorithms obtained with TEMPLE dhlyse parts

of a solution are changed which are actuafiigeted by the move. . . . 112
Derived curved\ttendenceTime, BreakPattern andWorkingTime
resulting from a single shift having two breaks. 114
Changed positions (red shaded areas) in derived cuaused by a sin-
glemove. 115
Simplifying the evaluation ofcurves. 117
TEMPLE model of the constraints involved in the breakestthing
problem for supervisory personnel. 129
TEMPLE model for instantiation elements, initializatielements, and

moves involved in the break scheduling problem for superyipersonnel.130

Stdfing requirements and curve of working employees for parthef t
best solutions obtained for the real-life benchmark instan2fc04a,

3si2ji2zand 50fc04a. 134
An artificial sample instance of the break scheduling ts#t assign-
mentproblem. 137
Training and subsequent review for taskS KL H followed by a break. 140
Moves applied in phase | to obtain a legal break pattern. 143
Additional moves applied in phase Il to optimize a brectheslule. . . . 145
To obtain an initial task assignment, we solve an intpgalnlem in each

time slot to guarantee that as much tasks as possible areccaut. . . 147
Moves eliminating situations in which employees cauyasingle task

for less thamminimum task timeninutes. 149
Moves reducing task changes and rest periods at shifeiso 150
The break and task schedule computed by our break difgednd task

assignment tool for the problem given in Figure 8.4. 153
Schedule after a training unit has been inserted batd2€0 and 13:30. 155
Schedule after employee E6 must attend a meeting frad0 Ldtil 13:30.155
Schedule after the removal of a trainingunit. 155

Part one of the solution generated by our break scheglalid task as-
signment toolin Section 8.2.7. oL 417

Part two of the solution generated by our break scheglaimd task as-
signment tool in Section 8.2.7. 517

LIST OF FIGURES XV

B.3 Part three of the solution generated by our break scimedahd task
assignment tool in Section 8.2.7. 761

List of Tables

3.1

3.2

3.3

3.4

4.1
4.2

4.3

5.1

6.1

7.1

8.1

Example describing which breaks are created for an 8-floift with
the settings of Figure 3.2.o . 26
Test results for 20 real-life benchmark instances fra@hruns of the

min-conflicts-random-walk algorithm for randomly genetnitial so-
lutions and for solutions created by solving the correspangimple
temporal problem (STP). 31

Test results (objective-function values) for 10 benatininstances with
a known optimal solution from 10 runs of the min-conflicterdam-
walk algorithm for randomly generated initial solutions. 32

Constraint violations of the best solutions obtainethiegymin-conflicts-
based heuristic for real-life and randomly generated beiack instances. 33

Weights of constraints for the considered real-liféanses. 43

Best solutions obtained for 44 randomly created ingsmwath known
optimumsolution. 44

Detailed results for a real-life instance of the callteebreak scheduling
problem. 45

Methods provided by TEMPLE to derive a curve from alreaxigting
elements. e e 57

Comparison of TEMPLE and related modeling languages.. 88
Control parameters of TEMPLE'’s generic local searcbritlyms. . . . 124
Test results for the iterated local search algorithmegeed with our

TEMPLE compiler and for the min-conficts-random-walk algon
fromSection3. 133

LIST OF TABLES

8.2 Overview on the constraints involved in the three phases

LIST OF TABLES XViii

Chapter 1

Introduction

The goal of st scheduling problems is the creation of work timetables oleothat
companies can satisfy the demands for their goods and esrvi§t& scheduling is
a very complex process, encompassing sevef&rdnt phases, such as determining
stefing requirements, constructing shift plans and break sdbsdoreating rosters for
individual employees, and assigning tasks or services foeb®rmed. In each single
step we must obtain solutions which on the one hand are ¢ensiwith legal require-
ments and labor regulations, and on the other hand depl@yefii@iently. Thus, op-
timal or close to optimal solutions for sftascheduling problems improve the working
conditions for employees, and help companies to deploy ffesonnel cost savingly.
Unsurprisingly, st scheduling problems are of high practical relevance ancesemt
hot topics of basic as well as applied research.

Unfortunately, many stscheduling problems are NP-hard, and as a consequence,
they cannot be solved to optimality in polynomial time. Tdéfere, st& scheduling prob-
lems are solved by using mathematical programming, or stiphied Al-techniques,
such as constraint programming, heuristics, meta-heunsethods, or branch and
bound algorithms. No matter which of these approaches wewfpthe design of al-
gorithms for sté& scheduling problems is an art in itself and we end up with atswi
that is strongly customized to a specific task.

Strongly customized solutions are usually verffidult to adapt, extend and main-
tain. A few minor changes within a problem’s specificatiom casult in many ma-
jor modifications or a completely new implementation of atomszed algorithm, and
while developing solutions for stascheduling problems, changes will occur constantly
and inevitably, for the following reasons:

> The very same sthscheduling problem will never occur in two or several com-
panies. Even though two companies deal with a similat stdneduling problem,

1

CHAPTER 1. INTRODUCTION 2

each company has its own, specific criteria which have to bsidered. Often,
these special requests are the direct result of negotstietween the management
board and the workers’ council, or they reflect working ctiods prevailing in a
particular industry.

> An exact problem specification does not exist in advancdgaulsthe problem
specification is developed and evolved together with thetien. Due to the mul-
tilayered nature of sfscheduling problems, it is not possible to define all criteri
involved in a specific problem at the beginning of the sofevangineering pro-
cess. Thus, it is advisable to develop solutions foft steheduling problems by
following modern, agile software engineering paradigmgilésoftware devel-
opment approaches are characterized by many short devet@ycles, between
which additional criteria or modifications requested byrss=an be realized.

To sum up, the reasons why ftacheduling problems represent very interesting
tasks are their high practical relevance, their generahblifeiness, and the gredtats
associated with the development dfestive, customized solutions.

1.1 Research Questions of This Thesis

The main intention of this thesis is to model and solve réalstet scheduling problems
at reduced developmentfert. To achieve that goal we have to answer the following
research questions:

> We want to develop a domain specific language to modél stheduling prob-
lems in a very natural, simple, and intuitive manner. By tk&lof these tech-
niques, new software solutions for §tacheduling problems shall be obtained
more quickly, and already existing solutions shall be medifind extended eas-

ily.

> With the domain specific language not only we want to modef szheduling
problems éectively but also we wish to solve thenffieiently. For that purpose,
we desire to design and implement a solver for our domainifspdanguage

which optimizes std scheduling problems by the help of generic local search
algorithms.

> The proposed domain specific modeling language shall higelamain-specific
knowledge of st scheduling tasks or optimization algorithms. In that manne
they can be used by any ordinary developer or end-user, wisb moti be neces-
sarily a domain-expert.

CHAPTER 1. INTRODUCTION 3

> We want to deliver a proof of concept that our domain specificleting language
can be applied successfully to real-lifefStecheduling problems in practice.

1.2 Main Results of This Thesis

To answer the previously mentioned questions within thesig) we first consider two
real-life stdf scheduling problems. The first problem is a real-life breaesduling
problem for supervisory personnel, the second one is anbteak scheduling problem
originating from a call center. In both problems we are gigtting requirements and
already designed shift plans, and we must schedule bredkmhese shift plans in
order that several constraints concerning the legalityreék times and break patterns
are satisfied, and shortage offgia reduced to a minimum degree. For these two tasks
we develop two customized local search algorithms and weesstully obtain solutions

of acceptable quality within acceptable time.

On the basis of these two specific tasks we identify commoturfes. and basic
building blocks of general siascheduling problems, such as time intervals, links be-
tween time intervals, and curves. Furthermore, we obsehat,in stéf scheduling
tasks, properties, curves, and constraints, can be ddrimaceach other, step by step, in
a modular manner. Thus, we require from a domain specific imgdenguage for sté
scheduling problems, to provide abstractions and notatieflecting these basic build-
ing blocks and to enable a stepwise formulation of propedied constraints. Moreover,
since we want to solve dfascheduling problems via local search techniques, a domain
specific language shall also incorporate essential conmp®élocal search algorithms,
i.e., initial solutions, objective functions, and moves.

We review state-of-the-art modeling languages [56, 2232332, 38] and meta-
heuristic frameworks [9, 27, 30], and we examine whetheictaslding blocks of st&
scheduling problems and local search algorithms fisxrexd by these approaches. In nei-
ther of the considered modeling language#$t stieheduling problems can be modeled as
we desire it to do, either they are aimed at general comhilahtaptimization problems
and do not support basic building blocks offsscheduling tasks, or they are targeted
at a slightly diferent problem domain. As to metaheuristic frameworks, teeyiire
from potential user detailed knowledge of a framework'siire, of object orientated
programming, and of local search techniques, thus, theyeamesuited to be applied
by non-domain-experts. Therefore, we decide to develop PEE| a novel domain
specific language for modeling and solvingfBscheduling problems at reducefiiost.
With TEMPLE we achieve the following design goals:

Modularity: A TEMPLE model consists of small, concise building blockBewting
common features of dfascheduling problems. New building blocks are derived

CHAPTER 1. INTRODUCTION 4

from already existing ones. By this principle users areddrto formulate a com-
plex problem in small, concise and traceable steps. Coesdguthe resulting
problem models are well-structured, easy to understandjfynend maintain.

Adaptability and Extensibility: Problems modeled in TEMPLE can be adapted eas-
ily. A few small changes in the problem formulation resultyom a few small
changes in the corresponding TEMPLE program.

Simplicity: TEMPLE requires only basic programming skills from its @sseknybody
familiar with a third generation programming language s$tidne able to under-
stand and use TEMPLE.

Automatic Optimization: Once a problem is modeled in TEMPLE it can be optimized
in an instant without requiring additional coding from theeu

Openness:In contrast to other constraint-based modeling languafie®)PLE is not
restricted to a finite set of predefined features or consgraWve can model arbi-
trary features or constraints of fitacheduling problems in TEMPLE.

Efficiency: TEMPLE’s intrinsic computational overhead is kept asditds possible.
Thereby we ensure that problems cannot only be moddtedtwely but also
solved dficiently with TEMPLE.

To enable automatic optimization of ftacheduling problems we develop a TEM-
PLE compiler which transforms the TEMPLE model of afs&cheduling problem
into three executable local search algorithms: a simulatetealing algorithm [36], a
hill-climbing based approach [39], and an iterated localrsle algorithm [37]. These
algorithms can be applied instantaneously and do not requiy further user input or
modifications.

The key idea behind local search techniques is to repeagguily small changes
to intermediate solutions in order to find higher-qualityusions. In each step, local
search techniques examine solutions closely related toutrent one, a so-called local
neighborhood, and select one solution within that locagjinedbrhood to be the next
current solution. Usually the local neighborhood is coreguiy applying small changes,
also denoted as moves, to the current solution. Althougte thie significant dierences
among the local search algorithms generated by the TEMPLfapiter they basically
apply the same three main steps in each iteration:

1. They compute a set of moves to obtain a local neighborhddlgeacurrent solu-
tion.

CHAPTER 1. INTRODUCTION 5

2. They evaluate thefliect of each move on the current solution. When evaluating
a move they check whether the move is feasible, i.e., it doésause any hard
constraint violations, and they determine thfatience in the problem’s objective
function resulting from the move.

3. They select a feasible move and execute it to obtain a nke®o

In local search algorithms, most computationi@ibe is spent on the evaluation and
execution of moves. To ensure that these two steps are ccautedticiently, we apply
the following strategies in the local search algorithmsitad by the TEMPLE compiler:

Lazy Evaluation: If we observe that a move violates a hard constraint we wilewval-
uate the move’sféect on other hard and soft constraints.

Caching: We use a move cache to store the result of each evaluation @va on a
property, curve or constraint. With that move cache we caidathat a move is
evaluated several times for the same derived element.

Efficient Move Evaluation and Execution: When evaluating a move'stect on a so-
lution we only evaluate those properties, curves and caingsrthat are féected
by the move. Similarly, when performing a move we update dnbse solution
elements which are actually changed by a move.

Efficient Data Structures: To evaluate a move'sfkect on curves féiciently we devel-
oped and implemented a speed-up strategy. This strategyesnthat only those
curve positions are evaluated which aféeated by a move. By applying that
speed-up strategy we could reduce the computational cesteiated with curves
significantly.

To demonstrate TEMPLE’s modularity, simplicity, and opess, we reconsider the
real-life break scheduling problem for supervisory persnand model it in TEMPLE.
The resulting TEMPLE program consists of only 500 lines adeand is written in a
very concise, understandable and modular manner. In t@aleeded one man-week
to develop a suitable TEMPLE model for the considered brehkduling problem. An
experimental evaluation of the iterated local search #lyoron real-life and randomly
generated benchmark instances reveals that TEMPLE is aldenpute solutions of
high quality in acceptable time.

Finally, we consider a multilayered break scheduling asH &ssignment problem.
In this stdf scheduling problem we are given task requirements for aineeddy, an
already existing shift plan and the qualifications of eaciplegree. To obtain a solution
we must compute a break schedule which is completely cemsistith a set of legal

CHAPTER 1. INTRODUCTION 6

requirements and labor regulations, and in addition, wetrals® assign the required
tasks to available employees in accordance with their figgtions. Furthermore, task
assignments must satisfy several criteria. For instaramd) task must be performed by
the same employee for a certain number of minutes and enmgdf®uld not be forced
to change the task they carry out.

Since the considered problem is very complex as a whole wengigase it into
three separate phases each of which is modeled and solveskipaeate TEMPLE pro-
gram. In the first phase we compute a break schedule whicmistent with all legal
requirements. In the second phase we optimize the breaklsleheith respect to the
task requirements. In the third phase we assign the reqiaiséd to available employees
and we optimize the task assignment with respect to the iatposteria.

For the considered break scheduling and task assignmeieprowe extend and
adapt the TEMPLE program for the break scheduling probleradpervisory personnel
to solve the first and the second phase of the decomposedproly modeling tasks
as intervals linked with employees we also succeed in moglglhase three in a very
natural way.

The three resulting TEMPLE models represent the core of akiseheduling and
task assignment tool. With a prototype of that tool we delavgroof of concept that au-
tomated break scheduling and task assignment was possthia erreasonable amount
of time, i.e., approximately five minutes on a state of thecarhputer. The prototype
has been extended into a commercial application, whictrémdy used successfully by
decision makers in their day-to-day business.

To sum up, at this point we state explicitly the main resutisieved within this
thesis:

> We develop and implement a min-conflicts based algorithmafozal-life break
scheduling problem for supervisory personnel. Thanks &b dlgorithm we can
generate high-quality solutions that fulfill labor rulesidagal requirements, and
at the same satisfy stang demands.

> We adapt the min-conflicts based algorithm for a related Ipmobarising in a
real-life call center. Computational results on randomgnerated benchmark
instances reveal that the modified algorithm is able to ereldse to optimal
solutions within reasonable time. The min-conflicts badgdréghm is applied
successfully at the call center where it computes the dadglbschedules for call
center agents.

> We propose TEMPLE, a novel domain specific language designetbdel sté&
scheduling problems in a very modular and natural mannartHead purpose we
identify common features and basic building blocks offsteheduling tasks and

CHAPTER 1. INTRODUCTION 7

local search techniques which are reflected by the absiracthotations, and lan-
guage elementsfiered in the TEMPLE language. Thanks to TEMPLE, ordinary
developer and end users can modeffseheduling problems more concisely, and
the obtained programs can be easily modified and adaptechil@isstat schedul-
ing tasks.

> We develop and implement a TEMPLE compiler transforming TEM models
of steff scheduling problems into three executable local seararitligns. These
algorithms can be applied instantaneously and do not requiy further user input
or modifications. To ensure that the obtained algorithmanéed out éiciently,
we implement several strategies within the compiler, ineorthat only as many
computations as necessary are performed.

> We reconsider the break scheduling problem for supervigergonnel and model
it with TEMPLE. We show that the obtained model is indeed thaila modular
manner by using small concise building blocks, and thattérated local search
algorithms generated by our TEMPLE compiler is able to poedcompetitive
results of acceptable quality in reasonable time.

> We present a multilayered, real-life break scheduling as#t aissignment prob-
lem, and solve it with TEMPLE. Thereby we deliver a proof ofcept that TEM-
PLE can be applied successfully to real-lifefSscheduling problems. The local
search algorithms obtained from our TEMPLE model repretbentore of a com-
mercial st& scheduling tool which is currently used successfully ortaugr's
site to generate daily break schedules and task assigniauaht® react on intra-
day changes.

The results presented in Chapter 3 and Chapter 4 of thissthese already been
published in the journal "IEEE Intelligent Systems" andhe proceedings of the "7th
International Conference for the Practice and Theory ofofgted Timetabling”. In
addition, some of the ideas and figures described in Chaptenotgh Chapter 8 have
been submitted to the "26th ACM Symposium on Applied Commu{iSAC)" and the
journal "Engineering Applications of Artificial Intelligece"”.

1.3 Further Organization of This Thesis

Chapter 2 gives preliminary information about fBtacheduling problems and local
search algorithms. In Chapter 3 we address a real-lifestheduling problem for super-
visory personnel and solve it with a min-conflicts-basedl®@®arch strategy. Chapter
4 presents a similar problem originating from a call centerChapter 5 we identify

CHAPTER 1. INTRODUCTION 8

common features and basic building blocks offtsezheduling problems and design
the domain specific modeling language TEMPLE. Chapter Gvevirelated modeling
languages as well as metaheuristic frameworks and compiagse approaches with
TEMPLE. In Chapter 7 we design and implement a TEMPLE compiknsforming
TEMPLE models into three generic local search algorithmgkvbhan be executed in-
stantaneously to solve the underlyingfBsecheduling tasks. In Chapter 8 we model and
solve two real-life stfi scheduling problems, and we report on the application of TEM
PLE within a commercial sthscheduling software. Finally, Chapter 9 concludes and
describes future work.

Chapter 2

Preliminaries

2.1 A Classification of Stdf Scheduling Problems

The goal of st scheduling problems is the creation of work timetables fnspnnel
so that companies can satisfy legal requirements as wdikeademands for their goods
and services. Sfhscheduling is a multilayered process, usually consistingeweral
different subtasks, each of which representing a complex protalken by itself. In the
following, we will give an overview of the dlierent facets of the overall stascheduling
process, whereby we refer to a classification given by Erest ¢19].

2.1.1 Demand Modeling

Demand modeling is the process of determining or estimdtowg many st must be
deployed over a certain planning period. Thdfstee needed to perform activities, tasks
or services during that time, thus, we have to assess whtaliti@s, tasks and services
are required to be performed. Then we must derive the nunftemployees required
to carry out these duties. As a result we obtairtfistg requirements over a planning
period, specifying for each time point the number of empésythat should be working
at that time. Ernst et al. [19] mention thredfdrent categories of demand modeling
problems which frequently occur in practice:

Task based demand modeling.Stefing requirements are derived directly from a series
of individual tasks to be performed. Task based demand rmadi usually ap-
plied in areas where tasks and the exact times when they bdeegerformed are
known in advance, like in transport applications or procasgembly. Figure 2.1
(a) sketches how dfiing requirements are obtained via task based modeling.

CHAPTER 2. PRELIMINARIES 10

Flexible demand modeling. In that case activities, tasks or services to be performed
are not known exactly beforehand, thus, they must be estanaith forecasting
techniques. For instance, flexible demand modeling is &etiy applied to obtain
the stdfing requirements for call centers, retail stores or airpoetk-in counters.

Shift based demand modeling.Above all, shift based demand modeling is applied
within the health care sector, whereffiteg requirements can be derived directly
from a specification of the number of fitéhat are required to be on duty during
different shifts.

2.1.2 Shift and Break Scheduling

Typically, in shift scheduling problems we generate sHding in accordance with given
stdfing requirements. For that purpose we must decide what kihdhifbs are used
within a shift plan and we must determine the number of engdsythat should be
working in each single shift on each single day. Good shi#inplsatisfy stang re-
quirements, thereby they avoid shortage and excessfdfstd guarantee that required
activities, tasks or services can be carried digatively, and personnel are deployed
cost-savingly.

As a further aspect of shift scheduling problems, we mustnofichedule work
and meal breaks for shifts or single employees. The obtaineak schedules shall be
consistent with legal requirements, labor rules resulfiogn agreements between the
labor council and the management board, and ergonomiciarigreak scheduling tasks
arise pre-eminently in working areas where employees stteiidworking time in front
of computer monitors, such as call centers. The combinedlgmoof scheduling shifts
and breaks at the same time represents a very complex task thie entire problem is
often solved in two phases. In the first step a shift plan witlamy breaks is constructed,
and then, breaks are inserted in a subsequent phase.

Figure 2.1 (b) presents the fiitag requirements and a (suboptimal) solution for a
sample shift and break scheduling problem. In Figure 2.Iv@}ee that shortage and
excess of st still occur at some periods of time.

2.1.3 Line of Work Construction

After a shift plan has been obtained we must combine singfes sir duties to single
lines of work. A line of work represents the shift or duty jeatt for a single, individual
employee. Also when constructing lines of work, we have tsfalegal requirements
and ergonomic criteria, e.g., in a feasible line of work,ghhishift must not be followed
immediately by a day shift. Figure 2.1 (c) shows three fdadibes of work constructed
for an entire week.

CHAPTER 2. PRELIMINARIES 11

2.1.4 Stdf Assignment

During the process of dfaassignment we assign individual employees to single lines
of work (see Figure 2.1 (d)). Line of work construction anatfshssignment are often
solved together as a single #tacheduling problem.

2.1.5 Task Assignment

In task assignment problems we must assign activities ks t&sjuired to be carried out

to shifts or individual st (see Figure 2.1 (e)). Thereby, we often have to consider the
gualifications of employees and obtain a task assignmenthakiconsistent with sta
skills.

2.1.6 Further Surveys of Stéf Scheduling Problems

Besides the article on generalfftscheduling and rostering by Ernst et al. [19] there ex-
ist several surveys of dfescheduling problems focussed on specific industries. Betrke
al. [8] survey problems and solution approaches in the fieldicse rostering. A further
overview of diferent models and methodologies for nurse rostering is diyedheang

et al. [14]. Arabeyre et al. [2] and Barnhart et al. [5] prasemneview of the literature,
problems, and solutions techniques in the area of airliees acheduling. Considering
railway crew scheduling problems, manfjeetive models and solution approaches have
been proposed by Caprara et al. [12, 13, 11]. The readerdgedfto Aksin [1] and
Ernst [18] for an overview of dierent st& scheduling tasks and problems appearing in
the modern call center industry.

2.2 State-of-the-Art in Break Scheduling Problems

The stdf scheduling problems considered in this thesis are largedpakoscheduling
problems. Thus, at this point, we give a short review on previwork performed in the
area of break scheduling.

Break scheduling has been mainly considered in the litexadg part of the shift
scheduling problem. Dantzig developed the original seedag formulation [15]. In
this formulation there exists a variable for each feasihl&.9-easible shifts are enumer
ated based on possible shift starts, shift lengths, breaidtime windows for breaks.
When the number of shifts increases rapidly, this formafats not practical. Bechtold
and Jacobs proposed a new integer programming model [6hein formulation, the
modeling of break placements is done implicitly. Authonsaded superior results with

CHAPTER 2. PRELIMINARIES 12

(a) Demand Modeling.

required tasks

task,
4 taskg tasky,
task ftask Jtasks |
faske [Basko sk sk festscfiestae] [T askofasiag
T
task; taskg task 4 tasky7 tasky4 taskyy
T I I I I I I I
06:00 12:00 18:00 00:00 06:00
required employees ———-— i
24 m—————— -
1 I_ — —'l I— L ————— — — — — — — — — -
L | L
i I I I T I I I I I
06:00 12:00 18:00 00:00 06:00

(b) Shift and Break Scheduling.

required employees ———= working employees shortage M excess
3
2 l_.l D L__l
1 —

j T | T T I T T T

06:00 12:00 18:00 00:00 06:00
shift plan shift [break]
shift, (NN TN TR T shift, (NI T OO T
shift, (NI TR TR T shift; (NI TN T T
shift5 ([N [

I I | I I T I T I T I T I T
06:00 12:00 18:00 00:00 06:00

(c) Line of Work Construction.

Mon Tue Wed Thu Fri Sat Sun Mon
T T T T T T T T T
line of work4
. - - - - - morning shift
line of work »
| — | [[rate shift
line of works I night shift
[[] /
(d) Staff Assignment.
Mon Tue Wed Thu Fri Sat Sun Mon
T T T T T T T T T
ﬁ John Smith
[]] []]
- morning shift
Kay Jones
= = = = = B ate it
ﬁ Tim Young B night shift
==]] [-
(e) Task Assignment.
shift plan idle time [break [
task, taskg task,4 taskg, taskqg taskyq

shift 4 [T Jeske] T] shift 4 lesiad] [T Tiaskool [T sk,

shifty taske| llask, | iaskio] faskeg] shift 5 faskod] T4 TT Taskoo [T

shift 3 [flaska] Trasks [ftasko] taskiy taskys
T T T | e
06:00 12:00 18:00 00:00 06:00

Figure 2.1: Subtasks involved in the overallfsscheduling process according to Ernst
etal. [19].

CHAPTER 2. PRELIMINARIES 13

their model compared to the set covering model. However;, #pproach is limited to
scheduling problems of less than 24 hours per day. Thompsiaduced a fully implicit
formulation of the shift scheduling problem [53]. A coman of diferent modeling
approaches is given by Aykin [4]. Rekik et al. [48] developed other implicit models
and improved upon previous approaches including Aykin&gral [3] by up to about
10 percent.

A greedy algorithm for scheduling breaks after generathifjsshas been presented
in [25]. The authors propose a simple algorithm which inekithe phase of assigning
the breaks greedily based on the information for the largesgss, and then applying
simple repair steps on the assigned breaks.

Tellier and White present a tabu search based approachen tardolve a schedul-
ing problem originating from call centers [52]. They aim aihmmizing the squared
deviation of working employees from $fimg requirements while various constraints
are required to be satisfied. In [52] there is a corresporel&etween shifts and real
employees of the contact center, and the constraints onséleaolution restrict the
position of breaks within shifts, the position and lengthsiogle shifts within the entire
schedule, and the minimum and maximum number of paid wotkings per employee.
Canon investigates also the use of tabu search for the ssfg problem including
breaks [10].

Thompson and Pullman [54] argue that scheduling breaksltsimaously with
shifts increases the quality of obtained shift plans. Aligifothis is reasonable, in many
real-life scenarios, like in our problem, it is required tst schedule breaks in already
existing fixed shift plans.

The break scheduling problem we will adress in Chapter 3 &éesntly also been
investigated in [44, 58, 59]. A memetic algorithm for thi®blem is presented in [44].
The moves applied in [44] are based on on our work, that wilsbewn in Chapter
3. Moreover, the memetic algorithms for that problem havenbrrther improved by
applying a new memetic representation and a penalty mesindor memes [58, 59].

2.3 Local Search Algorithms

The great drawback in dtasscheduling problems is that they are NP-hard in general. Ex-
amples of NP-hard sfiascheduling problems are shift scheduling problems, sut¢heas
min-shift design problem of which even a logarithmic appmeation is NP-hard [26],

or break scheduling problems [58]. Due to their general [dRhhess, stischeduling
tasks cannot be solved to optimality in polynomial time & tihesent, and most likely
not in future either. Therefore, stacheduling problems are solved using mathematical

CHAPTER 2. PRELIMINARIES 14

programming or sophisticated Al-techniques, such as @instprogramming, heuris-
tics, metaheuristics, or branch and bound algorithms.

Algorithm 1 Basic Local Search

1. computean initial solutionx
repeat
selecta solutionx’ € N(x) within the local neighborhood of
X=X
end select
until termination conditionis satisfied
return best solution found by the search algorithm

No g~ DN

Local search techniques are a class of metaheuristic #igwj which have been
applied successfully to various fitacheduling tasks. The key idea behind local search
algorithms is to repeatedly apply small changes to intefatedsolutions in order to
find higher-quality solutions. Algorithm 1 presents a thesibgoriciples of a local
search algorithm in pseudo code notation. In the followirgyimtroduce and describe
frequently used terms within the area of local search dlgmis:

Search space.The search space is the set of all solutions for a particygimization
problem.

Objective function. An objective function, also referred to as fitness functioraps
solutions within the search space to real values. The dwgwal of a local search
algorithm is to find a solution minimizing or maximizing thbjective function of
the considered problem.

Initial solution. A solution or point within the search space at which a locarce
algorithm starts.

Move. A move is a small change which is applied to obtain a furth&rtsm.

Local neighborhood. The local neighborhood of a current solution is a set of smhst
closely related to the current one. A local neighborhoodbisioed by applying
different moves to the current solution.

Local optimum. A local optimum is a solution having a better objective vathan
any other solution within its local neighborhood. When ¢aomging local search
algorithms a crucial point is to develop and implement sggis to escape local
optima and explore further regions within the search space.

CHAPTER 2. PRELIMINARIES 15

Global optimum. A global optimum is an optimal solution of a considered ojitation
problem.

Figure 2.2 presents the search space of a fictitious maxiimizaroblem. The
height associated with a point encodes the objective vdltreeaorresponding solution.
Further we see a possible execution of a local search diguriStarting at an initial
solution, the algorithm visits solutions of improved oltjee value until a local optimum
is reached. After escaping the local optimum the algoritkpiares new regions of the
search space, and finally, it reaches a globally optimaltisolu

o global optimum
L local optimum
<> initial solution
———— search trajectory

= infeasible region

feasible region

0
b
i
e
C
t
i
S v
“' ’M“t\\\ e
10 W 1 "” iy, 1
Ly} "‘\')‘{" '*’
T AT
i SR I S
e f SsEEly =
Y
R “'"}"“ﬁ“l‘\“\\ i = S 10
S M ==
SIS

S

Figure 2.2: A fictitious execution of a local search algaritin a two dimensional
search space.

2.3.1 An Overview of Local Search Techniques Used in This Tises

In this thesis we develop a domain specific language to modkkalve st& schedul-
ing problems. For that purpose we design and implement a itemwghich transforms

CHAPTER 2. PRELIMINARIES 16

problem models written in the domain specific language inted generic local search
algorithms that can be executed instantaneously withapinieg any further user in-
put. In the following, we will describe the basic principlekthese three local search
algorithms in detail.

Hill Climbing with Random Noise

The first local search algorithm is presented in AlgorithrmZseudo code notation.
[39]. As input the algorithm is given a small probabilipyise controlling the behaviour
of the local search process. After an initial solution isamied, the algorithm applies
either a hill climbing strategy [39] with high probability-1pneise Or performs a random
noise move with small probabilitypneise The hill climbing strategy computes a local
neighborhood and selects the best feasible solution havibgtter objective function
value. If the search reaches alocal optimum, i.e., a sollit@iter than any other solution
within that solution’s local neighborhood, hill climbingilwnot proceed any further,
since it will not find solutions of better quality. To escapedl optima, we introduce the
local noise process, which accepts any feasible solutienacal neighborhood, even a
solution of minor quality.

Iterated Local Search

Iterated local search algorithms [37] consist of three conents, a local search strategy
used to reach locally optimal solutions, a so-called peatiobh mechanism which is
applied to escape from local optima and an acceptanceicritdeciding whether the
search process will continue from the current solution orevipusly obtained one.
Figure 2.3 illustrates the interaction between local deanmed perturbation in a local
search algorithm.

The iterated local search algorithm generated by our cemngslpresented in Al-
gorithm 3. First the iterated local search algorithm triesdach a local optimum by
applying the hill climbing strategy presented in Algoritim The hill climbing algo-
rithm terminates if no improvement has been achievedHfdterations and returns the
obtained locally optimal solutior*.

Then, the locally optimal solutior® is passed to the pertubation process presented
in Algorithm 5. The pertubation proceeds with any arbitréggsible solution within
a local neighborhood, and it terminates affesolutions of minor quality have been
visited. Afterwards hill climbing is applied again until aw local optimumx’™* has been
reached.

Finally, the algorithm decides whether the search shouttimoe from the current
local optimumx’™ or if the previously obtained local optimuxi should be restored.

CHAPTER 2. PRELIMINARIES 17

Algorithm 2 Hill Climbing with Random Noisé(pnoise S)
1. computean initial solutionx

: repeat

3
4
5. /hill climbing

6: with probability 1— pngisedo

7 computeN(x, s) a local neighborhood of of sizes
8 evaluateN(x, s)

9 selectthe best feasible solutioxi € N(x, 9)

10: if X < xthen

11: X=X
12: end if
13: end select
14: end with

15:

16: /random noise
17: with probability ppeise dO

18: selecta random feasible solutioxi in a local neighborhood of
19: X=X

20: end select

21: end with

22:

23: until atime limitt has been reachemt an optimal solution has been found
24: return best solution found by the search algorithm

In our local search algorithm we implemented the followihgee diferent acceptance
criteria taking that decision:

Accept Always. The search continues with the last obtained local optinx(im
Accept Best. The search continues with the better local optimum.

Accept Percentage.The search continues with solutiodi if it is better or its loss of
quality does not exceed a certain threshold.

Simulated Annealing

Simulated annealing [36] is based on an analogy from meggiluTo grow crystals of
high quality several substances are first melted and cooleddontrolled way after-

CHAPTER 2. PRELIMINARIES 18

fithess value

local optimum

global optimum

Y

solution

Figure 2.3: Interaction between local search and pertiip@t an iterated local search
algorithm.

Algorithm 3 lIterated Local SearchH, P, 9)

1. computean initial solutionxg

2: X" = Hill Climbing(xg, H)

3: repeat

4: X = Perturbation(x*, P)

5. x* = Hill Climbing(x’, H)

6: X" = Acceptance Criteriofx*, x'*)

7: until atime limitt has been reachex an optimal solution has been found
8: return best solution found by the search algorithm

wards. Appropriate cooling reduces the defects in the tiagutrystal. This strategy has
been applied successfully to many optimization problems.

The basic principle of the simulated annealing techniquaemented in this thesis
are described in Algorithm 6 in pseudo code notation. Therélgn creates an initial
solution for the considered optimization problem and aeiees an initial and final cool-
ing temperatureTini: andTfinal, as well as a decay rate In each iteration we consider
a neighborhood consisting of a single solution. If that Sofuis better than the current
one it will be accepted for the next iteration. Otherwises generated neighborhood
solution is accepted with a probability depending on theperature and the quality of
the solution. Typically the temperature is very large in lleginning of the search and

CHAPTER 2. PRELIMINARIES 19

Algorithm 4 Hill Climbing(x, H, s)

1: repeat
compute N(x, s) a local neighborhood of of sizes
3: evaluateN(x, 9
4: selectthe best feasible solutioxi € N(x, S)
5: if X < xthen
6
7

X=X
end if
8. end select
9: until solution has not been improved within lastiterations
10: return best solution found by the search algorithm

Algorithm 5 Perturbationg, P)
1: repeat

2: selecta random feasible solutioxi in a local neighborhood of

3 X=X

4: end select

5

6

. until P moves worsening the quality afhave been performed
: return X

the simulated annealing behaves like a random search tpehnlfoward the end of the
search the temperature decreases and simulated annegliagel like an ordinary hill
climbing strategy, meaning that it accepts only neighlgpsalutions of better quality.

Our implementation of a simulated annealing algorithm istaled by three pa-
rameters, the initial temperatufig,;;, the final temperaturé ;jn and the decay rate
determining how fast the temperature is lowered. At thed sffathe algorithm these pa-
rameters are determined as follows: First of all we applyregs®f moves, to the initial
solution and store the fitness loss resulting from each mMaeover we also record
the running times needed to compute and evaluate each mimra.tke observed fithess
losses we compute the average fitness loss per miyeis chosen such that a move
with an average fitness loss has a probabilitpgf to be performed at the beginning of
the simulated annealing algorithfisiny iS computed such that a move with an average
fitness loss will be performed with probabiliptina at the end of the simulated annealing
strategy. From the recorded running times we estimate fgingiiv many moves will be
computed and evaluated until our algorithm has consumdahias running time. The
value for the decay parameteris chosen in such a manner that the final temperature
will be reached approximately at the middle of the simulatedealing algorithm.

CHAPTER 2. PRELIMINARIES 20

Algorithm 6 Simulated annealing(pinit, Pfinal)

1. computean initial solutionx
2: compute Tinit, Tfinal @nda on the basis opinit, Prinal @ndtime limit

3:

4: T = Tinit

5. repeat

6:

7. selecta random feasible solutioxi in the local neighborhood of
8: if X' < xthen

9: X=X

10: else

11: p=e’"T

12: with probability p do
13: X=X

14: end with

15: end if

16: end select

17:

18: T= ma>(T X Q’,Tfina|)

19:

20: until time limit t has reachedr an optimal solution has been found
21: return the best solution found by the search algorithm

Chapter 3

A Break Scheduling Problem for
Supervisory Personnel

In this chapter, we address a complex real-world breakekdimgy problem for supervi-
sory personnel. Supervisory personnel spend most of tregkday in front of computer
monitors, addressing critical and constantly changingasibns. For employees working
under such conditions to always maintain high levels of eotration, it is essential that
they take occasional breaks. Usually, the amount of bread, tas well as the position
and duration of breaks within their work time (shift) are ukded by labor rules that
must be satisfied by a feasible shift plan. Moreover, to guasdfective supervision,
a minimum number of employees must be working at any givee.tim our particular
problem, we had to design shift plans over one week coniminre than a hundred
shifts and more than a thousand breaks. The problem’s stzeanplexity made it im-
possible for a professional planner to reach a good solui@gnreasonable amount of
time. Thus, automatic or computer-aided break scheduliag tive only way to obtain
high-quality shift plans that could both fulfill legal regqements and reduce cost. So,
we developed a min-conflicts-based local search algorithhelp planners design such
shift plans in the area of supervisory personnel. This lsdarmimics human experts
when solving break-scheduling problems and obtains gosdltee The heuristic is part
of a commercial product called Operating Hours Assistafit 3.

3.1 Formal Inputs to the Break-Scheduling Problem for Su-
pervisory Personnel

In this break-scheduling problem, we are concerned with ghans for supervisory
personnel in which each shift must contain a certain amofibreak time. Our goal

21

CHAPTER 3. A BREAK SCHEDULING PROBLEM FOR SUPERVISORY... 22

is to schedule breaks within the shifts in a solution thatimipes a weighted sum of
constraint violations representing legal demanddfistarequirements, and ergonomic
criteria. Formally, the break-scheduling problem for su®ry personnel has the fol-
lowing inputs:

> A planning period is formed by T consecutive time slots
[a1, &), [ag, &3), ..., [aT, aT41], all having the same length (typically 5 min-
utes). Time pointsy anday,; represent the beginning and end of the planning
period.

> Shifts (s1, &, ..., Sn) representing employees working within the planning perio
Each shift,s, has an adjoined parametstpreaktime that specifies the required
amount of break time fos in time slots.

> The stdfing requirements for the planning period are defined as falldvor each
time slot, f, ai11), an integer valug, indicates the required number of employees
that should be working during that time slot. An employeedsgidered to be
working during time slotd, a;,1) if that employee neither has a break during time
slot [a;, a+1) nor has stopped working at time point at. After a break, apleyee
needs a full time slot, usually 5 minutes, to become reaodeiwith the altered
situation. Thus, during the first time slot following a break employee is not
considered to be working.

Shifts and breaks are characterized by two parameters asigiend, representing
the time slots in which a shift or break starts and ends. Saotitg the value for start
from the value for end gives the duration of shifts and breakisne slots. The durations
of shifts and breaks are stored in an additional parameieafidn. Moreover, each break
is associated with a certain shift in which it is schedulece dhstinguish between two
different types of breaks: lunch breaks and monitor breaks.

3.2 Feasible Break-Scheduling Solution

Given a planning period, a set of shifts, the associated hotéak times, and the sfng
requirements, a feasible solution to the break-schedylinglem is a set of breaks with
the following characteristics:

> Each breakbj, lies entirely within its associated shi, That is,

§.start < bj.start < bj.end= s.end

CHAPTER 3. ABREAK SCHEDULING PROBLEM FOR SUPERVISORY... 23

> Two distinct breakslyj, by) associated with the same shif, do not overlap in
time:

bj.start < bj.end < by.start < by.endor

by.start < bg.end< bj.start < bj.end

> In each shift,s, the sum of durations of its associated breaks equals thereeq
amount of break time:

2bjes Dj.duration= s.breaktime

3.3 Criteria for Finding an Optimal Solution

Among all feasible solutions for the break-scheduling ot we try to find an optimal
one according to seven criteria, which we model as soft caings on a solution.

C.: Break Positions. Each breakb;, may start, at the earliest, a certain number of time
slots after the beginning of its associated skiftand may end, at the latest, a
given number of time slots before the end of its shift:

bj.start > s.start + distance to shift start
bjend < s.end - distance to shiftend

C,: Lunch Breaks. A shift 5 can have several lunch breaks, each required to last a
specified number of time slota{n lunch break duratioy and should be located
within a certain time window after the shift start. s be a lunch break. Then,

bp.start > g.start + distance to shift start Ib
bp.end < s.end - distanceto shiftendlb

Cs: Duration of Work Periods. Breaks divide a shift into several work and rest peri-
ods. The duration of work periods within a shift must rangeveen a required
minimum and maximum duration:

min work duration < bj.start — g.start < maxwork duration
min work duration < bj,i.start — bjend < maxwork duration
min work duration < s.end — bmend < maxwork duration

where 1, ..., bj, bj;1, ..., bm) are the breaks o in temporal order.

CHAPTER 3. ABREAK SCHEDULING PROBLEM FOR SUPERVISORY... 24

C4: Minimum Break Times after Work Periods. If the duration of a work period ex-
ceeds a certain limit, the break following that period mast & given minimum
number of time slots (min ts count):

min ts count
min ts count

b;.start — §.start
bj;1.start - bj.end

work limit = bj.duration

>
> worklimit = Dbj,;.duration

>
>

where, once againby, ..., bj, bj,1, ..., bm) are the breaks o in temporal order.

Cs: Break Durations. The duration of each break;, must lie within a specified mini-
mum and maximum value:

min duration < bj.duration < max duration

Ce: Shortage of Employees.In each time slot, d;, a,1), at leastr; employees should
be working.

C7: Excess of Employeesin each time slot,d;, a;,1), & mostr; employees should be
working.

3.4 Objective Function

For each constraint, we define a violation degwaation(Cy), specifying the deviation
(in time slots or employees) from the requirements statethbyrespective constraint.
The importance of each criterion and its corresponding tcain$ varies from task to
task. Consequently, the break-scheduling problem’s @ilsgetunction is the weighted
sum of the violation degrees of all the constraints:

F(solution) = ¥,/_, Wk x violation(Cy)

whereW is a weight indicating the importance assigned to congti@in Given an
instance of the break-scheduling problem, our goal is to éirfdasible solution that
minimizes this objective function.

3.5 Solving the Break-Scheduling Problem

Widl [58] has shown that the break scheduling problem foresvgory problem is
NP-complete, if all possible break patterns are given eityliin the input. Local-
search techniques represent one possible way to obtaitnosawf suficient quality for

CHAPTER 3. A BREAK SCHEDULING PROBLEM FOR SUPERVISORY... 25

complex optimization tasks. Therefore, we developed aHeearch algorithm for the
break-scheduling problem, namely a minimum-conflictsebaseuristic [42]. Obtaining
a minimum-conflicts-based heuristic for the break-schadyproblem required

> developing a representation of a solution for the brealedaling problem,
> finding a method to generate an initial solution for this peatn
> defining an objective function to map solutions to real vajuand

> developing moves for the break-scheduling problem to caenfhe local neigh-
borhood of solutions.

3.6 Solution Representation

We represent a solution of this problem as a set of breakseaair shift,s, the breaks
to be scheduled are instantiated at the beginning of a ke=aleh algorithm. So, we first
generate lunch breaks, and then we distribute the remalmizak time among monitor
breaks until the total amount of break timegrequalss.breaktime Hence, the duration
of each lunch break is set to the exact number of time slotsined by constrainC,
(lunch breaks), and the duration of each monitor break lidgmthe specified minimum
and maximum limits imposed by constrai@t (break durations). Table 3.1 describes
which breaks are created for an 8-hour shift in a problemaie# with the settings
presented in Figure 3.2.

In the min-conflicts-based algorithm, the start of a breakstart, is a variable
integer value that can be altered during the search protes®ntrast, we require that
the duration of a breaky;.duration remains unchanged and keeps its initially assigned
value. We allow that two or more breaks may be scheduled catigely so that breaks
of longer duration can be created.

3.7 Initial Solution and Objective Function

Once the breaks are created, they must be placed in the djifeplan. We implemented
two methods to schedule breaks within their associatetssHihe first simply schedules
breaks randomly so that they do not overlap. The second sld®ebdreaks so that the
resulting break pattern completely satisfies constraltthroughCs. We formulated
this task as a simple temporal problem (STP) [16] and we ddlvis problem by apply-
ing a randomized version of the Floyd-Warshall shortesit-pégorithm [45] which has
a polynomial runtime.

CHAPTER 3. A BREAK SCHEDULING PROBLEM FOR SUPERVISORY... 26

Shift and break information Time No. of time slots
Shift s

s.duration 8 hrs. 96
s.breaktime 90 min. 18
Created breaks

1 lunch break 30 min. 6

6 monitor breaks 10 mink 6=1 hr. 12

Table 3.1: Example describing which breaks are createdif@laour shift with the
settings of Figure 3.2.

An STP consists of a set of variablgs= Xy, ..., X, and a set of constraints on those
variables. The variables of an STP represent time pointspasontinuous domains.
Each constraint is represented as an interval that eitsgrats the domain values for a
single variableX; or restricts the dference X — X;) of two distinct variablesX;, X;).

To schedule breaks correctly with respect to constréathroughCs, we modeled
the start and end parameters of shifts and breaks as variafoden STP. For the various
limits imposed on break positions and on the duration of kseand work periods, we
introduced the following constraints into the STP for coaisitsC, throughCa.

Ci: Dbj.start e [(s.start+ distance to shift stajis.end
bjend € [s.start (s.end- distance to shift engd

Cy. bp.start € [(s.start+ distance to shift start ps.end
bp.end € [s.start (s.end— distancetoshiftend)p

Cs: by.start — g.start € [min work duration max work duratioh
bj;i.start — bjend € [minwork durationmax work duratioh
s.end — bmn.end € [min work duration max work duratioh

Cy4: if bg.duration < mints count
b;.start— s.start € [min duration work limit)

if bjii.duration < min ts count
bj,1.start— bj.ende [min duration work limit)

The two temporal constraints f@, are inserted if and only ifify.duration < min

CHAPTER 3. A BREAK SCHEDULING PROBLEM FOR SUPERVISORY... 27

length and p;.1.duration < minlengtl), respectively. Constrair@s is automatically
satisfied by the obtained solution, because we created aegkdé whose durations
ranged between the required minimum and maximum break fimis! The criteria
for a feasible solution are implicitly covered by the coastts just described. As the
objective function, we use the weighted sum of the violatiegrees of all constraints,
F(solution, as discussed earlier.

3.8 Moves and Local Neighborhood

We developed two types of moves for the break-schedulingl@no. The first move
(called assignment) assigns to a break a new start withiesgsective shift. The second
move (denoted swap) exchanges the start times of two breabksiated with the same
shift, meaning those breaks are actually swapped. Figliidistrates these two moves.
Given a feasible solutio® to the break-scheduling problem, the neighborhbig8) is
the set of all solutions obtained by applying an assignmeatgingle break irs or by
swapping two breaks within the same shiftSn

assignment
W
(Rl Heinll [[1] [[T 1]

[JalEss[in [T TI | [Gordon
[H fof foom [T 11 | U
[e { fres [T I] Swap

[Mathad [on [] [] |
[Tl pmas Rl Fson [] |

I B B B B B B L L L B B I B I |
OO0 700 200 300 1000 100 1200 1300 1400 15900 1600 1700 1800 1800 2000 200

Figure 3.1: The two moves developed for the break-scheglypinblem. The
assignment move assigns to a break a new start within itecége shift.
The swap move exchanges the start times of two breaks atsbuidh the
same shift.

CHAPTER 3. A BREAK SCHEDULING PROBLEM FOR SUPERVISORY... 28
3.9 Minimum-Conflicts Heuristics

The minimume-conflicts heuristics tries to improve the cotreolution by concentrating
only on the parts that cause constraint violations. Duringteration, the minimum-
conflicts-based heuristic selects a break that violatessti@int and determines a move
to minimize, or at least not worsen, the current solutiontation degree. If such a
move exists, it is applied to the current solution, and therd®e continues until some
halting condition is satisfied.

The minimum-conflicts search method applies only movesdbatot decrease the
current solution’s quality. Thus, if the search reachescalloptimum solution that is
better than any solution within that solution’s neighbatiothe algorithm will not pro-
ceed any further, since it will not find solutions of betteality than the local optimum.
To avoid this undesirable behavior, we apply an additiotratesgy named random walk,
which has been used successfully in algorithms for satifiaproblems [50].

The random-walk strategy also selects a break that viotatesstraint. However,
unlike the minimum-conflicts-based heuristic, random wagtiplies an arbitrary move
to that break. On the one hand, the violation degree of thdtieg solution could be
worse than the previous one. But, on the other hand, penmgrsiich moves can help
the algorithm escape from local optima. We call the comlmnadf both strategies min-
conflicts-random-walk. The random-walk strategy is caroat with a small probability
of p, whereas the ordinary minimum-conflicts search is carrigdhith a high probabil-
ity of 1 — p. The concrete value gf is determined experimentally.

3.10 Benchmark Instances for the Break-Scheduling Problem

To evaluate the min-conflicts-random-walk heuristic, wstdd it with 20 real-world
instances originating from a consulting project. In eactance, we were given the
stdfing requirements for one week and a shift plan consisting 6ftdé2150 shifts, re-
sulting in more than a thousand breaks to be scheduled foriesiance.

In addition to the real-world examples, we created a serfemmdomly gener-
ated benchmarks for the break-scheduling problem, whietagailable atiww . dbai .
tuwien.ac.at/proj/SoftNet/Supervision/Benchmarks and can be used by other
researchers to compare their results with ours. (This Welasso details how the ran-
dom instances are generated.) For random instances, amabsilution without any
constraint violation is known. Thus, we can determine thgrele to which the results
returned by the min-conflicts-random-walk algorithm déwiiom the optimal solution.

CHAPTER 3. A BREAK SCHEDULING PROBLEM FOR SUPERVISORY... 29
3.11 Experimental Settings

In our experiments, the goal of optimization was to obtailutsans that both satisfy
labor rules and avoid periods of employee shortages. Labes for supervisory per-
sonnel are modeled by constraifts(break positions C3 (duration of work periodls
andC4 (minimum break times after work perigd$§o, we assigned the highest weights
to these constraints in the objective function. We also gavigh weight to constrairitg
(shortage of employeandC, (lunch break} and we gave all other constraints lower
values. The summary form presented in Figure 3.2 statesxt weights assigned to
each constraint.

We conducted our experiments on several computers and hoechall runtimes

to a Genuine Intel T2400 laptop running at 1.8 GHz with 2 GeERAM. For each
instance, we performed 10 runs of the min-conflicts-ranaeatk heuristic, and a single
run took 1 hour. In a preliminary series of experiments, weiheined the value for
the random-walk probability. We considered fivéfeient percentages (0, 1, 2.5, 5, and
10) and applied them to our benchmark instances. The bestsy®gre obtained with

a random-walk probability op = 2.5 percent, so we used this random-walk probability
for our further experiments.

3.12 Tests on Real-World Instances

For the 20 real-world benchmarks, we experimented with @r@awts of initial solutions
to assess whether the initial solutiofiezcted our algorithm’s outcome. The first variant
uses an initial solution that randomly places breaks. Thers variant begins with a
solution that already satisfies constraiitsthroughCs by solving the corresponding
STP [16].

Table 3.2 presents the results for these benchmarks fronud® of the min-
conflicts-random-walk algorithm. The mean objective valwé the initial solutions
obtained by scheduling breaks randomly were six to ninesiwarse than those of solu-
tions created by solving the corresponding STP. Neverdketbe min-conflicts-random-
walk algorithm can return good solutions for both variaf@s. the basis of these results,
we conclude that the initial solution does not significanthpact the outcome of the
solution computed by the min-conflicts-random-walk altfori.

CHAPTER 3. ABREAK SCHEDULING PROBLEM FOR SUPERVISORY... 30

Total break time per shift (minutes)
For shifts of length L [00:00, 10:00] minimum break time = floor[(L - 20)/50] * 10.
For shifts of length L (10:00, *] minimum break time = L/4.
[L denotes shift length (minutes)]
Weight
Break positions 20
Earliest start 00:30 after shift begins.
Latest end 00:30 after shift ends.
Lunch Breaks 10
Shifts of length [00:00, 06:00] do not contain any lunch breaks.
Shifts of length (06:00, *] contain one lunch break.
Lunch break 1
Length 00:30 after shift begins.
Earliest start 03:30 after shift begins.
Latest end 06:00
Duration of work periods 20
Minimum length 00:30
Maximum length 01:40
Minimum break time after work periods 20
Schedule a break of minimum 00:20 if work period exceeds 00:50.
Break durations 1
Minimum length 00:10
Maximum length 01:00
Shortage of employees 10
Excess of employees 2

Figure 3.2: Common constraint settings for the consideredkscheduling problem.
We used these settings for the experimental evaluationeof th
min-conflicts-random-walk algorithm.

CHAPTER 3. A BREAK SCHEDULING PROBLEM FOR SUPERVISORY... 31

min-conflicts-random-walk heuristic min-conflicts-ramaavalk heuristic with
with randomly generated initial solutions initial solut®created by solving the
(objective-function values) corresponding STP (objezfunction values)

Initial- Initial-

solution Standard solution Standal
Instance Shifts Breaks mean Best Mean deviation mean Best anMe deviation
2fc04a 135 1,113 95,898.6 3,094 3,248.0 83.6 13,058.8 3,1B224.2 86.1
2fc04a03 134 1,130 93,753.8 3,100 3,229.0 60.9 13,092.0 383,13,199.6 38.7
2fc04a04 137 1,144 97,175.0 3,232 3,371.2 67.9 12,962.0 343,23,342.1 59.5
2fc04b 126 1,064 88,225.6 2,017 2,104.1 915 13,639.6 1,822042.8 99.1
3fc04a 124 1,048 90,065.8 1,746 1,809.0 49.1 13,420.0 1,644767.0 101.6
3fc04a03 123 1,052 88,824.6 1,632 1,804.2 87.0 13,202.8 701,61,759.2 53.1
3fc04a04 128 1,075 90,801.0 1,942 2,032.0 51.0 12,802.8 321,91,980.2 40.4
3si2ji2 151 1,182 98,761.2 3,626 3,692.2 35.2 10,7244 63,643,666.6 14.5
4fcO4a 124 1,050 85,808.6 1,694 1,850.6 125.8 13,345.6 01,73,817.1 48.2
4fc04a03 123 1,053 89,4742 1,666 1,795.0 86.8 13,061.2 481,71,834.2 55.5
4fc04a04 127 1,068 90,357.4 1,918 2,016.6 949 12,808.4 821,92,063.6 62.3
4fc04b 125 1,048 89,0004 1,440 1,526.6 56.3 12,9344 1,410489.2 48.7
50fc04a 130 1,091 94,776.6 1,750 1,860.6 949 14,161.6 21,61,827.3 80.6
50fc04a03 130 1,101 92,2955 1,718 1,847.0 96.3 14,127.3%861, 1,813.2 84.1
50fc04a04 131 1,112 93,427.4 1,790 1,985.4 83.3 13,930.87921, 1,917.2 64.1
50fc04b 126 1,069 91,969.6 1,854 2,012.2 90.9 14,857.6 21,82,953.9 77.1
51fcO4a 129 1,081 90,374.2 2,048 2,204.2 89.4 14,535.2 42,02,166.2 62.3
51fc04a03 129 1,089 92,096.6 2,004 2,096.2 60.4 14,337.29501, 2,050.4 86.5
51fc04a04 130 1,101 94,761.6 2,058 2,194.8 64.4 14,319.21162, 2,191.4 53.1
51fc04b 126 1,065 89,693.2 2,380 2,513.6 106.2 14,956.4 442,22,389.4 93.9

Table 3.2: Test results for 20 real-life benchmark instarfoem 10 runs of the

min-conflicts-random-walk algorithm for randomly genectnitial
solutions and for solutions created by solving the corredpa simple
temporal problem (STP).

3.13 Tests on Random Instances with a Known Optimal Solu-
tion

For the experiments with randomly created benchmarks, lgetsel 10 instances having
between 120 and 180 shifts, since that was also the typistdnoe size of our bench-
marks. To these instances, we applied only the min-conflastdom-walk algorithm

using a randomly scheduled initial solution. We created ifienstances by model-
ing and solving STPs, so we did not want to create an initialtem using the same
technique. Table 3.3 reports the best and mean objectivesakturned by the min-
conflicts-random-walk algorithm in 10 runs and presentsdbeesponding standard
deviations. Given that we assigned high values to singlestcaints in our objective

function, the returned mean and best objective values dte gatisfactory, although
an optimum solution avoiding any constraint violations Idauot be found by the min-

conflicts-random-walk algorithm.

CHAPTER 3. A BREAK SCHEDULING PROBLEM FOR SUPERVISORY... 32

Standard
Instance Shifts Breaks Optimal Best Mean deviatipn
random1-1 137 962 0 1,728 1,972.4 176.4
random1-2 164 1,060 0 1,654 1,994.0 172.1
random1-5 141 950 0 1,284 1,477.0 199.¢
random1-7 157 1,089 0 1,860 1,077.2 153.
random1-9 151 985 0 1,358 1,658.0 212.8
random1-13 124 884 0 1,264 1,535.2 2452
random1-24 137 928 0 1,586 1,712.8 74.5
random1-28 124 809 0 1,710 2,020.0 233.
random2-1 179 1,255 0 1,686 1,855.2 142.1
random2-4 162 1,075 0 1,712 2,052.8 242.

Table 3.3: Test results (objective-function values) fobgdchmark instances with a
known optimal solution from 10 runs of the min-conflicts-dam-walk
algorithm for randomly generated initial solutions.

3.14 Quality of Obtained Solutions

Table 3.4 summarizes the properties of the best solutiotanaa by the min-conflicts-
based heuristic in our previous experiments. For eachrinstand constraint, we pro-
vide the number of shifts in which the corresponding coirstraas violated. We also
present the total number of violated shifts per instanceyelsas the number of time
slots in which employee shortages or excesses occurred.

For the 20 real-world benchmarks, the constraints reflgdtigal requirementsCG;
(break positionk C3 (duration of work periods andC,4 (minimum break times after
work period$ - were completely satisfied in nearly all instances, andotreentage of
shifts violating a constraint was less than 5 percent fohéastance. In fact, most con-
straint violations were due to lunch breaks that were na¢dated within their preferred
region. In practice, these violations obviously are notsidered as serious as violating
legal requirements.

Considering the shortage of employees for the real-workhgples, we observe
that in most instances shortages occurred in less than &mies€ the entire planning
period. Only for instances 50fc04b, 51fcO4a, and 51fc04b tlha min-conflicts-based
heuristic unable to compute a solution under a 5 percentaithreshold. Also, the
high excess of employees reported for some instances wat® dioe characteristics of
the given shift plan for that problem; hence, high excessegages were unavoidable
for those instances.

Regarding the best solutions for the 10 randomly createtnoss, constraints
reflecting legal requirements were completely satisfiechird instances (random1-1,
random1-5, and random 1-24). Moreover, for six other ingtanthose constraints were
violated only in a few shifts. Only for instance random1-8 tlie obtained best solution
have seven shifts violating constrai@t (duration of work periodsor C4 (minimum

CHAPTER 3. ABREAK SCHEDULING PROBLEM FOR SUPERVISORY... 33

No. of shifts violating constraint

Duration Minimum Shifts with Time slots with
Break Lunch of work break Break violations Shortage Excess

Instance Shifts | positions breaks periods times durationys No. % No. % No. %

2fc04a 135 15 55 27 658 32.3
2fc04a03 134 2.2 55 2.7 684 33.6
2fc04a04 137 2.6 53 22 726 355
2fc04b 126 0.8 72 35 379 18.6
3fc04a 124 2.4 37 18 410 20.1
3fc04a03 123 0.8 27 13 463 22.7
3fc04a04 128 0 27 13 524 257
3si2ji2 151 0 2 01] 1093 537
4fcO4a 124 24| 41 20 412 20.2
4fc04a03 123 0 31 15 445 21.8
4fc04a04 127 1.6 28 14 538 26.3
4fc04b 125 0 37 18 357 175
50fc04a 130 15 74 3.6 284 139
50fc04a03 130 2.3 55 27 343 16.8
50fc04a04 131 . . 402 19.7
50fc04b 126 0.8 | 117 57 196 9.6
51fc04a 1 29 16| 108 5.3 263 129

51fc04a03 129
51fc04a04 130
51fc04b 126
random1-1 137
random1-2 164
random1-5 141
random1-7 157
random1-9 151
random1-13 124
randoml1-24 137
random1-28 124
random2-1 179
random?2-4 162

23| 85 42 309 15.2
23| 85 4.2 363 17.8
24| 137 6.7 198 9.7
0 38 20 114 6.0
18| 89 44 196 9.7
0 89 4.6 182 9.4
06| 43 22 142 7.1
6 67 3.3 162 8.0
16| 73 3.6 162 8.0
0.7 | 106 5.3 178 8.9
0.8 | 100 5.0 169 8.4
11] 100 5.0 238 11.8
19| 93 46 174 8.6

[eNeoNoNoNeoNoolNoNololoNoNololoNoloNoloNoNoNoNoloNolNoNoNoNoNe)
P OORFRPRONOOOONWNNRUWNONOWOORPRWOWWN
PNOORFRPRODOOOOROOOROOOO0ODO0OO0ODO0OO0OO0OO0OO0OO0OO0OO0OO0
PORPRORPRRPPOWOOODOOOOO0ODO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0
[eNeoNoNoNoNoNolNoNoloNoNol NeollololNoNoNoNoNoNoNeoloNoNol leloeNe)
WNRFRPRPNORPOWOWWWNRUWNONOWOORWE WWN

w

[ee]

a

o

N

)]

Table 3.4: Constraint violations of the best solutions g by the
min-conflicts-based heuristic for real-life and randoméngrated
benchmark instances.

break times after work periodlsin nine instances, the percentage of time slots with a
shortage of employees did not exceed 5 percent, and in rah@dnthe percentage of
understéfed time slots (5.3 percent) was very close to this threshold.

Finally, Figure 3.3 presents part of the best solution olgt@ifor instance 2fc04a04
and shows the curve of required, present, and working erapkyor that time period.
The minimum stéing requirements were violated only once, for 5 minutes,mutinis
time period. Other than two lunch breaks not in their pref@rtime ranges, all con-
straints, including those modeling labor rules, were Batscompletely.

CHAPTER 3. ABREAK SCHEDULING PROBLEM FOR SUPERVISORY... 34

required present ——— working

12

] |
& 10
2 9 "
E 7 _ 1 ‘ |- i Ll]LII]
T s5- |'| ‘ ||
| fy
= 5. shortage —

; | ITL0

i

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 0%:00 10:00 11:00 12:00 13:00 14:00 15:00 15:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00

{a) Time of day
lunch breaks not in their preferred time window
1 [[o T[] I J_é | [(o).
2 [[T 1 [T 11 Il | [[mn] [|
3 o] [l [1 [1T [T [1
4 [] [[[l TG6T o] (] O | [[[LT JCT T TIT Il
5 [T [T [[1T [T [[T
6 I [11 [[T - | [
7 =1 [T | [T [] | | [
8 [I | [| [| | [T W T 0 N]
3 [§ W 1 B]
10
11
12 [TT 11 W
13 [T 1T 11 [T [T
14 | T [T [T |
e s b] e F B Coree) o e LS U o oo G o A i] B L ot onh
(b) Time of day

Figure 3.3: Part of the best solution found for instance 2&3!: (a) the number of
required, present, and working employees, and (b) the glaift for this
same time period. All constraints were satisfied compleggbept for two
lunch breaks that were not in their preferred time ranges.

Chapter 4

Scheduling Breaks in Shift Plans of
Call Centers

In this section we consider a further real-life break sctiaguyroblem originating from
a call center. Although the addressed problem has similarackeristics as the break
scheduling problem for supervisory personnel from Chaptirere are significant dif-
ferences in the constraints involved in the problem.

4.1 Problem Description
Formally, as input for the call center break scheduling [mobwe are given:

> a planning period formed by T consecutive time slots
[a1, &), [ag, &3), ..., [aT,aT+1) all having the same lengtlslotlength (in min-
utes). Time pointsy; anday,, represent the beginning and end of the planning
period. All time points have the same forntty:hour:minute

> n shifts(sy, S, ..., Sy) representing employees working within the planning pkrio
Each shifts has the adjoined parametessstart ands.duration representing its
start and its duration. Each shift corresponds to exacttyamployee.

> break quantitiesand break typego be scheduled for each shift. We distinguish
between two dterent types of breaks: lunch breaks and monitor breaks. The
parametess.lunchstores the duration of a shift's lunch break in minutes, \wher
the parametes.monitor specifies a shift's monitor break quantity.

35

CHAPTER 4. SCHEDULING BREAKS IN SHIFT PLANS OF CALL CENTERS6

> the stgfing requirementsor the planning period. Each time slat[a;,1) has an
adjoined integer valug indicating the optimal number of employees that should
be working during time slotd;, a;.1). An employee is considered to beorking
during time slot &, a;,.1) if in its corresponding shift no break is scheduled during

time slot fa, agy1).

A break bis characterized by the parametdssshift specifying its associated shift, its
startb.start and its duratiorb.duration We assume that all parameters representing
time points coincide with a time poimat defining the start or the end of a time slot of the
planning period. Moreover we expect each parameter repiegea duration or a break
quantity to be a multiple o$lotlength

Given a planning period, a set of shifts, the associatedkbgeantities, and the
stdfing requirements, &asible solutionto the break scheduling problem is a set of
breaks such that:

1. Each break lies entirely within its associated shift.

2. Two distinct breaks associated with the same shift do weiap in time.

3. For each shift the sum of all its associated break duraimexactly the specified
break quantity for the shift, that s.lunch+ s.monitor= 2bjes d;.duration

4. If s.lunch> 0 then there is one break siwhose duration is at leastlunch

Among all feasible solutions for the break scheduling peabwe aim at finding
an optimal one according to various criteria. These cdtare modeled as constraints
on feasible solutions. Basically we distinguish betweer foain groups of constraints,
namely constraints on:

The position of breaks within shifts.

The duration of breaks.

The distances between breaks.

P w0 dpoE

The excesses and shortages of working employees acgdalstdfing require-
ments.

CHAPTER 4. SCHEDULING BREAKS IN SHIFT PLANS OF CALL CENTERS7

4.1.1 Constraints on the Position of Breaks within Shifts

C: : MinimumDistanceToShiftBegin: Each break may start not earlier than a given
number of minutes after the beginning of its associated.shif

C, : MinimumDistanceToShiftEnd: Each break must end not later than a given num-
ber of minutes before the end of its associated shift.

Cs: MaximumbDistanceToShiftBegin: The earliest break of a shift must not start later
than a given number of minutes after the beginning of the.shif

C; . MaximumbDistanceToShiftEnd: The latest break of a shift must not end earlier
than a given number of minutes before the end of the shift.

4.1.2 Constraints on the Distances Between Breaks

Cs : MinimumDistanceBetweenBreaks. The temporal distance between two consecu-
tive breaks must be at least a given minimum number of minutes

Ces : MaximumbDistanceBetweenBreaks. The temporal distance between two consec-
utive breaks must not exceed a given maximum number of nsnute

4.1.3 Constraints on the Duration of Breaks

C7: MinimumBreakDuration: The duration of each break must be at least a given
minimum number of minutes.

Cg : MaximumBreakDuration: The duration of each break must not exceed a given
maximum number of minutes.

Cg. OptimumBreakDuration: The duration of each break should be equal to a given
optimum number of minutes.

Cio: MinimumDurationAfterDistance: If the distance between two consecutive
breaks reaches or exceeds a certain number of minutes tagoduof the latter
break must be at least of a given minimum duration.

4.1.4 Constraints on the Excess and Shortage of Working Empyees

C11: NOExcess. In each time slotd, a;,1) the number of working employees, i.e., the
employees who are not assigned a break in that time slot|dshotexceed;.

CHAPTER 4. SCHEDULING BREAKS IN SHIFT PLANS OF CALL CENTERSS8

C12: NoShortage: In each time slotd, a:,1) the number of working employees should
be at least;.

Csp: NoSquaredDeviation: In many practical instances for the break scheduling prob-
lem the stéfing requirements are significantly higher or lower than theloer
of scheduled employees during the overall planning peri@édnsequently, each
solution will always produce the same amount of excess ortafp@. For such
instances we introduced an additional constraint aimedrtizing the squared
deviation from stfiing requirements in each time slot. Informally speakings thi
constraint prefers solutions whose curve of working emgsyhas a shape similar
to the curve representing the tag requirements.

4.1.5 Extending the Problem with Breaks of Fixed Duration

When scheduling breaks within shift plans it is sometime®assary to constrain a single
break diterently from the remaining breaks within its shift. For arste, employees
prefer to have a one hour lunch break at the middle of they dubetween 11:00 and
14:00. Therefore we introduce a constraint defined on aesimgdak within a shift.

Ci13: FixedBreak: Each shift can contain a break of a certain specified duratibich
may difer from the durations required by other constraints. Oplignthis break
must lie within some giveallowed time ranggpreferably within a givemptimum
time range The break must not be scheduled within a gif@hidden time range

Note: The criteria required by the constraiRixedBreakmay contradict the require-
ments of several previously introduced constraints. Fat tieason, the following
constraints are not applied to that single break of desieadth: MinimumDistance-
ToShiftBegin(C;), MinimumbDistanceToShiftEn¢C,), MinimumBreakDuration(C7),
MaximumBreakDuratioffCg), andOptimumBreakDuratiorfCy).

4.1.6 Extending the Problem with Meetings

Call center employees can take part in meetings duringwwaking time. While attend-
ing meetings call center agents do not process incomingephalts. Thus, during the
time a meeting takes place the participating employeesaireomsidered to be working
with respect to sti@ing requirements.

Example 1. In the shift plan given in Figure 4.1 call center employegsesented by
shifts s, s3, and s4 take part in meetingm taking place from 12:30 until 13:30. Em-
ployees working in shifts; ands, attend meetingn, from 17:30 to 18:30.

CHAPTER 4. SCHEDULING BREAKS IN SHIFT PLANS OF CALL CENTERS9

DN N 00 O 0L 0O O 00 O 5 O 0 U200 0 00022 B0
meeting my 3]
5 [M | -
. ~ meeting m;
5; | m |
N m | [m; |

Figure 4.1: A shift plan containing meetings.

In order to handle meetings we have to extend the break slihggwoblem further.
Moreover we introduce an additional constraint concertirggbreak time scheduled in
meetings. In addition to the input for our basic problem wegiven:

> k meetingsmg, m, ..., M. Each meetingn; has two adjoined parametears.start
andm;.duration, specifying its start time and its duration. Moreover, emefeting
has an adjoined sen;.S. Setm;.S contains shifts and indicates that employees
assigned to these shifts participate in meetimg Additionally we are given an
integer valueg; specifying the break time required to be scheduled duringtimg
mi.

C14 . BreakQuantitylnMeeting: For each employee participating in a meetingwe
require that exactly; minutes of break time are scheduled within meetimg

Meetings have the following sideffects on several constraints of the basic break
scheduling problem:

Cs,Cs,Ci0: These constraints are only relevant for breaks not schedileing the
same meeting. In other words, these constraints are igfi@rednsecutive breaks
ending and starting during the same meeting.

C7,Cg,Co: We consider only those parts of breaks which are schedulsiieuthe time
range of a meeting, disregard breaks of a certain fixed dumatind refer to these
breaks adreaks outside a meeting he constraints on the minimum, maximum,
and optimum break duration are only applied to these brealside a meeting.

C11,C12,Csp: While participating in meetings employees are not considen be
working. Breaks scheduled during meetings do not furtheredese the number
of working employees.

CHAPTER 4. SCHEDULING BREAKS IN SHIFT PLANS OF CALL CENTER80

4.2 Adapting the Min-Conflicts-Based Heuristic for the Call
Center Break Scheduling Problem

To solve the call center break scheduling problem we adageldmodified the min-
conflicts based heuristic from Section 3.9 as follows:

> We extended our solution representation with meetings,itmohreaks, lunch
breaks and fixed breaks.

> We modified existing constraints, implemented new congsaand formulated a
new objective function for the call center break schedufingblem.

> We adapted our definition of feasible moves in accordande tivé changed prob-
lem structure.

4.2.1 Representation of Solutions for the Break Schedulingroblem

We represent the solution for the call center break scheglpiioblem as a set of breaks.
Each break has a variable start and constant duration. Mereeach break is associated
with a certain shift and must lie entirely within that shéfrange. Given a shift and its
guantities of lunch and monitor breaks we distribute thakitene among the following
three types of breaks:

fixed breaks: For each break required by constratitedBreak(C13) we generate a so-
called fixed break having the desired duration. If possibéedntire lunch break
quantity is part of a single fixed break.

lunch break: If it is not possible to schedule the lunch break within a fixedak we
generate a lunch break. Each shift may contain at most ormé lireak compris-
ing its total lunch time quantity.

monitor breaks: The remaining time not planned as fixed breaks and lunch brisak
scheduled within monitor breaks. We try to assign a moniteak the optimal
break duration as required by constradytimalBreakDuratior{Cg) to each mon-
itor break but the last monitor break may be shorter than twreld optimum
duration.

The obtained breaks are scheduled randomly in their raspecthifts
such that the the obtained solution is feasible and satisfies constraints
MinimumDistanceT oS hiftBedi;) and MinimumDistanceT oS hiftEd,). This
solution acts as the initial solution for our proposed |@=drch techniques.

CHAPTER 4. SCHEDULING BREAKS IN SHIFT PLANS OF CALL CENTERS1

4.2.2 Objective Function

The break scheduling problem can be modeled as a multrHeridgtimization problem

where an objective function is to be minimized. The impartaonf a single criterion

and the corresponding constraint varies from task to taskus;Tthe break scheduling
problem’s objective function can be modeled as a weighted @uthe violation degree
of each constraint, or more formally:

F(Solution) = 34 W - violationg(C;) + Y%tiondCeo)

In the objective function presented abowd(Csp) denotes an upper bound on the vi-
olation degree of the constraifoSquaredDeviatian If two solutions have the same
objective value according to constraifds, ..., C14 the objective function prefers the so-
lution with a smaller squared deviation from féilag requirements.

4.2.3 Moves and Local Neighborhood

Given a feasible solutio8 to the break scheduling problem we define its neighborhood
N(S) to be the set of all solutions obtained by applying an assegrt on a single break

in S or by swapping two breaks within the same shifiSras described in Section 3.8.
As alegal movewe consider any assignment or swap guaranteeing that laétendove:

1. The breaks in theffected shifts are not overlapping.
2. The lunch break is not scheduled in a meeting.

3. The dfected breaks lie within their allowed time regions specitigdthe con-
straintsMinimumDistance ToShiftBegifiC1), MinimumDistanceToShiftEn¢LC,)
and FixedBreak (Cy3).

4. Fixed breaks are not preceded or succeeded by any otladr dditer the move.

4.3 Computational Results

4.3.1 Randomly Generated Instances

To assess the quality of solutions returned by the min-aisfliandom-walk heuristic,
we wanted to generate instances for which we know that alalbsbnstraints can be
satisfied completely. To this aim we built a generator whicst fouilds a solution and
derives an instance from it afterwards.

CHAPTER 4. SCHEDULING BREAKS IN SHIFT PLANS OF CALL CENTER&2

For building a solution we consider the randomly createccharark instances for
the min-shift-design problem ([43]), which can be found enbttp://www.dbai.
tuwien.ac.at/proj/Rota/benchmarks.html. From these instances we obtain a
shift plan by extracting the shifts in the provided sampliitsons starting on the first
day.

For each shift we generate a certain number of breaks usagdtiings of the
real-life examples. Breaks are scheduled within theirtststich that all constraints
exceptCq OptimumBreakDuratiorare satisfied. The optimum break duration can be
violated by some breaks, since the total amount of break tieesl not be a multiple
of the given optimum break duration. The problem of schedubreaks correctly in a
shift is formulated as a simple temporal problem (STP) ({58 is solved by applying
Floyd-Warshall's all-pairs-shortest algorithm ([45]).

After scheduling breaks we randomly insert meetings in thi& plan. For that
purpose we create a meeting lasting 30, 40, 50 or 60 minutkplace it randomly in
the planning period. Then we determine the shifts which noatain that meeting and
assign the meeting to a random number (two at least) of thefie sThe total number
of break time which has to be scheduled in each meeting i®gbetamount of break
time scheduled in meetings in the current solution.

Finally, for each time slot we set the fiag requirements to the number of work-
ing employees (available workers minus workers in meetgkreaks). So we may
guarantee that the g requirements may be satisfied. The generated instances ha
a solution satisfying all constraints except the consti@iyn OptimumBreakDurationA
detailed description of the instance generator and theeddaenchmark instances are
available ahttp://www.dbai.tuwien.ac.at/proj/SoftNet/Benchmarks/.

We applied the min-conflicts-random-walk algorithm on 4d4damly generated
instances. For each instance we performed ten runs on ait&ehmiel T2400 laptop
running at 1.8 GHz with 2 Gbytes of RAM. A single run was exedutith a ten minute
runtime limit. Table 4.2 provides for each instance theatioh degree of the best known
solution and the violation degree of the best solution regdrin ten runs by the min-
conflicts based heuristic. In addition Table 4.2 presergsviblation degree of each
single constraint for the best solution returned per irgarNote that these violation
degrees are not multiplied by their respective weights. Giia the value in column
'Best Solution Found’ those violations must be multipligdtbeir respective weight.

Considering excess and shortage of working employees tiaéneld solutions de-
viate from the known optimal one only by a few percent.

Regarding the various constraints on break positionsanlists, durations, fixed
breaks and meetings we observe that only the consti@yitéinimumDistanceBetween-
Breaks Cg MaximumBreakDuratiomndCgy OptimumBreakDuratiomre violated. This

CHAPTER 4. SCHEDULING BREAKS IN SHIFT PLANS OF CALL CENTERS&3

Constraint WeightW,
C, MinimumDistanceT oS hiftBegin 10
C, MinimumDistanceT oS hiftEnd 10
Cs MaximumDistanceT oS hiftBegin 100
Cy MaximumDistanceT oS hiftEnd 100
Cs MinimumDistance BetweenBreakis 10
Ce MaximumDistanceBetweenBreaks 100
C, MinimumBreakDuration 3
Csg MaximumBreakDuration 3
Cy OptimumBreakDuration 3
Cio MinimumDurationAfterDistance 100
Ci1 NoExcess 20
Ci2 NoShortage 20
Ci3 FixedBreak 10
Cis BreakQuantityInMeeting 60

Table 4.1: Weights of constraints for the considered riéaliistances.

is acceptable because we considered these constraintsléssbenportant and conse-
qguently we have assigned smaller weights to them in our atialufunction (see Table
4.1). We also know that constrailly OptimumBreakDuratiorcan not be satisfied
completely even within an optimal solution.

Any other constraint, in particular the very crucial coasits Cj
MaximumDistanceT oS hiftBegin C4 MaximumDistanceT oS hiftEnd Cg
MaximumDistanceBetweenBreaksCig MinimumDurationAfterDistance and
Ci14 BreakQuantitylnMeetingare satisfied completely for each instance. For the
reasons just mentioned we conclude that our min-confliceedbaheuristic returns
solutions of acceptable quality for each of the regardedmark instances.

4.3.2 Real-Life Application

The min-conflicts-based algorithm has been applied suitdlysst a call center, where it
is used to compute daily break schedules within a few secdktdhis point we present
one solution for a real-life instance. In Figure 4.2 we sectirve of required employees
(solid curve) and the curve of working employees (dashedejuesulting from the best
solution found for that problem. The required minimum numbkemployees is not
violated at any time. Table 4.3 presents the objective fanctalue of each constraint
for the best solution for the considered instance. We olstirat nearly all constraints
are completely satisfied. Only the optimum break duratios lieen violated for some
breaks and there exists some excess of working employeés) ednnot be avoided due
to the characteristics of the considered real-life instandoreover, for that particular

CHAPTER 4. SCHEDULING BREAKS IN SHIFT PLANS OF CALL CENTER8&4

Ex. Number of Cost of Timeslots with Violation Degree of
Minimum Maximum Optimum Any
Best Best Distance Break Break Other
Known Solution Between Duration Duration Constrain
Shifts Breaks | Solution Found Excess % Shortage % Breaks

1 24 95 33 135 2 1.4 2 1.4 1 - 15 -
2 13 47 30 50 - - - - 2 - 10 -
3 9 30 48 48 - - - - - 16 -
4 29 102 72 222 - - - - 15 - 24 -
5 17 63 0 62 - - - - 5 - 4 -
6 39 141 36 258 2 1.3 2 1.3 10 - 26 -
7 31 109 21 123 1 0.7 1 0.7 5 - 11 -
8 29 108 45 195 2 1.3 2 1.3 4 - 25 -
9 15 51 15 15 - - - - - - 5 -
10 24 87 24 44 - - - - 2 - 8 -
11 9 28 30 30 - - - - - - 10 -
12 24 95 33 123 0.7 1 0.7 5 - 11 -
13 13 52 18 48 - - - - 3 - 6 -
14 9 35 42 102 - - - - 6 - 14 -
15 29 114 78 506 2 0.7 2 0.7 33 - 32 -
16 17 63 15 95 1 0.7 1 0.7 4 - 5 -
17 39 147 63 325 1 0.6 1 0.6 18 1 34 -
18 31 109 66 345 4 2.7 4 2.7 11 - 25 -
19 29 108 75 215 2 1.3 2 1.3 6 - 25 -
20 15 56 30 89 1 0.7 1 0.7 1 - 13 -
21 24 95 27 7 - - - - 5 - 9 -
22 9 33 30 30 - - - - - - 10 -
23 46 170 51 421 4 2.6 4 2.6 15 - 37 -
24 | 49 192 84 422 1 0.6 1 0.6 25 - 44 -
25 52 184 36 404 2 1.3 2 1.3 21 - 38 -
26 53 185 144 1130 13 4.1 13 4.1 37 - 80 -
27 50 170 48 334 4 2.7 4 2.7 9 - 28 -
28 45 163 48 318 3 2 3 2 12 - 26 -
29 45 163 30 378 6 3.7 6 3.7 3 - 36 -
30 60 211 156 1332 18 5.8 18 5.8 36 - 84 -
31 38 136 72 556 5 1.6 5 1.6 26 - 32 -
32 52 182 33 351 1 0.7 1 0.7 23 - 27 -
33 65 240 48 582 6 3.7 6 3.7 21 - 44 -
34 46 170 93 348 2 1.3 2 1.3 13 - 46 -
35 49 196 93 459 3 1.9 3 1.9 18 1 52 -
36 52 184 105 373 2 1.3 2 1.3 17 41 -
37 53 206 162 1180 10 3.2 10 3.2 54 - 80 -
38 50 181 102 420 2 1.3 2 1.3 19 1 49 -
39 45 172 63 265 2 1.3 2 1.3 11 - 25 -
40 45 163 84 422 5 3.1 5 3.1 9 1 43 -
41 60 234 192 1612 16 5.2 16 5.2 66 - 104 -
42 38 146 126 738 6 1.9 6 1.9 33 - 56 -
43 52 182 111 467 3 2 3 2 20 - 49 -
44 65 240 108 620 3 1.9 3 1.9 23 3 87 -

Table 4.2: Best solutions obtained for 44 randomly creatsthinces with known

optimum solution.

CHAPTER 4. SCHEDULING BREAKS IN SHIFT PLANS OF CALL CENTERS85

instance the break durations may not be further improvedcis€guently, also for that
real-life benchmark instance the quality of the computddt&m is almost optimal.

13
| I [!_

114 Working ---- - a—

Reaquired

Employees

i |

Loy

5:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00

15:00

156:00 17:00

18:00 19:00

20:00 21:00

+
22:00

23:00

Figure 4.2: Curve of required and working employees rasyiitiom the best solution

for a real-life instance of the call center break schedutiraplem.

Constraint Viol. Deg. | Weight | Product
C; MinimumDistanceToShiftBegin 0 10 0
C, MinimumDistanceToShiftEnd 0 10 0
C; MaximumDistanceToShiftBegin 0 100 0
C, MaximumDistanceToShiftEnd 0 100 0
Cs MinimumDistanceBetweenBreaks 0 10 0
Cs¢ MaximumDistanceBetweenBreaks 0 100 0
C; MinimumBreakDuration 0 3 0
Cg MaximumBreakDuration 0 3 0
Cy OptimumBreakDuratioin 12 3 36
Cio MinimumDurationAfterDistance 0 100 0
C11 NoExcess 94 20 1880
C12 NoShortage 0 20 0
Csp NoSquaredDeviation 128 1/9576| 0.01

Objective function value 191601

Table 4.3: Detailed results for a real-life instance of thk center break scheduling

problem.

CHAPTER 4. SCHEDULING BREAKS IN SHIFT PLANS OF CALL CENTER86

Chapter 5

TEMPLE - A Domain Specific
Language for Stdf Scheduling
Problems

In this chapter we design the domain specific language TEMRPL& der to reduce the
effort for developing solutions for dfascheduling problems. The name TEMPLE was
inspired by Figure 5.1 reflecting our desire to model compteff scheduling problems
in the same modular manner as ancient temples are built-upany single building
blocks. With TEMPLE we want to model stascheduling tasks in an easy and natural
manner, and we would like to solve them via local search #@lgos. For that purpose
TEMPLE must satisfy the following two demands:

1. TEMPLE must &fer abstractions and notations reflecting common features of
resource planning and siacheduling problems. These abstractions and notations
must support a user in creating accurate problem modelsoim tme.

2. TEMPLE must provide abstractions and notations cormedipg to essential
building blocks of local search techniques. These esddntilling blocks must
be sufficient to obtain ageneric local search algorithrfor a particular resource
planning and st@ scheduling problem. Any further knowledge or information o
local search techniques beyond those key building blockst el masked from
an end-user.

47

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 48
5.1 Design Goals for TEMPLE

Modularity In TEMPLE, a problem instance is modeled by small, concisidling
blocks reflecting common features off§tscheduling problems (Figure 5.1 (a)).
New building blocks are derived from already existing on&sy. this principle
a user is forced to formulate a complex problem in small, m@nand traceable
steps. Consequently, the resulting problem models arestreittured, easy to
understand, modify and maintain.

Adaptability and Extensibility Problems modeled in TEMPLE can be adapted easily.
A few small changes in a problem’s formulation may resultyanla few small
changes in the model written in the domain specific langu&igute 5.1 (b)).
Building blocks that are notftected by changes must remain unchanged. Addi-
tional requirements shall be able to be added easily witimeitfering with other
building blocks (Figure 5.1 (c)).

Simplicity TEMPLE demands only basic programming skills from end-sisexny-
body familiar with a third generation programming languaf@uld be able to
understand and use TEMPLE. Concepts of advanced progranpairadigms,
e.g., object orientation, or knowledge on local searchrggles, are not required
from a user.

Opennesslin contrast to other constraint-based modeling languabeMPLE is not
restricted to a finite set of predefined features or congsraifvith TEMPLE arbi-
trary features or constraints of fitacheduling problems can be modeled.

Automatic Optimization Once a problem is modeled in TEMPLE it can be optimized
immediately without requiring additional coding from thgeu.

Efficiency TEMPLE represents an additional layer atop a general parposgram-
ming language, providing abstractions and notations fetus a std scheduling
problems. Consequently, ftacheduling tasks can be modeled more easily, con-
cisely and quickly. The drawback of TEMPLE is a certain cotapanal over-
head that could be avoided at a lower level of implementafidrus an important
design goal for TEMPLE is that its intrinsic computationaedead is kept as lit-
tle as possible. Thereby, we ensure that problems are nptroodeled &ectively
but also solvedféciently.

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. ..

Derived Constraint Derived Constraint

‘ Derived Curve ‘ ‘ Derived Curve ‘
Derived Derived Derived
Property Property Property
Derived Derived Derived
Property Property Property
Derived Derived Derived
Property Property Property

‘ BasicProperty‘ ‘ BasicProperty‘ ‘ Basic Property ‘ ‘ Basic Property ‘

49

(a) Modularity and Derivation - A problem model is built up bynall and simple
building blocks. From basic building blocks a user can deffiwrther properties,

curves and finally constraints.

Derived Constraint

Derived Constraint

Derived Constraint Derived Constraint
LY 1
‘ Derived Curve ‘ ‘ Derived Curve ‘ Derived Curve Derived Curve
Derived Derived Derived Derived Derived Derived
Property Property Property Property Property Property
A A A
Derived Derived Derived » Derived Derived Derived
Property Property Property Property Property Property
A A
Derived Derived

, L) L) L)
Derived Derived Derived Derived
Property Prope Property Property Prope Property

‘ BasicPropeﬂy‘ ‘ BasicPropeny‘ ‘ Basic Property ‘ ‘ Basic Property ‘ ‘ BasicPropeﬂy‘ ‘ BasicPropeny‘ ‘ Basic Property ‘ ‘ Basic Property ‘

(b) Adaptability - A few small changes in the problem forntida result in a few
small changes in the problem model. Building blocks rfgeed by changes are not

altered at all.

Derived Constraint

Derived Constraint

Move

Derived Constraint Initialization W Derived Constraint
X
Derived Curve Derived Curve Derived Curve Derived Curve Derived Curve

Derived Derived Derived Derived Derived Derived Derived
Property Property Property Property Property Property Property
Derived Derived Derived Derived Derived Derived Derived
Property Property Property Property Property Property Property

A A A A
Derived Derived Derived Derived Derived Derived Derived
Property Property Property Property Property Property Property

‘ BasicProperty‘ ‘ BasicProperty‘ ‘ Basic Property ‘ ‘ Basic Property ‘

‘ BasicProperty‘ ‘ BasicProperty‘ ‘ Basic Property ‘ ‘ Basic Property ‘ ‘ Basic Property ‘

(c) Extensibility - Additional requirements can be addedilgawithout interfering

with previously defined building blocks.

Figure 5.1: Selected design goals which are achieved byEMPLE modeling

language.

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF... 50
5.2 Building Blocks of Stdf Scheduling Problems

5.2.1 Intervals and Links between Intervals

Intervals are central building blocks of ftacheduling problems. Figure 5.2 shows the
intervals occurring in the call center break schedulingofmm from Section 4. Shifts,
breaks, meetings, the time slots of a planning period, aed #w entire problem itself
can be considered as intervals. As shown in 5.3, every @ltes\characterized by three
basic propertiesStart, Duration, andEnd.

T I I T T T T T T T T
06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

Time Slot| Time Slot|Time Slot|Time Slot|Time Slot| Time Slot|Time Slot| Time Slot| Time Slot|Time Slot

| Break |

| Break | | Break |

| Break| | Break| | Break|

Figure 5.2: The dferent kinds of intervals and links between intervals inedhn the
call center break scheduling problem from Section 4.

In addition, we observe that in $sfascheduling problems intervals are linked with
each other. Figure 5.2 depicts the links between the ineogcurring in the call center
break scheduling problem from Section 4. Breaks are linketie shifts in which they
are scheduled, there is a link between a meeting and the yiitesenting the employees
participating in that meeting, and the entire problem ikdoh to all shifts as well as the
time slots forming the planning period.

Design Decision. In TEMPLE it must be possible to declarefférent kinds of
intervals and links between intervalsEach kind of interval must have three basi
propertiesStart, Duration andEnd.

)

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 51

I I I I I I I I I
06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00

Start Duration End
06:00 08:00 14:00

Figure 5.3: A time interval is characterized by three basapprties Start, Duration
andEnd.

5.2.2 Derived Properties and Constraints

A characteristic of stfi scheduling problems is that their features and constraguts
be derived step by step one after the other. For instanceanymeal-life applications
it is common to require that a minimum percentage of breale tieng., 20%, must be
scheduled in each shift. Figure 5.4 shows how the violategree of that constraint can
be computed for a single shift in several steps:

1. We compute the break time scheduled in the shift. For thgbqse we con-
sider the two breaks linked with the shift, and sum up the eslfor their ba-
sic propertyDuration. In that way we derive a new property of the shift called
TotalBreakTime.

2. We compute the shift's break time percentage, by dividinghift's property
TotalBreakTime by itsDuration. Again, we derive a new property of the shift
calledTotalBreakTimeInPercent.

3. We impose the constraint, requiring that a shift's breadetpercentage must be
at least 20%. The violation degree of that constraint is agegb by checking
a shift's propertyTotalBreakTimeInPercent. The constraint, derived in that
manner, is calletlinimumBreakTime and is associated to the shift.

Design Decision. In TEMPLE it must be possible tderive new properties and
constraintsstep by step one after the other. Property values or constralation
degrees must be computed from already existing propelites iaterval or its linked
intervals.

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 52

T I I I I I I
06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00

| Break | | Break |

Duration Duration Duration

01:00 01:00 08:00

TotalBreakTime) TotalBreakTimelnPercent

02:00 25% SATISFIED

Figure 5.4: In st scheduling problems properties and constraints are desitep by
step from already existing properties.

5.2.3 Derived Curves

Curves represent further central building blocks oftgeheduling problems, which can
be used to model many features off6scheduling tasks such asféitag requirements
or available st. Formally, in the context of this thesis, a curve is a funttimapping
each time slot of a considered planning period to a specifigevaA curve is derived
from intervals, by incrementing or decrementing the cuewellues over the duration of
single intervals.

For instance, Figure 5.5 presents how the time periods gluvitich an employee
is actually working and not having a break can be represeagedcurve over time. The
curve is incremented over the duration of the shift and adeerged along the duration
of breaks. Moreover, curves can also be derived from othreqdy existing curves, e.g.,
by subtracting stéing requirements from available ftave obtain a curve representing
the deviations from sfng requirements.

Design Decision. TEMPLE must providederived curvess further basic building
blocks. Curves are derived from basic properties assatciatatervals or from other
curves. Moreover, it should also be possible to derive pt@seor constraints from
already existing curves associated with an interval.

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 53

il L L L

I I [I [
06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00

Figure 5.5: A curve modeling the periods while an employestsially working and
not having a break.

5.2.4 Building Blocks of Local Search Techniques

To identify the basic building blocks of local search tecjugis we reconsider the basic
steps within a local search algorithm :

1. We compute amitial solution for a specific problem instance.

2. Aslong as a certain termination condition is not fulfilled perform the following
three steps.

(&) We compute a set of small changes, also denoteabassto obtain a local
neighborhood of the current solution.

(b) We evaluate thefkect of each move on the current solution. When evaluating
a move we determine the change within the probleaiective function
resulting from the move.

(c) We select a move and apply it to obtain a new solution. Wsuwmmove is
selected according to a selection criterion consideriegctiange within the
problem’s objective function caused by a move.

3. At the end of a local search algorithm we return the besttisol that has been
found by the local search algorithm.

Considering these basic steps of a local search algorithidewify the following four

basic building blocks of local search algorithms: an ihigalution, a set of moves,
which are applied to a current solution in order to computecall neighborhood, an
objective function, and a selection criterion choosing aeno obtain the next solution.

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 54

Design Decision.TEMPLE must provide abstractions and notations to destrive
to compute arinitial solution and movesfor a particular st scheduling probleni
instance. Moreover, we must be able to define a problejsctive functionn
TEMPLE. Selection criteria should not be a part of the TEMPhBdeling language,

to keep it as simple as possible.

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 55

5.3 The TEMPLE Modeling Language

5.3.1 Interval Declaration

To model a particular resource planning andfssaheduling problem we must declare
the diferent kinds of intervals a problem consists of. Each intdraa four basic proper-
ties: Start, Duration, End, and a boolean basic propeiytive, indicating whether
an interval is part of a problem’s solution or not. If necegsave can further define
additional basic properties for intervals. For instanoghe following code sample we
declare that a sthscheduling problem consists of shifts, breaks and time dlog latter
having an additional property modeling fiag requirements:

Interval Shift;
Interval Break;

Interval TimeSlot with StaffingRequirement;

5.3.2 Links Declaration

In TEMPLE links between intervals are declared by usingvaesr@r the keyword
contains in the following manner:

//Declaration of a uni-directional link:
//Each shift is linked to zero or several breaks but NOT vice versa.
Shift -> Break;

//Declaration of a bi-directional link:
//Each shift is linked to zero or several breaks and vice versa.
Shift <-> Break;

//Declaration of a bi-directional link:

//Each shift is linked to zero or several breaks and vice versa.
//If a shift is not active its associated breaks are also inactive.
Shift contains Break;

//Declaration of a bi-directional link with rolenames:
Employee[Trainer] <-> Employee[Trainee];

5.3.3 Derived Properties

In TEMPLE, we can derive additional interval properties loa basis of basic properties
or previously defined ones. For instance, to derive a prppeftecting the total break
time scheduled in a shift, as shown in Figure 5.4, we havederirthe following lines
of code into a TEMPLE program:

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 56

Property Shift::TotalBreakTime(Shift.Break[] scheduledBreak)
{
TotalBreakTime = sum(i in scheduledBreak.getRange()) (scheduledBreak[i].Duration);

}

This code snippet specifies that each shift has an additiprgperty called
TotalBreakTime. This property is derived from all breaks linked to a singhéfts
Shift.Break[], which can be accessed through the adieisedul edBreak. The value
of propertyTotalBreakTime is computed by summing up the durations of each break
scheduled within the shift. Similarly, we can also derivéniit’s break time percentage:

Property<float> Shift::TotalBreakTimeInPercent (Shift thisShift)

{
TotalBreakTimeInPercent = (thisShift.TotalBreakTime * 100.0) / thisShift.Duration;
}

Since percentages are not necessarily integer values, evthedag<float> to
ensure that a floating point value is used to represent thjsepty.

5.3.4 Derived Constraints

So far we have already specified the two derived propertoes 8ection 5.2.2 and Figure
5.4. To model that example completely we have to insert at@ng on the minimum
break time to be scheduled in a shift.

In TEMPLE we distinguish between two kinds of constraineschconstraints and
soft constraints. Hard constraints specify the criteriécivimust be satisfied completely
by any feasible solution. Except for the keywdtalrdConstraint the violation degree
of a hard constraint is derived in the same manner as the whlaederived property.
The following hard constraint definition checks whether idt'shbreak time percentage
is not below a required twenty percent threshold:

HardConstraint Shift::MinimumBreakTime(Shift thisShift)

{
if(thisShift.TotalBreakTimeInPercent < 20) MinimumBreakTime = VIOLATED;
}

Soft constraints on the other hand model the objectivesghall be minimized
by a good solution. The importance of a soft constraint witm entire st scheduling
problem is expressed in terms of integer weights, as showinithe following example:

SoftConstraint<float> Shift::MinimumBreakTime (Shift thisShift) weight(10)
{
MinimumBreakTime = max(0, 20 - thisShift.TotalBreakTimeInPercent);

}

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. ..

Curve Operation

Description |

void Pulse(int start, int end, bool active)

If active is true the curve is incrementeq
in each time slot fronstart to end by one
unit.

void Pulse(int start, int end, bool active, int value)

If active is true the curve is incrementeq
in each time slot fromstart to end by
value units.

void Value(int position, int value)

A curve’s entry at indexosition is set to
value.

int Value(int position)

Returns thevalue stored in the curve ai
position.

void Add(Curve otherCurve)

The values obtherCurve are added to the
curve.

void Subtract (Curve otherCurve)

The values ofotherCurve are subtracted
from the curve.

void CyclicAdd(Curve otherCurve, int cycleLength)

The values obtherCurve are added to the
curve. A value at positiod in otherCurve
is added to the value at positiod %
cycleLength in the curve. This operatior}
is used in problems having a cyclic plannin
period.

void CyclicSubtract (Curve otherCurve, int cycleLength)

The values ofotherCurve are subracted|
from the curve. A value at position in
otherCurve is subtracted from the value g
positioni % cycleLengthin the curve. This
operation is used in problems having a cyc!
planning period.

void AddPositiveValues(Curve otherCurve)

Only positive values ofotherCurve are
added to the curve.

void AddNegativeValues(Curve otherCurve)

Only negative values obtherCurve are
added to the curve.

void SubtractPositiveValues(Curve otherCurve)

Only positive values ofotherCurve are
subtracted from the curve.

void SubtractNegativeValues(Curve otherCurve)

Only negative values obtherCurve are
subtracted to the curve.

Table 5.1: Methods provided by TEMPLE to derive a curve frdraaly existing

elements.

57

«Q

ic

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 58

5.3.5 Derived Curves

In TEMPLE, we can derive curves from intervals and previgdisimulated curves, by
using a predefined set of curve operations. These operdtiorement or decrement
a curve over a certain period, they write or read a value akaifép position, or they

add and subtract other, already existing curves. Theseouet#re described in detalil
in Table 5.1. For instance, the curve presenting an empoyetual working time, as

depicted in Figure 5.5, can be modeled in the following way:

Curve Shift::WorkingTimePattern(Shift thisShift, Shift.Break[] scheduledBreak)
{

//Increment curve from shift start until shift end.
WorkingTimePattern.Pulse(thisShift.Start, thisShift.End, thisShift.Active);

//Decrement curve along each break.
forall(i in scheduledBreak.getRange())
{

WorkingTimePattern.Pulse(scheduledBreak[i].Start,
scheduledBreak[i].End,
scheduledBreak[i].Active,
-1);

5.3.6 Initial Solution

After we have modeled the structure of a particulaffsteheduling problem by the
help of intervals, links, derived properties, curves andst@ints, we have to specify
an initial solution for a particular sfiascheduling problem. In TEMPLE, the initial
solution is formulated in three filerent steps. First of all, in each TEMPLE program
we specify an input XML-file. That XML-file contains a list afiervals and stores the
initial basic properties of each interval. This initialian step as well as the underlying
XML-format will be described in detail at a later point in $iea 7.2. Secondly, we can
force the instantiation of further intervals. To do so wemefiow many intervals of one
type are instantiated for each interval of another kind. ikstance, the following lines
of code cause the instantiation of four breaks in each shift:

Instantiate Shift.Break[] O
{

Shift.Break[].Count = 4;
}

Thirdly, we may compute and assign initial values to the dagerval properties
Start, Duration, andActive. The initial values are derived from already existing
properties or curves of linked intervals. Furthermore, &g also restrict the domains
of basic properties and we can introduce additional linke/ben intervals:

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 59

Initialize Shift::BreakSchedule(Shift thisShift, Shift.Break[] breakToSchedule)
{
forall(i in breakToSchedule.getRange())
{
//1. Assign initial values to basic break properties
breakToSchedule[i].Start thisShift.Start;
breakToSchedule[i].Duration = 30 minutes;
breakToSchedule[i].Active true;

//2. Restrict the variable domain of a break’s start and its duration
forall(j in thisShift.Start .. thisShift.End)
breakToSchedule[i].Start.Domain.Add(j);

breakToScheduled[i].Duration.Domain.Add (30 minutes);

//3. Link the shift with each break scheduled within it.
breakToSchedule[i].AddLink(thisShift, "Shift");

5.3.7 Moves

To define moves in TEMPLE we must compute and assign new vadueasic interval
properties. For instance, the following code snippet dj@sca move placing a break at
a new, randomly chosen, position in its associated shift:

Move Shift::PutBreakAtNewPosition(Shift thisShift, Shift.Break[] scheduledBreak)

{
range S = thisShift.Start .. thisShift.End;

select(i in scheduledBreak.getRange())
select(newPosition in S) scheduledBreak[i].Start = newPosition;

5.3.8 Further Language Details

For the sake of completeness, we describe which additiof@anhation must be spec-
ified to obtain a compilable TEMPLE program: an input XML-fgentaining input

intervals and initial basic property values, a solution Xiflle in which the obtained

solution of a problem shall be saved, the local search algorivhich shall be applied
to a particular problem, a limit on the algorithm running éimnd the granularity of the
planning period.

input = "./input_data.xml";
solution = "./solution.xml";
algorithm = iterated local search;
algorithm running time = 1 minute;

time slot = 10 minutes;

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 60

5.3.9 Optimization Goal and Objective Function

In TEMPLE we use hard and soft constraints to define the opétitn goals of a
considered sté scheduling problem. IS denotes the set of all soft constraints athd
the set of all hard constraints defined in a particular TEMRitBgram, the local search
algorithms generated by our TEMPLE compiler try to solveftil®wing optimization
problem:

min Y, sWeightx s.ViolationDegree
seS

st. VYhe H:hViolationDegree= 0

5.4 AFirst TEMPLE Model

In this section we consider a small toy example to derive & ¢osnplete TEMPLE
model. Despite its conciseness, the considered probleralhea@mmon characteristics
of stat scheduling problems. To solve it we will use all languagenalets provided by
TEMPLE. As input for the sample dtescheduling problem we are given:

1. The stéiing requirements over a planning period from 06:00 until Q7:0he
planning period is divided into 54 time slots of ten minutesdth. The stéing
demand for time slott requires that during thieth time slot at least; employees
must be working.

2. A sample shift plan consisting of three shifts all havihg same duration of 8
hours.

Our optimization goal is to schedule breaks in each shifhdbhat the five following
requirements hold:

Requirement: A single break must last 30 minutes at least.
Requirement: Breaks must not be placed outside a shift.
Requirement: Each shift must contain at least 25% break time.
Requirement: Two distinct breaks must not overlap with each other.

Requirement: In each point of time the sfiZng requirements must be satisfied completely.

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 61

44 required employees ---------- working employees
3.
21 q
|
T — 4 |,
07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
ShiftPlan Roce

Figure 5.6: Problem input for our sample resource plannimystidt scheduling
problem.

Figure 5.6 depicts the input shift plan andfStay requirements for our small sample
stdt scheduling task. The dgtang requirements were chosen in such a manner that they
can be satisfied completely if the percentage of break tirhedided in each shift is
exactly 25%. All experiments in the remainder of this se®iwill be carried out on a
Genuine Intel T2400 laptop running at 1.8 GHz with 2 GbyteRAM.

5.4.1 Intervals and Links

At first glance, our sample problem consists of three kindmtgfrvals: shifts, breaks
and time slots. In addition to the basic properties of irdbs\Start, Duration, End,
andActive, each time slot has an additional property caedffingRequirement.
This extra property encodes the number of employees thaldihe working between

a time slot'sStart and itsEnd. Further, we introduce a single interval named Prob-
lem into model for our sample task. Problem acts as a kind af irderval to which
properties, curves and constraints regarding the eniitelggm will be associated. These
considerations lead to the following interval declarasiamour first TEMPLE program:

Interval Problem;

Interval Shift;

Interval Break;

Interval TimeSlot with StaffingRequirement;

Considering the relations between time intervals, theadisously a link between
a shift and the breaks placed within it and vice versa. Siheeettire problem consists

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 62

of several shifts and time slots we also connect the singlel@m root interval with each
shift and time slot.

Problem -> Shift;
Shift <-> Break;
Problem -> TimeSlot;

5.4.2 The First Constraints

Right now, we are already able to define our first constraira temsible solution. Each
break is required to last at least 30 minutes. Consequdotlgach break we introduce
a hard constraint calleMinimumDuration, which depends solely on the break itself.
This hard constraint is violated whenever a break is shitmgr 30 minutes:

//Requirement 1: A single break must last 30 minutes at least.
HardConstraint Break::MinimumDuration(Break thisBreak)

{
if(thisBreak.Duration < 30 minutes) MinimumDuration = VIOLATED;
}

In the same manner we ensure that breaks must not be scheditde a shift.
For each shift we impose a hard constraint narBededul eBreaksWithinShift,
depending on the shift itself and all breaks scheduled wiihi The constraint
ScheduleBreaksWithinShiftis violated if a break starts before or ends after the shift
it is scheduled within:

//Requirement 2: Breaks must not be placed outside a shift.
HardConstraint Shift::ScheduleBreaksWithinShift(Shift thisShift, Shift.Break[] scheduledBreak)
{
forall(i in scheduledBreak.getRange())
{
if(scheduledBreak[i].Start < thisShift.Start)
ScheduleBreaksWithinShift = VIOLATED;

if(thisShift.End < scheduledBreak[i].End)
ScheduleBreaksWithinShift = VIOLATED;

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 63

5.4.3 Properties

So far, we have already specified two hard constraints tirecet’'s consider the re-
quirement that each shift must contain not less than 25%klime&. We are now going
to define this constraint in several steps. First of all, facteshift we derive a property
TotalBreakTime encoding a shift's total amount of break time:

Property Shift::TotalBreakTime(Shift.Break[] scheduledBreak)
{

TotalBreakTime = sum(i in scheduledBreak.getRange()) (scheduledBreak[i].Duration);
}

Secondly, for each shift we define another derived properggmed
TotalBreakTimeInPercent, which simply converts a shift's absolute amount of
break time into the corresponding percentage value. Nud¢ since a percentage needs
not to be an integer value the property is declared to be &f tiyat:

Property<float> Shift::TotalBreakTimeInPercent (Shift thisShift)

{
TotalBreakTimeInPercent = (thisShift.TotalBreakTime * 100.0) / thisShift.Duration;

}

Finally, for each shift we impose a hard constraint, whichuiees that a shift's
percentage of break time must be at least 25%:

//Requirement 3: Each shift must contain at least 25 % break time.
HardConstraint Shift::MinimumBreakTime(Shift thisShift)

{
if(thisShift.TotalBreakTimeInPercent < 25) MinimumBreakTime = VIOLATED;

3

5.4.4 Curves

The next requirement we consider requires that two diskireks must not overlap with
each other. One possible way of modeling that constrainhiig to check for any pair
of distinct breaks if they overlap in time. However, at th@m we choose a fierent
approach. In an intermediate step we use a curve to modefts &ineak pattern. For
each shift we introduce a curBeeakPatternthatis derived from the breaks scheduled
within the shift:

Curve Shift::BreakPattern(Shift.Break[] scheduledBreak)
{
forall(i in scheduledBreak.getRange())
BreakPattern.Pulse(scheduledBreak[i].Start,
scheduledBreak[i] .End,
scheduledBreak[i].Active);

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 64

If two or more breaks overlap at a certain point of time, thevewalue is incre-
mented several times, resulting in a value strictly gretiten one. Thus the hard con-
straintNoOverlappingBreaks, requiring that breaks do not overlap with each other, is
violated as soon as the break pattern curve contains a vedagegthan one:

//Requirement 4: Two distinct breaks must not overlap with each other.
HardConstraint Shift::NoOverlappingBreaks(Shift thisShift)
{

Curve breakPattern = thisShift.BreakPattern;

forall(i in breakPattern.Period())
if(breakPattern.Value(i) > 1)
NoOverlappingBreaks = VIOLATED;

5.4.5 The Complete Problem Model

There is only one requirement left to be defined in TEMPLE. #t ime, the number
of working employees must not under-run theffstg requirements. Again, we use a
multi-step approach to model this constraint. Firstly, theg entire problem we derive
a curve namedtaffingRequirements. This curve reflects the dtang requirements
over the entire planning period.

Curve Problem::StaffingRequirements(Problem.TimeSlot[] timeSlot)
{
forall(i in timeSlot.getRange())

StaffingRequirements.Pulse(timeSlot[i].Start,
timeSlot[i].End,
timeSlot[i].Active,
timeSlot[i].StaffingRequirement);

Secondly, we derive a curve encoding the number of workingleyees in each
time slot. This curve is obtained by summing up all availagigloyees and subtracting
each employee’s break time.

Curve Problem: :WorkingStaff(Problem.Shift[] scheduledShift)
{
forall(i in scheduledShift.getRange())
{
WorkingStaff.Pulse (scheduledShift[i].Start,
scheduledShift[i].End,
scheduledShift[i].Active);

WorkingStaff.Subtract (scheduledShift[i].BreakPattern);
}
}

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 65

Thirdly, by subtracting the curve representing fiste requirements from
the curve reflecting the actually working employees, we iobta curve
DeviationFromStaffingRequirements that gives us the deviation of ¢fiag
requirements in each time slot.

Curve Problem::DeviationFromStaffingRequirements(Problem thisProblem)

{
DeviationFromStaffingRequirements.Add (thisProblem.WorkingStaff);
DeviationFromStaffingRequirements.Subtract(thisProblem.StaffingRequirements);

3

A positive curve value at a point of time indicates that mamgpyees than re-
quired are working, a negative curve value reports shortdgeet. According to our
problem definition, we are only interested in avoiding shget of employees. Therefore
we derive another curv8hortage from DeviationFromStaffingRequirements
which highlights only understéed time slots in our planning period.

Curve Problem::Shortage(Problem thisProblem)

{

Shortage.SubtractNegativeValues(thisProblem.DeviationFromStaffingRequirements) ;

}

Finally, we impose the soft constraiibShortage to reduce shortage of employees
during optimization. The violation degree of soft consitaioShortage is obtained by
summing all values from curnigeviationFromStaffingRequirements.

Requirement 5: In each point of time the staffing requirements must be satisfied completely.
SoftConstraint Problem::NoShortage(Problem thisProblem)
{
Curve shortage
NoShortage
}

thisProblem.Shortage;
sum(i in shortage.Period()) (shortage.Value(i));

5.4.6 Initial Solution

Right now we have succeeded to model each requirement oaoyple resource plan-
ning and scheduling problem, by introducing four hard caists and one soft con-
straint. In the next two major steps we have to provide:

> The number of breaks to be scheduled in each shift.

> An initial feasible break schedule that satisfies all hamst@ints of our problem
model.

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 66

To compute the number of breaks to be scheduled in each shiftgain rely on a
step-wise approach. For each shift we derive a property d®eaguiredBreakTime
which is the minimum amount of break time above the requilgt 2hreshold.

Property Shift::RequiredBreakTime(Shift thisShift)

{
RequiredBreakTime = (int) ceil((thisShift.Duration * BREAK_TIME_PERCENTAGE) / 100.0);

}

Then, for each shift we derive the number of (30-minute) ksd¢hat must be sched-
uled in order to exceed the minimum amount of break time.

Property Shift::NumberOfBreaks(Shift thisShift)

{
float breakTimeToSchedule = thisShift.RequiredBreakTime;

NumberOfBreaks += (int) ceil(breakTimeToSchedule / MINIMUM_BREAK_DURATION) ;
}

Finally, we specify that the recently computed number ofifdflute) breaks is
scheduled per each shift.

Instantiate Shift.Break[] (Shift thisShift)

{
Shift.Break[].Count = thisShift.NumberOfBreaks;

}

In TEMPLE, all hard constraints must be satisfied by theah#blution obtained
for a particular problem instance. The information on howdmpute a feasible initial
solution must be provided by the user. With regard to our $apneblem, we must place
the breaks in each shift such that we create a legal breakpaitie., the break pattern is
consistent with all hard constraints. For that purpose weaeh break’s duration to be
30 minutes. In that manner we guarantee the minimum breakEncentage as well as
the required minimum break duration. The first break is sateetione hour after shift
start. All other breaks start one hour after their predemebseak has started. Since
each break lasts 30 minutes, we can ensure that there issahkdéan hour between
each break and they do not overlap. Moreover, breaks arelgigteentirely in their
corresponding shifts. We further restrict the domain fateareak start to lie within the
start and end of the corresponding shift, and we link eacikaiethe shift it is scheduled
within.

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 67

Initialize Shift::BreakSchedule(Shift thisShift, Shift.Break[] breakToSchedule)

{
range S = thisShift.Start .. thisShift.End;

forall(i in breakToSchedule.getRange())
{
breakToSchedule[i].Start
breakToSchedule[i] .Duration
breakToSchedule[i].Active

thisShift.Start + i * 1 hour;
30 minutes;
1;

breakToSchedule[i].Start.Domain.Clear();
forall(j in S) breakToSchedule[i].Start.Domain.Add(j);

breakToSchedule[i].AddLink(thisShift, "Shift");

5.4.7 Moves

For our sample problem it flices to specify only one single move, that will be applied
iteratively to improve the quality of an incumbent solutidrhis single move is defined
for each shift and it is nameRlitBreakAtNewPosition. The move selects a break and
a position within the shift at random and moves the breakabriewly selected position.

Move Shift::PutBreakAtNewPosition(Shift thisShift, Shift.Break[] scheduledBreak)

{
range S = thisShift.Start .. thisShift.End;

select(i in scheduledBreak.getRange())
select(newPosition in S) scheduledBreak[i].Start = newPosition;

5.4.8 Solving the Problem

Now we have nearly finished our first TEMPLE program. Befoneniog it we add
information on the input XML-file containing the $fiang requirements and shift plan
and we specify the file in which the best solution found willdtered. As local search
strategy we select iterated local search and impose a omateniunning time limit to it.
Finally, we declare that our planning period is divided ih@minute time slots.

input = ".\Example-1-input.xml";
solution = ".\Example-1-output.xml";
algorithm = iterated local search;
algorithm running time = 1 minute;

time slot = 10 minutes;

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 68

Finally, we invoke the TEMPLE compiler, which will be dedmed in detail in
Chapter 7, to translate our TEMPLE program into executabtkec The obtained local
search algorithms terminates within one second and retug@ution which satisfies
all hard constraints and avoids shortage offstath respect to stéing requirements.
Figure 5.7 shows the obtained break schedule. Each breia&xastly 30 minutes, is
scheduled within its associated shift, and does not overvidpany other break. Each
of the eight-hour shifts contains four 30-minute breaksjdmtwo hours of break time
in total which is exactly the required 25% required. Morepwa each point in time
there are exactly as many employees working as demandee Isydiing requirements.
Thus, we conclude that TEMPLE was able to compute a feasiiilgien with optimal
quality.

44 required employees ---------- working employees
3
Jo L
14

T T T T T T T T T T T T

I I I I I I I I I
06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

Shift Plan e I I e
fegsmn T [[T [[T]
B e s

Figure 5.7: Solution obtained with our TEMPLE program for eample resource
planning and scheduling problem.

5.4.9 An Extended Problem

In the solution for our sample problem shown in Figure 5.7akseare scheduled very
irregularly in each shift. It might occur, that employeesrkvéor three hours or even
longer without having a break. This can lead to stress andwestion which must be
avoided by a reasonably designed break schedule. Congbgwea will extend our
TEMPLE program to obtain a break schedule in which employeesot work longer
than 100 minutes without having a break. Thereby, we dematesthat, thanks to their
modular style, TEMPLE programs can be modified and extendsitieto react quickly
to changes in requirements or user needs.

First of all, for each break we derive a property computirgydistance between the

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 69

break and its predecessor. If a break is the first break offa 8@ property will have a
value of zero:

Property Break::DistanceToPredecessor(Break thisBreak, Break.Shift().Break() allBreaksInShift)
{
//Determine the index of predecessor break
selectMax(i in allBreaksInShift.getRange() :
allBreaksInShift[i].End <= thisBreak.Start) (allBreaksInShift[i].End)
{
//Compute distance to predecessor.
DistanceToPredecessor = thisBreak.Start - allBreaksInShift[i].End;
}
}

Secondly, for each shift we introduce a property measufiegiime elapsing from
a shift's start until the first break of the shift:

Property Shift::DistanceToFirstBreak(Shift thisShift, Shift.Break[] scheduledBreak)
{

//Determine first break in shift

selectMin(i in scheduledBreak.getRange()) (scheduledBreak[i].Start)

{

DistanceToFirstBreak = scheduledBreak[i].Start - thisShift.Start;

}

}

Thirdly, we introduce a property modeling the time betweahi#t’'s last break and
the shift end:

Property Shift::DistanceToLastBreak(Shift thisShift, Shift.Break[] scheduledBreak)
{

//Determine last break in shift

selectMax(i in scheduledBreak.getRange()) (scheduledBreak[i].End)

{

DistanceToLastBreak = thisShift.End - scheduledBreak[i].End;

}

}

Finally, we are able to derive a soft constraint which reggithat employees should
not work longer than 100 minutes in a row. This soft constreegards the duration of
each working period in the shift. If a working period lastader then 100 minutes, the
deviation from 100 minutes is added to the soft constrainttation degree:

//Additional requirement: Employees should not work longer than 100 minutes in a row.
SoftConstraint Shift::WorkingPeriodDuration(Shift thisShift, Shift.Break[] scheduledBreak)
{
WorkingPeriodDuration += max(thisShift.DistanceToFirstBreak - 100 minutes, 0);
WorkingPeriodDuration += max(thisShift.DistanceToLastBreak - 100 minutes, 0);

forall(i in scheduledBreak.getRange())
WorkingPeriodDuration += max(scheduledBreak[i].DistanceToPredecessor - 100 minutes, 0);

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 70

The local search algorithm obtained from the extended TEEIRIogram returns
an optimal solution after eight seconds. Figure 5.8 showstitained break schedule.
We observe that our additional restriction on working pasitss completely satisfied.

4 required employees ---------- working employees

3
2

1 ——E i..._—

I I I I I I I I I I I
06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

Shift Plan e I e s s
fapsmn [T T T T [T T]
I s e B e

Figure 5.8: In this solution for our sample problem no wogkperiod lasts longer than
100 minutes.

In a last revision step we will extend our TEMPLE problem eferiher. It is
common in many companies to assign lunch breaks to their@mgs, and these lunch
breaks usually last longer than ordinary breaks. We extemdample problem by an
additional hard constraint, which requires that each shifst contain a one-hour lunch
break. Not only does this additional criterion require tedrt additional properties and
constraints, but it has also sidéfexts to already existing elements within our TEMPLE
program. Once again, we will see, that we will extend and fiyamlir existing TEMPLE
program by adding and changing only a few lines of code, thE$/PLE programs are
very robust against changes, as they frequently occur iaihy working area.

First of all, for each break we insert an additional propesecifying whether a
break is a lunch break or not. Thus property will be set to tfuebreak reaches or
exceeds the limit of sixty minutes required for a lunch break

Property Break::IsLunchBreak(Break thisBreak)
{

if(thisBreak.Duration >= 60 minutes) IsLunchBreak = true;

3

Secondly, for each shift we derive a property indicatingrthmber of lunch breaks
scheduled per shift.

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 71

Property Shift::LunchBreakCount(Shift.Break[] scheduledBreak)

{
forall(i in scheduledBreak.getRange() : scheduledBreak[i].IsLunchBreak == true)
LunchBreakCount++;

Finally, for each shift we introduce a hard constraint, il violated whenever a
shift lacks a lunch break.

//Additional requirement: A shift must contain at least one lunch break.
HardConstraint Shift::LunchBreak(Shift thisShift)

{
if(thisShift.LunchBreakCount < 1) LunchBreak = VIOLATED;

}

By introducing additional properties and a hard constrai@tare not done yet. As
we remember when scheduling an initial break pattern in fa wii have only used 30-
minutes breaks. When scheduling an initial break pattermwst guarantee that at least
one break’s duration is set to 60 minutes. Fortunatelycésmge can be implemented by
inserting only one additional line of code into our origiiatialization block. Among all
breaks we select a break at random and extend its duratidh taréutes, thus, making
it a lunch break.

Initialize Shift::BreakSchedule(Shift thisShift, Shift.Break[] breakToSchedule)

{
range S = thisShift.Start .. thisShift.End;

forall(i in breakToSchedule.getRange())
{
breakToSchedule[i].Start
breakToSchedule[i].Duration
breakToSchedule[i].Active

thisShift.Start + i * 1 hour;
30 minutes;
1;

breakToSchedule[i].Start.Domain.Clear();
forall(j in S) breakToSchedule[i].Start.Domain.Add(j);

breakToSchedule[i].AddLink(thisShift, "Shift");
}

//Select an arbitrary break and make it a lunch break
select(i in breakToSchedule.getRange()) breakToSchedule[i].Duration = 60 minutes;

}

Furthermore, we must also modify the code for property
Shift: :NumberOfBreaks. In two intermediate steps we set the number of breaks that
will be created per shift to one and subtract 60 minutes, tinatobn for the lunch break,
from the break time to be scheduled. The remaining break tgrben distributed
among 30-minute breaks.

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. .. 72

Property Shift::NumberOfBreaks(Shift thisShift)

{
float breakTimeToSchedule = thisShift.RequiredBreakTime;

NumberOfBreaks
breakTimeToSchedule -

= 1; //Create a lunch break

= 60 minutes; //Subtract lunch break time
//Distribute remaining break time among 30-minute breaks

NumberOfBreaks += (int) ceil(breakTimeToSchedule / 30 minutes);

So far, we added an additional hard constraint requiring exfaur lunch break
per shift to our problem model, and we modified the TEMPLE ceftiecting how an
initial feasible break schedule is computed for our probleSince from now, shifts
contain breaks of dierent duration, 30 minutes, and 60 minutes, we introducedan a
ditional move for our local search algorithm which swapsclubreak with an ordinary
30-minute break.

Move Shift::SwapTwoBreaks(Shift thisShift, Shift.Break[] scheduledBreak)
{
select(i in scheduledBreak.getRange())
{
select(j in scheduledBreak.getRange() :
scheduledBreak[i] .Duration != scheduledBreak[j].Duration)
{
int t
scheduledBreak[i].Start
scheduledBreak[j].Start
}
}
}

scheduledBreak[i].Start;
scheduledBreak[j].Start;
t;

After recompiling our TEMPLE program the iterated localrebeaalgorithm is able
to return an optimal solution to our small problem after 4€osels. Figure 5.9 shows
the obtained break schedule containing a 60-minute lunefilkdin each shift.

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. ..

44 required employees ---------- working employees

g I

73

T T T T T T T T T T T T T T T T
06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

18:00

Shift Plan

Figure 5.9: Solution for our sample problem, in which eadlft sbntains one
60-minute lunch break.

CHAPTER 5. A DOMAIN SPECIFIC LANGUAGE FOR STAFF. ..

74

Chapter 6

Related Work

In this chapter we review state-of-the-art modeling langsaand metaheuristic frame-
works aimed at scheduling tasks or general combinatoriinigation problems. In
particular, we examine whether the basic building blockstef scheduling problems
and local search algorithms, are supported within theseoaphes. Moreover, we an-
alyze if our design goals for a modeling language foffstacheduling problems from
Section 5.1 can be realized by these approaches.

6.1 Related Modeling Languages

6.1.1 ESRA - An Executable Symbolism for Relational Algebra

Flener et al. developed the language ESRA [56], an Exeaitapnbolism for Rela-
tional Algebra, to model combinatorial optimization preivls on the basis of sets, enti-
ties and relations. This approach has been successfulligdpp general modeling and
specification languages like ALLOY [34], the Object Consttd.anguage (OCL) [57]
of the Unified Modeling Language (UML) [49], or in entity rél@nship (ER) diagrams.

In ESRA combinatorial optimization problems are specifigdleclaringdomains
constantsanddecision variablesnvolved in the considered task. For optimization prob-
lems we also have to definecast functionwhich shall be minimized or maximized.
Domains, constants and decision variables are declarduedresis of sets and enumer-
ation types, and complex data types. Complex data typesedireed by using relations
and cardinalities between simpler data types. The contdranposed on a particular
problem are formulated in first order logic. ESRA providesxadi set of predicates
and functions which can be used within constraint formatati Figure 6.1 presents an
ESRA model of the traveling salesman problem taken from.[56]

75

CHAPTER 6. RELATED WORK 76

dom Cities

cst Distance (Citiesx Cities) » N

var Next Cities —! Cities

minimise: > cecities Distancéc, Nex{(c))
such that: Y (c1 A ¢y € Citieg) Next(c1) = ¢

Figure 6.1: ESRA model of the traveling salesman problenh [56

6.1.2 ESSENCE

ESSENCE [22] is groblem specification languader combinatorial problems. The
main motivation for ESSENCE was to create a language in whath decision problems
and optimization problems can be specified in a very natwaicise way at a very
abstract level. The formal problem specification shall thermapped automatically to
a constraint satisfaction problem (CSP) model and finallgddeed by a corresponding
solver. According to Frisch et al. [22], three main goalseveralized in ESSENCE:

1. ESSENCE is a very natural language that is understanttabfe/one having basic
knowledge in discrete mathematics. No background in caimstprogramming is
required by a potential user.

2. ESSENCE provides a high level of abstraction. A few stat@mare sflicient to
specify a combinatorial problem.

3. A problem specified in ESSENCE can l&eetively mapped to constraint satis-
faction problems (CSPs).

ESSENCE specifications a very similar to the those spedditaitof combinato-
rial problems given by Johnson and Garey [24]. An ESSENCEiSpa&tion consists of
seven kinds of statements, each of which starting with ortbefollowing keywords:
given, where, letting, find, minimising, maximising and such that. given
statements are used to specify the input parameters of aiatolial problem.where
statements define allowed input parameter valles.ting statements introduce con-
stant identifiers and user defined typésnd statements are used to declare the decision
variables of a combinatorial problemminimising andmaximising statements are
used to define the objective functions of a combinatoriainogation problem. such
that statements are used to specify the constraints involvedamdinatorial problem.

Figure 6.2 presents an ESSENCE specification of the wellvknknapsack prob-
lem. In the knapsack problem we are given a set of items, emghdna specific weight

CHAPTER 6. RELATED WORK 77

and value. To solve the knapsack problem we must find a cioliecf items such that
their total value is as large as possible and their total ietgust not exceed a certain up-
per bound. Considering the ESSENCE specification presémtéigure 6.2 we see that
the ESSENCE specification is very similar to the specificatibthe knapsack problem
given in natural language.

given U enum (...), Given a set of items each of which
w:U — int(...), having a specific weight
v:U —int (..), andvalue

B:int and given limit on the total weight
find U’ :setofU find a collection of items
maximising D cyr V(U) of maximum value

such that >ueurW(u) < B such that the limit on the total
weight is not exceeded.

Figure 6.2: ESSENCE specification of the knapsack problemdtated as
optimization problem [22].

Frisch et al. [22] report that a suite of 58 problems, 26 dr&em CSPLib, 32 from
the literature, could be specified successfully in ESSENZ&bundergraduate student
in computer science having no background on constraintranogning. Moreover Frisch
et al. implemented a rule-base system called CONJURE tmatraaslate a fragment
of the ESSENCE language into a constraint programming motleése models were
further mapped to ECPS’ [55] and Minion [28]. For future work Frisch et al. want to
translate the complete ESSENCE language into constraistasdion problem models
and in that manner they plan to make a significant steps forweo the directions of
fully-automated modeling.

CHAPTER 6. RELATED WORK 78

6.1.3 The Zinc Modeling Language

Zinc [38] is a high-level modeling language for combinatbidptimization problems.
Zinc is a declarative, functional language using a mathigaidtke notation. The Zinc
language has been designed as simple as possitdeing only a manageable amount
of data types, predefined predicates, functions and camstraHowever, in contrast
to many other specification or modeling languages, e.g.,A8Rl ESSENCE, Zinc
enables the definition of user-defined predicates, fungtiand constraints. With these
user-defined language constructs the Zinc language cartdredexi and adapted to new
application domains.

The most important design goal of Zinc was that Zinc must belees indepen-
dent modeling language. Each problem formulated in Zinclmtransformed into a
constraint programming model, a mixed integer programmmuglel, or a local search
based model. Afterwards developers can experiment witerdint, already existing,
optimizations algorithms and they may chose the solvingriegie which proved to
perform best for a given problem instance.

Rafeh et al. successfully implemented a Zinc compiler [4iiplv translates a given
Zinc program into an intermediate representation in thghtlly different language flat-
tened Zinc. This intermediate model is finally transformet ian executable constraint
programming model, mixed integer programming model, acdllsearch model by ap-
plying appropriate rewriting rules.

With their Zinc compiler Rafeh et al. delivered a prove of cept that solver in-
dependent modeling is indeed feasible in Zinc. They fortedla series of well-known
combinatorial optimization problems in Zinc: the minintisa of open stacks problem
(MOSP), the social golfers problem, perfect squares, tlgrékns problem, the knap-
sack problem, job shop scheduling and the production sdingdoroblem. Each Zinc
formulation of these problems could be transformed into siglemodel of diferent
solving techniques. A comparison with equivalent, mayuaititten problem models,
revealed that the models automatically generated by the @mpiler needed only a
little bit more running time to achieve the same results.réfuge, Rafeh et al. conclude
that Zinc introduces only a negligible computational oeexth

CHAPTER 6. RELATED WORK 79

6.1.4 OPL - The Optimization Programming Language

As indicated by its name, the Optimization Programming Letg (OPL) [31] was
developed to model and solve optimization problems. OPéngits to combine the
advantages of mathematical modeling languages and ciongiragramming languages:

> Mathematical modeling languages, such as AMPL [21] and GAR]Sprovide
high-level algebraic and set notations and they enableatmauiation of concise
problem models. Moreover, mathematical modeling can béezppy a wide au-
dience, because users formulate constraints solely bydlpedi equations and
inequation and no information concerning the optimizapoocess must be spec-
ified.

> On the other hand constraint programming languages, su€idiR [17] and OZ
[33], provide logical, high-order and global constrainteldhey allow a user to
affect the way the solution space is explored by specifyingcbgamocedures.

An industrial implementation of OPL has been realized witthie software IBM
ILOG CPLEX Optimization Studio. However, in IBM ILOG CPLEXg@imization Stu-
dio only those parts of OPL concerning the modeling of prnoidénave been imple-
mented, the abstractions and notations concerning seescadures are not available in
that industrial implementation. Problem models obtained@PL are solved either by
the IBM ILOG CPLEX Optimizer engine (for mathematical pragrming models) or
by the IBM ILOG CPLEX CP Optimizer engine (for constraint gramming models).

As an additional feature IBM ILOG OPL provides further laage elements to
facilitate the development of scheduling models. In thispeet IBM ILOG OPL is
closely related to TEMPLE, thus, we will present the basleesitiling building blocks
of IBM ILOG OPL in more detail:

Time intervals. In addition to ordinary decision variables an IBM ILOG OPlhsedul-
ing model contains time intervals. Like decision varialdéso time intervals are
subject to optimization, i.e., start or duration of timesinvials are variable and con-
sequently positions and durations of time intervals arexgbd during the search
process. In a scheduling model, time intervals usuallyasgmt activities or tasks.

Cumulative functions. In IBM ILOG OPL, a cumulative function is a function rep-
resenting the sum of individual contributions of intervaldsually, cumulative
functions are used to model the usage or consumption of aisp@source over
time, e.g., an interval may increase the value of a cumdtiuction at its start or
over its duration. Cumulative functions are very similattie concept of derived
curves within the domain-specific language TEMPLE.

CHAPTER 6. RELATED WORK 80

State functions. In IBM ILOG OPL, state functions are used to represent théutiom
of a given feature of the environment over time. The maffedence between state
functions and cumulative functions is that interval valégbhave an incremen-
tal effect on cumulative functions (increasing or decreasing timetfon value)
whereas they have an absolutéeet on state functions (requiring the function
value to be equal to a particular state or in a set of possiates.

Temporal constraints. IBM ILOG OPL offers a set of temporal constraints concern-
ing the relationships between two or several time intervalbiese constraints
comprise precedence constraints regulating the relatigéipns of intervals, no
overlap constraints requiring that intervals are disjoiriime, span constraints en-
suring that one interval is contained within the other, ayrithronize constraints
demanding that two or several intervals start and end ataime sime.

Specialized constraints. Specialized constraints are imposed on state functions@and
mulative functions. They specify legal upper and lower msuon the value a
cumulative constraint may have during a certain period @y tiequire that the en-
vironment must be in a particular state such that a specficdan be performed.

If we compare TEMPLE with IBM ILOG OPL and its scheduling fews we
recognize some similarities between the two modeling laggs. The central element of
both languages are time intervals, and curves in TEMPLE iar#as to the cumulative
functions available in IBM ILOG OPL.

6.1.5 Comet

The programming language Comet [32] was developed to caribhie advantages of
constraint programming and local search algorithms. Caimstprogramming repre-
sents an elegant way to model complex optimization taskehiimg various dfferent
criteria and objectives. In a constraint programming laggusuch a problem can be
modeled by imposing each criterion and objective one bytardiy using logical, high-
order and global constraints. However, before Comet wapgsed, state of the art
constraint solvers had used solely global search algosithvhich more or less explore
the entire search space to solve a given optimization task.

Local search algorithms proved to return very good resattsnany diterent prob-
lems from the literature and from real-life. However, theida of local search algo-
rithms is an art in itself. For instance, a developer musbsban appropriate solution
representation, an adequate objective function, and stigdtied data structures to en-
sure an #icient performance of a local search algorithm. To simplifg tesign and
implementation of local search algorithms, Michel and Vaenténryck proposed the

CHAPTER 6. RELATED WORK 81

modeling language LOCALIZER [40], where local search alhons can be specified
in a manner similar to their pseudo-code representatiorengn scientific papers.

Later Michel and Van Hentenryck developed a constrainethaschitecture for lo-
cal search algorithms [41]. That architecture includedessvhigh-level concepts to
model the constraints and objectives of a given optimingfimblem, and to formulate
model-independent local search algorithms applicablenyoaabitrary problem model
obtained within that architecture. Further Michel and Vaenkénryck presented the
constraint-based modeling and optimization language €pthgincorporating the pro-
posed architecture. A comprehensive introduction on the€danguage and a detailed
overview on the concepts involved in Comet is given in [32].

In the recent past the Comet language has evolved strongdgid&s constraint-
based local search algorithms, also constraint progragnmmndels and mixed inte-
ger linear programs can be specified and solved in Comet. DineeClanguage and
a corresponding just-in-time compiler represent the co@ @admmercial optimization
platform, called the Comet Hybrid Optimization Platformhigh is distributed by the
company Dynadec Inc (www.dynadec.com).

At this point we want to present the high-level modeling apts [41] realized in
Comet which distinguish it from other modeling languagédse§e concepts are also used
within the code generated by our TEMPLE compiler to obtaireagcutable program
for a specific stfi scheduling problem:

Incremental Variables In Comet incremental variables are used to model the dynamic
features of the solution to an optimization problem. By dyiafeatures we un-
derstand all aspects of a solution which can be changedglaritocal search
algorithm, e.g., basic decision variables, objective fiomcvalues or constraint
violation degrees.

Invariants Invariants define functional dependencies between inaneaheariables,
and Comet ensures that these functional dependenciesvaysaddept valid during
a local search algorithm. For instance, the Comet statetaken from [41],

var{int} totalSum(ls) <- sum(i in 1..10) (variableToSum[i]);

declares an incremental integer variableotalSum and an in-
variant requiring that totalSum is always the summation of
variableToSum[1],...,variableToSum[10]. totalSum is the target vari-
able of that invariant whereasmariableToSum[1],...,variableToSum[10]
are source variables. If a new value is assigned to any souacdable
variableToSum[i] the value oftotalSum will be updated accordingly so that
the functional dependency specified by that invariant isa@ied.

CHAPTER 6. RELATED WORK 82

Complex Invariants To specify a functional dependency which cannot be declared
within a single statement a user must write an entire classnfiplementing the
Invariant<LS>interface. Figure 6.3 presents such a user defined invaatmesoir-
ing that the value of an incremental varialtetalSumis always the summation of
ten other incremental variableariableToSum[1],...,variableToSum[10].

In methodpost we specify thatrariableToSum[1], ...,variableToSum[10]

are the source variables of that invariant whereasalSum is the single target
variable. In methodnitPropagationwe compute the sum of all ten source vari-
ables and store it imotalSum. This method will be executed only once at the start
of the local search algorithm written in Comet. Finally, hred propagateInt
updates the target variable, whenever one of the sourcablesiis changed. We
compute only the dierence in the value of the changed variables and update the
sum accordingly. If only a single or a few source variables @ranged within

an iteration of the local search algorithpropagateInt can be carried out more
efficiently than a complete re-computation of the sum from thatsh.

Differentiable Functions In Comet diterentiable functions are used to model features
of the solution of a given optimization problem. Furtheryttessess thefiects
that local changes have on these features. Figure 6.4 psebeEnmost relevant
methods of interfacBunction<LS>which must be implemented by each specific
differentiable function. Eachfliérentiable function maintains the value of a (pos-
sibly) complex function, which is computed and maintaingdh invariant. The
current function value can be accessed at any time throudtmochealue. More-
over, through methodetAssignDelta we evaluate the variation of the function
value under local changes, i.e., if one or several basicsibeciariables are as-
signed new values.

Differentiable Constraints As shown in Figure 6.5, flierentiable constraints are very
similar to diferentiable functions. A dierentiable constraint maintains a con-
straint violation degree which is computed and maintainedrbinvariant. A dif-
ferentiable constraint reports whether it is satisfied otated (method sTrue)
and it can be queried for its current violation degree (mgthinlations). As
differentiable functions a fierentiable constraint can evaluate tiféeet of local
changes on its violation degree through a method cgladssignDelta.

CHAPTER 6. RELATED WORK 83

class SumOfVariables implements Invariant<LS>

{

Solver<LS> _1s;

var{int}[] _variableToSum;
var{int} _totalSum;

bool _posted;

//gets incremental variables that shall be summed up
//and the incremetal variable that shall contain the computed sum.
SumOfVariables(Solver<LS> 1s, var{int}[] variableToSum, var{int} totalSum)

{

//passed arguments are stored in local class member variables.

_1s = 1s;
_variableToSum = variableToSum;
_totalSum = totalSum;
_posted = false;

//sets source and target variables.

post(Q);
3

//sets source and target variables.
void post(InvariantPlanner<LS> invariantPlanner)
{
if(!_posted)
{
//source variables.
forall(i in 1..10)
invariantPlanner.addSource(_variableToSum[i]);

//target variable.
invariantPlanner.addTarget(_totalSum);

3
3

//computes the sum of source variables and stores it in target variable.
void initPropagation()
{

_totalSum := 0;

forall(i in 1..10)
_totalSum := _totalSum + _variableToSum[i];

3

//updates target variables efficiently.
void propagateInt(bool notLastInvocation, var{int} changedVariable)

//compute change in source variable value.
int delta = changedVariable - changedVariable.get0ld(Q);

//update sum by computed change.

_totalSum := _totalSum + delta;

}

3

Figure 6.3: Invariant maintaining the sum of several sower&bles within one target
variable.

CHAPTER 6. RELATED WORK 84

interface Function<LS>

{
//returns the current function value.
var{int} value();

//computes the change in function value if variablesToBeChanged are assigned newValuesToBeAssigned.
int getAssignDelta (var{int}[] variablesToBeChanged, int[] newValuesToBeAssigned);

Figure 6.4: Interface for elierentiable functions.

interface Constraint<LS>

{
//indicates whether a constraint is satisfied or violated.
var{bool} isTrue();

//returns the current constraint violation degree.
var{int} violations();

//computes the change in violation degree if variablesToBeChanged are assigned newValuesToBeAssigned.
int getAssignDelta (var{int}[] variablesToBeChanged, int[] newValuesToBeAssigned);

Figure 6.5: Interface for élierentiable constraints.

CHAPTER 6. RELATED WORK 85

In Comet a problem model of a given optimization is obtainethe following manner:

1. We model the basic decision variables of an optimizati@blem by the help of
incremental variables.

2. We model further features of a problem by using invariants diterentiable func-
tions.

3. Finally, we impose the constraints and objectives of &lpra by using invariants
and diferentiable constraints. All constraints are collected co@straint system,
implementing the dierentiable constraint interface.

In Comet local search algorithms operate only with methadsided by diferen-
tiable constraints. Consequently, the resulting locatcdealgorithms can be applied to
arbitrary problem models consisting ofi@irentiable constraints. Thus, Comet supports
the separation of local search algorithms from specific lepraimodels and contributes
to the development of general local search algorithms.

6.1.6 ASPEN - An Automated Scheduling and Planning Environrant

ASPEN [23] is a modular, reconfigurable application framewwwhich was developed
by the Artificial Intelligence Group of the Jet Propulsionbloaatory to model and solve
a wide variety of planning and scheduling applicationsirgisit NASA. In particular
ASPEN has been applied within the domain of spacecraft tpasa

While operating a spacecraft severaftelient high-level science and space craft
engineering goals must be achieved. These high-level gesdt in a series of low-level
spacecraft operations which are required to be schedulecciordance with a variety of
constraints, concerning the availability of resources,dirrent state of the aircraft and
temporal restrictions.

For instance, a high-level goal of a space craft might be 2ol and photograph
planets, stars, and galaxies. To make a single observatisaries of low-level opera-
tions have to be carried out: the space craft must be adjusf@dture must be taken, the
obtained data must be temporarily stored at the space crdi\@entually the data must
be transmitted to earth. To carry out each single operaticnessfully one or several
conditions need to be satisfied: to take a picture a certaouatrof power is required,
to save the obtained data enough free storage must be &adal information can be
transmitted only at certain down-link times.

CHAPTER 6. RELATED WORK 86

The ASPEN Modeling Language

ASPEN provides a modeling language [51] which is used by domeperts to model
high-level goals, low-level operations and the constsaimiposed on a desired solution.
The ASPEN modeling languagéfers abstractions and notations reflecting these opera-
tions and constraints in a very natural way. Consequentiy)adn experts can formulate
planning models very easily and quickly. Afterwards ASPENeziules the single high-
level goals and low-level operations such that as many geapeossible are achieved by
the resulting schedule. The scheduling of high-level gaals low-level operations is
done automatically without requiring any input from the domexperts. This is par-
ticularly useful since the domain experts using ASPEN ugusve no knowledge of
automated planning and scheduling techniques. The maimeeles of the ASPEN mod-
eling language aractivities resourcesandstates

Activities. Activities are the central plan elements of ASPEN. Basycah activity
represents a high-level goal or a low-level operation of ecgjg planning and
scheduling problem. A single activity can be decomposed $eteral subactiv-
ities. In that manner a domain expert can model the relatawden high-level
goals and the low-level operations required to achievegbal Each activity has
three basic parameterstart, end, andduration, thus an activity can also be
considered as a time interval. The value of paramétertion usually remains
fixed, only the position of an activity is changed during op#ation. In additional
to start, end, andduration, one can define further parameters for activities.

Resources.ASPEN distinguishes between depletable and non-depéetabburces. A
depletable resources, e.g. propellent (fuel), is consumeh activity which uses
the resource. A non-depletable resource, e.g. power, isvetnfrom availability
only for the duration of an activity. If the activity ends amdepletable resource
will become available again.

States. In ASPEN state timelines are used to represent the evolofisome aspect of
a spacecraft over time. A state timeline is associated af sitarete state values
that it can take on, and a list of legal state transitions.

In ASPEN, all constraints in a plan model result from adegt There are four
kinds of constraints which activities can impose on othanp@lementstemporal con-
straints functional dependenciggesource reservationgandstate reservations

Temporal constraints. A temporal constraint is a temporal relation between a sourc
activity and a target activity. The relation must be satisfig every pair of ected
activity instances in the plan. The ASPEN language defineesiporal relations:

CHAPTER 6. RELATED WORK 87

starts_before, starts_after, ends_before, ends_after, contains and
contained_by. A temporal relation can be modified by an optional interyeics
ifying minimum and maximum distances between the pair d/iiets.

Functional dependencies.Functional dependencies require that the value of a param-
eter of an activity is a function of other parameter valuesAEPEN, a concrete
dependency function itself is written in the programminggaageC.

Resource reservations.In ASPEN the resource requirements of activities are stayed
the help of resource reservations. A resource reservagienifees the resource
and the number of units needed by an activity along its dumati

State reservations. Activities can impose two kinds of state reservationsmust_be
reservation requires that the state has a specific valubdaturation of the activ-
ity. change_to reservations change a state to a certain value at the begiohi
the activity.

6.1.7 Optimization Algorithms

Usually, the planning and scheduling problems modeled iREBIS are over-constrained.
Therefore, ASPEN tries to obtain a solution maximizing thenber of high-level goals

which can be achieved without violating any constraintst that purpose the ASPEN
application framework provides thredlirent algorithms for optimizing a specific plan-
ning and scheduling task:

1. A greedy, constructive algorithm called forward dispatc
2. A constructive backtracking algorithm called IRS.

3. Arepair-based algorithm.

In practical applications of the ASPEN framework the reji@msed algorithm
proved to perform best. The repair-based algorithm consittee current solution of
a planning and scheduling problem and selects a conflicttirggdrom the violation
of a temporal constraint, a functional dependency, or froriokated resource and state
reservation. Then the algorithm tries to resolve that cairifly rescheduling, instantiat-
ing and deleting activities, or by assigning new values tapeeters in accordance with
functional dependencies. A more detailed description emthe repair-based algorithm
is realized in ASPEN is given by Rabideau et al. in [46].

CHAPTER 6. RELATED WORK 88

ESRA ESSENCE Zinc ASPEN OPL Comet TEMPL
Intervals X X X v v X v
Links X X X X X X v
Curves X X X X v X v
Derived Elements x X X v X v v
Openness X X v v X v v
Modularity X X v v X v v

Table 6.1: Comparison of TEMPLE and related modeling laggsa

6.1.8 Comparison with Temple

To compare the previously presented modeling languagésMaMPLE we examined

whether they provide the basic building blocks offsszheduling problems we identi-
fied in Section 5.2: intervals, links, curves, derived prtipe and constraints. Moreover,
we considered if the related modeling languages are opetheisense of the design
goal Openness stated in Section 5.1. In an open modelingdaegarbitrary aspects of
a problem can be modeled and the language is not restrictaedinite set of features
and constraints. As a last criterion for the modeling laggsarelated with TEMPLE

we examined whether problems can be modeled in a modularenasrequired by out
design goal Modulariy in Section 5.1. Our comparison dfedient modeling languages
is summarized in Table 6.1.

ESRA, ESSENCE and Zinc were developed to specify or modedrgécombina-
torial problems. Therefore, they do not provide any datacstires or language elements
occurring in sté scheduling problems, such as intervals, links, curvesyetgproper-
ties and constraints. ESRA and ESSENCE provide only a firitefspredefined func-
tions or constraints in order to model a problem, whereas Zliows to define additional
functions and predicates to adapt and extend the languagspiecific combinatorial op-
timization problem.

Some aspects of the ASPEN language are akin to TEMPLE, ftarios, activities
are similar to intervals and functional dependencies amgpawable with derived proper-
ties. Furthermore, in ASPEN it is possible to model arbjtfanctional dependencies by
user-defined code in the programming languégthus ASPEN is an open language in
our sense. Since in the ASPEN language high-level goalssm@tposed into low-level
operations ASPEN is also a modular language. However, ASBENongly focused
on the characteristics of space craft operations and cayapplied directly to sfa
scheduling problems.

CHAPTER 6. RELATED WORK 89

Like TEMPLE, IBM ILOG OPL provides further language elememb facilitate
the development of scheduling models such as intervals amdlative functions which
are similar to curves. However, in IBM ILOG OPL the user must a fixed set of tem-
poral or specialized constraints which cannot be extendetdr whereas in TEMPLE
arbitrary constraints can be defined. Moreover, in TEMPLESer can select between
different local search algorithms and he or she may influencetlretsprocess by spec-
ifying user defined moves. The IBM ILOG CPLEX CP Optimizer i@guses an exact
method to obtain a solution for a considered scheduling. tAskiser may adjust some
parameters of that method, but he canrftéeéc which regions of the search space shall
be pruned or shall be explored at first hand.

As for Comet, TEMPLE inherited some of its syntax and datacstires, e.g., sets,
ranges and selectors, and Comet is the target language SEMIPLE compiler. Some
aspects of Comet’s modular architecture, such as useredeiiwariants, dferentiable
functions, and dferentiable constraints, are similar to derived properdiesonstraints.
However, the implementation of invariantsffdrentiable functions and constraints, is far
more complex and time consuming in Comet, because entissedahave to be coded,
whereas in TEMPLE properties and constraints can be usdefiped within several
lines of code. Comet is also an open language providing batghned constraints
as well as the possibility to define arbitrary user-definempgrties or constraints of a
problem. The main dierence between TEMPLE and Comet is that TEMPLE of-
fers abstractions and notations offBscheduling problems, namely intervals, links and
curves, reflecting common features offsscheduling tasks. Moreover, we tried to de-
sign TEMPLE as simple as possible, thus, no knowledge aligjetioorientation or any
details on local search techniques, is required from a user.

CHAPTER 6. RELATED WORK 90
6.2 Metaheuristic Frameworks

Beside modeling languages, metaheuristic frameworksepit a further possibility to
develop algorithms for combinatorial optimization prohke Within a metaheuristic
framework certain core functionalities of one or severataheuristic techniques have
already been realized. To develop an algorithm for a pdaiiccombinatorial optimiza-
tion problem we have to extend the framework by providingofem specific informa-
tion, e.g., a solution representation, moves, or an obgétinction.

In recent years, several metaheuristic frameworks have pemosed by dierent
authors, e.g., OpenTS [30], EasyLoeal[27], HOTFRAME [20], Templar [35] or Par-
adiseO [9]. We will shortly describe three frameworks whieé looked at as possible
candidates for the design of generic solutions foff seheduling problems before we
decided to develop a new domain specific language on our own.

6.2.1 OpenTS

OpenTS [30] is a Java-based framework to develop and impieifebu Search algo-
rithms [29]. To obtain a Tabu Search algorithm for a paracwlombinatorial optimiza-
tion problem we must provide Java classes implementingalfafing items:

1. A solution representatian
2. Anobjective functiorevaluating solutions of the considered problem.

3. One or severdflovesdefining the local neighborhood computed for a considered
problem.

4. If more than one kind of move should be used within the taarch algorithm
a user must also provide a so-callembve manageclass. Within that class the
user must specify how fierent types of moves are chosen to compute the local
neighborhood of a solution.

Optionally, we can further extend classes for the Tabu ®ealgorithm and the
tabu list which are already existing within the framewonkdave can specify additional
aspiration criteria. In that way we can adapt the standatili ®earch algorithm of
OpenTsS to a particular problem. Finally, we compile our sésscontaining problem
specific information with the Java classes of the OpenTSdveonk and so we obtain
an executable Tabu Search algorithm.

CHAPTER 6. RELATED WORK 91

6.2.2 EasylLocak+

EasyLocal+ [27] is an object-oriented framework realized in the progmaing lan-
guageC++. In contrast to OpenTS EasyLoeal is not restricted to tabu search. Easy-
Locak+ provides several local search algorithms already existitigin the framework,
such as tabu search and simulated annealing, and it supperigvelopment of further
local search techniques. During the optimization procesgsral local search techniques
can be combined with each other, thus, in EasylLbedt is very easy to obtain hybrid
metaheuristic algorithms.

According to Di Gaspero and Schaerf [27] the core of Easylseeaonsists of
a set of classes which are responsible fdfedent aspects of a local search algorithm.
These classes can be partitioned into the following fivegrates:

Data classesstore the basic data of a local search algorithm, namelyta staolution
in the search space, moves, input and out data.

Helpers are responsible for neighborhood computations, probibithechanisms, the
computation and dynamic adaption of an algorithm’s obyectunction, and for
the creation of output data.

Runners execute runs of local search algorithms. They start at éialisolution, per-
form a series of moves and end up in a final search state.

Solvers create an initial solution and they control the entire de@rocess by executing
one or several runners.

Testers are used to debug algorithms, to tune parameters and tozanlalgal search
algorithms.

To develop a local search algorithm in EasyLacalwe must extend some classes
and we must implement a few so-callbtustDef methods. In thes®lustDef methods
we specify how initial solutions are created, how the olyectunction value and hard
constraint violations are obtained and how moves are caedpuln addition, we can
further adapt a local search algorithm to a particular og@tion problem by overriding
so-calledViayRedefmethods.

6.2.3 ParadiseO

ParadiseO [9], parallel and distributed evolving objetdsa metaheuristic framework
supporting the design of both local search techniques amidtenary algorithms. Par-
adisEO has the same architecture as Easykacabnsisting of helper, runner and solver
classes:

CHAPTER 6. RELATED WORK 92

> Helpers perform low-level actions related to the evolutiotocal search process,
e.g., such as evolutionary operations or neighborhoocbexiobn.

> Runners implement a certain metaheuristic technigue tblees They perform
the run of an algorithm from an initial solution or populatito the final one.

> Solvers are responsible for the control of the evolutiorcpss or the local search
process, or a combination of both.

As in OpenTS and EasyLocat, in ParadisEO we must provide at least informa-
tion on an initial solution, objective functions, moves angtic operators, to obtain an
algorithm for a specific optimization problem, and by owdirrg already existing meth-
ods of the framework’s classes, we can adapt an algoriththefuto the specifics of a
particular task.

In addition to OpenTS and EasyLoedl, in ParadisEO we can built hybrid algo-
rithms consisting of evolutionary and local search comptseln that manner we can
combine the characteristics of both approaches withingessolution. Evolutionary al-
gorithms are better in exploring the entire search spaceaskdocal search techniques
are more suited to intensify the search in particular regjion

Finally, ParadisEO enables the development of paralleldistributed solutions.
Cost-intensive processes like neighborhood exploratorr@opulation evaluations can
be distributed among several threads, multiple processasand dierent computers.

6.2.4 Comparison with TEMPLE

At the start of our research we considered metaheuristindveorks as possible candi-
dates for the design of generic solutions forfiss&gheduling problems. However, after
it had become clearer to us, which design goals we wantedhigac with our de-
sired generic solution, we decided to develop a new domagnifép language for sth
scheduling problems on our own. Basically, we took that sleni because of the two
differences between metaheuristic frameworks and TEMPLE:

1. Metaheuritic frameworks are aimed at general combiratoptimization prob-
lems. They do not provide abstractions and notations reftpdtasic building
blocks of st scheduling problems, and thus, it is hard to realize thegdegoal
modularity in metaheuristic framewaorks.

2. When implementing an algorithm within a metaheurstienfeavork a user must
possess knowledge of the architecture of the frameworlkecbloriented program-
ming, and sometimes even of local search techniques. Thkegsirements on a
potential user are in conflict with our design goal simpjicit

Chapter 7

The TEMPLE Compiler

We designed and implemented a TEMPLE compiler to transfoEMPLE programs
into executable local search algorithms that solve thé stheduling problems. As input
the compiler is passed a problem model formulated in the TEMPhodeling language
and an XML-file containing input information of a particularoblem instance. On the
basis of that input the TEMPLE compiler generates thred kearch algorithms for the
considered stischeduling tasks: a simulated annealing algorithm [36]ll @limbing
strategy [39] and an iterated local search algorithm [37)e Three local search algo-
rithms are written in the constraint-based optimizatiamglzage Comet [32]. To obtain
a solution for the considered fitacheduling problem the generated algorithms are ex-
ecuted by the Comet optimization engine. Finally, the bekit®n found during the
execution of a local search algorithm is returned as an XNi&.-frigure 7.1 illustrates
the entire approach we followed to solvefsgcheduling problems in TEMPLE. In de-
tail, the following files are generated by the TEMPLE compikhen transforming a
TEMPLE model into classes of the Comet optimization languag

> For eachderived propertydefined in the TEMPLE problem the TEMPLE com-
piler creates two files, a class file representing the denpregerty, and an in-
variant file. The class representing the derived propertagsulates the value it
is responsible for evaluating moves, i.e., it computes e value the property
would take if a move was executed. On the other hand, theiamtdile initializes
the value of a property at the beginning of a local searchrltgo and updates
the property value whenever a move is actually performed.

> Also, for eachderived curve and constrairthe TEMPLE compiler creates a
class file representing the derived curve or constraint arichvariant file. Again,
the class file encapsulates a curve’s state or a constraintation degree and
evaluates changes resulting from moves, whereas theamtdilie initializes and

93

CHAPTER 7. THE TEMPLE COMPILER 94

TEMPLE COMET

Input Data (XML) Local Search Algorithms

1. Simulated Annealing

Problem Model

Intervals

Links MPLE
Penees ‘;piler } 3. lterated Local Search

Curves

2. Hill Climbing + Random Noise

Eomet >
Engine

Solution (XML)

Constraints

Instantiation

Initialization

Moves

Figure 7.1: A Temple compiler transforms Temple models thtee generic local
search algorithms, that can be executed instantaneously.

updates a specific curve or constraint violation degreenduilocal search algo-
rithm.

> For eachinstantiation elementhe TEMPLE compiler generates an instantiator
class file to instantiate new additional intervals.

> For eachinitialization elementhe TEMPLE compiler builds an initializer class
file which is used to compute initial values of basic intepedperties, to restrict
the domains for basic interval properties, and to link veds with each other.

> For each definednovethe TEMPLE compiler creates a corresponding Comet
class, responsible for computing, evaluating and exegutiaves.

> For eachinterval declared in a TEMPLE model the TEMPLE compiler creates
an interval class file. That class contains the basic priggedassociated with a
specific interval and aggregates the derived propertigsesuconstraints as well
as the moves, instantiators and initializers defined farithiarval.

> Finally, the TEMPLE compiler creates a class callBtheIntervalModel,
which is the central management class of the compiled pmobi@del. This class
aggregates all created intervals, and administers twar@nissystems for hard

CHAPTER 7. THE TEMPLE COMPILER 95

and soft constraints. Each of the created local searchitilgm interact only with
time interval model during their search.

While implementing the TEMPLE compiler we had to solve sal/problems to
ensure that the generated local search algorithms workatyrand iciently. In the
remainder of this chapter we will describe these tasks inendetail and we will show
how we managed to solve them.

7.1 TEMPLE Model Analysis

As a first step, the TEMPLE compiler analyzes the structur@a GFEEMPLE pro-
gram. Thereby, the compiler builds up a dependency graptngtothe dependen-
cies between basic properties, derived properties, cung@sstraints, instantiation el-
ements, and initialization elements. Figure 7.2 presdr@sdependency graph for the
sample resource planning andfbtscheduling problem in section 5.4. For instance,
in Figure 7.2, the edge between a shift's derived propefi@salBreakTime and
TotalBreakTimeInPercent indicates, that the latter property is derived from the for-
mer one. On the basis of a program’s dependency graph the TEMgdmpiler per-
forms the following two tasks:

1. The TEMPLE compiler detects superfluous elements, iegiyetl properties or
curves which cannot be reached from a node representing siraion, and ex-
cludes them from further processing steps.

2. The TEMPLE compiler detects directed circles within trepehdency graph.
Each derived element in a directed cycle depends trangitiveitself, thus, the
computation of such an element will not terminate. If a diedccycle is detected
in a TEMPLE program, the compiler informs a user that the mogcannot be
processed correctly and terminates.

7.2 Computing an Initial Solution

7.2.1 Creating Intervals from the Input XML-File

As input each TEMPLE program is passed an XML-file which cardmesidered as a
list of interval nodes, specifying the initial values anchaons for each single interval
as well as links between intervals. For instance, the faligwcode listing presents an
interval node of the input file for our sample resource plagrand st& scheduling

CHAPTER 7. THE TEMPLE COMPILER

96

I Constraint [T cure [Property [T Instantiation/Initialization
Shift Break Problem
|TotaIBreakTimeInPercent |
|—
| TotalBreakTime | | Shortage |
L I
—] |DeviationFromStaffingRequirements |
| WorkingStaff X |
I ™
| BreakPattern |
[
|Active | |Start | |Duration |
I I I
[[]
[
| BreakSchedule |
T
|Shift.Break ' |
. :
|NumberOfBreaks : |
I : | StaffingRequirements |
|RequiredBreakTime : |
lﬁ—lv TimeSlot
ST | |
End || | |StafﬁngRequirement| |End |
— | —]
|Active | |Start | |Duration | |Active | |Start | |Duration | |Active | |Start | |Duration |

Figure 7.2: Dependencies existing between TEMPLE elemeitte sample sta
scheduling problem from Section 5.4.

CHAPTER 7. THE TEMPLE COMPILER 97

problem. The node corresponds to the first shift of our sarpmelem. Initially, this
shift is active, starts @6: 00, and lasts eight hours. The given domain values prohibit
any changes of the basic decision variables by a local se¢gohithm:

<interval id="1001" type="Shift" description="Shift from 06:00 - 14:00">
<basic-decision-variables>
<variable-start> <!-- shift starts at 06:00 = time slot 36 -->

<value>36</value>

<domain>
<domain-value>36</domain-value> <!-- shift start must not be changed -->
</domain>
</variable-start>
<variable-duration> <!-- shift lasts eight hours = 48 time slots -->
<value>48</value>
<domain>
<domain-value>48</domain-value> <!-- shift duration must not be changed -->
</domain>
</variable-duration>
<variable-activity> <!-- shift is active -->
<value>1</value>
<domain>
<domain-value>1</domain-value> <!-- shift may not be deactivated -->
</domain>
</variable-activity>
</basic-decision-variables>
<links>
<!-- here the intervals linked to a shift could be specified -->

</links>
</interval>

The information stored within the input XML-file is now trdnsmed into interval ob-
jects as follows:

1. For each interval given in the input file a correspondirtgrival is instantiated.

2. Theinitial values specified within the XML-file are assgito basic interval prop-
erties.

3. The domain values of basic properties are restrictecetddimain values retrieved
from the input file.

4. Intervals are linked with each other according to thermfation given within the
input file.

After processing the data from the input XML-file we have tedathe first part
of an initial solution for a particular problem instance gliie 7.3 depicts the status of
initialization after reading the input information for tseample stfl scheduling problem
from Section 5.4. Shifts, time slots and the root intervaresenting a problem have
been instantiated and linked among each other. Moreoverdsic properties of the

CHAPTER 7. THE TEMPLE COMPILER 98

created intervals, i.e., all elements drawn below the megl Inave already been initial-
ized. However, the bigger part of the initial solution, deed with gray rectangles in
Figure 7.3, is still not initialized at this stage.

Feasible Initialization Orderings

To initialize the remaining elements of a solution in cotreaer, we must consider the
dependencies existing between them. In a feasible iziditiin ordering we initialize
a single element only after we have already initialized #ikeo elements it depends on.
Within the TEMPLE compiler we obtain a feasible initializat ordering by traversing
the dependency graph of an underlyingtssgheduling problem in a depth-first-search
order starting at the nodes representing constraints.ré&-igd shows a possible initial-
ization ordering for the sample $t&cheduling problem from Section 5.4.

CHAPTER 7. THE TEMPLE COMPILER 99

[1 uUnitialized element [Initialized property
Shift Break Problem
| MinimumBreakTime | | MinimumDuration | | NoShortage |
I
| TotalBreakTimelnPercent |
| TotalBreakTime | | Shortage |
L I
|ScheduleBreakszthlnShlft |] |DeviationFromStaffingRequirements |
5
| NoOverlappingBreaks | | WorkingStaff X |
I ™
| BreakPattern |
[
|Active | |Start |Durat|on |
I I I
I I |
[
| BreakSchedule |
T
|Shift.Break ' |
| T
T
|NumberOfBreaks X |
I i | StaffingRequirements |
|RequiredBreakTime ' |
lﬁ—lv TimeSlot
NEAY - | I
End |, | |StafﬁngRequirement| |End | End
11 I
1 [
|Active | |Start | |Durat|on | |Active | |Start | |Duration | |Active | |Start | |Duration |

Figure 7.3: Initialized and uninitialized elements aftesqessing the input data for our
sample problem.

CHAPTER 7. THE TEMPLE COMPILER 100

I Constraint [T cure [Property [T Instantiation/Initialization

Shift Break Problem

e €

| TotalBreakTimelnPercent 16

| TotalBreakTime 15 | Shortage

I
m] | DeviationFromStaffingRequireme
'_,
13

| WorkingStaff '

S®®

10

| Activ@ | start(9 | Dura
| |

| BreakSchedule @
| Shift.Break @

I
| NumberOfBreaks @

I | StaffingRequirements @
| RequiredBreakTime 4

‘ﬁ* TimeSlot

M PN—-

H End /3 |StafﬁngRe:quirement| |Endl®
—1 | [—

|Active | |Start | |Duration | |Active | |Start | |Duration | |Active | |Start | |Duration |

Figure 7.4: A feasible initialization ordering for the sdmptdf scheduling problem
from Section 5.4.

CHAPTER 7. THE TEMPLE COMPILER 101

7.2.2 Single Initialization Step

During the initialization of a of a derived property, cuna, constraint, the following
two steps are performed:

1. We compute an initial property value, curve state, or traimd violation degree.

2. For each element we compute the basic decision varialilehwt depends on.
Basic decision variables are used to check whether or noleameat is #ected
by a move, and as we will see in Sections 7.4 and 7.5, they pteytal role in
the dficient evaluation and execution of moves.

The actual computation of initial property values, curvesonstraint violation
degrees takes place in the invariant classes created by EMPTE compiler. For
each derived element the TEMPLE compiler analyzes the aoigeet specifying how
an element is derived. The compiler identifies the propedied curves which a derived
element depends on and modifies the code snippet. The mazhiikedsnippet is inserted
into an invariant’s methodni tPropagation which initializes the derived element. For
instance, the following code is inserted into an invariantnitialize a shift's derived
curveBreakPattern in our sample sté scheduling problem from Section 5.4:

void InvariantCurveShiftBreakPattern::initPropagation()

{
BreakPattern.Clear();

forall (i in scheduledBreak.getRange())
BreakPattern.Pulse(scheduledBreak[i].Start().value(Q),
scheduledBreak[i] .End() .value(),
scheduledBreak[i].Active().value());

Basic decision variables are those variables represehasg interval properties
Start, Duration, Activity. All derived elements depend either directly or transi-
tively on basic properties. For a particular derived elenves compute it's associated
set of basic decision variable in the following manner:

1. If an element is a basic property, its associated set at lolezision variables
contains only the decision variable representing the asiperty.

2. Otherwise, for derived elements, we build the union ofaik of basic decision
variables associated to the elements from which the comslddement is derived.
The resulting set is then associated to the considered steme

CHAPTER 7. THE TEMPLE COMPILER 102

To compute the set of basic decision variables for each elgntiee TEMPLE
compiler recognizes on which intervals, properties andesian element depends on.
In each class corresponding to a derived element the conguéates a method called
Register and inserts the code necessary to determine all basic alecsigriables. For
a shift’'s derived curvereakPattern, depending on the properti€&tart, End, and
Active of the breaks scheduled in a shift, our TEMPLE compiler @=é#te following
method:

void CurveShiftBreakPattern::RegisterVariables()

{
forall(i in scheduledBreak.getRange())
Register(scheduledBreak[i].Start()) ;

forall(i in scheduledBreak.getRange())
Register(scheduledBreak[i].End())

forall(i in scheduledBreak.getRange())
Register(scheduledBreak[i].Active()) ;

In Figure 7.5 we see a single shift with four breaks and theespionding initial
values and sets of basic decision variables computed far besak properties, the de-
rived curveBreakPattern, and constrainloOverlappingBreaks, as defined in our
sample problem from Section 5.4. We see that for each eletineiset of basic decision
variables is consists of all basic decision variables agsatto its child nodes.

CHAPTER 7. THE TEMPLE COMPILER 103

Shift with four breaks

06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
Variable registration
- Sl
Derived constraint
I:l Derived curve
I property SATISFIED
:] Basic property |
BreakPattern
End V4 ,Vy Va,Vy Vs Ve V7 Vg Vo Va0 Vi 1, Vi
V41, V424 Basic decision variables 2
10:30 < Initial value 1 l_l l_l ‘_l ,_l
Break Break Break Break
End End End End
'S Vs Ve Vg Vg Viq.Viz
07:30 08:30 09:30 10:30
Active Start Duration Active Start Duration Active Start Duration Active Start Duration
Vi V2 Vs Va Vs Ve vz Vs Vg Vio Viq Vaz
true 07:00 00:30 true 08:00 00:30 true 09:00 00:30 true 10:00 00:30

Figure 7.5: Initial values and sets of basic decision véembssociated for basic and

derived properties, curves and constraints of a shift andbceaks.

CHAPTER 7. THE TEMPLE COMPILER 104

7.3 Move Computation

When specifying a move in TEMPLE, we consider the curreniitemh of a particular
optimization problem and derive a slightly changed newtsmiufrom it. More precisely
we carry out the following steps:

1. We consider property values and curves of the currentisolu

2. On the basis of the current property values and curvesstegecompute new val-
ues for basic interval propertieStart, Duration, Active or additional basic
properties.

3. We assign the newly computed values to basic intervalgoti@s to obtain a new
solution.

For instance, in moveutBreakAtNewPosition for our sample sté scheduling
problem from Section 5.4, we consider a shiffisart andEnd in the current solution,
we use these properties to compute a new break start withighift, and we assign the
new break start to a break’s basic propedtart:

Move Shift::PutBreakAtNewPosition(Shift thisShift, Shift.Break[] scheduledBreak)

{
range S = thisShift.Start .. thisShift.End;

select(i in scheduledBreak.getRange())
select(newPosition in S)
scheduledBreak[i].Start = newPosition;

Since a basic interval property is represented by a basisideovariable, a com-
puted move consists of a set of basic decision variables @lnés that shall be assigned
to those variables. To ensure that moves are representecbamglited in exactly that
manner our TEMPLE compiler analyzes the code specified fon ezove and detects
assignment statements in which basic interval propertiesnaolved. For each move
our TEMPLE compiler generates a method calledpute, which stores pairs of basic
decision variables and new values computed during its ¢xecu

CHAPTER 7. THE TEMPLE COMPILER 105

The following code snippet represents the metbabute, generated by the TEM-
PLE compiler, in order to compute the basic decision vagialhd be changed, and to
determine values to be assigned by mPueBreakAtNewPosition:

void MoveShiftPutBreakAtNewPosition: :Compute()

{
range S = thisShift.Start().value() .. thisShift.End().value();

select (i in scheduledBreak.getRange())
! select (newPosition in S)

{ this.StoreVariableValuePair(scheduledBreak[i].Start().value(), newPosition);
. }

CHAPTER 7. THE TEMPLE COMPILER 106

7.4 Move Evaluation

After computing a move we determine whether a move may beéedaout at all, and
we assess to what degree the quality of the current solwtiongroved or worsened by
the move. To evaluate the impact of a move on the currentisnlutve carry out the
following three steps:

1. We clarify if a move i-dlomain consistent~or each basic decision variable of the
move we check whether the value that shall be assigned tatfable is contained
by the domain of the variable.

2. We determine whether or not a move violates any hard @nrof the consid-
ered optimization problem.

3. We compute the change in the soft constraint violatiomeegaused by the move.

If a move is domain consistent and satisfies all hard comssraive call it &easible
move Only feasible moves are allowed within the local searclorigm provided by
TEMPLE to be carried out.

When executing a local search algorithm, the bigger pamafing time is caused
by evaluating moves. For that reason we take the followingsuees to reduce théert
for move evaluation and consequently increase fheiency of local search:

> If a move is not domain consistent we stop its evaluation. c&ithe move is
already classified to be infeasible and will not be carriet ex¢ do not need to
determine its ffects on hard and soft constraints.

> When assessing a move’s impact on hard constraints we agplyelvaluation,
i.e., if we observe that hard constraint is violated by thevenee stop the further
evaluation of other hard constraints and soft constraints.

> We use a move evaluation cache to avoid that a single movealisated several
times for the same part of a problem’s solution.

> When evaluating a move’'stect on hard and soft constraints we only evaluate
those parts of a solution that are reallfeated by the move. Basic properties,
derived properties, curves and constraints dfecéed by a move if any of the
basic decision variables changed by a move is containe@ sethof basic decision
variables associated with an element.

CHAPTER 7. THE TEMPLE COMPILER 107

Figure 7.6 shows how the impact of a move is evaluated on garios of hard con-
straintNoOverlappingBreaks in a solution to our sample problem from Section 5.4.
Elements fected by the move are depicted in colors, fieeted elements are shaded

gray.
The move assigns the first break in the third shift a rsawrt, namely07:50.

Consequently, the move consists of a single basic decisinable,v,, representing the
break’s start, angh is assigned an integer value represen@iig50.

To compute the new violation degree of constrainbverlappingBreaks we
have to recompute all elements from which the constrainersved, in our case this
is curveBreakPattern. The curve itself depends on the propertfaart, End, and
Active, of each break scheduled within the shift. Since only théch@®pertiesStart
andEnd of one break depend on variablg we have to recompute only ti$eart and
End of that single break.

The re-computation of curvBoOverlapping reveals that if the move was exe-
cuted two breaks would be overlapping and consequently dahe ¢onstraint would be
violated. Thus, the considered move is an infeasible one.

To evaluate moves in that manner the TEMPLE compiler insegthods called
GetNewValue, GetNewCurve, andGetNewViolationDegree in every class represent-
ing a property, curve or constraint. When invoked these ousltheck whether a move
has an &ect on the corresponding element. If that is the case theaddtioks into
the move evaluation cache to avoid multiple evaluationdhefdame element. Only if
the result of the considered move is not cached, the valuge @r violation degree is
recomputed. For that purpose the TEMPLE compiler insegsufer defined code used
to derive an element. For each property or curve the elenepdrils on, the TEMPLE
compiler insert$setNewValue or GetNewCurve methods to trigger the re-computation
of these elements. The following code snippet shows the adetbatNewCurve that is
inserted into the class representing the derived cBreakPattern.

Curve CurveShiftBreakPattern::GetNewCurve(Move moveToEvaluate)

{

// 1. Check if move is affecting the Property
if (!_basicVariables.HasCommonVariables(moveToEvaluate))
return currentBreakPattern

// 2. Check if move has already been evaluated in this iteration.
if(this.IsCached(moveToEvaluate))
return this.GetCachedValue(moveToEvaluate);

// 3. Recompute curve
Curve newBreakPattern = new Curve();

forall (i in scheduledBreak.getRange())
{

CHAPTER 7. THE TEMPLE COMPILER 108

newBreakPattern.Pulse(scheduledBreak[i].Start().GetNewValue(moveToEvaluate),
scheduledBreak[i] .End() .GetNewValue (moveToEvaluate),
scheduledBreak[i].Active() .GetNewValue(moveToEvaluate));

}

// Store recomputed curve in move evaluation cache
this.Cache(moveToEvaluate, newBreakPattern);

return newBreakPattern;

A single movemhas the following three adjoint parametensi sFeasiblespecifies
if a move may be applied to the current solutiom.Fitnessindicates the fitness of
the solution obtained by applying a feasible moveDelta specifies the change of a
solution’s fitness if movenwill be applied.m.Deltais positive if the quality of a solution
is worsened whereas negative valuesnmiddelta show that the fitness of a solution will
be improved when executing mowe

CHAPTER 7. THE TEMPLE COMPILER 109

Shift with four breaks

New break start: 07:50

ﬂi-i-:—

06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

Variable registration

(— il
Evaluated constraint
I:l Evaluated curve
Variable: ~ V,
l:l Evaluated property VIOLATED New Values: 07:50
l:l Unaffected element |
BreakPattern
End V4. Vo V3,Vg V5,V V7, Vg Vg Vi Va1, Vi
V41, V424 Basic decision variables 2
10:30 < Initial value 1 IJ_I_I—'_I—'_|
Break Break Break Break
I I I]
End End End End
Va.V3 Vs.Ve Vg.Vo Vi1, Vip
08:20 08:30 09:30 10:30
Active Start Duration Active Start Duration Active Start Duration Active Start Duration
V1 V2 Va Va Vs Ve vz Vg Vo Vio Vg Viz
true 07:50 00:30 true 08:00 00:30 true 09:00 00:30 true 10:00 00:30

Figure 7.6: In the local search algorithms obtained with THM moves are evaluated
only for those elements which theffect.

CHAPTER 7. THE TEMPLE COMPILER 110

7.5 Move Execution

If a move is domain consistent and feasible it might be exsthy a generic local search
algorithm in order to obtain a new solution. The executioma afiove is very simple. To
each basic decision variable we assign the new value stoithé imove.

Afterwards all elements hich depend on the basic decisioiablas must be up-
dated in order to obtain the solution of the considered @bl Again, to ensurefig-
ciency, we want only those parts of a solution to be updatetidte actually iected by
the move.

Figure 7.7 shows thefi@cts of an executed move on parts of the solution for our
sample resource planning andfstscheduling problem. The move places the fourth
break break of a shift at®:50. All elements not fected by the move are shaded gray
whereas those that are changed by the move are depictedolotied background. To
execute the move the variable representing the breakt siay is assigned the new
start,10:50. Then all elements dependent on variahleare updated. We see that this
move changes only as few derived elements as necessarglalsieak’sEnd, a single
shift's BreakPattern. The updated hard constraiéOverlappingBreaks indicates
that the constraint is still satisfied after the move has Ipegformed.

To ensure that a solution is really updated in th&tent manner we exploit fea-
tures provided by Comet’s user-definable invariants. In €tsruser-definable invari-
ants we can specify from which source variables a certagetarariable depends on.
Whenever a source variable is changed by a move Comet autaityaéxecutes a prop-
erty calledpropagateInt to update the values of the target variable.

In our case the target variable is a variable representirgyiged! property’s value
or a constraint’s violation degree. For derived curves vimduced a trigger variable
which may be used as target variable. For each derived etesueMEMPLE compiler
creates a user definable invariant and inserts code setirgptirce and target variables.
For instance, for a shift's derived curBeeakPattern, the TEMPLE compiler creates
the following code:

void ICurveShiftBreakPattern::post(InvariantPlanner<LS> planner)
{
if (!_posted)
{
//source variables = properties on which BreakPattern depends on
forall(i in scheduledBreak.getRange())
planner.addSource(scheduledBreak[i].Start().value()) ;

forall(i in scheduledBreak.getRange())
planner.addSource(scheduledBreak[i].End().value()) ;

forall(i in scheduledBreak.getRange())
planner.addSource(scheduledBreak[i].Active().value()) ;

CHAPTER 7. THE TEMPLE COMPILER 111

//target variable = trigger variable of BreakPattern
planner.addTarget (BreakPattern.trigger());

_posted = true;
}
}

In addition our TEMPLE compiler also generates the code faethod
propagatelInt, which will be used to update the values, curves and vialatitegrees,
to obtain a new solution. For the derived cuBseakPattern methodpropagateInt
looks as follows:

void ICurveShiftBreakPattern::propagateInt (boolean notLastInvokation, var{int} variable)

{

bool isLastInvokation = ! notLastInvokation;

//update curve only once, after all source variables have been changed
if(isLastInvokation)

{

BreakPattern.Clear();

forall (i in scheduledBreak.getRange())
BreakPattern.Pulse(scheduledBreak[i].Start().value(),
scheduledBreak[i].End() .value(),
scheduledBreak[i].Active().value());

//change the value of trigger variable
BreakPattern.pullTrigger(Q);

CHAPTER 7. THE TEMPLE COMPILER 112

Shift with four breaks

New break start: 10:50

_:-i-iih

06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

Variable registration

Shift

_ Updated constraint
I:l Updated curve
Variable: V44
l:l Updated property SATISFIED New Values: 10:50
l:l Unaffected element |
BreakPattern

End V1.V2.V3,Vs. Vs, Ve V7 Ve,V Vio Vi, Va2

V41, V424 Basic decision variables 2

10:30 < Initial value 1 '—l_'—l_'—l—'—|

Break Break Break Break
[[[]
End End End End
VoV Vs.Ve Vg,Vo Vi1, Va2
07:30 08:30 09:30 11:20
Active Start Duration Active Start Duration Active Start Duration Active Start Duration
Vi V2 Vs Va Vs Ve vz Vs Vo Vio Vg Viz
true 07:00 00:30 true 08:00 00:30 true 09:00 00:30 true 10:50 00:30

Figure 7.7: In the local search algorithms obtained with THME only those parts of a
solution are changed which are actualfijeated by the move.

CHAPTER 7. THE TEMPLE COMPILER 113
7.6 Hiicient Curve Evaluation

7.6.1 Motivation

The costs for evaluating a move’fect on derived curves are relatively high compared
to the dfort for evaluating moves on derived properties or congisaiRor instance, let
us consider the derived curiierkingTime from Section 5.3.5, representing the times
when an employee is actually working and not having a breais durve may be derived
in three steps as follows:

1. For a shift we derive a curve callad tendanceTime, which is set to one along
the duration of a single shift.

Curve Shift::AttendanceTime(Shift thisShift)
{
AttendanceTime.Pulse (thisShift.Start,
thisShift.End,
thisShift.Active);

}

2. We introduce a curve representing a shiieakPattern, having a value of one
whenever a break occurs.

Curve Shift::BreakPattern(Shift.Break[] scheduledBreak)

{
forall(i in scheduledBreak.getRange())

{
BreakPattern.Pulse(scheduledBreak[i].Start,
scheduledBreak[i].End,
scheduledBreak[i].Active);

}
}

3. Finally, we derive the curve representing a single eng#®iorkingTime by
subtracting curv@reakPattern from curveAttendanceTime.

Curve Shift::WorkingTime(Shift thisShift)
{
WorkingTime.Add (thisShift.AttendanceTime);
WorkingTime.Subtract (thisShift.BreakPattern);
}

Figure 7.8 shows a single shift having two breaks and depiotg the curves
AttendenceTime, BreakPattern andWorkingTime are derived from that shift. To
illustrate the great computational costs associated veitlveld curves let us consider the
effects of a simple move on these three derived curves. Figarhighlights the posi-
tions which are changed if we schedule the one-hour breatingfat11:00 at 13:00.

CHAPTER 7. THE TEMPLE COMPILER 114

I I I I I
06:00 08:00 10:00 12:00 14:00

2 | AttendanceTime 2 | BreakPattern
1T | i 1 1
I T I T I T I T I T I T I T T I T I T
06:00 08:00 10:00 12:00 14:00 06:00 08:00 10:00 12:00 14:00

2:1 WorkingTime
1 | | |

I I I I I
06:00 08:00 10:00 12:00 14:00

Figure 7.8: Derived curvettendenceTime, BreakPattern andWorkingTime
resulting from a single shift having two breaks.

We see that only two time ranges froni: 00 to 12:00 and from13:00 to 14:00 are
actually changed in curvBreakPattern andWorkingTime. However, under the as-
sumption that our planning period consists of ten minutestsiots, the evaluation of
that simple move would require 108 arithmetic operationthwhe code generated by
our TEMPLE compiler:

No. of Operations
AttendanceTime 0 The curve is notfdected by the move.

BreakPattern 12 Pulseis called for both one hour breaks.
WorkingTime 96 BreakPatternis subtracted fromttendenceTime.
Total 108

The reasons for these great computational costs are twofold

1. We recompute curves completely from the scratch.
2. We do not record, propagate and exploit the informatiowbith positions have
been changed to what degree.

Therefore, we will develop a speed-up strategy and an appteplata structure in order
to accelerate the evaluation of derived curves signifigantl

CHAPTER 7. THE TEMPLE COMPILER 115

I
06:00 08:00 10:00 12:00 14:00

T T
T~

2:1 AttendanceTime 2:1 BreakPattern
1 | | 1 ,_l

I I I I I I I I
06:00 08:00 10:00 12:00 14:00 06:00 08:00 10:00 00 00

.

2 :1 WorkingTime

! I |
I T I ! I
06:00 08:00 10:00 00 00

Figure 7.9: Changed positions (red shaded areas) in deriveeés caused by a single
move.

7.6.2 A Speed-Up Strategy

Figure 7.10 (a) shows how thdéfects of a move on a particular curve are evaluated so
far. We consider an empty cur@urve, containing exclusively zeros at each position,
carry out several operations, 0, and o3, and obtain the curve resulting from that
particular moveCurvenove

Curvenove= Curvey o 01 0 0 0 03

Figure 7.10 (b) depicts an alternative way to complitevenove Starting from a
curve’s current state in the current solutiGuurve. rent We apply a several operations
Up, Up andug to transformCurveyyren: into Curve. Afterwards we execute again the
operationss, 0, andos and obtainCurvengveas our final result:

Curv@nove = CUrveyrent © Up © Up 0 U3 001 © 02 © 003

=Curve

Obviously, the computational costs associated with thigtrrztive approach are
much higher. However, under the assumption that the corimasiof curve operations
is commutative and associative, we can simplify the contjutan the following man-
ner:

CHAPTER 7. THE TEMPLE COMPILER 116
1. We change the order in which the operations are carried out

Curv@nove= CUrveyrrento Up 0 0 0 Ulp 0 0p 0 Uz 0 03

2. We substitute each operation paif o o; by two other methodsy o of
having the same combined ffect, but lower computational costs,
cost$u} o o’j) < costg0;) < costgu; o 0;).

Curvenove = CUrveyrrent © (Uy © 01) o (Uz © 02) o (U3 © 03)
—_—) ——
:ouiooi :u’zoo’2 :UéOO/S

Curvenove = CUrveyrrent © (u& o 0/1) ° (U'2 ° 0’2) o (Ué ° 0’3)

3. Finally, we again change the execution order of operation

Curvenove= CUrveyrrent o U o U, o Uz 0 0 0 0, 0 0

The simplified approach is shown in Figure 7.10 (c). We seethiesimplified com-
putation takes less running time than the re-computatioa ofirve from the scratch.
Moreover, Figure 7.10 (d) shows that it everffses to substitute only some method
pairs if the performance gain resulting from each singlessttion is high enough.

7.6.3 Implementing the Speed-Up Strategy

To exploit the speed-up strategy for our purposes we degdl@ new class called
DeltaCurve and use it in eacltetNewCurve method to evaluate a move'stect on
curves. In short clasdeltaCurve may be characterized as follows:

> DeltaCurve provides the same operations as ordinary curves which aversim
Table 5.1.

> Additionally, for each ordinary operatidieltaCurve provides an undo opera-
tion, reverting the ffects of its counterpart.

> DeltaCurve wraps the state of a curve in the current solution. Insteazhahg-
ing the current state of the curve its@éltaCurve stores the positions that are
changed and records thef@rence, or delta, between the changed value and the
original one in a curve’s current state.

CHAPTER 7. THE TEMPLE COMPILER 117

computation time

(a) Recomputation from scratch.

o —t—

Curveq

(b) Alternative recomputation from current state.

Curve current Curve, Curve move

(c) Simplified computation.

Cuwecurrent CurVemove

(d) Partially simplified computation.

Cuwecurren(CurVemove

Figure 7.10: Simplifying the evaluation of curves.

By the help of clasDeltaCurve we can now implement our alternative ap-
proach shown in Figure 7.10 (b). In eaGhtNewCurve method, we use an instance
of DeltaCurve to transform a curve from its current state into the curveltiesy from
a particular move. Basically, in eadfetNewCurve method we perform the following
three tasks:

1. We create a new instanced1taCurve wrapping a curve’s state in the current
solution.

2. We apply undo operations to revert theets resulting from the current solution.
The arguments passed to undo operations are computed feopndperty values
and curves within the current solution. After this step tpelied DeltaCurve
instance corresponds to a curve having only zero valueshtpssition.

3. We obtain the curve resulting from a particular move bylgpg ordinary op-
erations. The arguments passed to these operations areltsahfpom the new
property values and new (delta) curves resulting from thesickered move. Fi-
nally, theDeltaCurve instance represents the curve resulting from that move.

CHAPTER 7. THE TEMPLE COMPILER 118

The following code snippet shows an implementation of metGetNewCurve
for the derived curveBreakPattern from section 7.6. Within this method we use
undo operations as well as ordinary operations to evallgelianges resulting from
a move. We consider the move from Figure 7.8 shifting a breat fl1:00 to 13:00
and in comments we report the changed positions and valteratices recorded by
the DeltaCurve instance. The applied undo operations remove the breaks tfieir
positions in the current solution whereas original operetipropagate the new break
positions resulting from the move.

DeltaCurve CurveShiftBreakPattern::GetNewCurve(Move moveToEvaluate)

{
//1. DeltaCurve wraps state of the curve in the current solution.
DeltaCurve deltaBreakPattern = new DeltaCurve(currentBreakPattern);

//2. Undo operations revert the effects resulting from current values.
forall(i in scheduledBreak.getRange())
{
//breaks at current positions are removed from curve
deltaBreakPattern.UndoPulse(scheduledBreak[i].Start().value(),
scheduledBreak[i].End() .value(),
scheduledBreak[i].Active().value());
}
//State of deltaBreakPattern.
//changed positions: [08:00, 09:00], [11:00, 12:00]
//delta: -1, -1
//no. of operations: 12

//3. Original operations propagate effects resulting from new values.
forall(i in scheduledBreak.getRange())
{
//breaks at new positions are added to curve
deltaBreakPattern.Pulse(scheduledBreak[i].Start().GetNewValue(moveToEvaluate),
scheduledBreak[i] .End() .GetNewValue (moveToEvaluate),
scheduledBreak[i].Active().GetNewValue(moveToEvaluate));
}
//State of deltaBreakPattern.
//changed positions: [08:00, 09:00], [11:00, 12:00], [13:00, 14:00]
//delta: 0, -1, +1
//no. of operations: 12

deltaBreakPattern.RemoveUnchangedPositions();
//State of deltaBreakPattern.

//changed positions: [11:00, 12:00], [13:00, 14:00]
//delta: -1, +1

return deltaBreakPattern;

We see that an instance of claBsltaCurve records the changed positions
and the value dierences caused by a move. Now, we will exploit that in-
formation to simplify the following operations and their remsponding undo op-
erations: Add, Subtract, CyclicAdd, CyclicSubtract, AddPositiveValues,

CHAPTER 7. THE TEMPLE COMPILER 119

AddNegativeValues, SubtractPositiveValues, andSubtractNegativeValues.
These operations add or subtract other, already compultl adeves to or from the
delta curve to be obtained. The computed delta curve canthim positions changed

by the move and the valueftirences at these positions, thus, ordinary operations must
only propagate these changes. The corresponding undotiopsraimply do not have

to do anything at all. Simplified undo operations and simggliforiginal operations have
the same combinedfect as their unsimplified counterparts. The following coaimgle
shows method:etNewCurve of the derived curvélorkingTime applying simplified
undo operations and ordinary operations:

DeltaCurve CurveShiftWorkingTime: :GetNewCurve (Move moveToEvaluate)

{
//1. DeltaCurve wraps state of the curve in the current solution.
DeltaCurve deltaWorkingTime = new DeltaCurve(currentWorkingTime) ;

//2. Simplified undo operations revert the effects resulting from current curves.
deltaWorkingTime.UndoAdd (thisShift.AbsenceTime().Curve());
deltaWorkingTime.UndoSubtract(thisShift.BreakPattern().Curve());

//UndoAdd and UndoSubtract do not do anything.

//State of deltaWorkingTime.
//changed positions: -
//delta: -
//no. of operations: 0

//3. Simplified ordinary operations propagate effects resulting from new values.
deltaWorkingTime.Add (thisShift.AbsenceTime() .GetNewCurve (moveToEvaluate));
deltaWorkingTime.Subtract(thisShift.BreakPattern() .GetNewCurve(moveToEvaluate));

//AbsenceTime remains unchanged, thus Add does not propagate any changes.
//Subtract propagates the changes in BreakPattern

//State of deltaWorkingTime.

//changed positions: [11:00, 12:00], [13:00, 14:00]
//delta: +1, -1
//no. of operations: 12

deltaWorkingTime.RemoveUnchangedPositions();

return deltaWorkingTime;

Simplified undo operations do not perform any actions atradl @nsequently they
do not cause any computational costs. Simplified ordinasraimns only propagate
the changes resulting from the evaluation of cutbeenceTime andBreakPattern.
SinceAbsenceTime is not changed at all no changes have to be propagated by dnetho
Add. Method Subtract propagates only those changes that took place in curve
BreakPattern at the positions betweei11:00, 12:00] and[13:00, 14:00]. Due
to our speed-up strategy the evaluation of that curve neadnly 36 arithmetic oper-
ations:

CHAPTER 7. THE TEMPLE COMPILER 120

No. of Operations
AttendanceTime O The curve is notféiected by the move.
BreakPattern 24 UndoPulse andPulse are called for both one hour breaks.
WorkingTime 12 Changes iBreakPattern are propagated tdorkingTime.
Total 36

The previous example illustrated that our modificationshmigdeed achieve a no-
table performance gain. In real-life ftacheduling problems we usually define curves
modeling stéing requirements or available ftéor entire weeks, months or years. The
costs associated with the re-computation of such curvemarg times higher than in
our small example and, consequently, also the performaaiceaghieved by our speed-
up strategy is significantly bigger.

7.6.4 A Note on the Correctness of the Speed-Up Strategy

Finally, we want to argue that the modifiédtNewCurve methods, implementing our
speed-up strategy, evaluate a movdfe& on curves correctly. To do so, we introduce
several restrictions on the code in metl@ad NewCurve and also for the code within the
definition of derived curves. Under these restrictions we gaarantee the correctness
of our speed-up strategy:

1. The code must not contain any if-statements or any stasnasing if-statements
internally, e.g., min or max index selectors.

2. The code must not contain any loops except forall-loops.

3. Forall-loops must iterate over constant index ranges,index ranges do not de-
pend on basic interval properties, derived properties ovele curves.

4. The indices used to access intervals must be constantheg must not be com-
puted from basic interval properties, derived propertiedasived curves.

Under these restrictions the same number of undo operadioti®rdinary opera-
tions are carried out during a single invocation of a met@etNewCurve. Moreover,
the i-th undo operation corresponds to the i-th ordinaryrajgen. Each undo and ordi-
nary operation can be represented as a set of arithmetiatapes< p, +, Vv >, increasing
the value of a curve at positiop by the valuev. Since the addition of real or integer
numbers is an associative and commutative operation, tm@asition of undo and or-
dinary operation is also associative and commutative. ,TlWwesmay change the order
in which operations are carried out, we may substitute umdiboadinary operations by

CHAPTER 7. THE TEMPLE COMPILER 121

simplified operations, and we may reorder them again, as vilgrdour speed-up strat-
egy proposed in Section 7.6.2. Consequently, with the mepspeed-up strategy the
evaluation of a move’sfiect on a curve will be carried out correctly, if the definitioh

a curve satisfies the previously stated restrictions.

CHAPTER 7. THE TEMPLE COMPILER 122
7.7 Adaptive Local Neighborhood Computation

The generic local search algorithms generated by the TEMRbEpiler compute a
local neighborhood of a current solution in the same marinégrnally, they represent
a local neighborhood as a set of moves, and these moves aputaahfrom the input
specified by a user. In each iteration of a local search dlgorive have to decide which
concrete moves should enter a local neighborhood. Onelpesgproach might be to
treat all moves equally, such that all moves would enterdballneighborhood with the
same likeliness. However, there are several reasons grggainst such a policy:

> Some moves may perform better than others. Even a very exjped user can
only assess roughly how good a move will behave in practideusTthe moves
in a single TEMPLE program represent only a user’s believbam a solution
could be improved. Consequently, in each TEMPLE programetiage some
moves improving solutions very strongly, other moves wilprove solutions only
marginally, and even some maoves might not be able to impreatudion at all.

> The impact of a single move can vary over time. For instanceur sample sta
scheduling problem in Section 5.4 we introduced a single enogpositioning
only a single break in each step. This move works well for auals example.
For larger problem instances it also performs very well atarly stage, when
the solution is of quite poor quality. At a later point of tirttds move becomes
less dfective because it considers only single shifts and breaks.th® other
hand, moves considering the global state of the currentisnlichanging several
breaks in several shifts in accordance with each other, are likely to improve
an already optimized solution at a later point of time.

> Different moves are fierently expensive in terms of computational cost. When
assessing the performance of a move we must consider boiimpinevement of
the objective function value resulting from a move as weltrestime needed to
compute and evaluate a move.

Instead of selecting each move with the same likelihood etyepoint of time we
associate a selection probability that shall be adapteshgliihe execution of a local
search algorithm. When computing a move’s selection pritihatve must satisfy the
following requirements:

1. Moves that caused more and bigger improvements shouldleetad with high
probability. Moves that did not perform so well shall be s&tel with low proba-
bility.

CHAPTER 7. THE TEMPLE COMPILER 123

2. A move’s selection probability shall be recomputed inheieration of the local
search algorithm. Moreover it shall be based only on thentebestory of the
local search algorithm, e.g., for the last 1,000 iteratidnghat way the selection
probability of a move is dynamically adapted to the recenfigpenance of a move.

3. The costs for computing and evaluating moves shall alseftected by a move’s
selection probability.

4. A move’s selection probability shall be strictly gredtesn zero. Each move must
be given a chance to increase its associated selectionllibhan that way we
prohibit that a single move is excluded completely from twal search algorithm.

In order to compute and adapt a move’s selection probabil@yintroduce a new
measure calledverage improvement per secomeflecting the improvement of the ob-
jective function caused by a move as well as the computdtmss associated with a
move. To compute the improvement per second each move hataahea history of
limited size, in our implementation that size is 1,000 itieras.

After a movem is computed and evaluated we store the resulting improvemen
within its associated history. If the move is infeasible mrsens the quality of the cur-
rent solution the stored improvement will be zero. Moreoverrecord the computation
time in seconds needed to compute and evaluate the move.v®ea improvement
per second is derived from a move’s history by dividing theasied improvements of
objective function values by the summed computation times.

The average improvement per second is used to determineldwatisn probability
for each move. Each selection probability consists of atemigraction and a dynamic
fraction. In our implementation, the constant fractionlisained by dividing 30% of the
overall selection probability by the number of moves. Inttvay, we ensure that even
very badly performing moves can enter a local neighborhawtithey have a chance to
increase their selection probability again. The dynanactfon is obtained by distribut-
ing the remaining 70% proportionally among the moves adngrtb their associated
average improvement per second. Consequently, movesdhatgerformed better in
the past are more likely to enter the adaptive local neigidmmat. The moves that en-
ter a local neighborhood at a certain iteration are chosemublgtte wheel selection in
accordance to their selection probability.

The obtained adaptive local neighborhood satisfies therfguirements we have
previously stated and is used by three generic local seégohitams provided by TEM-
PLE.

CHAPTER 7. THE TEMPLE COMPILER 124

[Algorithm Parameter Description |
Hill Climbing t Run time limit in seconds.
Proise Probability for introducing random noise.
S Size of the local neighborhood computed in each iteratiothefhill
climbing algorithm.
Iterated Local Search t Run time limit in seconds.
H The hill climbing component ends aftéf iterations without any im-
provement of the objective value.
P The pertubation phase ends affeamoves worsening the objective fung-
tion values have been performed.
S Size of the local neighborhood computed in each iteratiothefhill
climbing algorithm.
Simulated Annealing t Run time limit in seconds.
Pinit Selection probability of a worse solution with average mioss at the
beginning of the simulated algorithm.
Pfinal Selection probability of a worse solution with average sioss at the
end of the simulated annealing algorithm.

Table 7.1: Control parameters of TEMPLE's generic locatcealgorithms.

7.8 Control Parameters of the Generic Local Search Algo-
rithms

As mentioned in the previous sections each of the three geloeal search algorithms
generated by our TEMPLE compiler is controlled by severahpeeters. Table 7.1
presents a short description of parameters involved in siacihe algorithm.

In TEMPLE, we can specify parameter values explicitly witlli TEMPLE pro-
gram. The following lines of code indicate how the parametdues are chosen for each
single local search algorithm:

//hill climbing with random noise
algorithm running time 5 minutes;
algorithm hill climbing(0.05, 10);

//iterated local search
algorithm running time
algorithm

5 minutes;
iterated local search(1000, 5, 10);

//simulated annealing
algorithm running time
algorithm

5 minutes;
simulated annealing(0.5, 0.01);

CHAPTER 7. THE TEMPLE COMPILER 125

7.9 Solving Stdf Scheduling Problems

Besides many other files, our TEMPLE compiler creates a filled®&un. co which
contains all necessary information for optimizing a coasid problem instance: the
XML-file containing the input data of a consideredftcheduling problem instance,
the local search algorithm that shall be applied to thaams#, the control parameter
values chosen for that algorithm, and an output XML-file vehtire obtained solution
shall be stored. Thus, to apply a local search algorithm wnaidered problem instance
we simply have to execute the fian . co on the Comet optimization engine within the
Windows command prompt:

C:\Dynadec\Comet 2.10\compiler\comet.exe Run.co

CHAPTER 7. THE TEMPLE COMPILER 126

Chapter 8

Practical Applications

In Chapter 5 we considered small, comprehensible sampiesstiaeduling problems
to introduce and illustrate the basic abstractions, mmtatiand concepts of TEMPLE.
However, we developed TEMPLE to model and solve arbitraay-lite resource plan-
ning and stff scheduling problems. In this chapter we consider two cormpdal-life
stadt scheduling problems and show that they can be bfffitively modeled as well as
efficiently solved with TEMPLE.

First of all, we reconsider the break scheduling problenstgrervisory personnel
from Chapter 3 and we sketch how we managed to model it with PEE We compare
the features of our TEMPLE model with those of the algorithmsgnted in Chapter 3
and observe that in TEMPLE we can derive a very small, coramskemodular program
for the considered break scheduling task. Finally, we ealthe iterated local search
algorithm obtained with TEMPLE on benchmark instances amapare the results
obtained with TEMPLE to those reported in Chapter 3. For thesidered benchmark
instances the generic local search algorithm is able torreiutions of good quality in
acceptable time.

Secondly, we will consider a further real-life breakfstecheduling problem in
which, like in the break scheduling problem for supervispeysonnel, we have to com-
pute a legal break schedule for the deployed personnel.diti@i we must also assign
tasks to available employees in accordance with their figations. To tackle this com-
plex problem we decompose it into three phases: In the fissg@lve compute a legal
break schedule, in the second phase we optimize the breaddehwith respect to task
requirements, and in the final phase we determine a suitabeassignment. Each of
these phases is modeled and solved by a separate TEMPLEaprogihe TEMPLE
programs represent the core of a commercial break schgdatid task assignment tool
which we developed for a customer of the consulting companyex Corp. We will re-
port how that software is used at the customer’s site in p@eind we will demonstrate

127

CHAPTER 8. PRACTICAL APPLICATIONS 128

that our approach is able to create high quality solutiorthiwreasonable time.

8.1 A TEMPLE Model of the Break Scheduling Problem for
Supervisory Personnel

The break scheduling problem for supervisory personnelddoe modeled very easily
in TEMPLE. Nevertheless, at this point we spare the readeetitire program, instead
we illustrate the TEMPLE model in two structograms, showfrigure 8.1 and Figure
8.2. These structograms depict each TEMPLE element indaolvéhe model and show
how the single elements are derived from each other. Eaglesatement is associated
a number specifying the lines of code which were needed todtate the element. The
complete TEMPLE program is presented in Appendix A of thestk.

Constraints

In our model the five criteria concerning the legality of thiedk pattern, constrain;
Break PositionshroughCs Break Durationsare formulated as hard constraints, whereas
shortage and excess of #taconstraintsCg Shortage of Employeesnd C; Excess of
Employeesare modeled as soft constraints. In addition, we introdueedadditional
hard constraintsNoOverlappingBreakand ScheduleBreaksWithinShito ensure that
breaks are scheduled completely within the range of théftssiind to guarantee that
breaks do not overlap each other. The concrete constramufations are presented in
the appendix of this thesis, A.3 - A.10.

Figure 8.1 visualizes how we modeled each of these contstradtor instance, let us
consider the two soft constrain@ Shortage of EmployeesndC; Excess of Employeges
requiring that shortage and excess oftsthall be reduced to a minimum degree within a
good solution. For each employee we introduce a curve reptieg the actual working
time. By summing up all these single curves we obtain a curgdaiing the available
stef. In the next step we subtract the fiitag requirements from the available f§tand
so we obtain the deviations from fiiag requirements. Then we extract the negative
deviations to obtain a curve representing the shortagefdf determine the total amount
of shortage associated with a solution, and finally we im@osenstraint requiring that
shortage of employees should be avoided. The constraiatipeg excess of employees
is derived in a similar manner.

CHAPTER 8. PRACTICAL APPLICATIONS 129

B Constraint L1 cuve (I Property . Lines of code

Constraints of the Break Scheduling Problem

qShiﬁ::LunchBreakCount |

_ qBreak::lsLunchBreak |
N
[] []
QBreak::DistanceToShiﬂEnd | qBreak::DistanceToShiﬂStart | qBreak::DistanceEndToShiftStart |

|
qShiﬂ::LastTimeInPosition | qBreak::TimelnBreak | qBreak::TimelnPosition |

'—'—'—

Problem :Shortage Problem :Excess —
QProblem::ShortageCurve | QProbIem::ExcessCurve | QShiﬂ::BreakPattern |

¥
11

Problem::DeviationCurve |

¥
[1
Problem::WorkingTime | Problem::StaffingRequirements |
QShiﬂ::WorkingTime |
qBreak::HasSuccessor |

Figure 8.1: TEMPLE model of the constraints involved in theak scheduling
problem for supervisory personnel.

CHAPTER 8. PRACTICAL APPLICATIONS 130

|:| Instantiation/Initialization |:| Property |:| Move . Lines of code

Instantiation and Initialization Moves

(128 4 9
Shift::BreakSchedule | Shift.Break[] | Problem::BreakAssignment |
B 9
Shift::NumberOfBreaks | Problem::BreakSwap |
7) : : T 8
Shift::RequiredBreakTime | Shift::BreakAssignment |
12
Shift::BreakSwap |

Figure 8.2: TEMPLE model for instantiation elements, aligation elements, and
moves involved in the break scheduling problem for superyipersonnel.

Initialization and Instantiation

The initial solution for our problem is obtained with the histic proposed in Chapter
3 involving simple temporal problems (STPs) [16]. The agnblheuristic constructs an
initial break pattern satisfying all hard constraints,,i® Break Positions Cs Break
Durations and constrainNoOverlappingBreaksind ScheduleBreaksWithinShiftAll
TEMPLE elements defined to instantiate and initialize wdés are shown in the ap-
pendix of this thesis, A.11.

Moves

In our TEMPLE program we implemented two moves, the firstgassa new start to a
single break, the second one swaps two breaksiardint duration within the same shift.
We further implemented two variations of these moves, whighly these changes only
to breaks placed within underfiiad regions. The four moves definitions are presented
within the appendix of this thesis, A.12.

CHAPTER 8. PRACTICAL APPLICATIONS 131

8.1.1 Conclusions Drawn from the TEMPLE Model

From our TEMPLE model for the break scheduling problem fgresuisory personnel
we can draw the following conclusions:

> In total we needed one man-week to develop a suitable TEMPIdgehfor the
break scheduling problem for supervisory personnel. Thgltiag TEMPLE pro-
gram consists only of 500 lines of code and it is formulate@ iery modular
style. In contrast around 6000 lines of code were needed pteimrent the min-
conflicts based algorithm proposed in Chapter 3. The brelagdsding problem
for supervisory personnel is modeled in a very compact manneEMPLE.

> Concerning the size of each single TEMPLE element reportédgure 8.1 and
Figure 8.2 we observe that nearly all components could beetaddwvith fewer
than twenty lines of code. On average we needed eleven lirexles to formu-
late a TEMPLE element within the TEMPLE program of the breetkesluling
problem for supervisory personnel. In TEMPLEelements @afobmulated very
concisely, and the entire problem is built up in a very modstgle, as requested
by our design goal modularity.

> Only the formulation of the initialization elemeshift: :BreakSchedule re-

quired significantly more féort, namely 128 lines of code. The reason why
Shift::BreakSchedule is significantly larger in size than any other element
is that during within an initialization element we perforct@ally three tasks: We
assign initial values to basic interval properties, werieisthe allowed domain
values for basic properties and we link intervals with eattteo Therefore, we
plan to modify the TEMPLE language, so that each of these tiagks is modeled
within a single element. In that way we hope to further inseslne modularity of
TEMPLE and the simplicity of single language elements.

8.1.2 Computational Results

From the TEMPLE model for the break scheduling for superyipersonnel we created
an iterated local search algorithm with our TEMPLE compiler evaluate the obtained
algorithm we applied it to the twenty real-life benchmarktances, and 10 randomly
generated instances for the break scheduling problem foergisory personnel. For
each instance we performed ten runs of the iterated locatisedgorithm. Each run
was carried out under the same conditions as the min-canfi@sed algorithm from
Chapter 3, namely on a Genuine Intel T2400 laptop running&GHz with 2 Gbhytes
of RAM. A single test run was executed with a one-hour timatlim

CHAPTER 8. PRACTICAL APPLICATIONS 132

Table 8.1 reports the best and mean objective function \aidethe corresponding
standard deviation of the initial solutions and the finauhssobtained by the iterated
local search algorithm in ten runs. Moreover, column MCRWTable 8.1 presents
again the results obtained with the min-conflicts basedalgn. We see that the iterated
local search algorithm is able to improve the quality of thidal solutions significantly
during the optimization. However, if we compare the resalthieved by the iterated
local search algorithm with those of the min-conflicts baakgbrithm we see that the
min-conflicts based algorithm outperforms the iteratecll@earch algorithm in every
instance.

The min-conflicts based algorithm performs better thantdérated local search al-
gorithm because it was customized toward the break scmedpitoblem for supervisory
personnel. With TEMPLE we introduce an additional prograngianguage layer and
that layer causes a certain computational overhead thabeanoided at a lower level
implementation of an algorithm. However, the advantage BMPLE is that we are
able to model problems faster and in that way we can reducefiibit for developing
local search algorithms significantly.

Figure 8.3 presents parts of the best solutions obtainetthéathree benchmark in-
stances, 2fc04a, 3si2ji2 and 50fc04a. flotg requirements are shown as a red curve,
working employees are depicted as a blue curve over timem Fhne curves for solu-
tion 2fcO4a and 3si2ji2 we see that shortage of employees d@miavoided completely
whereas in the presented part of the solution for instanée088 shortage occurs only
in three time slots. We conclude that with our TEMPLE modettaf break schedul-
ing problem for supervisory personnel we are able to compoligtions of acceptable
quality in reasonable time.

CHAPTER 8. PRACTICAL APPLICATIONS

STP-Initial TEMPLE MCRW
Instance Best Mean SD| Best Mean SD| Best Mean SD
2fc04a 12772 13087.6 283.1 3550 3671.2 66.6| 3112 3224.2 86.1
2fc04a03 13178 13529.6 334.0 3506 3676.4 93.4] 3138 3199.6 38.7
2fc04a04 12938 13313.6 325.4 3658 3790.8 135.1 3234 3342.1 59.5
2fc04b 12996 13862.4 383.1 2574 2745.6 120.6 1822 2042.8 99.1
3fc04a 12938 13335.2 295.5 2404 2553.0 204.5 1644 1767.0 101.§
3fc04a03 13314 13762.8 314.Q 2292 2461.6 81.9 1670 1759.2 53.1
3fc04a04 12680 13368.8 345.1 2464 2586.4 83.1] 1932 1980.2 40.4
3si2ji2 10584 10986.0 310.2 3688 3741.4 29.0| 3646 3666.6 14.5
4fc04a 12518 13388.0 484.2 2266 2437.8 97.9 1730 1817.1 48.2]
4fc04a03 13176 13696.8 400.6 2264 2400.6 126.1 1748 1834.2 55.5
4fc04a04 13086 13687.2 359.4 2404 2542.6 66.7| 1982 2063.6 62.3
4fc04b 12000 12888.0 422.4 1950 2089.4 86.8| 1410 1489.2 48.7|
50fc04a 13518 13999.2 279.2 2580 2740.0 87.1 1672 1827.3 80.6
50fc04a03 13572 14059.2 407.1 2386 2681.2 136.9 1686 1813.2 84.1
50fc04a04 13462 13967.2 373.4 2606 2772.8 106.1 1792 1917.2 64.1
50fc04b 14030 14897.6 449.0 2952 30534 92.8 1822 1953.9 77.1
51fc04a 14172 14517.6 223. 2932 3169.0 167.1 2054 2166.2 62.3
51fc04a03 14176 14515.6 226.8 2898 3017.4 81.4 1950 2050.4 86.5
51fc04a04 14072 14747.6 460.4 2990 3211.0 136.7 2116 2191.4 53.1
51fc04b 14366 15077.6 311.3 3212 3484.6 148.8 2244 2389.4 93.9
Random1-1 | 15060 15464.4 291.9 1144 1281.2 108.§ 728 972.4 176.9
Random1-13| 14112 14462.4 247.1 2222 2473.2 177.§ 1654 1994.0 172.]
Random1-2 | 16716 17025.6 218.1 3568 3973.2 235.8 1284 1477.0 99
Random1-24| 15600 15814.8 171.3 1804 2129.0 260.0 860 1077.2 153.9
Random1-28| 14400 14575.2 109. 1984 2313.6 224.1 1358 1658.0 212.8
Random1-5 | 14652 16090.8 571.3 1778 2097.8 228.7 1264 1535.2 245.2
Random1-7 | 15072 15232.8 132.3 2310 2629.0 163.5 1586 1712.8 74.5
Random1-9 | 14292 14778.0 282.9 2474 2760.2 216.4 1710 2020.0 233
Random2-1 | 18540 18990.0 363.1 4146 5129.8 396.7] 1686 1855.2 142.1
Random2-4 | 17412 17786.4 267.24 3864 4801.6 4025 1712 2052.8 242,

Table 8.1: Test results for the iterated local search dlyorgenerated with our
TEMPLE compiler and for the min-conficts-random-walk aljon from
Section 3.

133

CHAPTER 8. PRACTICAL APPLICATIONS

- G

Employees
B~ w oo w

- Q

Employees
8- w0 o~ v

- o

Employees
w o e

1

required —— working ——
required —— working ——
required —— working ——

shortage

134

2fcdda

00 01:00 02:00 0300 0400 0500 06:00 07:00 0500 09:00 10:00 11:00 12:00 1300 14:00 15:00 16:00 17:00 13:00 19:00 20000 21:00 22:00 23:00 O

3sizjiz

00 0100 0200 0300 0400 0500 08:00 07:00 0300 0900 10:00 11:00 12:00 1300 1400 15:00 16:00 17:00 1§00 1%:00 2000 20100 2200 2300 OO0
SofcOda

ey

QU‘"
1

an

00:00 01:00 0Z:00 0300 04:00 05:00 06:00 07:00 03:00 0900 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 15:00 19:00 20000 21:00 22:00 23:00 00:00

Figure 8.3: Stfiing requirements and curve of working employees for parth@best
solutions obtained for the real-life benchmark instande®4a, 3si2ji2 and
50fc04a.

CHAPTER 8. PRACTICAL APPLICATIONS 135

8.2 A Real-life Break Scheduling and Task Assignment Prob-
lem

TEMPLE has already been applied successfully in a commestzté scheduling tool.
We built this tool in a research project together with theszdiing company Ximes Corp.
for one of their customers. In the consideredfstaheduling problem we are given task
requirements for an entire day, an already existing sh#&h@nd the qualifications of
each employee. To obtain a solution we must again computeak lschedule which is
completely consistent with a set of legal requirements.duiiteon, we must also assign
the required tasks to available employees in accordantetiéir qualifications.

8.2.1 Problem Definition

Formally the problem has the following inputs:

> A planning period which is formed by T consecutive time slots
[a1, &), [ap, &3), ..., [aT, ar+1], all having the same length, typically 10 min-
utes. Time pointsa; andar + 1 represent the beginning and the end of the
planning period.

> A shift planconsisting ofn shifts (s, , ..., &,). Each shift represents a single
employee working within the planning period.

> Thetask requirementd.e., the tasks to be performed during the planning period,
which are defined as follows. For each time sl@sd:, 1) we are given a set of
tasksT ask that must be performed during that time slot. A single taslsinie
carried out by a group of two employees. One employee is thd b&the group
whereas the other acts as the head’s assistant.

> Thequalificationsof each employeedi, Qo, ..., Qn). The qualifications of the i-th
employeeQ; is a list, specifying which tasks the i-th employee is alldvwe carry
out as head or as assistant. For instanc€) ifontains the entriff AS KL H, the
i-th employee will be qualified to perform ta3kAS KL as head of the group. The
entry TAS KL A indicates that the i-th will be qualified to carry out taBRS KL
as an assistant.

To obtain a solution for the considered fstscheduling problem we actually have to
achieve the following two goals:

CHAPTER 8. PRACTICAL APPLICATIONS 136

1. We must compute a break schedule for all employees. Tlenelkt break sched-
ule must meet the criteria resulting from an agreement keivtiee workers coun-
cil and the management board. These constraints must Béeshttompletely in
order that a break schedule can be applied in practice.

2. We must assign tasks to employees. For each time slot aeadb required task
we must determine two employees having the correct qualditaias a head and
as an assistant. Obviously, we may only assigh employeelaving a break
at the considered time slot. In each time slot we want to perfas many tasks
as possible. However, the resulting task assignment shadsid satisfy several
constraints, reflecting ergonomic criteria.

Figure 8.4 shows an artificial sample problem instance ferctnsidered problem. As
input we are given a planning period fra¥8:00 to 18: 00, a shift plan representing six
employees, each employee’s qualification list and the testgirements for the entire
planning period. Moreover, Figure 8.4 also presents aisoldior the depicted problem
instance. The breaks scheduled in each shift are consiitnthe agreement between
the works committee and the management board. During traking time each em-
ployee is assigned tasks in accordance with his qualificatioAt any point of time,
each required task is performed by two employees one actitggad and the other as
assistant. From Figure 8.4 we also see that betvided® and 15:00 two employees
have additional rest periods. This is due to the fact thahat period four employees
are available but only one task is required to be carriedlauhe following we want to
present the constraints imposed on the break pattern aandsagnment in our real-life
stdt scheduling problem.

CHAPTER 8. PRACTICAL APPLICATIONS

Qualifications

137

06:00

07:00

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

Employee 1 Employee 2 Employee 3 Employee 4 Employee 5 Employee 6
TASK1H | |TASK1A | [TASKT1H | [TASK1A | [TASK1H | |[TASK1H
TASK1A | |TASK2A | [TASK1A | [TASK2A | [TASK1A | |TASK1A
TASK2 H TASK2H | [TASK3A | [TASK2H | | TASK2 H
TASK2 A TASK2 A TASK2 A | [TASK2 A
TASK3 H TASK3H | | TASK3 H
TASK3 A TASK3 A | [TASK3 A
Shift plan Task requirements
Empl 1 Empl 2
o600] EMPloyee 1 Employee
TASK1H | | TASK1 A TASK1
07:00 —
| Employee 3 Employee 4
BREAK BREAK TASK1H | | TASK1 A
08:00 —
TASK2H | [TASK2A | [TASK3H | | TASK3 A TASK2 | TASK3
Empl 5 Empl 6
09:00 mployee 5 Employee
BREAK BREAK TASK3 A | [TASK3H
BREAK BREAK TASK2H | | TASK3A | |TASK2 A
O 10:00 —
O TASK2A | | TASK3 A
=]
() TASK2H | |TASK2A | | TASK3H | | TASK3 A | [BREAK BREAK
O 11:00 —
o BREAK BREAK TASK3H | | TASK3 A
= 1
C 12:00
% BREAK BREAK TASK2H | [TASK3 A TASK2 A
E TASK2H | |TASK2A | | TASK3H BREAK BREAK
13:00 —
TASK1H | | TASK1A | [BREAK BREAK REST REST
14:00 —
TASK1H | | TASK1 A
TASK1
15:00 —
BREAK BREAK
TASK1H | | TASK1 A
16:00 —
17:00 —
18:00 —

18:00

Figure 8.4: An artificial sample instance of the break schedwand task assignment
problem.

CHAPTER 8. PRACTICAL APPLICATIONS 138

Constraints on the Break Schedule

No Overlapping Breaks: Two breaks scheduled within the same shift must not overlap
with each other.

Schedule Breaks Within Their Shifts: Each break must lie entirely within the shift it
is scheduled.

Minimum Break Time: Each shift must contain at least a minimum percentage of
break timeminimum break time

Break Durations: Each break must last at least a certain number minm@smum
break duration

Lunch Breaks: Each shift must contain at least one lunch break of a certaigth,
minimum lunch break duration

Legal Break Pattern: Generally, each employee may work longer thaaximum
working timewithout having a break. Once per shift the duration of a wakqul
can be extended up &xceptional working timeninutes. This exceptional work
period must be followed by a lunch break.

Schedule Blocked Break in Night Shift: A shift starting before and ending after mid-
night is considered to be a night shift. Each night shift mogsttain a so-called
blocked break which lastsdocked break duratiominutes.

Constraints on the Task Assignment

Perform Required Tasks: In each time slotd, a;,1) of the planning period all required
tasksT ask should be carried out.

Minimum Task Time: A single employee should continuously perform the same task
for at leastminimum task timeninutes.

Avoid Task Changes: Employees should not change their task without having akbrea
or being on an additional rest period.

Avoid Rest Periods at Shift Borders: An employee should not have a rest period at the
start or the end of its shift.

CHAPTER 8. PRACTICAL APPLICATIONS 139

Training Units

To extend the qualifications of employees, training unitstoa entered into a shift plan.
During a training unit a trainee is instructed by a trainewho handle a task for which

the trainee is not qualified yet. Trainer and trainee cartytogether one single task,
either as head or as assistant. The last time slot of a tgaimit is used to review the

training. Afterwards both trainer and trainee are assignbceak. Figure 8.5 shows an
exemplary training unit including a review followed by a &ke To plan training units

correctly our problem is extended by the following constisi

Avoid Breaks in Trainings: Breaks must not be scheduled during training units.

Schedule Break After Training: Each training unit must be followed by a break.

Train Correct Tasks: Trainer and trainee must be assigned the task that is traimed
ing the training unit. Each training unit ends with ten masiteview time.

Intra-Day Absences

A further detail that we had to consider in our problem weteaitlay absences of em-
ployees. The reasons for intra-day absences of employeesamifold: employees may
participate in meetings, they may have a doctor’s appointpemployees may fall ill,
etc. In a correct solution for our problem breaks must notdheduled during intra-day
absences:

Avoid Breaks in AbsencesBreaks must not be scheduled during intra-day absences of
employees.

CHAPTER 8. PRACTICAL APPLICATIONS 140

06:00 —
TRAINER TRAINEE

07:00

TASK1H | | TASK1 H

08:00

INN ONINIVYL

!

BREAK BREAK

NAVAZAVA

09:00

10:00

Figure 8.5: Training and subsequent review for tagkS KL H followed by a break.

CHAPTER 8. PRACTICAL APPLICATIONS 141

8.2.2 A Three-Phase Approach

Due to diferent kinds of requirements and constraints the considem@olem is very
complex as a whole. For this reason we decided to decompesenthre problem into
three separate phases each of which is modeled and solvesepaete TEMPLE pro-
gram:

1. Break Schedule Initialization. We compute a legal break schedule which is con-
sistent with all constraints imposed on a break pattermitrg units and intra-day
absences.

2. Break Schedule Optimization.From the given task requirements we derive sim-
pler stdfing requirements. For each task to be performed during afspanie
slot we require that two people must be working at that timkeermwe optimize
the break schedule according to thesdfisig requirements, whereby we ensure
that the break schedule remains always legal during and thite optimization
phase. The qualifications of employees are not considertsistep.

3. Task Assignment and Optimization. For each time slot we assign the required
tasks to available employees heuristically. Afterwardsuvner try to reduce the
violations of constraints imposed on the task assignmeat idnimum degree.
The break schedule is not changed further during this plilase,break schedule
remains still legal. In the obtained task assignment engasycarry out as many
tasks as possible. If any, only a few soft constraints comiegradditional rest pe-
riods, tasks changes or minimum task times, are violated thfe last optimization
phase.

Table 8.2 presents an overview on the hard and soft constrimvolved in each
phase’s TEMPLE program.

8.2.3 Phase | - Break Schedule Initialization

In phase | we want to obtain a legal break schedule satisBlingpnstraints on training

units and absences. To obtain an initial solution in phase €&ch shift we determine
the minimum amount of break time to be scheduled and furtkera the number of

breaks to be instantiated. In each shift the break time talilised among lunch breaks,
ordinary breaks and each night shift gets a blocked breakatih day shift we obtain
an initial break pattern by solving the simple temporal fpeob (STP) resulting from

constraint_egal Break Pattern

CHAPTER 8. PRACTICAL APPLICATIONS 142

Constraint Phasel Phasell Phaselll
Schedule Breaks Within Their Shifts hard hard hard
Minimum Break Time hard hard hard
Lunch Breaks hard hard hard
Break Durations hard hard hard
Schedule Blocked Break in Night Shift hard hard hard
No Overlapping Breaks hard hard hard
Legal Break Pattern soft hard hard
Avoid Breaks In Trainings soft hard hard
Schedule Break After Training soft hard hard
Avoid Breaks In Absences soft hard hard
Reduce Shortage - soft -
Train Correct Tasks - - hard
Minimum Task Time - soft
Avoid Task Changes - - soft
Avoid Rest Periods at Shift Borders - - soft

Table 8.2: Overview on the constraints involved in the thplkases.

b;.Start— s.Start € [minimum task timenaximum working tinje
bjr1.Start—Db;.End € [minimum task timenaximum working time
s.End- by.End € [minimum task timenaximum working time

where 01, ..., bj, bj11, ..., bm) are the breaks of shif in temporal order. For night shifts
we solve a similar STP that also takes blocked four hour lsrégk account. By solving
the simple temporal problems for each shift we obtain a bpedtlern which is consistent
with all hard constraints of phase | (see Table 8.2). Sineaks may be scheduled in
absence times or training units, or there may be trainingstwére not followed by a
break, the solutions generated via STPs may violate thespéfitraintsAvoid Breaks In
Trainings Schedule Break After Trainingnd Avoid Breaks In Absences

To eliminate these constraint violations we implementegisd moves, depicted in
Figure 8.6, changing a single shift's break pattern in ouMPEE program for phase
I. The move in Figure 8.6 (a) repositions a single break im#sociated shift, the move
shown in Figure 8.6 (b) shifts the entire break pattern fomgle employee, and the
move in Figure 8.6 (c) swaps two breaks dfeient duration.

However, to eliminate constraint violations in shifts withining units &ectively,
we introduced additional moves. Figure 8.6 (d) shows a movetwdetects a break
scheduled near a training unit and places them right afeetrdining. The move pre-
sented in Figure 8.6 (e) recognizes a break scheduled Ilileigaa training unit, and
resolves that constraint violation by moving the break idetshe training. Finally, the
move illustrated in Figure 8.6 (f) tries to compute a new kigattern by solving a simple
temporal problem, which also considers training units.

CHAPTER 8. PRACTICAL APPLICATIONS 143

06:00 —

STP

07:00 —

08:00 —

09:00 —

10:00 —

TRAINING TRAINING

1100 TRAINING

12:00 — 1

13:00 —

14:00 —

(@) (b) () (d) (€) (f)

Figure 8.6: Moves applied in phase | to obtain a legal brediepa

8.2.4 Phase Il - Break Schedule Optimization

In phase Il we want to optimize the break schedule in order ahany time enough
people are available to carry out the required tasks. Fdrpghgpose we extend the
TEMPLE program of phase | in the following manner:

1. From the task requirements, we derive a curve represggsii#iing requirements.
For each required task this curve is incremented by two Urdtsause one task
actually must be performed by two employees, one head andssigant.

2. From the stfiing requirements, shifts, and breaks, we can further denigalé-
viation of stdfing requirements for a specific solution, the shortage of eyegls
caused by a specific break schedule, and finally we imposeatheanstraint
Reduce ShortageReducing the shortage of employees is the single objeittive
phase IlI.

CHAPTER 8. PRACTICAL APPLICATIONS 144

3. All constraints on the break schedule, training unitsa@msknce times from phase
| are reused again in phase Il. However, all constraintswiesie soft constraints
in phase | are changed into hard constraints in phase Il,raeaeen in Table
8.2. In that way we ensure that the break schedule obtainglbise | still remains
legal in phase II.

The break schedule computed in phase | acts as the initigti@olof phase Il. To
reduce shortage of employees we re-employ the three mosgsenged in Figure 8.6 (a)-
(c) which we have already used in phase I. In addition, we émgnted two additional
moves, the first one, shown in Figure 8.7 (a) swaps the posifiewo breaks scheduled
in two distinct shifts. The second additional move, presénih Figure 8.7 (b), tries to
eliminate shortage of employees by changing break positmnoss shifts. This move
selects a time slot with shortage of employees and idenéfi@eak starting or ending in
that time slot. This break is shifted by one time slot, andhihat break also the shortage
is shifted to a new time slot in the planning period. The mavies to shift breaks and
corresponding shortages until a break is moved to a taskexitess of employees. In
that manner shortage and excess are merged and eliminated.

CHAPTER 8. PRACTICAL APPLICATIONS 145

06:00 —

07:00 —

08:00 —

09:00 —

10:00 —

11:00 —

12:00 —

13:00 —

14:00 —

15:00 —

16:00 _|

17:00 —

(@) (b)

Figure 8.7: Additional moves applied in phase Il to optiméziereak schedule.

CHAPTER 8. PRACTICAL APPLICATIONS 146

8.2.5 Phase lll - Task Assignment and Optimization
Modeling the Task Assignment Problem as Integer Program

In each time slot we want to assign as many tasks as possilleriong employees.
Figure 8.8 shows how this problem can be modeled as integgram:

> Let Task = ({task,task,...,task,} be the set of tasks required at time slot
[a, 1)

> For each task imask = {task,task, ..., tasky} we introduce a binary variable
task. In a solutiontask = 1 if and only if the task corresponding task; is
carried out.

> For each working employeiehaving the qualification to perform a required task
task acting as a head of group we introduce a binary varieﬁileln a solution

el'? = lifand only if employee carries outask as a head of group. We defiﬁﬁ'
to be a set containing all variablen‘i‘, which have been introduced for employiee

andTJH to be the set of all variablea%' that have been introduced for a single task
task.

> For each working employeaejualified to perform a required tastesk as a head’s
assistant we introduce a binary variahﬁa In a solution = 1 if and only if
employes performs the task correspondingtésk as an assistant. We defiEé
to be the set containing all variable{% which have been introduced for employee
i andTJ.A to be the set of all variables that have been introduced famglestask
task.

> We introduce several restrictions to avoid that one taslaised out by several
heads or assistants (1)-(2), or that a single employee ignaskseveral tasks (3).
Moreover we state that each task must be carried out by a gfdwm employees,
one acting as the head of group, the other as the head'saatgi$).

> As an objective we want to maximize the number of assignddias

Initial Solution

By solving the IP-problems arising in each time slot we caargntee that as many
tasks as possible can be assigned. However, already withimiteal task assignment,
we want prevent employees from constantly changing theiigasd tasks. For that

CHAPTER 8. PRACTICAL APPLICATIONS 147

max Y1, task

S. t.

(1) Zeer Ch <1 j=1,..m
) Zeera e <1 j=1,..m
(3) Nerepr €l + Seficer o <1 i=1,..,n

ij

(4) Yot H + ZeAETAeA =2task j=1,..

1]

3

(5) task,€ € {0,1}

b IJ b IJ
Figure 8.8: To obtain an initial task assignment, we solventager problem in each
time slot to guarantee that as much tasks as possible areccaut.

purpose we obtain the initial solution of phase Il with a histic approach trying to
reassign employees the same tasks again and again.

For each time slotd;, a;,1) we assign tasks to employees as follows:

1. We determine the maximum number of ta3kask,,x that can be assigned.

2. We try to solve a more restricted integer program: Eachleygp must be as-
signed the same task again which he or she has carried ow prefrious time
slot. Employees who had a break or rest period at the previmesslot can be
assigned any task for which they are qualified. If it's stifispible to carry out
T asknax tasks we will apply the obtained task assignment.

3. Otherwise we iteratively select an employee and allowtoimarry out any tasks
he is qualified for until we can carry oitask,ax tasks. An employee changing
his task is selected as follows:

(a) If possible we select an employee that has carried ousalhmee task for at
leastminimum task timeninutes and has at leasinimum task timeninutes
left until the next break starts or the employee’s shift ends

(b) Otherwise we select an arbitrary employee.

We implemented the proposed heurisitic asIatitialize element in the TEMPLE
model for phase Ill, and used an IP-solver integrated in Gpimeolve integer programs
arising during initialization.

CHAPTER 8. PRACTICAL APPLICATIONS 148

Constraints and Moves

To improve the initial solution returned by our heuristic medified the TEMPLE pro-
gram of phase Il for our needs. Since the break schedule ishamiged while optimiz-
ing the task assignment, we removed the soft constRé@tuce ShortageMoreover,
we added a hard constraifitain Correct Task$o check that at any time employees are
assigned only those tasks which are actually required.hEurtore, we imposed three
additional soft constraintislinimum Task TimgAvoid Task ChangesndAvoid Rest Pe-
riods at Shift Bordersto optimize the task assignment even further. Table 8.2emts

all hard and soft constraints defined for phase lIl.

Figure 8.9 sketches the moves we developed to prevent eegddyom perform-
ing a single task for less thavlinimum Task Timeninutes. These moves analyze task
assignments, detect critical points where tasks are assifgm less thaminimum task
time minutes to an employee, and exchange assigned tasks betexaal employees.
In addition, we implemented moves to reduce task changedcaadoid rest periods
assigned at shift borders. These moves are presented irelddio.

CHAPTER 8. PRACTICAL APPLICATIONS 149

06:00 —
TINMVINAT NIV NNV NN NV NN
000 7 TASK X TASK X TASK X TASK X
. TASK Y TASK Y
0800 TASKY | | TASK X
WESily REsT// [TASKX |
09:00 —
0 ANNTNVNT NV NNV NNV NN NV NN
1 7askx TASK X TASK X TASK X
11:00 —
i TASK Y TASKY | | TASKX
1200 7 AREST ResV///| | Task x -
300 4 VN NPNN AN AN

14:00 —
1500 - | TASKX TASK X
TASK Y TASK Y
16:00 — TASKY | | TASKX
4 RE REST
RE 1 AVANEZAVAN I ZAVANRZAVAN

18:00 —
TASK Z TASK Z
19:00 —
TASK X TASKX | | TASKZ
{ TASKX | TASK Z
20:00 — TASK Y TASK Y
T TASK Z
21:00 —
22:00 —

Figure 8.9: Moves eliminating situations in which emplayearry out a single task for
less tharminimum task timeninutes.

CHAPTER 8. PRACTICAL APPLICATIONS 150

06:00 —
IMVINVMVI VMV NV VNV
oo TASK A TASK X TASK C TASK A TASK X TASK C
TASK X<1—>TASK B TASK B
08:00 —
< TASK X TASK B
I 1 VAL ZAVANIZA VAN AVANZAVANIZAVAN

10:00 —
TASK Y TASK Y
| VRS A+ Tasky | [/REST//.
11:00 — TASK XL, TASK X
TASK X
1200 VAVAN VAVAN
1300 4 1 \/\ AVAN

Figure 8.10: Moves reducing task changes and rest pericgisfaborders.

CHAPTER 8. PRACTICAL APPLICATIONS 151

8.2.6 Break Scheduling and Task Assignment Tool

The three phase optimization algorithm described in theipus section is included
in a commercial break scheduling and task assignment toa. bwMilt this tool in a

project together with the consulting company Ximes Corp.dioe of their customers.
The goal of the project was to develop a working prototypel@megnting our proposed
three phase approach. With that prototype we wanted toatediyproof of concept that
automated break scheduling and task assignment is possibEEMPLE in reasonable
time.

Basically, the working prototype consists of two composeiithe first component
is a Microsoft Excel VBA application which gathers and prsses user input and visu-
alizes the computed results. The second part is the threse ph@imization algorithm
generated with TEMPLE computing a feasible break pattedhahigh-quality task
assignment. Currently, the prototype is used by human idecieakers on customer’s
site to manage and handle the following three cases:

1. The prototype is used to calculate a break schedule akdsagynment at the start
of a working day. At this stage the decision maker might pl@aing units to
be held in overst@ed periods and he or she places intra-day absences which are
already known in advance.

2. The prototype is used to asses the consequences of ayrehdnges. Whenever
the task requirements are altered or an employee becometaspously absent,
the decision maker triggers the computation of an updatedkbschedule or task
assignment. Breaks that have already been consumed orttasksave already
been performed are not changed by that re-computation bakbrand tasks lo-
cated in the future are reconfigured to perform as many tasgessible.

3. The prototype is used to react on intra-day changes.eif atthange one or several
tasks cannot be performed any longer the decision maker canstel training
units, or deploy additional employees. As a last resort #hasibn maker can
adapt the task requirements.

To illustrate the use cases just mentioned we will preseaitrgpie application of our
break scheduling and task assignment tool on the sampléepnabstance presented in
Figure 8.4. In that sample problem we are given a shift plarsisting of six employees
on duty, each employee’s qualifications and the task reopgings for a planning period
from 06:00 to 17:00.

CHAPTER 8. PRACTICAL APPLICATIONS 152

Calculating a schedule at the start of a working day

At the start of the working day, the decision maker enterssttiét plan and task re-
quirements into our break scheduling and task assignmeht &nce the employees’
gualifications do not change very frequently the qualifaoadi are stored in a separated
file, where they are accessed by our break scheduling andsaginment tool. Then the
decision maker starts the computation of a break scheduldamsk assignment for the
current working day. The screen shot in Figure 8.11 showsthevobtained solution is
represented within our break and task assignment tool.

In each 10-minute time slot a single employee is assignedatsie which must
be performed during that time slot or an employee can be rresig break (orange
rectangle) or rest periods (shaded orange rectangle). ©right hand side there are
three columns reporting how many tasks are required, how raenactually assigned
to employees, and how many tasks cannot be processed iniegckldot. Unprocessed
tasks are highlighted with red color. In Figure 8.11 we seet#sk requirements are
satisfied completely.

Above the break and task schedule our tool reports the bieskand rest period
percentages assigned in each employee’s shift. From tleeserpages a decision maker
can check whether enough break time is assigned to eacte singlloyee. From high
rest period percentages the decision maker can conclutihéheurrent solution is over-
stdted, i.e., in certain periods actually more people than redguare working.

In the schedule presented in Figure 8.11 the task requirsnaea satisfied com-
pletely and the assigned break times and the break schealuply with all legal re-
quirements. Consequently, the obtained solution couldeipdogted in practice.

Considering the schedule presented in Figure 8.11 theideaisaker recognizes
that in the period fronmi2:30 until 15:30 the obtained solution is oversiad. In that
time range rest periods are assigned very frequently to@mes. Therefore, the deci-
sion maker exploits that excess of employees and insersaniy unit starting at2: 00
and ending at 3:30 into the schedule. In that training unit employg&® should train
employeeE4 on taskTASK3 H. After entering the training unit he computes a new solu-
tion from the scratch, part of which is presented in Figud8In the obtained solution
both trainer and trainee are assigretSK3 H in the period from12:00 until 13:20
whereas the last ten minutes of the training unit are use@view the training. On
the right hand side we see that the task requirements dreattédfied. Therefore, the
obtained schedule will be applied during the current waglday.

CHAPTER 8. PRACTICAL APPLICATIONS

Break Scheduler and Task Assigner Calculate schedule
Update schedule

Break Time | ##.#%| ##.#%[#2.3%] #2.3%| ##.2%| #2.7%] Tasks

Rest Time 0.0% 6.3% 0.0% 0.0%| 12.5%| 18.8% |

Employees El E2 E3 E4 ES E6 Required | Assigned |Unassigned |
05:30 0 i 0
05:40 0 0 0
05:50 0 0 o
06:00|TASKIH |TASKLA 1 1 a
06:10[TASKIH |TASKIA 1 1 a
06:20|TASKiH |TASkiA 1 1 q
06:30|TASKIH |TASKLA 1 1 g
06:40|TASKIH [TASK1A 1 1 a
06:50|TASKIH [TASKLA 1 1 a
07:00|TASKIH [TASK1A 1 1 a
07:10|TASKIH [TAskiA 1 1 a
07:20|TASKIH |TASKLA 1 1 a
07:30 TASKIH [TASKLA 1 1 a
07:40 TASKIH [TASKLIA 1 i 0
07:50 TASKIH [TASKLA 1 1 a
08:00|TASK2ZH [TASk2A [TASK3H |TASKS A 2 2 0
08:10|TASK2ZH [TASk2 A [TASK3H |[TASKSA 2 2 o
08:20|TASKZH [TAskz A [TASK3H [TASKSA 2 2 o
08:30|TASK2H [TASkzA [TASK3H |TASKS A 2 2 a
08:40|TASK2H |TASk2A [TASK3H [TASKS A 2 2 a
08:50[TASK2H [TASk2A [TASK3H [TASKS A 9 2 a
09:00(TASK2H TASK3A [TASK3H |TASKZA 2 2 0
09:10[TASK2H [TASKZA [TASK3IH |TASKZA 2 2 o
09:20(TASK2ZH || TASKZA [TASK3H |TASKZA 2 2 a
09:30 Task2 A [TASK2H TASKSH [TASKS A 2 2 0
09:40 Task2 A [TASKZH TASK3H |TASK3A 2 2 0
09:50 Taskz A |TASKZH TASK3H [TASKS A 2 2 o
10:00 Task2 A [TASKZH Task3H [TASKS A 2 2 0
10:10 Task2 A [TASKZH TASKSH [TASK3 A 2 2 a
10:20) |Taskz A [TaskzH [Task3H [TAsSKS A 2 2 0
10:30[TASK2H [TASK2A |TASK3H [TASK3A) 2 2 a
10:40|TASK2ZH [TASK2A [TASK3H |TASKS A 2 2 0
10:50|TASK2H [TASk2 A [TASK3H |[TASKSA 2 2 o
11:00|TASKZH [TAskz A TASK3 A |TAsk3H 2 2 0
11:10[TASK2H [Taskz A TASKZ A TASKSH 2 2 o
11:20(TASK2H [TASK2 A TASKZ A |TasesH 2 2 0
11:30 TASK2H [TASKS A [TASk2A [TASK3H 2 2 a
11:40 TASKZH [TASK3A [Task2A [TASKSH 2 2 0
11:50 [TaskzH [TASKSA [Taskza [TASK3H 2 2 o
12:00|TASK2 H TAsKS A ITaskaa |TASKSH 2 2 a
12:10(TASKZH TASKS A Taskz A [TASKSH 2 2 0
12:20(TASKZH TASKS A TaSK2 A [TASKSH 2 2 0
12:30(|TASK2 H ITASKSH [TASKSA [TAskzaA 2 2 a
12:40(|TASK2 H TASKSH [TASKSA |[TaskzA 2 3 0
12:50|TASK2 H TASKSH [TASK3A [TAsk2A 2 2 a
13:00|TASK2 H TASKZH [TASK3A 2 2 0
13:10|TASK2H TASKZH [TASK3A 5 2 a
13:20(TASKZH TASKH [TAskza [| 2 2 a
13:30|TASK1H WW/M 1 1 0
13:40[TASK1A . 1] 8
13:50(TAsK1H |Taskia i i 1 1 o
14:00 TASKLA [TASK1H 1 1 0
14:10 [TASELA [Taskin [Zeizzidd 1 1 a
14:20 TASKLA [TaskiH g 1 1 0
14:30 TAsKiH [TASKIA | 1 1 o
14:40 TASK1H [TASKLA 1 1 a
14:50 TASKiIH [TASKLA 1 1 o
15:00 TASKIH [TASKiA 1 1 o
15:10 TASKIH [TASKLA 1 1 a
15:20 TASKIH [TASKLA 1 1 0
15:30 TASKIH [TASK1A 1 1 a
15:40 [TASKiH [TASK1A 1 1 0
15:50 [TASKIH |TASK1iA 1 1 o
16:00 [TASK1H [TASK1A 1 1 a
16:10 [TASKIH [TASKiA 1 1 0
16:20 [TASKIH [TASK1A 1 1 0
16:30 [TASKIH [TASK1A 1 1 o
16:40 TASKIH [TASK1A 1 1 0
16:50 [TaskiH [TASK1A 1 1 a
17:00 0 0 0

153

Figure 8.11: The break and task schedule computed by ouk bokeeduling and task

assignment tool for the problem given in Figure 8.4.

CHAPTER 8. PRACTICAL APPLICATIONS 154

Assessing the ffect of intra-day changes

At 10: 30 the decision maker is told that employegmust attend a meeting frot2 : 30
until 13:30. Since according to the current schedule empldy&és supposed to be
working during that time the decision maker enters the mgeds an intra-day absence
and uses our tool to compute an updated schedule for the nielgailay starting at
11:00. Figure 8.13 shows the updated schedule returned by th& bob&duling and
task assignment tool. The meeting has been inserted dgriethe shift for employee
E6 between12:30 and13:30. However, betweeni3:20 and 13:30 one task cannot
be processed anymore, the corresponding entry in the bdweanght in Figure 8.13 is
marked red.

Reacting on intra-day changes

The decision maker must react on the arisen violation ofdkk tequirements. Since
the unassigned task coincides with the scheduled traimiighe decides to remove that
training unit from the schedule and computes an updatedistdhéor the remaining day.
Figure 8.14 presents the schedule obtained after the remifovee training unit. We see
that the violation of task requirements has disappeareglaiaty. Finally, the decision
maker informs the employees that their break and task stdhedll be changed and
hands out the altered schedule to eaftbced employee.

8.2.7 A Note on the Quality of the Solutions Obtained with theBreak
Scheduler and Task Assigner

At this point we want to illustrate that the solutions congaliby our break scheduling
and task assignment tool are of acceptable quality. Forpgheiose we constructed
an artificial problem instance having the comparable featand characteristics as the
problems solved at the industrial customer of Ximes Corp. :

> The planning period of the considered problem comprisesdftsh starting at
00:00 and ending aB7:00 of the following day. The time granularity of the
planning period is set to 10-minutes time slots.

> At the beginning of the planning period the task requiremeatuire three tasks
to be performed. Then the requirements steadily increasegdthe morning and
between11:40 and 14:00 they reach their maximum. During this period thir-
teen tasks must be assigned to available employees. Afswlae requirements
decline again and fall back to three tasks aroRBdeg®.

CHAPTER 8. PRACTICAL APPLICATIONS 155

Break Scheduler and Task Assigner Calculate schedule
Update schedule

Break Time | ##.7%| #7.#%| #2.7% #2.3%| #7.2%| ##7% Tasks

Rest Time 0.0% 6.3%| 0.0% 0.0%| 4.2%| 6.3%)

|Employees El E2 E3 E4 ES E6 quired | Assigned |Unassigned
11:30 : |TAsksH [TASKZA |TAsK3A [TASKSH 2 2 0
11:40[i TASKSH [TASKZA |TASK3A |TASKIH 3 2 a
11:50 |TasksH [TASKZA |TaskzA [TASKSH 2 2 a
12:00[TASKZH [TAsKZA [TASK3H |TASKSH |TASKIA 2 2 a
12:10(TASKIH |TASKZA [TASKIH |TASK3H |TASKSA 2 2 a
12:20(TASKIH |TASK2 A [TASKZH |TASKSH |TASKSA 2 2 a
12:30(TASK2H |TAsk2A |TAsk3H [TASKEH | TASK3 A] 2]
12:40[TASKZH [TASKZA [TASKSH |TASKSH TaSK3 A 2 2 a
12:50[TASK2H [TASKaA [TASKSH [TASKIH TasKI A 7 2 a
13:00[TASKEH [TASKZA |TASK3H |TASKSH |[Z7Z77777Z4TASKS A 5 2 a
13:10[TASKZH [TasKza [TASK3H |TASK3H [iidTASKS A 2 2 a
13:20(TASKZH [TAsKZA [REVIEW |REVIEW [TASK3H |TASK3A 2 2 a
13:30(TASK1 A ITaskin 1 1 a
13:40|TASK1 A =Gl 1 1 a
13:50(|TASK1A TaSKIH P i 1 1 &
14:00 [TasKiH [TASKD 1 1 a
14:10 TAsKIH [TASK1A 1 1 a
14:20 TASKIH [TASKLIA 1 1 a
14:30 TASKiH [TASKLA i 1 1 o

Figure 8.12: Schedule after a training unit has been indééwveen 12:00 and 13:30.

Break Scheduler and Task Assigner Calculate schedule
Update schedule

Break Time | #7.7%| #7.3%| 72.5%| #2.3%| 27.2%| #2.7% Tasks

Rest Time 0.0% 0.0% 0.0% 0.0% 8.3% 0.0%

|Employees El E2 E3 E4 ES E6 quired | Assigned |Unassigned
11:30 : |TAskaH [TASKEA [TasksH [TASKSA 2 2 0
11:40[i TASKZH [TASKZA [TASK3H |TASK3A 2 2 0
11:50 |TAskzH |TASKZA |TasksH [TASKSA 2 2 o
12:00[TASK2H [TASk2 A [TASKSH [TASKSH |Tasksa 2 2 0
12:10[TASK3H [TAsk2 A [TASK3H [TASKSH | TASKS A 2 2 a
12:20[TASK2H [TAsk2 A |TASKSH [TASKSH TASKI A 2 5 0
12:30|TASK2H |[TASK2 A |TASK3H [TASK3H |TASK3 A |MEETING 2 2 o
12:40(TASKZH [TASk2 A [TASKSH [TASKSH [TASK3 A |MEETING 2 2 a
12:50[TASKZH [Task2 A [TASKZH [TASKSH [TAsks A |MEETING 2 2 0
13:00|TASKZH [TAsk2 A [TASK3H [TASKSH |[TASK3A |MEETING 2 2 0
13:10[TASKZH [TAskz A |TASK3H |TASKSH MEETING 2 2 o
13:20(TASK2H [TAaskzA [REVIEW [REVIEW MEETING 2 1 ([
13:30[TASKIH [TASK1A 1 1 a
13:40(TASKIH [TASK1A 1 1 a
13;50|TASKIH [TASK1A 1 1 1 g
14:00 TASK1A 1 1 a
14110 TASK1A 1 1 0
14120 TASK1A 1 1 0
14:30 TASK1H [TASKLIA 7 1 1 a

Figure 8.13: Schedule after employee E6 must attend a ngefedim 12:30 until 13:30.

Break Scheduler and Task Assigner Calculate schedule
Update schedule

Break Time | #7.7%| #7.3%| 72.5%| #2.3%| #27.2%| #2.7% Tasks

Rest Time 0.0% 0.0% 0.0% 6.3%| 12.5% 7.1% |

|Employees El E2 E3 E4 ES E6 quired | Assigned |Unassigned
11:30 Taskza TASKSA [TaskzH [TASKSH 2 2 0
11:40[TasKk2 A TASKZA [TASK2H |TASKSH 2 2 0
11:50 Taskz A TASKZA [TASk2zH [TASKSH 2 2 o
12:00(TAsk2 A [] TASKSA [TASk2H [TASKSH 2 2 0
12:10(TASK2A | [TASK3 A [TASKZH [TASK3H 2 2 a
12:20(TAsk2A | TASK3A [TAsk2H [TASKSH 2 2 0
12:30|TASK2H |Task2a |Task3H [TASKSA [] 2 3 o
12:40|TASK2H [TASK2A [TASK3H |TASKSA 2 2 0
12:50|TASK2H [TASk2 A [TASK3H [TASKSA 2 2 o
13:00|TASKZH [Taskz A [TASK3H [TASKSA 2 2 o
13:10[TASK2H [TASkzA |TASK3H [TASK3A 2 2 a
13:20(TASK2H [TASK2A |TASK3H [TASK3A 2 2 a
13:30[TASKIH [TASK1A 1 1 a
13:40[TASKiH [TASK1A 1 1 a
13:50(TASKIH [TASK1A | 1 1 g
14:00 TasKLH TasKiA 1 1 a
14110 TASKLIH TASKLA 1 1 a
14120 TASKLH TASKLA 1 1 a
14:30 TasKiH ASK1A 1 1 a

Figure 8.14: Schedule after the removal of a training unit.

CHAPTER 8. PRACTICAL APPLICATIONS 156

> The input shift plan consists of 63 shifts. The duration dftslranges between
six and ten hours, the average shift duration is about eighehalf hours.

> In addition to the shift plan we are given eight night shitisrsng at the previous
working day. For these night shifts we are already given albsehedule and task
assignment that must not be modified by our tool. Since thigée shifts coincide
with the first seven hours of our input shift plan we must alsasider these shifts
while generating a break schedule for input shift plan andendssigning tasks to
employees.

> From the 63 deployed employees 53 are allowed to performaehy The remain-
ing 10 employees may only act as a head’s assistant.

We computed a solution for this instance with our break soliregl and task as-
signment tool on a Genuine Intel T2400 laptop running at 1H& @vith 2 Ghytes of
RAM. We limited the overall running time to the usual runnitige at the customer’s
site, namely five minutes. Since the returned solution iddage to be presented within
one figure we divided it into several figures, Figure B.1 - Ir/ggB. 3, which are presented
in the Appendix of this thesis.

All legal requirements resulting from the agreement betwibe workers council
and the management board are satisfied completely by thmettsolution. Consider-
ing soft constraints we observe that the returned solutasnthe following features:

Unassigned Tasks: 0
Short Task Assignments: 9
Task Changes: 56

Rest Periods at Shift Border: 15

Most important of all, the task requirements are satisfiemhgetely within our
solution. Each required task was assigned to a group of gmgdoand can be processed
during the working day. Moreover, there are only a few situegt in which an employee
performs the same task for less thmmimum task time

There are 56 immediate task changes in the obtained solug@ming that on aver-
age about one immediate task changes per employee occuraidiy to our customer,
in such large instances tasks changes could not be avoidepletely. Moreover, with
regard to immediate task changes the solutions computedryyroduct have the same

CHAPTER 8. PRACTICAL APPLICATIONS 157

guality as the manually constructed ones, which were coaapait the costumer’s site in
former times with significant largeiftert.

The rest periods assigned at the start or end of an emplogikei{ss not tragic at
all. The only consequences for thifexcted employees are that they may start or finish
their work ten or twenty minutes earlier or later.

For these reasons we conclude that the solution produceldelyréak scheduling
and task assignment tool is of high quality and the compriatidfort of five minutes
to generate it is quite acceptable considering the compéaxe of the problem.

CHAPTER 8. PRACTICAL APPLICATIONS 158

Chapter 9

Conclusions

In this thesis we designed the domain specific language TEHMRILmodel and solve
stat scheduling problems. Thanks to TEMPLE, new software sahgtior st& schedul-
ing tasks can be obtained more quickly, and already existgtions can be modified
and extended more easily.

To approach the issue of ftacheduling we considered two real-life problems in
Chapter 3 and Chapter 4. The first problem was a real-lifekbseheduling problem
originating in the area of supervisory personnel. In thightem, breaks must be sched-
uled for a given shift plan in such a way that the obtained bosehedules satisfy legal
requirements and reduce shortage offdtaa minimum degree. To achieve that goal
we developed a minimum-conflicts-based local search d@lgnrmimicking human ex-
perts when solving break scheduling problems. Computaltiesults on real-life and
randomly generated benchmark instances revealed thatitiraum-conflicts-based al-
gorithm can generate high-quality solutions that fulfithdé requirements and stang
demands at the same time.

The second real-life task was a related break schedulinggrooriginating from
a call center. We adapted the min-conflicts-based algorithtine additional and altered
constraints of the call center problem, and that modifiedritlym could again compute
close-to-optimal solutions for real-life and randomly geated benchmark instances in
acceptable time. The min-conflicts based algorithm is appiuccessfully at the call
center where it is used to compute the daily break schedaotesafl center agents.

On the basis of the experience gathered from the two comrsldeal-life tasks we
abstracted common features and basic building blocks fifstheduling problems and
local search techniques in Chapter 5, and developed theid@pecific language TEM-
PLE. In TEMPLE, a problem instance is modeled by small, cgmdiuilding blocks
reflecting common features of fitacheduling problems and local search techniques.

159

CHAPTER 9. CONCLUSIONS 160

New building blocks are derived from already existing or@g.this principle a user is
allowed to formulate a complex problem in small, concise sadeable steps. Conse-
quently, the resulting problem models are well-structuesasy to understand, modify
and maintain.

To transform TEMPLE models of dtascheduling problems into executable algo-
rithms we developed and implemented a TEMPLE compiler ingBdra7. The TEM-
PLE compiler translates a TEMPLE model into three local &eatgorithms, a simu-
lated annealing algorithm, a hill-climbing based approausid an iterated local search
algorithm. Each of these algorithms can be executed irsstapusly without requiring
any further input from a user. To ensure that the obtainedrifgns are carried out
efficiently, we implemented several strategies within the da@mpn order that only as
many computations as necessary are performed.

In Chapter 8 we delivered a proof of concept that real-lifeestuling problems
can be both #ectively modeled andfkciently solved with TEMPLE. For that purpose
we reconsidered the real-life break scheduling problensfimervisory personnel, and
modeled it in TEMPLE. The resulting TEMPLE program was weritiin a very con-
cise, understandable and modular manner, and consistdyob@ lines of code. Only
one man-week was needed to develop the TEMPLE model for #eklscheduling
problem for supervisory personnel. Our experimental tesan real-life and randomly
generated benchmark instances revealed that with TEMPLEowiel obtain solutions
of acceptable quality at the same expenditure of time as uktmized algorithm in
Chapter 3.

Finally, in Chapter 8 we considered a multilayered brealedaling and task as-
signment problem. The goal for that §tacheduling problem was to develop a break
schedule for a given shift plan and to assign tasks requodaktperformed by avail-
able employees in accordance with their qualifications. il\g&any constraints were
imposed on the break schedule as well as on the task assign8iece the considered
problem is very complex as a whole we decomposed it into theparate phases each
of which modeled and solved by a separate TEMPLE programhdrfitst phase we
computed a break schedule which is consistent with all legplirements. In the second
phase we optimized the break schedule with respect to tkeggairements. In the third
phase we assigned the required tasks to available emplapeese optimized the task
assignment with respect to the imposed criteria.

The three resulting TEMPLE models represent the core of avgential break
scheduling and task assignment tool. With a prototype dftti@ we delivered a proof
of concept that automated break scheduling and task assignwas possible within a
reasonable amount of time, i.e., approximately five minatea state of the art computer.
The prototype has been extended into a commercial applicatrhich is already used
successfully by decision makers in their day-to-day bissine

CHAPTER 9. CONCLUSIONS 161

For future work we want to model and solve furtherfissgheduling problems with
our proposed domain specific language TEMPLE. In particuawant to address prob-
lems originating in areas of gfascheduling that we have not considered in this thesis,
i.e., line of work construction and $taassignment. Moreover, we want to consider shift
scheduling and break scheduling as a combined problem dwel is@s a whole. By
tackling these problems within one combined task we exparteives to be able to sat-
isfy stafing requirements even more accurately. As a further topiéutoire work we
want to make the TEMPLE modeling language even simpler ierotidlat developers
and end users can apply TEMPLE even more easily.

CHAPTER 9. CONCLUSIONS 162

Appendix A

TEMPLE Model for the Break
Scheduling Problem for
Supervisory Personnel

A.1 General Settings and Constants

input = ".\2fc04a03.xml";

output = ".\sol-2fc04a03.xml";

algorithm = iterated local search;

algorithm running time = 60 minutes;

time slot = 5 minutes;

int CYCLE_LENGTH = 7 days;
//Constraint Cl Break Positions

int MINIMUM_DISTANCE_TO_SHIFT_BORDER = 30 minutes;
//Constraint C2 Lunch Breaks

int MINIMUM_DURATION_OF_LUNCH_BREAK = 30 minutes;
int MINIMUM_DISTANCE_LUNCH_BREAK_TO_SHIFT_START = 3 hours 30 minutes;
int MAXIMUM_DISTANCE_LUNCH_BREAK_TO_SHIFT_START = 6 hours;
int MINIMUM_DURATION_FOR_LUNCH_BREAK = 6 hours;

//Constraint C3 Duration of Work Periods
int MINIMUM_DURATION_OF_WORKING_PERIOD
int MAXIMUM_DURATION_OF_WORKING_PERIOD

30 minutes;
100 minutes;

//Constraint C4 Minimum Break Times after Work Periods
int CRITICAL_DURATION_OF_WORKING_PERIOD 50 minutes;
int MINIMUM_BREAK_DURATION_AFTER_CRITICAL_WORKING_PERIODS = 20 minutes;

163

APPENDIXA. TEMPLE MODEL FOR THE BREAK SCHEDULING PROBLEM. 164

//Break C5 Duration

int MINIMUM_BREAK_DURATION = 10 minutes;
int MAXIMUM_BREAK_DURATION = 1 hour;
int VIOLATED =1;

int SATISFIED = 0;

int INITIAL_BREAK_DURATION = 10 minutes;
int MAXIMUM_NUMBER_OF_BREAKS = 10;

A.2 Intervals and Links

Interval Problem;
Interval Requirement with RequiredEmployees;

Interval Shift;
Interval Break;
Interval TimeSlot;

Problem -> Requirement;
Problem <-> Shift;

Shift <-> Break;
Problem -> TimeSlot;
Shift <-> TimeSlot;
Break <-> TimeSlot;

A.3 Constraint C; - Break Positions

Property Break::DistanceToShiftStart(Break thisBreak, Break.Shift[] associatedShift)
{

DistanceToShiftStart = thisBreak.Start - associatedShift[1].Start;
}

Property Break::DistanceToShiftEnd(Break thisBreak, Break.Shift[] associatedShift)

{
DistanceToShiftEnd = associatedShift[1].End - thisBreak.End;

3

HardConstraint Break::BreakPositions(Break thisBreak)
{
if(thisBreak.DistanceToShiftStart < MINIMUM_DISTANCE_TO_SHIFT_BORDER)
BreakPositions = VIOLATED;

if(thisBreak.DistanceToShiftEnd < MINIMUM_DISTANCE_TO_SHIFT_BORDER)
BreakPositions = VIOLATED;

APPENDIXA. TEMPLE MODEL FOR THE BREAK SCHEDULING PROBLEM. 165

A.4 Constraint C, - Lunch Breaks

Property Break::DistanceEndToShiftStart(Break thisBreak, Break.Shift[] associatedShift)
{

DistanceEndToShiftStart = thisBreak.End - associatedShift[1].Start;
}

Property Break::IsLunchBreak(Break thisBreak)
{

IsLunchBreak = true;

if(thisBreak.Duration < MINIMUM_DURATION_OF_LUNCH_BREAK)
IsLunchBreak = false;

if(thisBreak.DistanceToShiftStart < MINIMUM_DISTANCE_LUNCH_BREAK_TO_SHIFT_START)
IsLunchBreak = false;

if(thisBreak.DistanceEndToShiftStart > MAXIMUM_DISTANCE_LUNCH_BREAK_TO_SHIFT_START)
IsLunchBreak = false;

Property Shift::LunchBreakCount(Shift.Break[] scheduledBreak)
{

LunchBreakCount = sum(i in scheduledBreak.getRange()) (scheduledBreak[i].IsLunchBreak);
}

HardConstraint Shift::LunchBreaks(Shift thisShift)
{
if(thisShift.Duration > MINIMUM_DURATION_FOR_LUNCH_BREAK && thisShift.LunchBreakCount == 0)
LunchBreaks = VIOLATED;

A.5 Constraint C5 - Duration of Work Periods

Property Break::TimeInPosition(Break thisBreak, Break.Shift[] associatedShift,
Break.Shift().Break() scheduledBreak)
{
TimeInPosition = thisBreak.Start - associatedShift[1].Start;

selectMax(i in scheduledBreak.getRange() : scheduledBreak[i].End <= thisBreak.Start)
(scheduledBreak[i] .End)
{
TimeInPosition = thisBreak.Start - scheduledBreak[i].End;
}
}

Property Break::TimeInBreak(Break thisBreak, Break.Shift().Break() scheduledBreak)
{

TimeInBreak = thisBreak.Duration;

select(i in scheduledBreak.getRange() : scheduledBreak[i].Start == thisBreak.End)
TimeInBreak += scheduledBreak[i].Duration;

APPENDIXA. TEMPLE MODEL FOR THE BREAK SCHEDULING PROBLEM. 166

Property Shift::LastTimeInPosition(Shift thisShift, Shift.Break[] scheduledBreak)
{
selectMax(i in scheduledBreak.getRange()) (scheduledBreak[i].End)
LastTimeInPosition = thisShift.End - scheduledBreak[i].End;

A.6 Constraint C4 - Minimum Break Times After Work Peri-
ods

HardConstraint Shift::MinimumBreakTimesAfterWorkPeriods(Shift.Break[] scheduledBreak)
{
forall(i in scheduledBreak.getRange())
{
if(scheduledBreak[i].TimeInPosition > CRITICAL_DURATION_OF_WORKING_PERIOD)
if(scheduledBreak[i].TimeInBreak < MINIMUM_BREAK_DURATION_AFTER_CRITICAL_WORKING_PERIODS)
MinimumBreakTimesAfterWorkPeriods = VIOLATED;

A.7 Constraint Cs - Minimum Break Durations

HardConstraint Break::BreakDurations(Break thisBreak)
{
if(thisBreak.Duration < MINIMUM_BREAK_DURATION)
BreakDurations = VIOLATED;

if(thisBreak.Duration > MAXIMUM_BREAK_DURATION)
BreakDurations = VIOLATED;

A.8 Constraint Cg - Shortage of Employees

Curve Problem::StaffingRequirements(Problem.Requirement[] staffingRequirement)
{
forall(i in staffingRequirement.getRange())
StaffingRequirements.Pulse(staffingRequirement[i].Start,
staffingRequirement[i].End, staffingRequirement[i].Active,
staffingRequirement[i].RequiredEmployees);

Property Break::HasSuccessor(Break thisBreak, Break.Shift().Break() scheduledBreak)
{
select(i in scheduledBreak.getRange() : scheduledBreak[i].Start == thisBreak.End)
HasSuccessor = true;

APPENDIXA. TEMPLE MODEL FOR THE BREAK SCHEDULING PROBLEM. 167

Curve Shift::WorkingTime(Shift thisShift, Shift.Break[] scheduledBreak)

{
WorkingTime.Pulse(thisShift.Start, thisShift.End, thisShift.Active);

forall(i in scheduledBreak.getRange())
{
WorkingTime.Pulse(scheduledBreak[i].Start,
scheduledBreak[i] .End,
scheduledBreak[i] .Active, -1);

if(scheduledBreak[i] .HasSuccessor == false)
WorkingTime.Pulse(scheduledBreak[i].End,
scheduledBreak[i].End + 1,
scheduledBreak[i] .Active, -1);

Curve Problem: :WorkingTime (Problem.Shift[] scheduledShift)
{
forall(i in scheduledShift.getRange())
WorkingTime.Add(scheduledShift[i].WorkingTime);

Curve Problem::DeviationCurve(Problem thisProblem, Problem.Shift[] scheduledShift)

{
forall(i in scheduledShift.getRange())
DeviationCurve.CyclicAdd(scheduledShift[i].WorkingTime, CYCLE_LENGTH);

DeviationCurve.Subtract(thisProblem.StaffingRequirements) ;

}
Curve Problem::ShortageCurve(Problem thisProblem)
{
ShortageCurve.SubtractNegativeValues(thisProblem.DeviationCurve);
}
Property Problem: :Shortage(Problem thisProblem)
{
Curve shortageCurve = thisProblem.ShortageCurve;
Shortage = sum(i in shortageCurve.Period()) (shortageCurve.Value(i));
}
SoftConstraint Problem::ShortageOfEmployees(Problem thisProblem) weight(10)
{
ShortageOfEmployees = thisProblem.Shortage;
}

A.9 Constraint C; - Excess of Employees

Curve Problem: :ExcessCurve(Problem thisProblem)

{

ExcessCurve.AddPositiveValues(thisProblem.DeviationCurve);

}

APPENDIXA. TEMPLE MODEL FOR THE BREAK SCHEDULING PROBLEM. 168

Property Problem: :Excess(Problem thisProblem)

{
Curve excessCurve = thisProblem.ExcessCurve;
Excess = sum(i in excessCurve.Period()) (excessCurve.Value(i));
}
SoftConstraint Problem: :ExcessOfEmployees(Problem thisProblem) weight(2)
{
ExcessOfEmployees = thisProblem.Excess;
}

A.10 Additional Constraints

Curve Shift::BreakPattern(Shift.Break[] scheduledBreak)
{
forall(i in scheduledBreak.getRange())
BreakPattern.Pulse(scheduledBreak[i].Start, scheduledBreak[i].End, scheduledBreak[i].Active);

HardConstraint Shift::NoOverlappingBreaks(Shift thisShift)
{

Curve breakPattern = thisShift.BreakPattern;

forall(i in breakPattern.Period())
if(breakPattern.Value(i) > 1)
NoOverlappingBreaks = VIOLATED;

HardConstraint Shift::ScheduleBreaksWithinShift(Shift thisShift, Shift.Break[] scheduledBreak)
{
forall(i in scheduledBreak.getRange())
{
if(scheduledBreak[i].Start < thisShift.Start)
ScheduleBreaksWithinShift = VIOLATED;

if(scheduledBreak[i].End > thisShift.End)
ScheduleBreaksWithinShift = VIOLATED;

A.11 Initialization

Property Shift::RequiredBreakTime(Shift thisShift)
{
if(thisShift.Duration <= 10 hours)
RequiredBreakTime = (int) (floor(((thisShift.Duration - 20 minutes) / 10.0)) * 2);
else
RequiredBreakTime = (int) (ceil(thisShift.Duration / 4.0));

APPENDIXA. TEMPLE MODEL FOR THE BREAK SCHEDULING PROBLEM. 169

Property Shift::NumberOfBreaks(Shift thisShift)
{

int requiredBreakTime = thisShift.RequiredBreakTime;

if(thisShift.Duration > MINIMUM_DURATION_FOR_LUNCH_BREAK)
{

NumberOfBreaks++;

requiredBreakTime -= MINIMUM_DURATION_OF_LUNCH_BREAK;
}

NumberOfBreaks += (int) ceil (requiredBreakTime * 1.0 / MINIMUM_BREAK_DURATION);

if(NumberOfBreaks > MAXIMUM_NUMBER_OF_BREAKS)
NumberOfBreaks = MAXIMUM_NUMBER_OF_BREAKS;

Instantiate Shift.Break[] (Shift thisShift)
{

Shift.Break[].Count = thisShift.NumberOfBreaks;
}

Initialize Shift::BreakSchedule(Shift thisShift, Shift.Break[] scheduledBreak,
Shift.Problem[].TimeSlot[] timeSlot)
{
int numberOfBreaks = scheduledBreak.getRange().getUpQ);
int[] breakStartTime;
do
{
int requiredBreakTime = thisShift.RequiredBreakTime;
int lunchBreakIndex = -1;

//Schedule a 30-minutes lunch break.
if(thisShift.Duration > MINIMUM_DURATION_FOR_LUNCH_BREAK)
{
lunchBreakIndex = (int) floor((float) MINIMUM_DISTANCE_LUNCH_BREAK_TO_SHIFT_START /
(float) (CRITICAL_DURATION_OF_WORKING_PERIOD + INITIAL_BREAK_DURATION));

scheduledBreak[lunchBreakIndex] .Duration = MINIMUM_DURATION_OF_LUNCH_BREAK;

scheduledBreak[lunchBreakIndex].Active = true;

requiredBreakTime -= MINIMUM_DURATION_OF_LUNCH_BREAK;
}

//Iterate over all other breaks and add 10 minutes to each break until entire break time is scheduled.
int i = 1;
while(requiredBreakTime >= INITIAL_BREAK_DURATION)

{
if(i > scheduledBreak.getRange().getUp()) i = 1;

if(i != lunchBreakIndex)

{
scheduledBreak[i] .Duration += MINIMUM_BREAK_DURATION;
scheduledBreak[i] .Active = true;
requiredBreakTime -= MINIMUM_BREAK_DURATION;
}
it+;

3

APPENDIXA. TEMPLE MODEL FOR THE BREAK SCHEDULING PROBLEM. 170

if(requiredBreakTime > 0)

{
if(i > scheduledBreak.getRange().getUp()) i = 1;

scheduledBreak[i] .Duration += requiredBreakTime;
scheduledBreak[i].Active = true;

}

//Determine an initial legal break pattern by solving the corresponding STP.
// + 2 because also shift start and shift end are variables of the STP.
int numberOfSTPVariables = numberOfBreaks + 2;

STPSolver stpSolver = new STPSolver (numberOfSTPVariables);

stpSolver.AddMinimumDistance(l, numberOfSTPVariables, thisShift.Duration);
stpSolver.AddMaximumDistance (1, numberOfSTPVariables, thisShift.Duration);

stpSolver.AddMinimumDistance(1l, 2, MINIMUM_DISTANCE_TO_SHIFT_BORDER);

if(scheduledBreak[1].Duration >= MINIMUM_BREAK_DURATION_AFTER_CRITICAL_WORKING_PERIODS)
stpSolver.AddMaximumDistance(1l, 2, MAXIMUM_DURATION_OF_WORKING_PERIOD) ;

else
stpSolver.AddMaximumDistance(1l, 2, CRITICAL_DURATION_OF_WORKING_PERIOD) ;

forall(i in 2..numberOfBreaks)
{
stpSolver.AddMinimumDistance(i, i+1, scheduledBreak[i-1].Duration +
MINIMUM_DURATION_OF_WORKING_PERIOD);

if(scheduledBreak[i].Duration >= MINIMUM_BREAK_DURATION_AFTER_CRITICAL_WORKING_PERIODS)
stpSolver.AddMaximumDistance(i, i+1, scheduledBreak[i-1].Duration +
MAXIMUM_DURATION_OF_WORKING_PERIOD);
else
stpSolver.AddMaximumDistance(i, i+1, scheduledBreak[i-1].Duration +
CRITICAL_DURATION_OF_WORKING_PERIOD);

}

stpSolver.AddMinimumDistance (numberOfBreaks+1, numberOfBreaks+2,
MINIMUM_DISTANCE_TO_SHIFT_BORDER + scheduledBreak[numberOfBreaks].Duration);

stpSolver.AddMaximumDistance (numberOfBreaks+1, numberOfBreaks+2,
MAXIMUM_DURATION_OF_WORKING_PERIOD + scheduledBreak[numberOfBreaks].Duration);

if(thisShift.Duration > MINIMUM_DURATION_FOR_LUNCH_BREAK)
{
stpSolver.AddMinimumDistance(1l, lunchBreakIndex + 1, MINIMUM_DISTANCE_LUNCH_BREAK_TO_SHIFT_START);
stpSolver.AddMaximumDistance(1l, lunchBreakIndex + 1, MAXIMUM_DISTANCE_LUNCH_BREAK_TO_SHIFT_START -
scheduledBreak[lunchBreakIndex].Duration);

}

breakStartTime = stpSolver.GetRandomSolution();
}
while(breakStartTime == null);

forall(i in 1..numberOfBreaks)
scheduledBreak[i].Start = thisShift.Start + breakStartTime[i+1];

set{int} domainStart();

APPENDIXA. TEMPLE MODEL FOR THE BREAK SCHEDULING PROBLEM. 171

forall(i in thisShift.Start .. thisShift.End)
domainStart.insert(i);

set{int} domainDuration ();
forall(i in ® .. MAXIMUM_BREAK_DURATION)
domainDuration.insert(i);

set{int} domainActive();
forall(i in 0..1)
domainActive.insert(i);

forall(i in scheduledBreak.getRange())

{
scheduledBreak[i].Start.Domain.Add (domainStart);
scheduledBreak[i] .Duration.Domain.Add (domainDuration);
scheduledBreak[i].Active.Domain.Add (domainActive);

scheduledBreak[i].AddRelatedInterval (thisShift, "Shift");
}

forall(t in timeSlot[1].getRange())
{
if(thisShift.Start <= timeSlot[1][t].Start && timeSlot[1][t].End <= thisShift.End)
{
timeSlot[1][t].AddRelatedInterval (thisShift, "Shift");
thisShift.AddRelatedInterval (timeSlot[1][t], "TimeSlot");

forall(i in scheduledBreak.getRange())

{
timeSlot[1][t].AddRelatedInterval (scheduledBreak[i], "Break");
scheduledBreak[i] .AddRelatedInterval (timeSlot[1][t], "TimeSlot");

}

}
}
}

A.12 Moves

Move Problem: :BreakAssignment (Problem thisProblem, Problem.TimeSlot[] ts,
Problem.TimeSlot[].Shift[] scheduledShift)
{

Curve shortage = thisProblem.ShortageCurve;

select(i in ts.getRange() : shortage.Value(ts[i].Start) > 0)
select(j in scheduledShift[i].getRange() : scheduledShift[i][j].WorkingTime.Value(ts[i].Start) == 0)
scheduledShift[i][j].BreakAssignment;

APPENDIXA. TEMPLE MODEL FOR THE BREAK SCHEDULING PROBLEM. 172

Move Problem: :BreakSwap(Problem thisProblem, Problem.TimeSlot[] ts,
Problem.TimeSlot[].Shift[] scheduledShift)
{

Curve shortage = thisProblem.ShortageCurve;

select(i in ts.getRange() : shortage.Value(ts[i].Start) > 0)
select(j in scheduledShift[i].getRange() : scheduledShift[i][j].WorkingTime.Value(ts[i].Start) == 0)
scheduledShift[i][j].BreakSwap;

Move Shift::BreakAssignment(Shift thisShift, Shift.Break[] scheduledBreak)
{
range T = thisShift.Start .. thisShift.End;

select(i in scheduledBreak.getRange())

select(newPosition in T : newPosition != scheduledBreak[i].Start)
scheduledBreak[i].Start = newPosition;

Move Shift::BreakSwap(Shift.Break[] scheduledBreak)

{
select(firstBreak in scheduledBreak.getRange())
{
select(secondBreak in scheduledBreak.getRange())
{
int t = scheduledBreak[firstBreak].Start;
scheduledBreak[firstBreak].Start = scheduledBreak[secondBreak].Start;
scheduledBreak[secondBreak].Start = t;
}
}

Appendix B

Break Scheduling and Task
Assignment Tool

173

174

APPENDIX B. BREAK SCHEDULING AND TASK ASSIGNMENT TOOL

Break Scheduler and Task Assigner

Calculate schedule

Update schedule

Break Time Tasks

Rest Time 0%| 0%| 0%| 0%| 0%| 0%| 2%| 0%[0%| 0%| 0%| 2% 2%| 0%| 2%| 2%| 2%| 0% 2%| 0%| 2%| 4%| 0%| 2% 0%| 2%| 8%| 2%| 0%| 6% 2%| 2%

[Employees El | E2 | E3 | E4 | E5 | E6 | E7 | EB | E9 [E10 | E11 |E12 [E13 |E14 |E15 [E16 | E17 |E18 | E19 | E20 | E21 [E22 | E23 | E24 | E25 | E26 | E27 [E28 | E29 | E30 | E31 | E32 | Required | Assigned |Unassigned
TiA [T1A [T2H [T2A [T4H [T4A 3 3 0
TiH [T1A [T2H [T2A [T4H [T9A 3 3 o
TiH [T1A [T2H [T2A [T4H [T4A 3 3 0
TiH [T1A [f2H [T2A [T4H [T4A 3 3 0
TIH [T1A [T2H _[T2A [T2H [T4A 3 3 0
TiH [T1A [f2H [T2A [TaH (144 3 3 0
TiH [T1A [T2H_[T2A [TaH [T4A 3 3 0
TiH [T1A [f2H [T2A |TaH [T4A 3 3 0
TIH [T1A [T2H_[T2A [T4H [T4A 3 3 0

Tid [T1A [T2H [T2A [T4H [T4A 3 3 o

TiA [TiA [T2H [T2A [T24H [T4A 3 3 0

Tid [T1A [f2H [T2A [T4H [T4A | 3 3 0

T2H [T4H |TiH [T1A [T5H [T5A [T4A [T2A 4 4 0
T2H [T4H [T1H [T1A [T5H [T5A [T4a [T24 4 4 0
T2H [T4H [Tid [T1A [T5H [T5A [12A [12A 4 4 0
[T2H [T4H [Tid [T1A [T5H [T5A [T4a [T2A 4 4 0
T2H _[T4H |TiH [T1A [T5H [T5A [T2A [T2A 4 4 0
T2H [T4H |Tin [T1A [TSH_[T5A [T4a [T2A 4 4 o
T2H_[T4H TIA [TiH [T5H_[T5A [T4A [T2A 4 4 0
T2H [T4H T1a [TiH [TSH [T5A [14a [T24 4 4 0
T2H_[T4H TIA [TiH [T5H [T5A [T2A [T2A 4 4 0
T2H [T4H [T1A [T1H [T5H [T5A [T4a [T24 4 4 0

T2H [T4H |Ti1A |[T1H [T5H [T5A [12A [12A 4 4 0
T2H_[T4H |T1A [T1H [T5H [T5A [T4a [T2A 4 4 0

TaH [T4H |TiA |[TiH [T5H [T5A [T2A [T2A 4 4 0

T2H [T4H |T1A [T1H [TSH_[T5A [T4a [T2A 4 4 o

720 [T4H |TiA |[TiH [T5H [T5A [T4A [T2A 4 4 0

TiH |T1a [T2H [74H [TSH [T5A [14a [T2A 4 4 0
TIH [T1A [T2H [74H [T5H [T5A [T2A [T2A 4 4 0
TiH [T1A [T2H [T4H T34 [T2a 4 4 0
TiH [T1A [T2H T2+ [T2A |24 4 4 0
TiH [T1A [TaH 121 [T4a 128 4 4 0
TIH [T1A [T#H [T2H [T3A [T2A 4 4 0
TiH [T1A T2H [T4H [T4a [T2a 4 4 o
TIH [T1A T2H_[T4H [T2A [T2A 4 4 0
T1H [T1A T2H [T4H Vi [T4a [T2A 4 3 0
T7H [T4H _[T6H [TiH [TLA [T2H [T6A [T3H [T4A [T3A [T2A [T7A [T5H [T5A 7 7 0

[T7H [T4H [T6H [T1H [TTA [T2H [T6A [T3H [T4A [T3A [T2a [T74 [T5H [15A 7 7 0

T7H [T3H [T6r [TiH [T1A [T2H [TaA [T3H [T4A [T3A [T2A [T7A [T5H [T5A 7 7 0
T8H_[T3A [T3H [T6H [T1H [T1A [T2H [T6A [T3H |18A |[T2A [T9H [T9A [T4A [T5H |54 8 8 0

TaH [T3A T&H [TiH [T1A T6A [T3H [T8A [T2A [T9H [T9A [T4A [T2H [T5H [T4H [T85A 8 8 0

T8H [T3A TeH [T1H [T1A TeA [T3H [18A [T2A [T9H [ToA [T4A [T2H [T5H [T4H [184 1 8 b

T80 [T5A |TiA T&H [TiH [T3H _[T8A [T2A [T9H [T9A [T4A [T2H [15H [T4H [T5A [T6A E 8 0

[T8H [T3A [T1A [fiH [T6H [T9H [T3H [T8A [T24 [T9A [T4A |T2H [T5H [T4H [T5A [Tea] 8 0

T8H [T3A [Ti1A [TiH [16H T3 H [T3H [T8A [T2A [TSA [T4A |72 [T5A [T4H [T5A [T6 A 8 8 0

Tia [T1H [T6H T2H [T9H |T3H 28 T4A [TsH [T4H [15A [Tea [T3A [T8H [19A [18A 8 8 0

TIA [TiH [T6H [T4H [12H [15H [T3H T2 A T4A T5H [T5A [T6A [T3A [78H [T9A [18A E 8 0

TiA [TiH [T6H [T4H [T2H [T9H [T3H [f2a 154 T4A TsH [Tea |13 [T6H [T9A [T8A 8 8 0

T1a [TiH [f4H [T@H [Ts+ [T3H [T6H Tsa T4A [124 [TsH [fea [13a [ToH [T9A [T8A 3 8 0

d task

ing an

ted by our breh&dd

8.2.7.

Ion genera

Part one of the soluti

Figure B.1

ion

Sect

In

t tool

assignmen

175

d task

Break Scheduler and Task Assi: Calculate schedule _
Update schedule _
Break Time | | Tasks
Rest Time)%| 0%| 2%| 0%| 0%| 0%| 0%| 2%| 2% 0% | 2%| 2%| 0%| 2%)| 0%| 2%| 4%| 0%| 2%| 0%| 2%)| 8%| 2%| 0%)| G6%)| 2%| 2%| 3% 9% 0%| 0%| 2% 4%| 0%| 3%| 8%| 0%| 5%| 2%| 4%| 4%| 0% 6% _ _
Employees E6 | E7 | E6 | E9 E E13 E14 |El5 | El6 | E17 |E18 |E19 | E20 |E21 |E22 | E23 | E24 |E25 | E26 | E27 | E28 |E29 | E30 | E31 | E32 | £33 | E34 | E35 | E36 | E37 | E30 | £39 | E40 | EA1 | E42 | B4 | E44 | E45 | E46 | E47 | E48 | Required | Assigned |Unassigned
08: H 3H [i2H [19H [T3H 54 [TEAT[T2A [T5H [T6 A [T3A [T8H [T8A T8 A 8 8 0
[H aH |12 EMEL 5A [T6A A T34 [T8H [T9A [TaA [T4A 8 8 0
08: H 2 H |T3H 5A [TeA A A TEH [ToA [T [T4A s 8 0
i H 4 T2 H H A [T8H 5A A A A A A 8 8 0
0 H 8 H [13H A [TeH [15A [16A A § A 72 A [T4A & & a
0 H 2 A [ToH A A |13 T3A [T5A |T4H A [T4A 8 8 0
[A A A A [ToH SA [TaH A A [T4A s s 0
o A A A |T2A H H SA H A T2 A A 8 8 0
0 A |13 [sa A [T2A [TeH [1an 5A [T4H A P A [T4A 8 8 0
[A D T2A [T6H [19H] H A [T5A [T3A A [T4A 8 8 0
0 A [Toa A H [T5H |T8H A[TsA [T3A A [T2A [TEA 8 8 0
A H A 4A SH H A A A A A A 8 8 0
A H A [T9A A S5H g H A T3A A |T2A [T8A & & a
A F H A A [T3A A H 4H_[12A [T H H [TI0H A [T2A [TBA A 1 1 0
H |Ti5A[TI1A[TOA [TeA |Ten 4 A H|T7H [T4H [17A A[T8H 0H A [T2A [TBA A 1 1 a
T2 H 54 AlTSA A H 44 H|T7H 4 T7A A 0H A A A H A 11 11 o
2 H |75 AJTSA HT6H [T4A H[T7H _[T4H_[TZA) A A A ATeH [T2A 11 11 0
A N ECEES AlT9A HTaH [T4A H[T7H [T4H_[TZA A A A A[TaH [T2A 11 1 0
A NIToH ToH AlToA HTeH [T4A § 7H |4 11K | A A (174 [T1 A A|TSH [T2A 1 1 a
A [T2H |19 AlT9A H[Ten [T2A [164A 7H |14 3 A [T7a |11 A AlTBH [T28 1 1 0
A [T2H [Te H [TeA H[Ter [T2A [16A 7H & [TLLH] A [17A |71 TBA [T11A[T8H [12A 1 1t 0
A 2H [19A 2A [16A A A[TILH|TS A [T13A TBA [T11A[T8H [T2A A |T3H A 13 13 0
A 15H[T4H [19A 2A [T6A [T12A A H A A TBA [T11A[T8H [T2A A [T3H A 13 13 0
A 15 A 4A A A 4 A H A A AlTSA H A A H A 13 13 0
A 15H[T14A A [TLA A AlTaA [14 A 3H|TIH T2 A ATEA A_[T3H A 13 13 0
A 15H [T14A A [T1A A [T1zA[T9A [T A H 3A AlTBA A_[T3H A 13 13 0
A HTi4A 4H A [TiA AlToA |74 A H 3A A[TEA [Ts A 3A [T3H A 13 13 0
S5H A[T3H 4 H A A A 4A A A H H A 3A A A A S5A 13 13 0
H[T14A[T3H [T18H [TIDA[T2A [T1A [T4A AT9A H 3A[T1H A A A [T8A [T1sA 13 13 a
A [TI%H[TI0H T3 A[T2A [T15H [T4A AT1ZA[T3A H 3A[TLH E 3 A A [T8A A 13 13 0
H |T1A [Ti3H[Ti0H [ToH AlTiH A AlTi2A[T5A 3A AlT3 A [T5A A 34 13 13 0
H A H H A H A A A 3A T2 A AlTS A A A 3A 13 13 0
H [T1A H[Tan ATTH A A T} F A AlT3 A [T8A AlISA [T3A 13 13 0
H[T1A H[T9H ATiH A [T1%A 134 A A 3 A [T8A AlTSA [T3A 13 13 0
H [T1A RlTeR AlTiH A A 3A A AlTi3 3 A [TsA [TISA[TEA [T3A 13 3 0
H A H[T9H Py TizA(TiH A A T6A |[THA A A A El El 0
H[T6A [T4A A AlT2H [T10A A H [Tt A] 5 a
A H[TeA [T2A |18 A [Ti1 AlT2H A H [T12 A s 3 0
A HTeA |T4A A A[T2H A H [T A 9 s a
A H A 4A A A A A H 14 A 9 9 0
A H|T6A [T13H [18 A A A H |34 A) 3 0
A H[TaA 1140 (19 A 11A[T1A A H |44 A H 3 0
A HTaa |T13 A ATIA A[Ti4A [LONITOA T2 H [T4H T4 ToH s 9 0
A H A 14 [T1lA 4A H A A A TS A H H 9 9 0
A H[T6A |T14 14 d;§ A H [T1A AlTIHA A [T2H T9H_[12A [l] a
TiZH[T14A [T1A[TIIH[T6A [T4A H [T1A A [T6H T9A [T2H AlTaH [T2A s 3 0
L A 1iH[T6A [T4A H |T1A [Ti1A[Ti2A(TeH A T2 AlToH [T2A 9 s 0
1 4 A 1 76 A GA H A JTi1a A H A H ITiH A H A 9 9 0
iEL 1 24 L 4A [T6A H [ri1a A A H | E R A g g o

APPENDIX B. BREAK SCHEDULING AND TASK ASSIGNMENT TOOL

ing an

ted by our brealedal

8.2.7.

1on

ion genera

Sect

In

t tool

assignmen

Part two of the solut

Figure B.2

176

APPENDIX B. BREAK SCHEDULING AND TASK ASSIGNMENT TOOL

Break Scheduler and Task Assigner Calculate schedule
Update schedule

d task

Tasks

8%| 2%| 0%| ©%| 2%| 2% 3%| 9% 0%| 0%| 2%| 4%| 0% 3% 8%| 0% 5%| 2%| 4%| 4%| 0% 6% 2%| 2% 0%| 3% 0% 6% 0% 7% 7%| 1B%| 5%| 0% 7%) 52% _7%| 7
E27 | E28 | E29 | E30 | E31 | E32 | E33 | E34 | E35 | E36 | E37 | E38 | E39 | E40 | E41 | E42 | E43 | E44 | E45 | E46 | E47 | E48 | E49 | ES0 | E51 | ES2 | E53 | ES4 | ES55 | ES6 | ES7 | ES8 | ES9 | E6O | E61 | E62 | E63 quired

124 [T2H |T4A |T1A [T1H
[T2A |T2H |T4A [T1A [TIH
[T2A |T2H |T4A [T1A |T1H
T2A |T2H |T4A [T1A [T1H

T12+ [T12A [THH TiiH [F5A [T5A [T4H FiiafTiza [F0H[TaA [r2n [F1H [T10a [F2A [T1A [Ter 3 3
Ti2H [Ti2A [Ti4H THA [ToA [T4H | [TIIA[TIZA TIOH[T18A [T2n ZZZ) TiH [Ti0A [T2A [T1A [T6H 3]
Ti2H [T12A [T#H Te A [Tan TiiA[T12A TIOH[T9A [T2H [T44 TiH [T10a T2 [T1A [T6H 3 3
Ti2H [TI2A [Ti4H EEE Te A [TaH [TIiA[TizA [T [T8A [T2r T2A TiA [ToH E] s
T12H[T15A [T19H T12a[TI0A ED [T#H [T11A [T10H i T2a 1A [15H 3 g
Ti2H[T12A [THH Ti2A[TIDA[TIH [T5 A TaH [Ti1A FioH [FzH T2A TIA [T6H 3 s
T12A[TI0A[TIH [T5A [T2H [T4H T1aH [T0H TaA_[T12H [T11a[T24 [T144[T1A [T6H 3]

TIZA[TIOA[TIH [T5A [T2H [T4H TzA [THH | TaA_|TizH [T11A[TIOH[TI2A [TIA [T6H 9 s

Ti2A[TI0A[TIH [T9A [T2H [T4H [T2a [TaH T4A_|Ti2H [F11a[T10H [T194 [T1A [TeH 3]

[Fiin T2 TIA [T#H _[T4A [T2A [Ti4H TizH [Fiia[TioH [Ti% [TeH [Tia [Ti0A a]
T6H T2H Tin [T#H [T [T2a [TeH [13A [T9A [T5H T5A TiA [T8A 8 8
TeH e A [T2r Tin [T#H _[T4A [T2A [T6H [13A [T9A [T5H_[ToH T5A TiA _[1BA a 8
TeH Tin [T#H [T4A [T2A [T6H [T3A [T9A [T6A [T2H [T5H [T9H TiA _[T8A [T5A 3 8
T6H TiA [T#H [T4A [T2A [TaH [T3A [T9A 164 [12H T9H § [T5H [T1A [T8A [T5A 8 8
Ten [T#H [T4A [T2A [TaH [T3A [T9A [16A [T2H RN D T5H [T1A [TiH [T5A 8 8
TeH D [T2A [Tar [T2H [19A [T6A [13H T9H [T8A [14H [T5H [T1A [T1H [15A 8 8
TeH ED Tz A [T2H [T9A [T6A [T3H [T8H [T9H [T8A [T4H ITSH [T1A [TiH [TSA 8 8
TeH 3 [12A [F2H _[18A [TeA [T3H [T8H [T9H |18A [19H [15A [T5H [T1A [T1H 8 8
T5A [TzA TeH TzH [T3H_[T8H TS A [T4H [T5A [T8H [T5H [TiA [TiH EE 8 8

T5a [T2A T6H Tia [T2H T3n_[18H [T8A [TaH [15A [19H [T5H B Toa [Tea 8 8

[F3a [Tin T6H [T2A [T1A [T3H_[t8H TS A [T4H [T5A [TaH [T5H T2H [T5A [T6A 3 8

EEE] T6H [T2A [T1A Z{T5H [T3H [18H [T4A [18A [14H [15A [19H T2H [15A [16a 8 8

EENiE] BH [TzA 131 [T5H [T6H [T4A [TaA [T4H [T5A [TIA [f2H 154 [toH 8 8

EENiE] T8H [T2A [138 [T5H [TeH [T4A [Taa [TaH [15A [T1A T2H [19A 8 8

ERNiET] T8H [TzA [13H [T5H TeH [T4A [T8A [T5A [T1A [T4H T2H [T5A 8 8

TiA T8H [T2A [13R T5H [Taa [TeH [T4A [T5A [T1A [TaH [194 T2H 8 8

TIH gdx ECHER [T5A [T1A [T3H [19A [T6H [T2H 7 T g 8

Tin T8H [1154[T3H [TsH [Taa [TaH [T9A [T6H TiA 8 8

Tin TBH [Ti5A[T3H [T5H [Ta A [FaH [T5A [TeH TaA 8 8

§mdm> T3H [TSH ZZZZ{Tin |12 174 [T6H TaH [T2A [12H [T1A [T4A 7 7

L] EGiEL] T2H [T5A [T5H. T7A _[T6H [T4A T4H [T2A Tia 7 7

[FIH [17H [13A [T2H [15A [15H T7A [T6H [T4A [T3H [TaH [12A [r1ia 7 7

[TiH [T7H [T3A [T2H [T5A [T5H T7A [T6H [T4A |T3H [T4H [1A £) 7 7

T7H [T3A [12H [15A [18H T4A [T3H [148 TaH TiH [T1A [T6A [T7a [T2A 7 7

T7H [T5A [12H [T5A [T8H THA [T5H [T40 TeH TiH [T1A [T6A [T7A [T2A 7 7

7H |13 T2 |T5A [TSH (777 T4A [T3H [14H gﬂm: Tid |T1A 164 [17A |T2A 7 7

[TiH [T7H [T3A [T [T5A [TSH [T24 [T4A [T6A T5H [T4H [TiA [T6H 7 7

[T1H T2 [T4A [16A [T3H [TaH [T1A [16H 7 7

[Tir [TzA [T [T6 A TaH 5 5

[T2A [T2a [164 T6H 5 5

[TzA [T [T6 A L [TiA [TaH 5 5

24 |14 V7774 [Tia [TiH 3 3

T4A [Tz Fia [TiH 3 3

T4A_[T2H T1a [T1H 3 3

T4A_|T2H [TTA [Tin 3 3

3 3

3 3

3 3

3 3

ing an

ted by our bsehkedul

8.2.7.

1on

ion genera
Sect

In

t tool

Part three of the solut
assignmen

C 0o 0000000000000 0000000C0000000000000000000000000

Figure B.3

Bibliography

[1] Zeynep Aksin, Mor Armony, and Vijay Mehrotra. The modetall center: A
multi-disciplinary perspective on operations managemesgarchProduction and
Operations Management6(6):665-688, 2007.

[2] J. P. Arabeyre, J. Fearnley, F. C. Steiger, and W. Tealftex airline crew schedul-
ing problem: A surveyTransportation Scien¢e3(2):140-163, 1969.

[3] Turgut Aykin. Optimal shift scheduling with multiple bak windows. Managa-
ment Sciencet2(4):591-602, 1996.

[4] Turgut Aykin. A comparative evaluation of modeling appches to the labor shift
scheduling problem.European Journal of Operational Researd25:381 —397,
2000.

[5] Cynthia Barnhart, Amy Cohn, Ellis Johnson, Diego Klahj&eorge Nemhauser,
and Pamela VanceHandbook of Transportation Science, Airline Crew Schedul-
ing, volume 56 ofinternational Series in Operations Research and Managémen
Science Springer, 2003.

[6] Stephen E. Bechtold and Larry E. Jacobs. Implicit modglof flexible break
assignments in optimal shift schedulindanagement Sciencg6(11):1339 —1351,
1990.

[7] Jan Bisschop and Alexander Meeraus. On the developniengeneral algebraic
modeling system in a strategic planning environméfdthematical Programming
Study 20:1-29, 1982.

[8] Edmund K. Burke, Patrick De Causmaecker, Greet Vandergli#e and Hen-
drik Van Landeghem. The state of the art of nurse rostetagrnal of Scheduling
7(6):441-499, 2004.

[9] Sébastien Cahon, Nordine Melab, and El-Ghazali TalbaraiseO: A frame-
work for the reusable design of parallel and distributedatetrristics. Journal
of Heuristics 10(3):357-380, 2004.

177

BIBLIOGRAPHY 178

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Cyril Canon. Personnel scheduling in the call centeustry. 40R: A Quarterly
Journal of Operations Research(1):89-92, 2007.

Alberto Caprara, Matteo Fischetti, Pier Luigi Guidaoi Toth, and Daniele Vigo.
Solution of Large-Scale Railway Crew Planning Problemse Tthlian Experience
Springer, Berlin, 1999.

Alberto Caprara, Matteo Fischetti, Paolo Toth, Dami¢igo, and Pier Luigi Guida.
Algorithms for railway crew managemenilathematical Programming79:125—
141, 1997.

Alberto Caprara, Paolo Toth, Daniele Vigo, and Mattéscketti. Modeling and
solving the crew rostering problemperations Resear¢id6(6):820-830, 1998.

Brenda Cheang, H. Li, Andrew Lim, and Brian Rodrigues. ur$é rostering
problems - a bibliographic surveyEuropean Journal of Operational Reseaych
151(3):447-460, 2003.

George B. Dantzig. A comment on eddie’sffradelays at toll boothOperations
Research2:339-341, 1954.

Rina Dechter, Itay Meiri, and Judea Pearl. Temporakt@amnt networksAtrtificial
Intelligence 49(1-3):61-95, 1991.

Mehmet Dincbas, Pascal Van Hentenryck, Helmut SimoAlsderrahmane Ag-

goun, Thomas Graf, and Francoise Berthier. The constragit [programming

language chip. IProceedings of the International Conference on Fifth Ganer
tion Computer Systempages 693—702, 1988.

Andreas T. Ernst, Houyuan Jiang, Mohan KrishnamogrBhyOwens, and David
Sier. An annotated bibliography of personnel schedulirg rastering. Annals of
Operations Researgii27:21-144, 2004.

Andreas T. Ernst, Houyuan Jiang, Mohan Krishnamoogrémg David Sier. Sta
scheduling and rostering: A review of applications, methaad modelsEuropean
Journal of Operational Researcth53(1):3-27, 2004.

Andreas Fink and Stefan Vo3. Hotframe: A heuristic wmjtiation framework.
In Stefan Vo3 and David L. Woodfily editors, Optimization Software Class Li-
braries Kluwer, 2002.

Robert Fourer, David M. Gay, and Brian W. KernighakMPL: A Modeling Lan-
guage for Mathematical Programminglhe Scientific Press, San Francisco, CA,
1993.

BIBLIOGRAPHY 179

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

Alan M. Frisch, Warwick Harvey, Christopher flerson, Bernadette Martinez
Hernandez, and lan Miguel. ESSENCE: A constraint languagspfecifying com-
binatorial problemsConstraints 13(3):268-306, 2008.

Alex Fukunaga, Gregg Rabideau, Steve Chien, and Andgirgljee. ASPEN:
An application framework for automated planning and schieguof spacecraft
control and operations. IAroceedings of the International Symposium on Artificial
Intelligence, Robotics and Automation in Space (i-SAIRAS®kyo, Japarpages
181-187, 1997.

Michael R. Garey and David S. Johnso@omputers and Intractability: A Guide
to the Theory of NP-Completenesseeman and Co., 1979.

Johannes Gartner, Nysret Musliu, and Wolfgang Slanyhe@ristic based system
for generation of shifts with breaks. IRAroceedings of the Twenty-fourth SGAI
International Conference on Innovative Techniques andliégipons of Artificial
Intelligence (Springer) Cambridg@004.

Luca Di Gaspero, Johannes Gartner, Guy Kortsarz, Nyusliu, Andrea Schaerf,
and Wolfgang Slany. The minimum shift design probleAmnals of Operations
Research155(1):79-105, 2007.

Luca Di Gaspero and Andrea Schaerf. Easyleeal An object-oriented frame-
work for the flexible design of local-search algorithmSoftware - Practice and
Experience33(8):733-765, 2003.

lan P. Gent, Christopher fferson, and lan Miguel. Minion: A fast scalable con-
straint solver. IFECAI, pages 98—-102, 2006.

Fred Glover and Manuel Lagun@bu searchKluwer Academic Publishers, 1997.

Robert Harder. OpenTS - java tabu search frameworlttp;Avww.coin-
or.orgOpenTH 2001.

Pascal Van Hentenryckl’he OPL Optimization Languagd he MIT-Press, Cam-
bridge, Mass., 1999.

Pascal Van Hentenryck and Laurent Mich€ontraint-Based Local Searctirhe
MIT Press, Cambridge, Mass., 2005.

Martin Henz, Gert Smolka, and Jorg Wirtz. Oz - a prograngrianguage for
multi-agent systems. IRroceedings of the 13th International Joint Conference on
Artificial Intelligence, volume JIpages 404—-409, 1993.

BIBLIOGRAPHY 180

[34] Daniel Jackson, llya Shlyakhter, and Manu Sridharammiéromodularity mecha-
nism. INESEC/ SIGSOFT FSEpages 62—-73, 2001.

[35] Martin Stuart Jones. An object-oriented framework fioe implementation of
search techniques. Master's thesis, University of EastiAng000.

[36] Scott Kirkpatrick, D. Gelatt Jr., and Mario P. Vecchi.ptdnization by simulated
annealing.Science220:671-680, 1983.

[37] Helena R. Lourenco, Olivier C. Martin, and Thomas S#itHandbook of Meta-
heuristics chapter 11, pages 321-353. Springer, 2003.

[38] Kim Marriott, Nicholas Nethercote, Reza Rafeh, PeteBtlickey, Maria Garcia
de la Banda, and Mark Wallace. The design of the Zinc modglinguage Con-
straints 13(3):229-267, 2008.

[39] Zbigniew Michalewicz and David B. FogeHow to solve it: modern heuristics
Springer-Verlag, 2000.

[40] Laurent Michel and Pascal Van Hentenryck. Localizeonstraints 5(1/2):43-84,
2000.

[41] Laurent Michel and Pascal Van Hentenryck. A constraeded architecture
for local search. InProceedings of the 2002 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and égpigihs pages 83—
100, 2002.

[42] Steven Minton, Mark D. Johnston, Andrew B. Philips, @fulip Laird. Minimiz-
ing conflicts: A heuristic repair method for constraint stiction and scheduling
problems.Atrtificial Intelligence 58(1-3):161-205, 1992.

[43] Nysret Musliu, Andrea Schaerf, and Wolfgang Slany. &dlaearch for shift design.
European Journal of Operational Reseayd®b3(1):51-64, 2004.

[44] Nysret Musliu, Werner Schafhauser, and Magdalena WAdmemetic algorithm
for a break scheduling problem. Rroceedings of MIC, VIII Metaheuristic Inter-
national Conference, Hamburg009.

[45] Christos H. Papadimitriou and K. SteiglitZZombinatorial Optimization: Algo-
rithms and ComplexityPrentice Hall, 1982.

[46] Gregg Rabideau, Steve Chien, Alex Fukunaga, and Andwir@jee. Iterative
repair planning for spacecraft operations in the ASPENesystinProceedings of
the International Syposium on Atrtificial Intelligence, Rtbs, and Automation in
Space (i-SAIRAS99), Noordwijk, The Netherlarid99.

BIBLIOGRAPHY 181

[47] Reza Rafeh, Maria J. Garcia de la Banda, Kim Marriott] Brark Wallace. From
Zinc to design model. IProceedings of the 9th International Symposium on Prac-
tical Aspects of Declarative Languagemges 215-229, 2007.

[48] Monia Rekik, Jean-Francois Cordeau, and Francois $umplicit shift schedul-
ing with multiple breaks and work stretch duration resioigs. Journal of Schedul-
ing, 13(1):49-75, 2010.

[49] James Rumbaugh, Ivar Jacobson, and Grady Bodtle. Unified Modeling Lan-
guage Reference Manuahddison-Wesley, 1999.

[50] Bart Selman, Henry A. Kautz, and Bram Cohen. Local deatcategies for sat-
isfiability testing. InProceedings of the Second DIMACS Challange on Cliques,
Coloring, and Satisfiability1993.

[51] Benjamin Smith, Rob Sherwood, Anita Govindjee, DavianyY Gregg Rabideau,
Steve Chien, and Alex Fukunaga. Representing spacecisgtaniplanning knowl-
edge in ASPEN.AIPS-98 Workshop on Knowledge Engineering and Acquisition
for Planning (AAAI Technical Report WS-98-0Bages 58—72, June 1998.

[52] Pascal Tellier and George White. Generating persoseigtdules in an industrial
setting using a tabu search algorithin.K. Burke, H. Rudova (Eds.): PATAT 2006
page 2981302, 2006.

[53] Gary M. Thompson. Improved implicit modeling of the tabshift scheduling
problem.Management Sciengcél(4):595-607, 1995.

[54] Gary M. Thompson and Madeleine E. Pullman. Scheduliraykiorce relief
breaks in advance versus in real-tinkuiropean Journal of Operational Reseaych
181(1):139-155, 2007.

[55] M. G. Wallace, S. Novello, and J. Schimpf. ECLiPSe: Atfdan for constraint
logic programmingICL Systems Journall2(1):159-200, 1997.

[56] Mark Wallace, Stefano Novello, and Joachim Schimpftrdducing ESRA, a re-
lational language for modelling combinatorial problems.CP, pages 214-232,
2003.

[57] Jos Warmer and Anneke Klepp&he Object Constraint Language: Precise Mod-
eling with UML Addison-Wesley, 1999.

[58] Magdalena Widl. Memetic algorithms for break schedlgli Master’s thesis, Vi-
enna University of Technology, Austria, 2010.

[59] Magdalena Widl and Nysret Musliu. An improved memetigoaithm for break
scheduling. IrHybrid Metaheuristicspages 133-147, 2010.

Werner Schafhauser

Schelleingasse 17/6
A-1040 Wien

PERSONLICHE

DATEN

Geburtsdatum
Staatsbiirgerschaft
Zivildienst

Sprachen

AUSBILDUNG

21. September 1981
Osterreich

abgeleistet

Deutsch (Muttersprache),

Englisch (fliefdend)
Italienisch (Grundkenntnisse)

TU Wien

Doktoratsstudium

Masterstudium

Bakkalaureat

Gymnasium

8 Semester Doktoratsstudium der technischen
Wissenschaften. Voraussichtlicher Abschluss: November
2010. Titel der Dissertation: Temple - A Domain Specific
Language for Modeling and Solving Real-Life Staff Scheduling
Problems.

4 Semester Masterstudium Computational Intelligence am
17. Oktober 2006 mit Auszeichnung abgeschlossen. Titel der
Masterarbeit: New Heuristic Methods for Tree Decompositions
and Generalized Hypertree Decompositions.

6 Semester Bakkalaureatsstudium Software & Information
Engineering am 19. November 2004 mit Auszeichnung
abgeschlossen.

8 Jahre Bundesgymnasium Villach, Peraustrafde,
Reifeprifung am 26. Juni 2000 mit Auszeichnung
bestanden.

AUSZEICHNUNGEN

Juni 2007

April 1998

Nominiert fir den Distinguished Young Alumnus/Alumna
Award fir eine hervorragende Masterarbeit an der Fakultit
far Informatik der TU Wien.

Sieger der Lateinolympiade, Kdrntner Landeswettbewerb, in
der Gruppe 6. Klasse Langform.

PRAKTIKA UND BERUFSERFAHRUNG

TU Wien, Ximes Projektassistent am Institut fir Informationssysteme,
Arbeitsgruppe fur Datenbanken und Artificial Intelligence,
und Entwickler bei Ximes GmbH, im Rahmen von Projekt
Planning Knowledge des Kompetenz-Netzwerks Softnet
Austria. Ziel des Projekts war die Entwicklung von
Modellen, Methoden und Software-Lésungen flir
zeitbezogene Planungsaufgaben.

Ximes Praktikum als Entwickler. Programmierung von
Algorithmen und statistischen Analyseverfahren fir
das webbasierte Time Intelligence Tool - Time
Intelligence Solutions [TIS], in C# und ASP.NET.

Infineon Diverse Praktika als Entwickler.

> Programmierung von Erweiterungen der Infineon
Standard Software Ceda/Cornerstone fur die
statistische Analyse von Produktionsdaten und deren
grafischer Reprédsentation.

> Entwicklung eines Reportingtools fiir die
Qualitatsverbesserung von Produktionsdaten in MS
Excel VBA.

> Implementierung von Perl/CGI-Scripts zwecks
dynamischer Aktualisierung von Online-
Projektdokumentationen.

> Programmierung eines Installations-, Setup- und
Registrierungstools fiir Infineon Standard Software zur
Extraktion und Analyse von Produktionsdaten.

> Evaluierung von IBM-MQSeries als Middleware fiir
den Transfer von Produktionsdaten.

PUBLIKATIONEN

2010 A. Beer, J. Gartner, N. Musliu, W. Schafhauser, and W. Slany. An AI-
based break-scheduling system for supervisory personnel. IEEE
Intelligent Systems, 25(2):60-73, 2010.

L. Di Gaspero, J. Gartner, N. Musliu, A. Schaerf, W. Schathauser, and
W. Slany. A hybrid LS-CP solver for the shifts and breaks design problem.
HM 2010 - 7th International Workshop on Hybrid Metaheuristics.
Lecture Notes in Computer Science, 2010.

2009 N. Musliu, W. Schathauser, and M. Widl. A Memetic Algorithm for a
Break Scheduling Problem. Proceedings of MIC — VIII Metaheuristic
International Conference, Hamburg, 2009.

2008 A. Beer, J. Gartner, N. Musliu, W. Schafhauser, and W. Slany.
Scheduling Breaks in Shift Plans for Call Centers. In The 7th
International Conference on the Practice and Theory of Automated
Timetabling, Montral, Canada, 2008.

2007 N. Musliu and W. Schathauser. Genetic Algorithms for Generalised
Hypertree Decompositions. European Journal of Industrial Engineering,
Vol. 1, No. 3, pp. 317-340, 2007.

