
MaxSAT Modeling and
Metaheuristic Methods for the
Employee Scheduling Problem

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Felix Winter, BSc.
Matrikelnummer 0825516

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Priv.-Doz. Dr. Nysret Musliu

Wien, 17. August 2016
Felix Winter Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

MaxSAT Modeling and
Metaheuristic Methods for the
Employee Scheduling Problem

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Felix Winter, BSc.
Registration Number 0825516

to the Faculty of Informatics

at the TU Wien

Advisor: Priv.-Doz. Dr. Nysret Musliu

Vienna, 17th August, 2016
Felix Winter Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Felix Winter, BSc.
Flachgasse 48/16 1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 17. August 2016
Felix Winter

v

Acknowledgements

I would like to express my sincere gratitude to my advisor Priv.-Doz. Dr. Nysret
Musliu. Writing this thesis would not have been possible without his ongoing support,
encouragement and his deep knowledge in the field.

I want to mention that this work was supported by the Austrian Science Fund (FWF):
P24814-N23, and I would like to thank Florian Mischek and Emir Demirović who were
my project colleagues during the time of writing. Their comments and feedback helped
me to improve this thesis in many places.

Deepest gratitude goes to my parents and my brother, who have supported me throughout
my life and aided me through many hard times. Without their help, finishing this work
would not have been possible.

Last but not least I want to thank my girlfriend Eni for her patience and emotional
support during the time of writing.

vii

Kurzfassung

Die Erstellung von Schichtplänen ist in vielen verschiedenen Bereichen wie z.B. im Flug-
verkehr, im Gesundheitswesen, im Transportwesen und prinzipiell jedem Unternehmen
das eine hohe Mitarbeiterzahl aufweist, erforderlich. Dabei bietet ein effizienter Schicht-
plan nicht nur die Möglichkeit Kosten zu sparen, sondern ist oftmals auch notwendig
um eine gesunde Arbeitsumgebung sowie eine ausreichende Zufriedenstellung der Mit-
arbeiter zu gewährleisten. Obwohl verschiedene heuristische und exakte Verfahren für
die automatisierte Erstellung effizienter Schichtpläne bereits seit mehreren Jahrzehnten
eingesetzt werden, gibt es weiterhin eine große Nachfrage nach neuen Lösungsansätzen,
um bestehende sowie neuaufkommende Problemstellungen aus diesem Gebiet optimal zu
lösen.

Gegenstand dieser Diplomarbeit ist die Entwicklung zweier neuer Lösungsmethoden für
bekannte Schichtplanprobleme aus der einschlägigen Literatur. Das erste vorgeschlagene
Verfahren modelliert bekannte Schichtplanprobleme als MaxSAT-Variante des Erfüll-
barkeitsproblems der Aussagenlogik. Verschiedene bestehende Methoden zur Lösung
von MaxSAT-Problemen werden in der Folge verwendet, um mithilfe dieses Modells
Schichtplanprobleme zu lösen. Als zweiter Lösungsansatz wird ein neuer Hybridalgorith-
mus beschrieben, der exakte Methoden mit heuristischen Verfahren kombiniert. Dabei
kommen sowohl Metaheuristiken als auch Techniken aus der Constraintprogrammierung
zum Einsatz.

Beide Lösungsverfahren werden mittels einer Reihe von Experimenten evaluiert. Dabei
werden Testresultate zu bekannten Problemstellungen unter Verwendung beider Metho-
den erzeugt und mit den Ergebnissen bestehender Lösungsansätze aus der Literatur
verglichen. Das auf dem MaxSAT-Modell basierende Verfahren kann dabei eine große Zahl
an Schichtplanproblemen erfolgreich lösen und die Optimalwerte bekannter Lösungen
verifizieren. Mithilfe des in dieser Arbeit vorgeschlagenen Hybridalgorithmus werden viele
Ergebnisse, welche durch Methoden aus der Literatur erzielt wurden, verbessert. Weiters
werden fünf neue obere Kostschranken für bekannte Schichtplanprobleme ermittelt.

ix

Abstract

Employee scheduling is a well known problem that appears in a wide range of different
areas including health care, airlines, transportation services, and basically any other
organization that has to deal with workforces. The creation of efficient schedules often
becomes essential not only to save avoidable costs, but also to provide a healthy work
environment and to satisfy the preferences of the employees. Although different approaches
based on heuristics as well as exact solution techniques have been proposed in the past,
there is still a great demand for innovative strategies which are able to find good solutions
for the many existing variants of employee scheduling problems.

This thesis proposes two novel solution approaches for well known instances of the
employee scheduling problem and evaluates their performance. The first approach
provides for the first time a weighted partial boolean maximum satisfiability model for
employee scheduling. An analysis of different encoding variants is performed and results
achieved by leading maximum satisfiability solvers are evaluated.

The second solution approach which is proposed in this thesis introduces a novel hybrid
algorithm that combines metaheuristic techniques with exact solution strategies that are
based on constraint programming. Using an implementation of the proposed algorithm,
a large number of experiments is then conducted on a number of well known problem
instances from the literature. The obtained results are compared with the best known
solutions which were acquired by state of the art methods.

An empirical evaluation of the proposed methods shows their competitiveness with state
of the art solutions. The maximum satisfiability model is used successfully to verify
optimal bounds and to produce feasible solutions for most of the considered problem
instances. Using the hybrid algorithm that is proposed in the thesis, results produced
by state of the art techniques are improved for the majority of the considered problem
instances. Additionally, five new unknown upper bounds are provided for the considered
problem instances.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Aims of this Thesis . 2
1.2 Main Results . 2
1.3 Organization . 3

2 Problem Statement and Related Work 5
2.1 Problem Definition . 5
2.2 Related Work . 8
2.3 Background on applied Solution Techniques 11

3 Modeling the Employee Scheduling Problem as Partial Weighted
MaxSAT 15
3.1 Decision Variables . 15
3.2 Cardinality Constraints . 16
3.3 Modeling of Hard Constraints . 17

4 A Hybrid Approach for the Employee Scheduling Problem 23
4.1 Problem Representation . 23
4.2 Evaluation of Solutions . 24
4.3 Search Neighborhoods for Employee Scheduling 25
4.4 Local Search Methods for Employee Scheduling 28
4.5 Constraint Programming for Employee Scheduling 31
4.6 A Construction Heuristic for Employee Scheduling 35
4.7 An Iterated Local Search for Employee Scheduling 37

5 Experimental Evaluation 41
5.1 Experimental Environment . 41
5.2 Experimental Evaluation of the MaxSAT Model 43

xiii

5.3 Experimental Evaluation of the Hybrid Approach 48

6 Conclusion 65

List of Figures 67

List of Tables 67

List of Algorithms 69

Glossary 71

Acronyms 75

Bibliography 77

CHAPTER 1
Introduction

Employee shift scheduling problems appear whenever there is the need to efficiently
construct a shift roster over a certain time period. This includes a wide range of different
areas like health care, air lines, transportation services, armed forces, call centers,
emergency services, and basically any other institution that has to deal with workforces.
Unfortunately, the process of creating an efficient roster can be very challenging and time
consuming. In fact, it has been shown that it belongs to the class of NP-hard problems.
The construction of good schedules can easily become a very tedious, sometimes even
impossible task for a human and the development of efficient automated solution methods
therefore is a topic of active research.

A variety of staff scheduling problems have been described in the past. Surveys about
the many different solution methods that have been proposed in the literature can be
found in [EJKS04] and [dBBB+13]. The majority of the approaches suggested in the
literature rely on mathematical programming and metaheuristic techniques and although
such methods have shown to provide good solutions, optimal solutions are still unknown
for many problem instances. Therefore, the application of new solution methods has still
to be considered.

One example for a method that could be investigated relies on modeling the problem
as a maximum satisfiability problem (maxSAT). The intuitive way of working with
propositional formulas, as well as growing developments in the SAT community motivate
the investigation of such an approach. Furthermore, modeling a problem with a maximum
propositional satisfiability formulation has shown to perform well on a variety of different
applications in the past, including the scheduling of B2B meetings [BGSV15] and High
School Timetabling [DM14]. Another interesting research topic is the development of
new hybrid techniques that combine heuristics with exact solution methods for employee
scheduling.

1

1. Introduction

The goal of this thesis is to investigate such approaches for the purpose of solving a well
known employee problem that is described in [CQ14]. According to the authors those
instances were designed to describe realistic and challenging staff scheduling problems.
The included instances provide a broad variety of problem scenarios with scheduling
periods ranging from one week up to one year and up to 180 employees and 32 shift types
that need to be scheduled.

Recent publications provided an integer programming (IP) model as well as a metaheuris-
tic approach to solve those instances. The best known solutions using these techniques as
well as a description of the IP formulation can be found in [CQ14]. A detailed description
of the applied algorithms, namely a branch and price method and a metaheuristic based
on ejection chains can be found in [BC14] and [BCP+08]. With the use of the branch
and price algorithm and ejection chains, optimal solutions could be found for most of the
smaller instances and lower/upper bounds could be determined for many of the remaining
instances. However, optimal solutions are still unknown for a large number of instances.

1.1 Aims of this Thesis
The main objectives of this thesis are:

• Investigation of a new solution approach for employee scheduling that uses a partial
weighted maxSAT model.

• Critical evaluation of different modeling strategies and leading maxSAT solvers
from the literature.

• Development and implementation of a novel hybrid approach that combines meta-
heuristic as well as exact solution strategies.

• Evaluation of the proposed hybrid solver and detailed comparison with state of the
art solutions.

1.2 Main Results
The main contributions of this thesis are:

• The first maxSAT formulation for the variant of the employee scheduling problem
from [CQ14] is provided.

• Experiments with different maxSAT encodings are conducted and results produced
by two leading maxSAT solvers from the literature are compared with results
produced by state of the art solutions.

• Challenging instances which can be used by the maxSAT community to test and
improve results of maxSAT solvers are provided.

2

1.3. Organization

• A novel hybrid approach that uses the min-conflicts heuristic and an iterated local
search with a constraint programming based perturbation is provided.

• An empirical evaluation of the developed hybrid approach is performed and the
produced results are compared to results that were produced by state of the art
solutions.

• Results produced by state of the art methods are improved for the majority of the
considered problem instances. Additionally, five new upper bounds for well known
problem instances from the literature are provided.

1.3 Organization
Chapter 2 introduces the employee scheduling problem and provides an overview of
related work from the literature. Additionally, some background on the existing solution
strategies that are applied in this thesis will be given. Chapter 3 describes the details of
the proposed maxSAT formulation and provides additional information about the used
encodings. The details about the novel hybrid search approach are then explained in
chapter 4. An experimental evaluation about using leading maxSAT solvers together
with the proposed formulation to solve employee scheduling problems is performed in 5.
Results of using the proposed hybrid algorithm to solve the problem instances are then
reported and compared with state of the art results in chapter 5.3. Finally, concluding
remarks are given in chapter 6.

3

CHAPTER 2
Problem Statement and Related

Work

The following chapter will introduce the considered employee scheduling problem. After
a detailed problem definition, related work that has been published in the literate will be
presented and summarized.

2.1 Problem Definition

This thesis deals with a variant of the employee scheduling problem that is described
in [CQ14]. This specific problem formulation has been chosen as it provides a number
of instances that include challenging and realistic scheduling problems, while still being
intuitive and straightforward to use. Although the problem that is investigated in this
thesis is a specific employee scheduling problem, the considered problem will be referred
to as employee scheduling problem from now on.

The overall goal of the problem is to find an optimal roster for a number of given
employees and shift types, where every employee may either work in a single shift or
have a day off on each day of a given scheduling period. For this problem the scheduling
period is stated as a number of weeks and therefore the number of days is always a
multitude of seven. Another property concerning the scheduling horizon ensures that the
first day of the roster is always a Monday, while the last day is always a Sunday. The
employees and shift types which are considered in this problem, are specified by a list of
unique names which are connected with a number of constraints that restrict all possible
shift assignments. Some employees might for example be only allowed to work in certain
shifts and patterns of consecutive working shifts might be prohibited or requested. Each
problem instance specifies hard- and soft-constraints to set up a corresponding rule set.
Hard constraints on the one hand are always strict and have to be fulfilled in order to

5

2. Problem Statement and Related Work

generate a feasible solution. Soft constraints on the other hand may be violated, but will
in case of a violation, lead to an integer valued penalty. For example one of the problem’s
hard constraints specifies the minimum and maximum amount of time that an employee
can work during the scheduling horizon. Personal shift requests that employees can state
are formulated as soft constraints in the problem instances.

In the following a detailed definition of the problem’s input parameters, constraints and
evaluation function will be given. This problem definition is based on [CQ14].

2.1.1 Problem Parameters
I set of employees.
h number of days in the planning horizon
D set of days in the planning horizon = {1...h}
W set of weekends in the planning horizon (day indices of all Saturdays)
T set of shift types
Rt set of shift types that cannot be assigned immediately after shift type t
Ni set of days that employee i cannot be assigned a shift on
lt length of shift type t in minutes
mmax

it maximum number of shifts of type t that can be assigned to employee i
bmin

i minimum number of minutes that employee i must work
bmax

i maximum number of minutes that employee i may work
cmin

i minimum number of consecutive shifts that employee i must work
cmax

i maximum number of consecutive shifts that employee i may work
omin

i minimum number of consecutive days off that may be assigned to employee
i

amax
i maximum number of weekends that employee i may work on
qidt penalty which is given, if shift type t is not assigned to employee i on day d
pidt penalty which is given, if shift type t is assigned to employee i on day d
udt preferred total number of employees that should have shift type t assigned

on day d
vmin

dt penalty which is given, if below the preferred cover for shift type t on day d
vmax

dt penalty which is given, if exceeding the preferred cover for shift type t on
day d

2.1.2 Hard Constraints

Several hard constraints are given with an instance of the employee scheduling problem.
The different types of hard constraints that may appear are listed here:

Employees can not be assigned more than one shift on a single day. This
constraint ensures that each employee cannot work in more than one shift at the same
time.

6

2.1. Problem Definition

Disallowed shift sequences. Any shift t may define a set of shift types Rt of forbidden
successors. Since each shift type has fixed starting and ending times, this constraint can
be used for example to forbid shift sequences that would not guarantee enough resting
time between two shifts (e.g. a morning shift should not immediately follow after a night
shift).

The maximum number of shifts for each type that can be assigned to an
employee. The contracts of an employee might set work limits regarding certain shift
types. For all employees i the maximum number of shifts of type t that they may work
in during the whole scheduling horizon is defined by the parameter mmax

it .

Minimum and maximum working time. Each shift type assigns a certain amount
of working time in minutes to its associated employees. The total working time in minutes
is restricted for each employee and must lie between a minimum and maximum bound.
Those limits are given to the problem with the parameters bmin

i and bmax
i for each i ∈ I.

Maximum consecutive shifts. All employees are only allowed to work for a maximum
number of consecutive days before they must have a day off. This maximum limit is
given to the problem as cmax

i for each i ∈ I. Note that this constraint always assumes a
day off before and after the scheduling horizon.

Minimum consecutive shifts. The problem requires that each employee always
works on at least a minimum number of consecutive days. In other words there are lower
bounds regarding the allowed number of consecutive shifts, which are given as parameter
cmin

i for all i ∈ I, that the employees must work in before they are allowed to have a day
off. Note that this constraint always assumes an infinite number of consecutive working
days before and after the scheduling horizon.

Minimum consecutive days off. Whenever an employee has a day off after a day of
work, this employee must have a minimum number of consecutive work free days assigned
on after the work day. In other words, there is a minimum number of consecutive days off
for each employee i, which is defined with the parameter omin

i . Note that this constraint
always assumes an infinite number of days off before and after the scheduling horizon.

Maximum number of weekends. Whenever an employee has to work in a shift on
a Saturday or a Sunday in the schedule, the corresponding weekend is considered as a
working weekend for this employee. The problem restricts the number of such working
weekends for each employee i with the parameter amax

i .

Days off. All employees may have certain days on which it is strictly required that
they have a day off. Those are given to the problem as a set of day indices Ni for each
employee i.

7

2. Problem Statement and Related Work

2.1.3 Soft Constraints

Additional to the previously described hard constraints, the considered employee schedul-
ing problem also defines a number of soft constraints. Those constraints do not have
to be necessarily fulfilled, but will lead to an integer valued penalty that influences the
solution cost if they are violated.

Requested shift types. All employees may specify some days where they request to
work in a certain shift type. Since this is not a hard constraint, any violation will be
penalized. The corresponding penalties are given to the problem as parameters qi,d,t,
where i ∈ I, d ∈ D and t ∈ T .

Unpreferred shift types. Similar as with the requested shift types constraint, the
problem may contain requests where an employee requires not to work in particular
shift types on certain days. The corresponding penalties are given to the problem as
parameters pi,d,t, where i ∈ I, d ∈ D and t ∈ T .

Cover requirements. The preferred numbers of employees that work in a shift t
on day d is given to the problem in form of parameters udt for all d ∈ D and t ∈ T .
Furthermore, for each of those values, two penalty parameters vmin

dt and vmax
dt are used to

penalize a possible under- or over-coverage of the preferred value. Note that penalties will
increase linearly dependent on the actual difference to the preferred value. For example, if
five employees work in a night shift on day one in the schedule, u1N = 7 and vmin

1N = 100,
a penalty of 200 would be given because of two missing night shift workers.

2.2 Related Work

Many different staff scheduling problems have been described in the literature and a
variety of solution methods have been proposed to approach them. Corresponding surveys
regarding employee scheduling can be found in [EJKS04] and [dBBB+13]. In [dBBB+13],
approaches on staff scheduling are categorized in seven groups of methods: mathematical
programming, constructive heuristics, improvement heuristics, simulation, constraint
programming, queuing, and others. However, the survey concludes that most publications
in the area rely on mathematical programming, metaheuristic as well as the hybridization
of both techniques. While exact approaches benefit from the fact that they can provide
optimal solutions as well as bounds to any scheduling problem, metaheuristics are often
able to produce good solutions fast and will become useful especially in situations where
mathematical programming methods can not solve a problem at all within a given time
limit. Although no approach that uses a maxSAT model on staff scheduling has been
proposed in the literature yet, the successful use of SAT solvers has been described in the
literature for similar problems like high school timetabling [DM14] and the scheduling of
business meetings [BGSV15].

8

2.2. Related Work

A number of real life related employee scheduling problem instances that have been
proposed in the literature are presented at [Cur14]. Almost all of those problems have
already been solved to optimality using heuristics as well as mathematical programming
techniques (e.g. [BLQ10], [PGFP09]) and are therefore not further discussed in this
thesis.

The problem instances considered in this thesis are described in [CQ14] and were according
to the authors designed to provide a number of challenging and realistic problem scenarios.
The same authors propose an IP formulation in addition with a branch and price algorithm
from [BC14] to find solutions to those instances. Although the IP model could provide
optimal solutions and lower bounds for parts of the smaller instances using the branch
and price algorithm and Gurobi [GO15], there are still many instances that have not been
solved to optimality. Furthermore, exact methods could not find any feasible solution
within a one hour time limit for the largest instances. Therefore, a metaheuristic approach
from [BC14] which is based on variable neighborhood search and ejection chains has
been applied on the problem instances and could provide solutions also for the larger
instances.

In the following subsections the two existing approaches for this employee scheduling
problem will be presented in further detail. Section 2.2.1 introduces the IP formulation
from [CQ14] and section 2.2.2 will shortly describe the methods used by the ejection
chain based metaheuristic which is proposed in [BC14].

2.2.1 An IP Formulation for the Employee Scheduling Problem

This section will shortly present an integer programming model for the employee schedul-
ing proposed in [CQ14]. The model uses the following decision variables:

xidt is set to 1, whenever an employee i has shift type t assigned on day d,
otherwise it is set to 0.
kiw is set to 1, whenever an employee i works on weekend w, otherwise it is
set to 0.
ydt denotes the total value below the preferred cover for shift type t on day d.
zdt denotes the total value above the preferred cover for shift type t on day d.

The constraints are modeled as follows:

Employees can not be assigned more than one shift on a single day.∑
t∈T

xidt ≤ 1,∀i ∈ I, d ∈ D (2.1)

Disallowed shift sequences.

xidt + xi(d+t)u ≤ 1, ∀i ∈ I, d ∈ 1, ..., h− 1, t ∈ T, u ∈ Rt (2.2)

9

2. Problem Statement and Related Work

The maximum number of shifts for each type that can be assigned to an
employee. ∑

d∈D

xidt ≤ mmax
it ,∀i ∈ I, t ∈ T (2.3)

Minimum and maximum working time.

bmin
i ≤

∑
d∈D

∑
t∈T

ltxidt ≤ bmax
i , ∀i ∈ I (2.4)

Maximum consecutive shifts.
d+cmax

i∑
j=d

∑
t∈T

xijt ≤ cmax
i ,∀i ∈ I, d ∈ {1, ..., h− cmax

i } (2.5)

Minimum consecutive shifts.

∑
t∈T

xidt +

s− d+s∑
j=d+1

∑
t∈T

xijt

+
∑
t∈T

xi(d+s+1)t > 0,

∀i ∈ I, s ∈ {1, ..., cmin
i − 1}, d ∈ {1, ..., h− (s+ 1)}

(2.6)

Minimum consecutive days off.(
1−

∑
t∈T

xidt

)
+

d+s∑
j=d+1

∑
t∈T

xijt +
(

1−
∑
t∈T

xi(d+s+1)t

)
> 0,

∀i ∈ I, s ∈ {1, ..., omin
i − 1}, d ∈ {1, ..., h− (s+ 1)}

(2.7)

Maximum number of weekends.

kiw ≤
∑
t∈T

xi(7w−1)t +
∑
t∈T

xi(7w)t ≤ 2kiw, ∀i ∈ I, w ∈W∑
w∈W

kiw ≤ amax
i ,∀i ∈ I

(2.8)

Days off.
xidt = 0, ∀i ∈, d ∈ Ni, t ∈ Tn (2.9)

Cover requirements. ∑
i∈I

xidt − zdt + ydt = udt, ∀d ∈ D, t ∈ T (2.10)

The objective function is defined as follows:

10

2.3. Background on applied Solution Techniques

Minimize
∑
i∈I

∑
d∈D

∑
t∈T

qidt(1−xidt)+
∑
i∈I

∑
d∈D

∑
t∈T

pidtxidt+
∑
d∈D

∑
t∈T

ydtv
min
dt +

∑
d∈D

∑
t∈T

zdtv
max
dt

(2.11)

Results using this IP model together with a branch and price algorithm and Gurobi will
compared with the methods proposed in this thesis in chapter 5.

2.2.2 A Heuristic Approach based on Ejection Chains for Employee
Scheduling

An heuristic approach that is based on ejection chains has been proposed for the employee
scheduling problem in [BC14]. This algorithm applies a variable depth search (VDS)
which has been introduced in [BCQB13], and although the core of the method uses
ejection chains, there are many other techniques included in the algorithm. An iterative
construction mechanism which is based on dynamic programming is used at the start
of the algorithm to generate initial solutions at the start of search. Three different
hill climbing methods from [BCQB10] which include assignment and de-assignment of
shifts, as well as vertical and horizontal swapping of shifts are then incorporated into the
algorithm. The same neighborhoods are utilized in the hybrid solver which is proposed in
this thesis and will be further described in section 4.3. If the search gets stuck in a local
optimum, the VDS algorithm tries to chain together multiple moves to a single larger
move. This extended neighborhood might then be able to escape the local optimum.
Additionally, a disruption and repair method from [BCP+08] is used if no progress can
be made for a certain amount of moves and the time limit is not exceeded. Finally, the
heuristic approach also includes a restart mechanism where the schedules of selected
employees will be cleared and refilled by a dynamic programming method.

2.3 Background on applied Solution Techniques
The following sections give background information on some of the methods that proposed
in this thesis. The provided explanations are kept short and will only give an idea about
the concepts of well known techniques and how they can be used to approach the employee
scheduling problem. The interested reader is therefore advised to refer to the literature
[RvBW06, HS04] in order to get a deeper understanding about those techniques.

2.3.1 Constraint Programming

Methods using constraint programming [RvBW06] describe a given problem by a set
of variables, their domains and constraints over these variables. The general approach
to find a solution with constraint programming (CP) lies in intelligently enumerating
variable assignments and checking their feasibility. In order to reduce the potentially
large number of possible assignments to check, different techniques have been proposed.
Typically, constraint propagation reduces the domain of variables by removing values

11

2. Problem Statement and Related Work

which cannot be part of the solution. Further, the assignment of variables is performed by
tree search that includes different pruning strategies like backtracking, forward checking
with dynamic ordering etc. In case of the employee scheduling problem, a variable can
be generated for each pair (i, d), i ∈ I, d ∈ D. The goal is then to assign each of those
variables a value from the domain T without violating any hard constraint so that the
costs produced by violated soft constraints are minimized.

The approach proposed in chapter 4 uses such a formulation together with forward
checking search to solve the employee scheduling problem. Details about the proposed
constraint programming based algorithm for employee scheduling can be found in section
4.5.

2.3.2 Local Search

Large NP-hard problems, like the employee scheduling problem, usually cannot be solved
within feasible time by exact techniques. For such problems typically heuristic techniques
are used that give some solutions in reasonable time, but do not guarantee optimality. In
this thesis heuristic techniques that are based on local search [HS04] are proposed. Such
methods start from an initially generated solution and then try to improve it by iteratively
applying small modifications. Since such a procedure only explores neighborhood solutions
in each step, the search usually converges fast to a solution which is locally optimal.
Therefore, different meta-heuristic techniques that include mechanisms to escape from
local optima like simulated annealing, tabu search, etc. have been proposed.

In chapter 4 a hybrid algorithm is proposed that combines constraint programming based
methods together with local search to solve the employee scheduling problem. Section
4.4 describes the implementation of the applied local search techniques in detail.

2.3.3 Using a MaxSAT Formulation to solve the Employee
Scheduling Problem

Another way of approaching the employee scheduling problem is to model the problem
as a maxSAT problem and to use existing solvers from the literature to find solutions to
the corresponding maxSAT formulation.

The Maximum Satisfiability Problem

The SAT problem is a decision problem which asks whether there exist assignments
of truth values to variables, such that a propositional logic formula is evaluated as
true (that is, the formula is satisfied). A propositional logic formula is built from
Boolean variables using logical operators and parentheses. The formula is usually given
in conjuctive normal form (CNF), meaning that the formula is a conjunction of clauses,
where a clause is a disjunction of literals and a literal is a variable or its negation. For
example, the formula (X1 ∨ X2) ∧ (¬X1 ∨ ¬X3) is said to be satisfiable, because the
assignment (X1, X2, X3) = (true, false, false) satisfies the formula. However, if the

12

2.3. Background on applied Solution Techniques

clause (¬X1 ∨X2 ∨X3) would be inserted, the same assignment would no longer satisfy
the formula.

An extension to SAT that is considered in this chapter is partial weighted maxSAT. For
maxSAT, clauses are partitioned into hard- and soft clauses, where each soft clause has a
weight assigned to it. The goal is to find an assignment which satisfies the hard clauses
and at the same time minimizes the sum of weights of the unsatisfied soft clauses. For
more in depth information about SAT, maxSAT and the internals of corresponding solver
algorithms the interested reader is directed to [BHvMW09].

In chapter 3 the employee scheduling problem will be modeled as a partial weighted
maxSAT problem. The obtained maxSAT formulas which model the problem are called
encodings. Chapter 5 then gives details about experiments that have been conducted
using two maxSAT solvers from the literature.

13

CHAPTER 3
Modeling the Employee

Scheduling Problem as Partial
Weighted MaxSAT

In the following chapter, a partial weighted maxSAT model for the employee scheduling
problem will be proposed. The Boolean decision variables will be defined in section 3.1.
The notion of cardinality constraints is described in section 3.2. Sections 3.3 and 3.3.1
will then explain how all the problem’s hard and soft constraints are modeled as maxSAT
clauses.

3.1 Decision Variables

In order to model the assignment of shifts to employees, the variables Si,d,t,∀i ∈ I, d ∈
D, t ∈ T are defined, where I denotes the set of all employees, D refers to the set of days
in the planning horizon, and T is the set of all shift types in the problem. Each variable
Si,d,t will be set to true if and only if employee i gets the shift type t assigned on the
d-th day in the roster, otherwise it will be set to false. Additionally, helper variables
Xi,d,∀i ∈ I, d ∈ D which are set to true if employee i has no shift assigned on day d are
defined. So Xi,d is set to true if and only if employee i is considered to have a day off on
this day.

To connect the X variables with the decision variables S, the following equivalences are
included in the formulation:

Xi,d ↔
∧
t∈T

¬Si,d,t ∀i ∈ I, d ∈ D (3.1)

15

3. Modeling the Employee Scheduling Problem as Partial Weighted MaxSAT

In the following sections it is described how each of the problem’s constraints are encoded
in the partial weighted maxSAT formulation as clauses. Clauses which are generated for
soft constraints will additionally have weights assigned.

Since many of the constraints contain properties of cardinality constraints, the notion of
a cardinality constraint is introduced shortly in the next section.

3.2 Cardinality Constraints
In order to be able to formulate all of the constraints for the problem, it is necessary
to make use of cardinality constraints. Such constraints define limits on the number
of truth assignments on a set of given Boolean variables. There are three different
types of cardinality constraints: atLeastk(xi : xi ∈ X), exactlyk(xi : xi ∈ X), and
atMostk(xi : xi ∈ X) which are defined on sets of variables that should have at least,
exactly, or at most k variables having their truth value assigned. For example if a
cardinality constraint limits the number of true valued variables of the set x1, x2, x3 to
atMost2({x1, x2, x3}), the assignment (x1, x2, x3) = (1, 1, 0) is considered to be feasible,
while the assignment (x1, x2, x3) = (1, 1, 1) would be considered as infeasible.

Additionally, hard- and soft cardinality constraints have to be distinguished. While hard
cardinality constraints decide whether or not the overall solution will become feasible, soft
cardinality constraints will only penalize the objective function if violated. In the case
of the employee scheduling problem, soft cardinality constraints have a weight assigned
and the total penalty is linearly dependent on the difference to the requested number of
truth assignments. For example, if the constraint atLeast2({x1, x2, x3}) has a weight of
40, the assignment (x1, x2, x3) = (0, 0, 0) would lead to a penalty of 40 · 2 = 80.

Different variants of dealing with cardinality constraints in Boolean satisfiability problems
have been studied in the literature ([Sin05],[ANOR09]). In this thesis four different
encoding types are investigated: combinatorial encoding, sequential encoding, bit adder
encoding, and cardinality networks.

The combinatorial encoding enumerates all possible undesired truth assignments and for-
bids them explicitly by generating corresponding clauses. While this approach may provide
an efficient encoding for small cardinality constraints (for example atMost2({x1, x2, x3})
would be encoded into the single clause (¬x1 ∨ ¬x2 ∨ ¬x3)), the number of generated
clauses will grow exponentially with the number of variables. An alternative approach
would be to explicitly enumerate all desired truth assignments.

The idea behind the sequential and bit adder encoding is to capture the sum of the
considered variables and then forbid certain output values. For example, considering the
assignment (x1, x2, x3) = (1, 1, 1), both encodings would calculate the sum 3, but the
difference lies in the way how this number is encoded. The sequential encoding represents
the sums as a unary number (number with base 1, e.g. 310 = 1111), while the bit adder
encoding represents the sum as a binary number (number with base 2, e.g. 310 = 112).
The choice of the number representations has an impact on the number of generated

16

3.3. Modeling of Hard Constraints

clauses, variables, and some other maxSAT properties. Clearly, by restricting certain
outputs, the desired cardinality constraint can be captured.

Cardinality networks generate helper variables that are used to sort all the considered
truth assignments and then insert clauses which forbid certain outputs. The sorting is
performed in a similar way as a simple merge sort algorithm would work. For example,
considering an assignment (x1 = 0, x2 = 1, x3 = 0, x3 = 1), the helper variables a1−4
would represented the sorted version of this assignment (a1 = 1, a2 = 1, a3 = 0, a4 = 0).
Additional clauses are then inserted to forbid undesired assignments of the helper variables.

The performance of the different cardinality constraint encodings applied on two leading
maxSAT solvers will be discussed in chapter 5.

3.3 Modeling of Hard Constraints
An employee cannot be assigned more than one shift on a single day. Since
no employee should work in two shifts on the same day, it has to be ensured that no two
variables Si,d,t and Si,d,x may be set to true at the same time if t 6= x and i ∈ I, d ∈ D,
t, x ∈ T where I is the set of all employees, D is the set of all days in the scheduling
horizon and T is the set of all possible shift types.

This constraint can be modeled with the use of an atMost1 cardinality constraint.

atMost1({Si,d,1, Si,d,2, ..., Si,d,|T |}) ∀i ∈ I, d ∈ D (3.2)

Disallowed shift sequences. For the employee scheduling problem it is required that
all employees need to rest for a minimum amount of time after they have worked in a
shift. The length of the necessary rest period varies for each shift type. Because each
shift has fixed starting and ending times during the day, the set of shift types that cannot
follow a certain shift type t can be determined easily by considering all pairs of shift
types and comparing their difference in start and ending times with a minimum rest
time. The set of all shift types that are not allowed to follow a shift t is in the following
referred to as Rt.

The constraints can also be thought of as a number of disallowed shift sequences which
consist of two consecutive shifts and can be included in the partial weighted maxSAT
formulation by inserting a clause for each sequence.

|D|−1∧
d=1

(Si,d,t → ¬Si,d+1,x) ∀t ∈ T, x ∈ Rt (3.3)

The maximum numbers of shifts for each type that can be assigned to an
employee. In the employee scheduling problem some of the employees can have con-
tracts which only allow them to work in specific shift types for a maximum number of

17

3. Modeling the Employee Scheduling Problem as Partial Weighted MaxSAT

days. Such a limit could for example restrict the number of night shifts employees may
work during their schedule to four, making any roster which assigns five night shifts to a
single employee infeasible. The maximum numbers for each employee and shift type are
given as parameters mmax

it with the problem instances, where i ∈ I and t ∈ T .

Since this constraint can be seen as the basic case for a cardinality constraint, the detailed
encoding into a Boolean satisfiability clauses is not further discussed here, but simply
stated as an atMostmmax

it
cardinality constraint instead:

atMostmmax
it

({Si,1,t, Si,2,t, ..., Si,|D|,t}) ∀i ∈ I, t ∈ T (3.4)

Minimum and maximum working time. Each shift type assigns a certain amount
of working time in minutes to its associated employees. Moreover the total number of the
working time in minutes is restricted for each employee and must lie between a minimum
and maximum bound. Those limits are given to the problem in form of the parameters
bmin

i and bmax
i for each i ∈ I.

In order to formulate this constraint efficiently, additional helper variables that count the
total number of minutes worked by an employee are introduced in the following. Their
definition uses the shift lengths lt,∀t ∈ T which are given as parameters to the problem
and specify the number of working time in minutes required for shift t. Furthermore,
their greatest common divisor is referred to as g = gcd(lt : t ∈ T). Consider for example
three different shift types, with the first one lasting for 480, the second one lasting 620,
and the third one lasting 120 minutes. In this case g would then be 20.

With g defined, simplified lengths slt can be calculated for all shifts slt = lt
g ∀t ∈ T .

Additionally, the maximum of the simplified shift lengths is defined as slmax = max{slt :
t ∈ T}.

Using these definitions the variable set U , which counts the units of time an employee
i works on day d, can be introduced: For each employee and day, the helper variables
Ui,d,x, ∀i ∈ I, d ∈ D,x ∈ 1, ..., slmax are generated. The following number of equivalences
connects those helper variables with the decision variables:

Si,d,t ↔
slt∧

x=1
Ui,d,x ∧

slmax∧
y=slt

¬Ui,d,y (3.5)

Variables from the set U count the overall units of time that an employee works during
the schedule. Therefore they can be used to set up two cardinality constraints that ensure
the minimum and maximum working time constraint. Note that since simplified lengths
are used for this calculation, the given limits have to be divided by the common divisor
g and rounded appropriately:

atMostbbmax
i /gc({Ui,d,x|d ∈ D,x ∈ {1, ..., slmax}}) ∀i ∈ I (3.6)

18

3.3. Modeling of Hard Constraints

atLeastdbmin
i /ge({Ui,d,x|d ∈ D,x ∈ {1, ..., slmax}}) ∀i ∈ I (3.7)

Maximum consecutive shifts. All employees are only allowed to work for a maximum
number of consecutive days before they must have a day off. This maximum limit is
given to the problem as parameter cmax

i for each i ∈ I. This constraint is included into
the maxSAT formulation by introducing clauses that require a day off during all possible
sequences of length cmax

i . Since this constraint assumes that the last day before the
scheduling horizon sets a day off and the first day after the scheduling horizon also sets a
day off, it is not necessary to consider any corner cases.

cmax
i∨
x=0

Xi,d+x ∀i ∈ I, d ∈ {1, ..., |D| − cmax
i } (3.8)

Minimum consecutive shifts. The considered variant of the employee scheduling
problem requires that each employee works at least for a minimum of consecutive days.
In other words there is a minimum for the number of consecutive shifts, which is given
as parameter cmin

i for all i ∈ I, before an employee is allowed to have a day off.

Again corner cases do not have to be considered, since this constraint always assumes an
infinite number of consecutive working days before and after the scheduling horizon. For
all the other cases, the constraint is formulated into maxSAT clauses by implicating the
minimum length shift sequence whenever a new shift sequence starts after a day off:

(Xi,d ∧ ¬Xi,d+1)→ (
cmin

i∧
x=2
¬Xi,j+x) ∀i ∈ I, d ∈ {1, ..., |D| − 3} (3.9)

Minimum consecutive days off. This can be formulated similarly to the minimum
consecutive shifts constraint. No corner cases have to be considered, as this constraint
assumes an infinite sequence of days off before and after the scheduling horizon. The
minimum limit of consecutive days off is given to the problem as parameter omin

i for each
employee i ∈ I.

Again a formulation variant which applies an implication of a minimum length day off
sequence is used for this constraint, similar as described for the minimum consecutive
shifts constraint.

(¬Xi,d ∧Xi,d+1)→ (
omin

i∧
x=2

Xi,d+x) ∀i ∈ I, d ∈ {1, ..., |D| − 3} (3.10)

Maximum number of weekends. Whenever an employee has to work a shift on a
Saturday or a Sunday in the schedule, the corresponding weekend is considered as a
working weekend for this employee. The problem restricts the number of such working

19

3. Modeling the Employee Scheduling Problem as Partial Weighted MaxSAT

weekends which is given as parameter amax
i for each employee i. Because the scheduling

horizon always starts on a Monday and ends on a Sunday, the number of weekends
can be easily calculated as w = |D|

7 . With w, additional helper variables Wi,x can be
introduced, that state whether or not an employee i works on the x-th weekend. The
following equivalences are introduced to connect the W variables with the existing X
variables in the maxSAT formulation. (Note that the x variables are multiplied with 7 in
order to determine the day index of the x-th Sunday in the schedule).

Wi,x ↔ (¬Xi,(x·7)−1 ∨ ¬Xi,x·7) ∀i ∈ I, x ∈ {1, ..., w} (3.11)

With the help of those variables the following cardinality constraints can be declared in
order to formulate the maximum number of weekends constraint:

atMostamax
i

({Wi,1,Wi,2, ...,Wi,w}) ∀i ∈ I (3.12)

Days off. Employees may have certain days on which it is strictly required that they
have a day off. Those are given to the problem as sets of day indices Ni for each employee
i. Those day off constraints can be introduced in the maxSAT formulation by simply
generating corresponding unit clauses:

Xi,d ∀i ∈ I, d ∈ Ni (3.13)

3.3.1 Modeling of Soft Constraints

Requested shift types. Each employee may have some days where a certain shift
type is requested for them to work in. Since this is not a hard constraint, a violation will
be penalized with a given weight. The corresponding penalties are given to the problem
as parameters qi,d,t, where i ∈ I, d ∈ D and t ∈ T . This constraint is included into the
formulation with the insertion of simple weighted unit clauses for all the shift requests:

Si,d,t · qi,d,t ∀(i, d, t) where ∃qi,d,t (3.14)

Unpreferred shift types. Similar to the requested shifts constraint, the problem may
contain requests that require an employee to not work a particular shift on a certain
day. The formulation is again based on weighted unit clauses depending on problem
parameters pi,d,t that set the weight of an unpreferred shift, where i ∈ I, d ∈ D and
t ∈ T :

¬Si,d,t · pi,d,t ∀(i, d, t) where ∃pi,d,t (3.15)

20

3.3. Modeling of Hard Constraints

Cover requirements. The number of employees that should be working in a shift
type is defined for each day. This preferred value of working employees for shift t on day
d is given to the problem in form of parameters udt for all d ∈ D and t ∈ T . Furthermore
for each of these values two penalty parameters vmin

dt and vmax
dt are used to penalize a

possible under- or over-coverage of the preferred value.

Two cardinality constraints per cover requirement are introduced into the maxSAT
formulation to handle this constraint. One for the over-coverage, which is penalized
linearly depending on the weight vmax

dt , and another one for the under-coverage which is
also penalized linearly depending on the weight vmin

dt :

atMostudt
({S1,d,t, S2,d,t, ..., S|I|,d,t}) · vmax

dt ∀d ∈ D, t ∈ T (3.16)

atLeastudt
({S1,d,t;S2,d,t; ...;S|I|,d,t}) · vmin

dt ∀d ∈ D, t ∈ T (3.17)

21

CHAPTER 4
A Hybrid Approach for the

Employee Scheduling Problem

In the following chapter a new hybrid approach for solving the employee scheduling
problem which combines heuristic methods together with exact solution techniques from
constraint programming will be proposed. The problem representation as well as the
problem’s evaluation function are introduced in sections 4.1 and 4.2. The following sections
then focus on techniques that are used during the local search part of the algorithm:
Section 4.3 describes the used search neighborhoods and section 4.4 introduces the
heuristic methods which are applied during the local search procedure. An exact solution
approach using constraint programming is then described in section 4.5. Afterwards, a
construction heuristic for the employee scheduling problem is proposed in section 4.6.
Finally, in the last section 4.7 of this chapter, all proposed solution methods are combined
within an iterated local search based procedure.

4.1 Problem Representation

The search techniques which are described in this chapter all use a direct representation
of the scheduling horizon. The problem is represented by a simple |I| × |D| matrix where
each row represents the schedule of an employee and each column stands for a day in the
roster. Each cell in the matrix can either contain a single shift or be empty, which would
assign either a certain shift type or a day off to the associated employee on the associated
day. This representation ensures that the “Employees can not be assigned more than one
shift on a single day” constraint is always fulfilled.

23

4. A Hybrid Approach for the Employee Scheduling Problem

4.2 Evaluation of Solutions

Since a feasible solution must not violate any hard constraint, in [CQ14] it has been
proposed to express the objective function f of a feasible solution S as follows (Assuming
that variables xidt are 1 if and only if employee i works in shift t on day d and otherwise
0, variables ydt mark the total below the preferred cover for shift type t on day d, and
variables zdt mark the total above the preferred cover for shift type t on day d):

f(S) =
∑
i∈I

∑
d∈D

∑
t∈T

qidt(1− xidt) +
∑
i∈I

∑
d∈D

∑
t∈T

pidtxidt +
∑
d∈D

∑
t∈T

ydtv
min
dt +

∑
d∈D

∑
t∈T

zdtv
max
dt

(4.1)

This evaluation function f calculates the objective value for feasible solutions appropriately
to the problem definition and is therefore applied in all proposed algorithms of this chapter.

Additionally to having an objective value that measures the quality of feasible solutions,
it is also desirable to compare the fitness of infeasible solution candidates during local
search. For this purpose, the number of hard constraints violations can be considered.
When capturing the sum of all such violations, each occurrence of all the mentioned
hard constraints then counts as one violation, with the exception of the working time
constraints and the maximum number of shifts per employee constraints, for which a
potential violation is only counted once per employee.

In addition to counting just the number of violated hard constraints, the number of cells
that are affected by the violations can also be considered. Measuring the cells that are
involved with violations of hard constraints can have positive effects on local search, since
it tries to iteratively improve a solution by the modification of cells. In some cases it
might be necessary to perform several search steps until a constraint is resolved and
while the number of violations might not change in between the necessary steps, an
improvement can be visible through a reduced number of affected cells. The rules that
determine which cells will get marked as affected by each constraint are described in
section 4.4 of this chapter. Cells that are affected by a constraint violation are later also
referred to as conflicting cells.

Assuming that v stands for the number of hard constraint violations and c stands for the
number of cells which are affected by hard constraint violations, the following extended
cost function g considers violated hard constraints as well as violated soft constraints
when calculating the objective function for a candidate solution S:

g(S) = v ·M + c · α+ f(S) (4.2)

Note that M has to be chosen in such a way that it is greater than the highest possible
value for f(S), so that an infeasible solution can never have a lower cost than a feasible
solution. α is a weight parameter that determines the influence of the number of conflicted

24

4.3. Search Neighborhoods for Employee Scheduling

1 2 3 4 5

Mo Tu We Th Fr

A

B

C

N D N D

N N D

1 2 3 4 5

Mo Tu We Th Fr

A

B

C

N N N D

N N D

Figure 4.1: This figure shows an example of a shift change neighborhood move. The
candidate solution presented on the left displays the schedule before the shift change. On
the right hand side of the figure one can see the schedule after the day shift on Tuesday
has been changed to a night shift for employee A.

cells. Also note that in case of a feasible candidate solution v and c will be both zero
and g(S) will therefore be equal to f(S).

4.3 Search Neighborhoods for Employee Scheduling

In this section, the three different search neighborhoods (first introduced in [BCQB10])
that are used in the proposed local search approach are described. All of them differ
in the way they make changes to a candidate solution, and work by either swapping
or directly reassigning shifts in the roster. The considered neighborhoods which are
described in this section are: Shift change, vertical swapping of cell assignments, and
horizontal swapping of cell assignments.

In the following, all neighborhoods are first described as single shift neighborhoods.
However, in addition to single shift moves also block neighborhoods will be applied in
the proposed algorithm. The notion of block neighborhoods will be described later in
this chapter.

4.3.1 Shift Change

The simplest neighborhood considers changes of single cells by inserting, modifying or
deleting shift assignments during search. Such neighborhood moves can influence all of
the problem’s hard and soft constraints and are necessary in order to cover the whole
search space. Figure 4.1 shows an illustration of a shift change move.

4.3.2 Vertical Swapping of Cells

During search the algorithm tries to reduce penalties that are caused from cover constraints
violations by assigning appropriate shifts to each day in the schedule. At some point a
situation might occur, where the cover requirements are fulfilled satisfyingly, but other
constraints still cause violations. In such a scenario the vertical swap neighborhood, that

25

4. A Hybrid Approach for the Employee Scheduling Problem

1 2 3 4 5

Mo Tu We Th Fr

A

B

C

D N N

N D D

1 2 3 4 5

Mo Tu We Th Fr

A

B

C

N N N

D D D

Figure 4.2: This figure shows a vertical cell swap. On the left hand side, one can see the
schedule before the swap. The schedule after the swap shows that two shifts on Tuesday
have been swapped and is displayed on the right side of the figure.

1 2 3 4 5

Mo Tu We Th Fr

A

B

C

N D N D

N N D

1 2 3 4 5

Mo Tu We Th Fr

A

B

C

N N D D

N N D

Figure 4.3: This figure shows a horizontal cell swap. The left side of the figure shows
the schedule before the swap. On the right hand side one can see the schedule after the
swap. In this case, the shift assignments on Tuesday and Thursday have been swapped
for employee A.

tries to improve solutions by swapping two cell assignments within the same day, can be
advantageous. By considering the vertical swap of two cells, neighborhood solutions will
be explored that do not affect any cover requirement constraints. Figure 4.2 illustrates
such a vertical cell swap.

4.3.3 Horizontal Swapping of Cells

The third possibility of generating neighborhood solutions is to swap cells within the
schedule of a single employee. While the horizontal swapping of shifts might cause cover
constraints violations, it can be useful to perform changes without violating other employee
dependent constraints like the workload requirements or maximum shift requirements.
An example for a horizontal swap is shown in Figure 4.3.

4.3.4 Block Neighborhoods

All of the three previously described neighborhoods can be extended to not only consider
the modification of a solution by performing swaps with pairs of single cells or changing
single cells in the schedule, but to also consider the modification of horizontal blocks

26

4.3. Search Neighborhoods for Employee Scheduling

1 2 3 4 5

Mo Tu We Th Fr

A

B

C

D D N

N N D

1 2 3 4 5

Mo Tu We Th Fr

A

B

C

N N D D

N N D

1 2 3 4 5

Mo Tu We Th Fr

A

B

C

D D N

N N D

Figure 4.4: This figure shows examples for block move variants of the shift change, vertical
cell swap, and horizontal cell swap neighborhoods. On the top left one can see vertical
swap move with a block size of two. The schedule on the top right shows a horizontal
swap, also with a block size of two. In the bottom of the figure the cell selection for a
shift change with a block size of three is displayed. With such a shift change move, all of
the selected cells could then for example be reassigned at the same time to contain a
night shift.

of cells in one move. Instead of changing only single cell assignments, a block variant
of the shift change neighborhood can then assign the same shift type or a day off to a
number of consecutive cells within a single search step. Vertical and horizontal cell swap
block moves work in similar way by swapping pairs of blocks that consist of consecutive
cells lying in the schedule of the same employee. The length of the considered blocks
can vary with each block move and is also referred to as block size. Examples for block
neighborhood move variants of the three search neighborhoods are illustrated in Figure
4.4.

Although it is theoretically possible to cover the whole search space with just the single
cell neighborhoods, there are reasons to include also block moves into local search as
they can introduce a significant increase in performance. In [aH00] it is shown that cases
can occur in which single cell neighborhoods alone are not able to reach certain solutions.
For example if a solution wants to move a block of three consecutive shifts from one
employee to another employee and there is a minimum consecutive shift constraint that
requires sequences of at least three working shifts, a single shift neighborhood would
need to perform three moves to reach the desired solution. However, in between those
swaps the minimum consecutive shift constraint would be temporarily violated, which
then will lead to a heavily increased objective value and local search therefore might not

27

4. A Hybrid Approach for the Employee Scheduling Problem

allow the whole sequence of necessary search steps. However, with the consideration of
vertical block swaps such a problem would not occur in the same situation.

A drawback that comes with the introduction of block neighborhoods is that more
computing power is necessary in order to calculate and compare the outcomes of all
possible neighborhood moves. Therefore, an upper limit for the considered block size
should be chosen carefully, so that the number of possible moves is restricted. For the
algorithms proposed in this chapter, the maximum length for consecutive shift sequences
determined by the problem’s constraints sets limit for the maximum block size. Single
shift neighborhoods are still possible and can be thought of as block changes with a block
size of one.

4.4 Local Search Methods for Employee Scheduling

In this chapter methods for the local search parts of the proposed hybrid solver are
described. After the notion of conflicted cells has been introduced in 4.4.1, a variant of
the min conflicts heuristic [MJPL92] which is applied during the main part of the search
process is proposed in section 4.4.2. Additional methods which are used to explore large
neighborhoods are then presented in section 4.4.3.

4.4.1 Conflicted Cells

In order to apply the min conflicts heuristic, that will be further described in section
4.4.2, the notion of conflicted cells has to be defined for each of the problem’s constraints.
In the following a list of all constraints and their in case of a violation corresponding set
of conflicted cells is presented.

Disallowed shift sequences. Since this constraint forbids certain sequences of shift
types with length two, in case of a violation there are two affected cells: The cell
containing the shift assignment and the cell that contains its forbidden successor.

The maximum number of shifts for each type that can be assigned to an
employee. If such a constraint is violated, then there are too many shifts of a certain
type assigned to the same employee. All of the employee’s cells that contain a shift of
the corresponding type are therefore considered to be in conflict.

Minimum and maximum working time. If employees do not meet the minimum
working time requirements than they have too many days off in their schedule. Therefore,
all work free days are considered to be in conflict in case of such a violation. If on the
contrary the maximum working time constraint is violated, all cells of the associated
employee that contain shift assignments are considered to be in conflict.

28

4.4. Local Search Methods for Employee Scheduling

Mo Tu We Th Fr Sa Su

* * *D N N N

Figure 4.5: This figure shows which cells are considered to be in conflict in case of
a minimum consecutive shifts constraint violation. In this example the minimum of
consecutive shifts is set to three and the asterisks indicate the cells that are considered
to be in conflict. The length of the shift sequence containing only one day shift is too
short, and therefore the two empty cells that lie before the shift are marked with an
asterisk. Only one cell after the late shift is marked with an asterisk, since the following
cells already contain shift assignments.

Maximum consecutive shifts. Whenever there occurs a sequence of consecutive shift
assignments in the schedule of an employee that is longer as the allowed maximum, all
cells that contain shift assignments within this sequence are considered to be in conflict.

Minimum consecutive shifts. If a candidate solution contains a sequence of shifts
that has a length lower than the allowed minimum, those cells that come before and after
the sequence and lie within the difference to the necessary minimum are considered to be
in conflict. Cells that already have a shift assignment are not affected by this rule. Figure
4.5 shows an example of such a constraint violation and visualizes the corresponding cells
which are in conflict.

Minimum consecutive days off. In case the minimum consecutive days off constraint
is violated, the cells which are considered to be in conflict are determined in a similar
way as already described for the minimum consecutive shifts constraint. Cells before and
after the sequence lying within the difference to the necessary minimum are in conflict
given that they contain a shift assignment.

Maximum number of weekends. If employees have more working weekends in their
schedule than the allowed maximum, all weekend cells in their schedule that contain shift
assignments are considered to be in conflict.

Days off. Day off requests are only defined for single shifts in the grid and therefore
the corresponding cells will be considered to be in conflict in case of a violation.

Requested shift types. Similar to day off requests, shift requests affect single cells,
which will be considered to be in conflict in case of a violation.

Unpreferred shift types. Similar to day off requests, unpreferred shift requests affect
single cells, which will be considered to be in conflict in case of a violation.

29

4. A Hybrid Approach for the Employee Scheduling Problem

Cover requirements. If a cover requirements constraints is violated, there are two
cases that have to be distinguished: In case of an under coverage violation, all cells which
do not contain a shift assignment will be considered to be in conflict on the corresponding
day. On the other hand, in case of an over coverage violation, all cells that contain a
shift assignment will be considered to be in conflict on the corresponding day.

4.4.2 The Min Conflicts Heuristic

The idea behind the min conflicts heuristic lies in selecting variables of a problem that are
causing constraint violations and then focuses on the reduction of conflicts during search.
The previous section defined the notion of conflicted cells and described which cells are
considered to be in conflict in case of a constraint violation. Min conflicts chooses a
conflicting cell randomly in each search step and then generates all possible neighborhood
moves that include the selected cell. The heuristic then performs the move that leads to
the lowest objective value and thereby tries to resolve as many violated constraints as
possible as search progresses.

While focusing on only conflicted cells can often lead to fast improvements, a draw back of
min conflicts is that the search can get stuck in local optima easily. Therefore, a variant of
the min conflicts heuristic that makes use of a tabu list [Stü97] is described in this chapter.
A tabu list is a data structure that keeps track of recently performed neighborhood
moves during search and makes sure that equal moves will not be repeated in multiple
search steps. If configured properly, such a tabu list can prevent any cyclic moves and
local search will thereby be able to escape from local optimal solutions. Variants of min
conflicts heuristics in combination with random walk and tabu search have been applied
before in the domain of employees scheduling in [Mus06] and [BGM+10].

The detailed min conflicts procedure which is used in the proposed hybrid approach for
employee scheduling is defined in Algorithm 4.1.

An important property of the proposed min conflicts procedure is that hard constraint
violations and soft constraint violations are considered in separate phases. In a first
phase the algorithm tries to get rid of the hard constraints, and only if there are no hard
constraint violations left, it considers conflicted cells that are associated to soft constraint
violations.

The tabu list data structure plays also an important role in Algorithm 4.1. A potential
neighborhood move is only accepted if no similar move is contained in the tabu list.
However, there is an exception to this rule: If a move leads to a cost which is better than
the best known solution, it will be in any case accepted.

4.4.3 Additional Exploration of the Neighborhood

In cases where min conflicts is not able to further improve a locally optimal solution
but the search still has some time left, it can be beneficial to consider a larger of num-
ber of potential neighborhood moves in each search step. In this section the following

30

4.5. Constraint Programming for Employee Scheduling

Algorithm 4.1: Min conflicts algorithm
Data: candidate solution, tabu list, bestCost
Result: candidate move

1 choose randomly a cell which is in conflict;
2 if candidate solution has hard constraint violations then
3 choose a cell that is in conflict through a hard constraint violation;
4 else
5 choose a cell that is in conflict through a soft constraint violation;
6 end
7 generate all possible moves using all three neighborhoods for selected cell;
8 bestMove← find the best move which minimizes the total cost function;
9 bestMoveNotTabu← find the best move which minimizes the total cost and is not
tabu;

10 if bestMove 6= bestMoveNotTabu then
11 if evaluate(bestMove) < bestCost then
12 return bestMove;
13 end
14 else
15 return bestMoveNotTabu;
16 end

three algorithms are introduced to conduct an additional exploration of the neighbor-
hood: Employee swap (Algorithm 4.2), employee improvement (Algorithm 4.3) and day
improvement (Algorithm 4.4).

The employee swap procedure selects a single employee randomly and considers swapping
the entire schedule assigned to this employee with the schedule from another employee.
The procedure basically considers vertical swaps of a very large block size. Early
experiments showed that the inclusion of such swaps can enhance search diversification.

The employee improvement and day improvement procedures use the same search neigh-
borhoods as the min conflicts heuristic but do not restrict cell selection on only conflicted
cells. Instead, both techniques consider all cells of the entire schedule from a single
employee or day instead. After a day or employee has been selected randomly, they
explore neighborhood moves for all cells which are associated to this day or employee.
The employee improvement and day improvement procedures add two very large neigh-
borhoods to the search that can consume a lot of runtime per iteration when dealing
with larger instances.

4.5 Constraint Programming for Employee Scheduling
In this section an exact solution approach for the employee scheduling problem that uses
CP [RvBW06] methods is described. Later in this chapter, the previously described local

31

4. A Hybrid Approach for the Employee Scheduling Problem

Algorithm 4.2: Employee swap algorithm
Data: candidate solution, tabu list, bestCost
Result: candidate move

1 choose randomly an employee;
2 Generate all possible moves that swap the whole schedule of this employee with
another employee;

3 bestMove← find the best move which minimizes the total cost function;
4 bestMoveNotTabu← find the best move which minimizes the total cost and is not
tabu;

5 if bestMove 6= bestMoveNotTabu then
6 if evaluate(bestMove) < bestCost then
7 return bestMove;
8 end
9 else

10 return bestMoveNotTabu;
11 end

Algorithm 4.3: Employee improvement algorithm
Data: candidate solution, tabu list, bestCost
Result: candidate move

1 choose randomly an employee and a second employee to swap with;
2 Generate all possible moves for all the cells of the first chosen employee using all
three neighborhoods, where the swap neighborhood is restricted to swaps with the
second chosen employee;

3 bestMove← find the best move which minimizes the total cost function;
4 bestMoveNotTabu← find the best move which minimizes the total cost and is not
tabu;

5 if bestMove 6= bestMoveNotTabu then
6 if evaluate(bestMove) < bestCost then
7 return bestMove;
8 end
9 else

10 return bestMoveNotTabu;
11 end

32

4.5. Constraint Programming for Employee Scheduling

Algorithm 4.4: Day improvement algorithm
Data: candidate solution, tabu list, bestCost
Result: candidate move

1 choose randomly a day in the schedule;
2 generate all possible moves for all the cells of the selected day using the vertical
swap and shift change neighborhoods;

3 bestMove← find the best move which minimizes the total cost function;
4 bestMoveNotTabu← find the best move which minimizes the total cost and is not
tabu;

5 if bestMove 6= bestMoveNotTabu then
6 if evaluate(bestMove) < bestCost then
7 return bestMove;
8 end
9 else

10 return bestMoveNotTabu;
11 end

search techniques will be combined together with the methods from this section within
an iterated local search based procedure in section 4.7.

In order to devise a CP approach for the employee scheduling problem, appropriate
variables, value assignments and constraints have to be defined. Similar as with the
previously described local search approach, a variable is generated for all the cells of
the scheduling grid and their cell assignments should fulfill the problem’s hard- and soft
constraints. Possible variable values are all the different shift types that are given with a
problem as well as a day off assignment. The goal then is to find a complete variable
assignment that builds an optimal feasible solution (i.e. a solution with lowest possible
cost that does not violate any of the problem’s hard constraints). In order to reach such a
solution, usually a backtracking based tree search [RvBW06] is conducted. Two essential
techniques play a role when using a constraint programming based solver: Enumeration
and constraint propagation. Enumeration techniques on the one hand provide efficient
ways to search through all possible combinations of variable assignments and constraint
propagation techniques on the other hand provide options to intelligently look ahead
during search and to prune the search space by eliminating groups of infeasible variable
assignments. Since the employee scheduling problem is an optimization problem, branch
and bound mechanisms can also be included into the search procedure. In the following
sections the application of those techniques regarding the employee scheduling problem
is described.

4.5.1 Enumeration Strategies

The use of an appropriate variable and value ordering is essential for any CP based
solving method. Good orderings have significant impact on the performance of pruning

33

4. A Hybrid Approach for the Employee Scheduling Problem

techniques and how they can remove search branches to reduce the problem’s search
space.

Most of the problem’s hard constraints focus on the schedule of an employee. For this
reason, it is beneficial to order the variables in such a way that a tree search will assign
the shifts of a single employee’s schedule one after the other. In other words, the first
cell selected by search will be the first day of the first employee’s schedule, continued by
the second cell of the first employee’s schedule and so on. The first cell of the second
employee’s schedule will only be considered as soon as the schedule of employee one
has been completely determined. With such an ordering, constraint propagation will be
able to detect many hard constraint violations early in the search. Regarding the value
selection, the constraint programming method proposed in this chapter simply uses the
ordering of the shift types as given in the problem description (Day off assignment are
always considered last).

4.5.2 Constraint Propagation

In the algorithm used in this chapter forward checking [RvBW06] is applied as a look
ahead mechanism during tree search. This technique checks after each variable assignment
if it is still possible to satisfy all hard constraints considering the remaining unassigned
variables and their domains. It then removes all values from variable domains that would
violate any hard constraint. For example, if four consecutive shifts have already been
assigned in the schedule of an employee and only four consecutive shifts are allowed, all
shift assignments will be removed from the domain of the following cell. If any variable
has an empty domain after this procedure, the algorithm will exit the current search
branch and backtrack to the last variable assignment that has been performed.

4.5.3 Branch and Bound

Since the employee scheduling problem is an optimization problem a branch and bound
[LD10] strategy can be included in the algorithm. Whenever a leaf of the search tree
is reached, the objective value of the corresponding solution is then stored as an upper
bound for the remaining search space. Between each following variable assignment the
lower bound for the cost of the current partial assignment is then calculated and compared
to the upper bound. If the lower bound is greater or equal than the upper bound, the
search can prune the current branch and backtrack until the lower bound is again lower
than the upper bound.

Calculation of lower Bounds

The lower bound set by a partial solution must never overestimate the costs that are
reachable from the partial assignment but may underestimate it. Therefore, costs
produced by violated shift requests and unpreferred shift constraint violations are only
taken into account during calculation of this bound if the partial assignment already
violates such a constraint. Regarding the cover requirement constraints on the other

34

4.6. A Construction Heuristic for Employee Scheduling

hand the calculation also considers the lowest possible cost increase that could occur
through missing assignments. Given a partial assignment, the number of already assigned
shifts is taken and used to include any penalties that can arise from over coverage
constraints. Regarding the under coverage constraints, for each day the number of
unassigned variables are considered as potential shift assignments. Since for the considered
employee scheduling problem instances all different shift types have the same penalties
in their cover requirements, the assumed under coverage can be distributed over under
coverage constraints for all shift types.

The overall constraint programming based procedure which utilizes all of the mentioned
techniques is described in Algorithm 4.5.

Algorithm 4.5: CP search algorithm
Data: solution, bestUpperBound, unassignedVariables
Result: bestSolution

1 if unassignedVariables is empty then
2 return solution;
3 end
4 nextV ariable← getNextVariable(unassignedV ariables);
5 while domain(nextV ariable) is not empty do
6 nextV ariable.value← getNextValue(domain(nextV ariable));
7 do constraint propagation using the newly assigned variable;
8 lowerBound← calculateLowerBound(solution);
9 if lowerBound < bestUpperBound then

10 newSolution← doCPSearch(solution, bestUpperBound,
unassignedV ariables);

11 newUpperBound← evaluate(newSolution);
12 if newUpperBound < bestUpperBound then
13 bestUpperBound← newUpperBound;
14 bestSolution← newSolution;
15 end
16 end
17 unassignVariable(nextV ariable);
18 end
19 return bestSolution;

4.6 A Construction Heuristic for Employee Scheduling

With the use of the local search techniques that are proposed in this chapter it is possible
to find solutions even using an empty initial solution. The shift change neighborhood
can then assign shift types to empty cells and thereby generate a feasible schedule in the
process. While this method often works well if applied on smaller instances, some of the

35

4. A Hybrid Approach for the Employee Scheduling Problem

instances have very large schedules, and precious time might be lost if search has to start
with an empty schedule. For this reason, a construction heuristic that greedily generates
an initial schedule can have improving effects on search and will be introduced in the
following.

The main goal of the proposed construction heuristic is to generate an initial solution
that is feasible or includes at least a low number of hard constraint violations. Shift
requests, unpreferred shift requests and cover requirements are completely ignored, as
they can only cause soft constraint violations.

The heuristic generates a solution by assigning shifts to cells in the scheduling grid one
after the other, starting with day one of the first employee and ending with the last day of
the last employee in the schedule. In the process it tries to consider all hard constraints by
predicting the occurrence of forced assignments. A forced day off assignment for example
could be the result of different hard constraints (e.g. day off requirement, maximum shift
constraint) together with an already given partial assignment. On the contrary, at some
points it might also be necessary to assign a certain shift type to a cell (e.g. through the
minimum consecutive shifts or minimum working time constraints). The heuristic tries
to predict whatever assignment will be necessary, but sometimes it has to guess what
assignment should be made. In such a case a certain shift or day off assignment is picked
randomly, although the likelihoods of the different options are still influenced based
on the number of days left to assign and weighted against the minimum working time
constraint. For example if the minimum working time constraint requires two additional
shifts and only two cells are left to assign, a day off will not be considered as an option.

The detailed procedure for the construction heuristic is described in Algorithm 4.6.

Algorithm 4.6: Construction heuristic
Result: initialSolution

1 solution← generate initial empty solution for the problem;
2 for each employee do
3 lowestShiftLength← calculate the lowest possible shiftlength;
4 increase the allowed weekend limit by four to reduce the strictness of the max

weekend constraint;
5 for each day in the schedule do
6 calculate the difference to the next forced day off;
7 determine if day off is allowed for the current day;
8 determine how many shift assignments are still necessary based on

lowestShiftLength and minimum working time constraint;
9 select the assignment for the current employee and day based on the

gathered information and update solution;
10 end
11 end
12 return solution

36

4.7. An Iterated Local Search for Employee Scheduling

4.7 An Iterated Local Search for Employee Scheduling

Although local search alone often can produce satisfying results, in the literature ([LMS01])
it has been shown that significant performance improvements can be achieved by using
an iterated local search based procedure. The main idea behind iterated local search is to
iteratively call an embedded local search, and to thereby perform a greater exploration
of the search space. After each iteration, the currently best known solution is perturbed
to provide a good starting point for the next run of the embedded local search.

In this section an iterated search procedure for employee scheduling is proposed in order to
combine all of the methods that have been previously introduced in this chapter. The min
conflicts heuristic as well as the additional local search methods serve as the embedded
local search and the construction heuristic is used to generate an initial solution. Finally,
a variant of the constraint programming based algorithm is used to perturb solutions
after each run of the embedded local search.

4.7.1 The Embedded Local Search

As already mentioned, the embedded local search combines the previously introduced
min conflicts algorithm as well as the employee swap, employee improvement, and day
improvement procedures. In the following some details about how these techniques are
utilized within iterated local search are given.

The min conflicts heuristic can often locate good neighborhood moves fast but has the
drawback of easily being stuck in local optima, while the other three procedures take
a deeper look on the neighborhood, but suffer from a high runtime that is consumed
during each iteration. Therefore, the embedded local search is separated into a two
phase approach. In the first phase local search tries to get large improvements quickly
by applying only the min conflicts based procedure to generate neighborhood moves. If
no improvement can be made using only min conflicts within a predefined limit that
is relative to the problem’s instance size, local search will enter a second phase. In
this second phase all procedures (including min conflicts) will then be considered when
selecting good neighborhood moves. In order to reduce the time consumed in each
iteration, the processing of those neighborhoods is ordered, and a search move will be
immediately accepted if it yields an improvement to the currently best known solution
without considering the other neighborhoods.

4.7.2 Accepting Potential Neighborhood Moves

As soon as the best neighborhood move is determined, it still has to be determined if
the move really should be accepted or not. If the move brings an improvement over the
current solution it will be accepted in any case, however if it would increase the current
cost, an acceptance mechanism which is based on the quality of the potential moves is
applied. This mechanism which decides whether or not a move should be accepted uses

37

4. A Hybrid Approach for the Employee Scheduling Problem

ideas from the simulated annealing meta heuristic [Kir84] and calculates an acceptance
probability based on the change in quality.

The following equation shows how the probability to accept moves is calculated, assuming
that hnew and hcurrent are the number of hard constraint violations of the candidate
and the current solution, snew and scurrent are the soft constraint costs, and cnew and
ccurrent are the number of conflicts caused by hard constraint violations. Regarding the
costChange parameter, costChange1 will be used to calculate the acceptance probability
if the current solution is feasible. If on the other hand the current solution is infeasible
and still contains hard constraint violations, costChange2 will be used to calculate the
acceptance probability. M is set to a value that is large enough so that improvements in
the soft constraint penalties can never cause an increase in the number of hard constraint
violations. The β parameter is used to reduce the influence of the number of cell conflicts
in such a way, that it does not outweigh the number of hard constraint violations.

costChange1 = (hnew − hcurrent) ·M + snew − scurrent

costChange2 = hnew − hcurrent + (cnew − ccurrent)/β
acceptanceProbability = e−costChange1/2

(4.3)

4.7.3 Perturbing the Current Solution

As soon as the embedded local search cannot find any new improvements within a given
iteration limit, the iterated local search procedure enters its perturbation phase.

The goal of the perturbation phase is to modify the best solution found by local search in
such a way that it can be used as a good new starting point for the next iteration. In the
algorithm proposed in this chapter two different perturbation mechanisms are applied,
whose selection depends on whether the current solution is feasible or not. If the best
solution produced by the embedded local search is infeasible, the perturbation phase will
simply restart by using the construction heuristic on an empty schedule. If the solution
produced by local search on the other hand is feasible, parts of its cells will be emptied
and a variant of the proposed constraint programming method will try to improve the
resulting partial solution.

This constraint programming based procedure will then try to find the optimal solution
within predefined time limit of ten seconds. The best feasible solution that can be found
by this method will then be used directly as the starting point for the following local
search. If however no feasible solution can be found within the time limit or if no feasible
solution regarding the partial assignment exists at all, the solution with all feasible cell
assignments that could be generated will be used as new starting point.

Regarding the constraint programming based perturbation it has to be noted, that only
a part of the input solution’s cells will be emptied and thereby are assignable through the
perturbation mechanism. The remaining cells are considered as fixed during the whole

38

4.7. An Iterated Local Search for Employee Scheduling

constraint programming based procedure. How those cells are selected has a large impact
on the perturbation and can be seen in Algorithm 4.7.

Algorithm 4.7: Select cells for CP search algorithm
Data: currentSolution
Result: currentSolution with partially emptied cells

1 if currentSolution contains hard constraint violations then
2 for each employee do
3 if the employee’s schedule contains hard constraint violation

∨resetProbability <= random() then
4 empty total schedule of this employee;
5 end
6 end
7 else
8 for each day do
9 if the day has unfulfilled cover requirements

∨resetProbability <= random() then
10 empty all cells of this day;
11 end
12 end
13 end
14 return currentSolution;

Finally the complete iterated local search based procedure that forms the main method
of the hybrid algorithm that has been proposed in this chapter is described in Algorithm
4.8.

39

4. A Hybrid Approach for the Employee Scheduling Problem

Algorithm 4.8: Iterated Local Search
Data: problem description, time limit, iteration limit, min conflicts limit
Result: candidate move

1 initialize tabu list;
2 currentSolution← constructionHeuristic();
3 bestSolution← currentSolution;
4 overallBestSolution← currentSolution;
5 iterationCount← 1;
6 minConflictCount← 1;
7 minConflictP hase← true;
8 while ¬ out of time do
9 while iterationCount < iteration limit ∧¬ out of time do

10 bestMove← minConflicts(currentSolution, tabu list, cost(bestSolution));
11 if cost(bestMove) > cost(bestSolution) ∧(¬minConflictsP hase ∨ iterationCount >

min conflicts limit) then
12 minConflictsP hase← false;
13 candidateMove← employeeSwap(currentSolution, tabu list, cost(bestSolution));
14 if cost(candidateMove) < cost(bestMove) then bestMove← candidateMove;
15 if cost(bestMove) > cost(bestSolution) then
16 candidateMove← improveEmployee(currentSolution, tabu list,

cost(bestSolution));
17 if cost(candidateMove) < cost(bestMove) then bestMove← candidateMove;
18 if cost(bestMove) > cost(bestSolution) then
19 candidateMove← improveDay(currentSolution, tabu list,

cost(bestSolution));
20 if cost(candidateMove) < cost(bestMove) then

bestMove← candidateMove;
21 end
22 end
23 end
24 if acceptanceProbability(cost(bestMove), cost(currentSolution)) >= random() then
25 currentSolution← doMove(bestMove);
26 update tabu list;
27 if cost(currentSolution) < cost(bestSolution) then
28 bestSolution← currentSolution;
29 iterationCount← 1;
30 end
31 end
32 iterationCount← iterationCount + 1;
33 end
34 update overallBestSolution;
35 if bestSolution contains hard constraint violations then
36 currentSolution← constructionHeuristic();
37 else
38 emptyConflictedCellsForCp(currentSolution);
39 currentSolution← perturbeSolutionUsingCp(currentSolution);
40 end
41 bestSolution← currentSolution;
42 update overallBestSolution;
43 reset tabu list;
44 end
45 return overallBestSolution;

40

CHAPTER 5
Experimental Evaluation

This chapter presents the experimental environment that was used to evaluate the
proposed approaches for employee scheduling and provides a detailed report on the
results.

Section 5.1 introduces the experimental environment that was used and gives a detailed
presentation of the considered problem instances.

In section 5.2 the experiments that were conducted using the maxSAT model with different
cardinality constraints and maxSAT solvers will be described. Furthermore, results will
be reported and compared to existing approaches that use integer programming.

Section 5.3 describes the experiments that were used to evaluate the proposed hybrid
approach for the employee scheduling problem. The results that were gathered by the
hybrid algorithm are listed and compared with results produced by state of the art
methods which include heuristic as well as exact solution techniques.

5.1 Experimental Environment

All of the experiments that are mentioned in this chapter were conducted using the
24 problem instances that are described in [CQ14]. According to the authors, those
instances were designed to reflect real life scheduling problems that are challenging but
still intuitive to understand. All of the instances vary in their size and the included
scheduling periods range from one week up to one year, requiring up to 180 employees
and 32 shift types that have to be assigned. Table 5.1 lists all of the considered problem
instances in detail.

If not noted otherwise all of the experiments were run on an Intel Xeon E5345 2.33GHz
machine that has a total of 48GB RAM.

41

5. Experimental Evaluation

Table 5.1: Instances from [CQ14]. Lower bounds were obtained using the integer
programming model and the Gurobi solver. Upper bounds for instances 19-24 were
obtained by the hybrid approach proposed in this thesis. Results formatted in bold face
denote proven optimal solutions.

Instance Weeks Employees Shift types Lower bound Upper Bound
Instance1 2 8 1 607 607
Instance2 2 14 2 828 828
Instance3 2 20 3 1001 1001
Instance4 4 10 2 1716 1716
Instance5 4 16 2 1143 1143
Instance6 4 18 3 1950 1950
Instance7 4 20 3 1056 1056
Instance8 4 30 4 1297 1308
Instance9 4 36 4 406 439
Instance10 4 40 5 4631 4631
Instance11 4 50 6 3443 3443
Instance12 4 60 10 4040 4040
Instance13 4 120 18 1346 1486
Instance14 6 32 4 1277 1280
Instance15 6 45 6 3806 4378
Instance16 8 20 3 3224 3225
Instance17 8 32 4 5726 5851
Instance18 12 22 3 4351 4760
Instance19 12 40 5 2945 3688
Instance20 26 50 6 4743 5936
Instance21 26 100 8 20868 22020
Instance22 52 50 10 24064 37912
Instance23 52 100 16 2765 41574
Instance24 52 150 32 ? 54344

42

5.2. Experimental Evaluation of the MaxSAT Model

5.2 Experimental Evaluation of the MaxSAT Model

A large number of experiments with generated maxSAT encodings for the 24 instances
described in [CQ14] have been conducted. The encoded maxSAT instances are available
online in DIMACS format and can be downloaded at 1.

In the processed benchmarks two maxSAT solvers which performed well on timetabling
instances in the maxSAT evaluation 2015 [max15] have been used: WPM3 [ADG15] and
Optiriss using the default configuration. The latter uses the riss framework [KKMS15] in
combination with the publicly available OpenWBO solver [MML14]. Both solvers were
ranked first and second in the industrial category for partial weighted maxSAT problems.
Besides being the leaders in their category, both solvers have also shown to provide good
results for high school timetabling and timetabling instances, which share similarities
with the considered employee scheduling problem.

5.2.1 Comparison of different Cardinality Constraint Encodings

Because the proposed model utilizes a number of cardinality constraints, a crucial point
in the configuration of the experiments turned out to be the determination of which
cardinality constraint encodings should be used in order to get good results with the
maxSAT solvers. There are five constraints which are affected in the maxSAT formulation:
The cover requirement constraint, the workload requirement constraint, the maximum
number of shifts constraint, the maximum number of weekends constraint, and the
one shift per day constraint. For those, four different encoding variants were applied:
combinatorial encoding, sequential encoding, cardinality networks encoding, and bit adder
encoding. An implementation from [DM14] was used to encode those constraints.

If all possible combinations for encoding the cardinality constraints in the model would
have been considered, a total amount of 45 = 1024 different encodings would have to be
generated for each problem instance. In order to reduce this large amount of possibilities,
the number of generated variables and clauses for all constraint/encoding pairs were
investigated at first in order to gather a first insight on their importance. The results
can be seen for one instance in Table 5.2.

The combinatorial encoding turned out to be impractical in most cases and often it was
not even possible to generate maxSAT encodings. The huge amount of produced clauses
required by this cardinality constraint encoding forced the model generator to run out of
memory when dealing with larger instances. When looking at the numbers displayed in
Table 5.2, it can be seen that the maximum number of weekends constraint and the one
shift per day constraint have a relatively low impact compared to the other constraints.
As this behavior appeared also with other instances, in the next step only the sequential
encoding has been considered regarding the maximum number of weekends constraint
and only the combinatorial encoding has been considered regarding the one shift per day
constraint in the remainder of the experiments. With the elimination of the combinatorial

1http://www.dbai.tuwien.ac.at/research/project/arte/maxsat_employeescheduling/

43

5. Experimental Evaluation

Table 5.2: Overview on the number of generated variables (vars.) as well as the hard- and
soft-clauses (h.c. and s.c.) for all the cardinality constraint/encoding pairs for instance
five.

Combinatorial Sequential Cardinality N. Bit adders

Cover Req.
vars. 10192 7616 7056 5096
h.c. 35616 28672 21168 17808
s.c. 896 896 896 896

Workload Req.
vars. Out of memory 6176 8032 5088
h.c. Out of memory 20240 21760 14864
s.c. Out of memory 0 0 0

Max shifts
vars. Out of memory 3010 3520 6374
h.c. Out of memory 11928 10658 22646
s.c. Out of memory 0 0 0

Max weekends
vars. 0 124 160 176
h.c. 46 420 496 602
s.c. 0 0 0 0

One shift per day
vars. 0 896 896 1344
h.c. 448 2688 3136 4480
s.c. 0 0 0 0

encoding in the configuration options because of the caused inconveniences with larger
instances and only three constraints remaining, only 33 = 27 possible combinations of
cardinality constraint configurations are left to examine.

In order to determine the best configuration for both WPM3 and Optiriss, nine instances
of different sizes were selected and experiments with all of the 27 possible encoding variants
were conducted under a time limit of 30 minutes. The results of those experiments can
be seen in Table 5.3 and Table 5.4 for Optiriss and WPM3 respectively.

A comparison of those results reveals that there is no general best combination of
cardinality constraint encodings and good encodings are highly dependent on the solver
which is used. While Optiriss prefers the adder encoding for the cover requirements
constraint, the sequential encoding shows the best results for WPM3. The best candidates
for each solver were selected by considering the sums of the results over all instances
for each combination of cardinality encodings. Finally, the encodings which led to
the minimum of all those sums were taken to generate the instances for the final
experiments. Therefore, the combinations of cardinality constraint encodings that were
used for Optiriss are as follows: bit adder encoding for the cover requirements constraint,
cardinality networks for the workload requirements constraint, and the sequential encoding
for the maximum number of shifts constraint. The combinations of cardinality constraint
encodings for WPM3 on the other hand are: The sequential encoding for the cover
requirements constraint, the workload requirements constraint, and the encoding which
uses cardinality networks for the maximum number of shifts constraint.

5.2.2 Final Experiments and Comparison of Solvers

By using the encodings mentioned above, maxSAT instances for the original problems
1-21 were created. Although the formulation can be used to encode Instances 22-24,

44

5.2. Experimental Evaluation of the MaxSAT Model

Table 5.3: Best results found by Optiriss using different combinations of cardinality
encodings. The first column describes the cardinality encodings used for the cover
requirement/workload requirement/maximum number of shifts constraints. Encoding
names have been abbreviated: seq. = sequential encoding, card. = cardinality networks,
adder = bit adders. In each column the best result is formatted in boldface.

Optiriss Best solutions found in 30 minutes time limit
Cardinality encoding Inst. 2 Inst. 4 Inst. 7 Inst. 9 Inst. 11

seq./seq./seq. 837 5626 13333 12655 40435
seq./seq./card. 837 5626 12000 11659 40435
seq./seq./adder 839 5122 10078 11533 23720
seq./card./seq. 840 6002 15318 12460 32768
seq./card./card. 840 6002 12111 12242 32768
seq./card./adder 838 5215 11474 12758 24905
seq./adder/seq. 841 5407 14319 11044 34612
seq./adder/card. 841 5407 15148 11662 34612
seq./adder/adder 840 5331 11785 12752 25633

card./seq./seq. 841 5609 13813 14353 32281
card./seq./card. 841 5609 15211 11423 32281
card./seq./adder 834 5723 11987 13250 25631
card./card./seq. 834 6210 14080 12156 37028
card./card./card. 834 6210 13779 13154 37028
card./card./adder 841 5316 10682 10641 22130
card./adder/seq. 837 5711 13002 12570 32618
card./adder/card. 837 5711 13492 12785 32618
card./adder/adder 838 5504 9689 12976 24844

adder/seq./seq. 844 3900 5762 7729 15916
adder/seq./card. 844 3900 5741 7526 15916
adder/seq./adder 852 3720 5228 7437 16624
adder/card./seq. 853 3608 5421 6394 15420
adder/card./card. 853 3608 5852 6804 15420
adder/card./adder 847 3918 5452 7239 16464
adder/adder/seq. 845 3907 5411 7716 16627
adder/adder/card. 845 3907 5746 7422 16627
adder/adder/adder 850 3798 5040 7215 16436

Optiriss Best solutions found in 30 minutes time limit
Cardinality encoding Inst. 12 Inst. 14 Inst. 16 Inst. 18

seq./seq./seq. 57680 17959 15584 35073
seq./seq./card. 58369 16665 15584 39555
seq./seq./adder 34964 17549 13263 25829
seq./card./seq. 57575 16761 15635 37084
seq./card./card. 54138 16630 15635 37641
seq./card./adder 33939 18362 14544 23932
seq./adder/seq. 61229 17454 16013 34284
seq./adder/card. 52854 16043 16013 28074
seq./adder/adder 36632 15555 13937 27604

card./seq./seq. 72062 19358 16093 37501
card./seq./card. 49699 18247 16093 38147
card./seq./adder 32074 17934 14776 28188
card./card./seq. 56279 19044 16903 37778
card./card./card. 50404 15546 16903 35638
card./card./adder 32239 16918 14880 26855
card./adder/seq. 62154 18980 17419 38269
card./adder/card. 49096 18565 17419 30601
card./adder/adder 33340 18593 15990 29781

adder/seq./seq. 28602 10076 12546 21039
adder/seq./card. 31000 9875 12546 22548
adder/seq./adder 28694 8777 12223 21095
adder/card./seq. 28598 9776 13026 20710
adder/card./card. 30324 9144 13026 20225
adder/card./adder 29596 9555 13049 20280
adder/adder/seq. 27193 9758 11939 20462
adder/adder/card. 29606 9931 11939 20504
adder/adder/adder 29417 9756 11707 20996

45

5. Experimental Evaluation

Table 5.4: Best results found by WPM3 using different combinations of cardinality
encodings. The first column describes the cardinality encodings used for the cover
requirement/workload requirement/maximum number of shifts constraints. Encoding
names have been abbreviated: seq. = sequential encoding, card. = cardinality networks,
adder = bit adders. In each column the best result is formatted in boldface.

WPM3 Best solution found in 30 minutes time limit
Cardinality encoding Inst. 2 Inst. 4 Inst. 7 Inst. 9 Inst. 11

seq./seq./seq. 828 3189 5510 10631 12183
seq./seq./card. 828 3189 4596 10949 12183
seq./seq./adder 828 3494 8959 10248 23420
seq./card./seq. 828 3090 7446 11132 11516
seq./card./card. 828 3090 6545 11405 11516
seq./card./adder 828 2688 8351 12154 24114
seq./adder/seq. 828 2784 7712 12178 12478
seq./adder/card. 828 2784 8553 10033 12478
seq./adder/adder 828 2893 9364 10964 24195

card./seq./seq. 835 3394 5230 10605 17224
card./seq./card. 835 3394 6815 11037 17224
card./seq./adder 828 4082 7562 11062 25444
card./card./seq. 828 3087 7143 10240 13888
card./card./card. 828 3087 8147 10942 13888
card./card./adder 839 3704 9670 10531 25626
card./adder/seq. 840 3695 7543 11871 15393
card./adder/card. 840 3695 7760 11235 15393
card./adder/adder 828 3103 9287 12374 22719

adder/seq./seq. 1550 3718 10502 13982 29673
adder/seq./card. 1550 3718 11315 12780 29673
adder/seq./adder 1159 3198 9478 14674 26133
adder/card./seq. 1563 3994 9365 11256 31595
adder/card./card. 1563 3994 9253 12773 31595
adder/card./adder 856 4212 9791 12693 25827
adder/adder/seq. 1469 4108 10292 10771 29083
adder/adder/card. 1469 4108 9476 11963 29083
adder/adder/adder 1359 3702 10100 10935 26467

WPM3 Best solution found in 30 minutes time limit
Cardinality encoding Inst. 12 Inst. 14 Inst. 16 Inst. 18

seq./seq./seq. 23937 18045 10292 19771
seq./seq./card. 18770 16303 10292 18498
seq./seq./adder 1697590 15297 12738 21408
seq./card./seq. 22010 15419 12528 19191
seq./card./card. 19845 16285 12528 19241
seq./card./adder 1697590 16654 16099 22100
seq./adder/seq. 22536 17130 12550 17277
seq./adder/card. 22734 16330 12550 20139
seq./adder/adder 1697590 15155 15031 20793

card./seq./seq. 24142 18272 12015 21095
card./seq./card. 23726 18948 12015 22605
card./seq./adder 32150 18455 14126 29910
card./card./seq. 24206 16321 12848 25567
card./card./card. 23716 16864 12848 21097
card./card./adder 1697590 14915 16176 24417
card./adder/seq 25331 17055 13360 24620

card./adder/card. 26272 18104 13360 25051
card./adder/adder 1697590 17490 16998 30144

adder/seq./seq. 48422 18356 18064 31426
adder/seq./card. 44948 19731 18064 29955
adder/seq./adder 38822 18376 16497 27336
adder/card./seq. 42744 19131 16259 28860
adder/card./card. 44272 18959 16259 31694
adder/card./adder 37582 18494 16343 30929
adder/adder/seq. 42648 15723 17590 31791
adder/adder/card. 45583 20184 17590 27403
adder/adder/adder 35857 18143 18593 29081

46

5.2. Experimental Evaluation of the MaxSAT Model

unfortunately maxSAT instances for those three problems could not be generated, since
the used generator ran out of memory due to their large size (about 20 GB). The final
experiments were conducted using both solvers, giving them a time limit of four hours for
each of the 21 instances. The results of those benchmark tests can be seen in Table 5.5.

Table 5.5: The final results obtained for Instance 1-21 using WPM3 and Optiriss, using
the selected cardinality constraint encodings described in this thesis. For comparison,
the best known solutions using the exact methods described in [CQ14] are also included.
Results formatted in bold face denote proven optimal solutions.

Instance WPM3 Optiriss Branch and Price [CQ14] Gurobi [CQ14]
Instance 1 607 607 607 607
Instance 2 828 835 828 828
Instance 3 1009 3475 1001 1001
Instance 4 3102 3608 1716 1716
Instance 5 4037 3645 1160 1143
Instance 6 6150 6941 1952 1950
Instance 7 4596 5421 1058 1056
Instance 8 11018 7617 1308 1323
Instance 9 10949 6394 439 439
Instance 10 16435 15350 4631 4631
Instance 11 12183 15420 3443 3443
Instance 12 18770 28598 4046 4040
Instance 13 6110163 69203 - 3109
Instance 14 16303 9776 - 1280
Instance 15 30833 16506 - 4964
Instance 16 10292 13026 3323 3233
Instance 17 22002 22073 - 5851
Instance 18 18498 14433 - 4760
Instance 19 1698538 50274 - 5420
Instance 20 5519316 147325 - -
Instance 21 14715064 - - -

When comparing the outcomes for WPM3 and Optiriss, one finds that is not possible
to point out a clear winner which performs better over all the instances. While WPM3
performs significantly better on the smaller instances (Instances 1-7 and 11-12), it does
not produce good solutions for the larger instances (Instances 8-10 and 13-21). Using
Optiriss provides better results when it comes to solving the larger instances, except for
the last three instances where the solver could not find any solution under four hours.

When comparing the proposed approach with another existing exact method based on
integer programming, which was provided in [CQ14] (last two columns in the table),
it can be concluded that both maxSAT solvers could not find new unknown optimal
results. However they could provide optimal solutions for instances 1 and 2. Running

47

5. Experimental Evaluation

the maxSAT solvers for four hours resulted in finding solutions for two of the instances
which could not be solved by the integer programming approach within one hour on a
different environment. Although the integer programming method could also possibly
find those solutions within four hours, the results show that maxSAT as an exact method
gives promising results for employee scheduling problems. As many maxSAT solvers are
publicly available and their performance is consistently improving, this approach could
be useful to find solutions for employee scheduling problems.

5.3 Experimental Evaluation of the Hybrid Approach

Experiments for the evaluation of the hybrid approach were conducted within time limits
of 10 and 60 minutes. Those limits were chosen so that the results could be easily
compared with results produced by existing state of the art approaches from [CQ14].
Early benchmark experiments applied five repeated runs per instance within a 10 minute
time limit and two repeated runs per instance within a 60 minute time limit. In the
final experiments, ten repeated runs per instance were applied within a time limit of
10 minutes and five repeated runs per instance were applied within a time limit of 60
minutes.

In the following, section 5.3.1 describes how the algorithm’s parameters were configured
and tuned. Section 5.3.2 then presents the experimental results for different development
stages of the proposed algorithm and draws a detailed comparison between results
produced by the hybrid algorithm and results produced by state of the art approaches.

5.3.1 Algorithm Configuration

Several parameters take influence on the algorithm’s performance. This section gives a
short review on all the algorithm’s parameters, which have already been described in
chapter 4. Afterwards the configuration of those parameters is presented.

List of Parameters

Tabu list factor The tabu list factor takes an influence on the length of the used tabu
list data structure that is used during local search. The longer the tabu list is, the more
recent neighborhood moves will be stored and be marked as tabu whenever a new search
move has to be selected. It can be advantageous if the length of a tabu list is dependent
on the instance size of any given problem. Therefore, the tabu list factor is given to
the algorithm as a real value between 0.0 and 1.0. The given value is then multiplied
with numbers that are dependent on the instance size to determine an appropriate list
length. The length of the used tabu list data structure is calculated as follows (where
|I| denotes the number of employees, h denotes the number of days in the schedule, |T |
denotes the number of shift types and maximumBlockLength denotes the maximum
length of consecutive shift assignments that is allowed by the problem’s hard constraint):

48

5.3. Experimental Evaluation of the Hybrid Approach

tabuLength = |I| · h · |T | ·maximumBlockLength · tabuListFactor (5.1)

CP reset probability Whenever iterated local search enters the perturbation phase,
some of the current solution’s cells need to be emptied and marked for the CP method.
The CP method will then try to find a good solution by using a forward checking search
that considers all the marked cells. To select those cells, the algorithm will try to prefer
those cells which are causing constraint violations. Some cells, however will be selected
anyways depending on a random function. The cp reset probability parameter, which is
given to the algorithm as a real value between 0.0 and 1.0, defines the probability of how
likely a cell that is not involved with any constraint violation is selected for this purpose.
Details about this selection process can be found in section 4.7.3.

α The evaluation of candidate solutions considers the number of hard constraint viola-
tions, the number of soft constraint influenced costs, and the number of cells which are
included in hard constraint violations. The integer valued parameter α is used to control
the impact of conflicted cells on the evaluation function (i.e. cells which are causing hard
constraint violations). Details about the evaluation of candidate solutions are given in
section 4.2.

β At the end of each search step, the embedded local search algorithm selects one of
the moves out of the candidates that have been generated by the different neighborhoods.
The selected neighborhood move will then be performed only under a certain acceptance
probability. How likely it is that such a move candidate will be selected depends on
multiple factors like the number of conflicted cells and changes in cost. The parameter
β is an integer value which is multiplied by the cost changes that were induced by soft
constraint violations. Details about the calculation of this acceptance probability is given
in section 4.7.2.

Maximum iteration limit This limit defines how many consecutive iterations without
cost improvements the embedded local search may perform before the perturbation
procedure is called. This limit is given to the algorithm as an integer valued parameter.

Parameter Tuning

This section describes how the selection of the parameter values for the hybrid algorithm
has been conducted.

Regarding the maximum iteration limit parameter, different values were used during
early experiments to manually tune the parameter. Experiments with a value of 10000,
30000, 40000 and 80000 were performed on all instances under a time limit of 10 min.
Since a value of 10000 gave the best results for most instances the maximum iteration
limit parameter was set to 10000 for the remainder of the experiments. It could be a
subject of future work to include systematical tuning also for this parameter.

49

5. Experimental Evaluation

The tabu list factor, cp reset probability, α, and β parameters have been tuned using
the automated parameter tuning framework irace [LIDLSB11]. More specifically, irace
version 1.07 has been used with the default settings. To tune the parameters, all 24
problem instances were given to irace. The maximum number of experiments was limited
to 2000 and each run was limited to an execution time of 10 minutes. Parameter ranges
given to the tuner were as follows: 0.0 to 1.0 for the tabu list factor and the CP reset
probability parameter, 75 to 125 for the α parameter, and 800 to 1200 for the β parameter.
Those ranges were based on some initial observations of manually started experiments.

The following elite configurations were determined by irace:

Table 5.6: Elite candidate parameter configurations determined by irace.

Tabu list factor CP reset probability α β

0.3201 0.6991 98 1200
0.4610 0.6294 96 1179
0.3443 0.7370 98 1194
0.4997 0.7883 97 1155

Based on those results the following values were chosen for the final experiments: 0.5 for
the tabu list factor, 0.7 for the CP reset probability, 100 for α and 1200 for β.

5.3.2 Experimental Results

This section presents the results produced by a number of experiments that were performed
during and after the development of the hybrid algorithm. Additionally, at the end of
this section a comparison between the gathered results and results from existing heuristic
and exact solution techniques is drawn.

During the development of the hybrid algorithm for the employee scheduling problem
additional components were added in multiple development stages. Several experiments
were performed in between those development stages to track changes in the perfor-
mance of the algorithm. The following subsections report on results that were obtained
throughout the most important development stages.

Early Experiments using Simple Local Search

In early development phases there was no iterated local search procedure included in the
algorithm. Basically the embedded local search that is described in 4.4 was solely used
to solve the problem instances without any hybridization techniques and no construction
heuristic. A simple random restart mechanism was included that restarted search with
an empty solution after a given iteration limit. Experiments were conducted using a
tabu list factor of 1.0 and an iteration limit of 80000. Table 5.7 shows the results of
benchmark runs from this development stage using a time limit of 10 minutes.

50

5.3. Experimental Evaluation of the Hybrid Approach

Table 5.7: Experimental results from the first development stage. The columns show
results that were produced by the algorithm in five independent runs, where each run
had a time limit of 10 minutes. Results formatted in bold face denote proven optimal
solutions.

Run 1 Run 2 Run 3 Run 4 Run 5
Instance 1 607 607 607 607 607
Instance 2 926 929 925 928 922
Instance 3 1013 1018 1011 1013 1020
Instance 4 1722 1717 1716 1721 1721
Instance 5 1339 1341 1252 1252 1255
Instance 6 2459 3261 2658 2746 2556
Instance 7 1380 1395 1388 1375 1383
Instance 8 2339 2441 2332 2347 2333
Instance 9 719 613 691 699 595
Instance 10 5176 5254 5203 5278 5103
Instance 11 3794 4198 3885 3779 4411
Instance 12 6248 6552 6538 6677 8319
Instance 13 8978 9101 8966 8919 9579
Instance 14 - - - - -
Instance 15 12967 - - - -
Instance 16 - - - - -
Instance 17 - - - - -
Instance 18 - - - - -
Instance 19 - - - - -
Instance 20 - - - - -
Instance 21 - - - - -
Instance 22 - - - - -
Instance 23 - - - - -
Instance 24 - - - - -

51

5. Experimental Evaluation

While those early experiments already produced decent solutions for the smaller instances,
the algorithm could not produce feasible solutions for many of the larger instances.

Introducing Iterated Local Search with a CP based Perturbation

With the utilization of iterated local search techniques together with a perturbation
procedure based on constraint programming, the algorithm could produce good results also
for larger instances. In this stage a simple construction heuristic was implemented that
generated an initial solution by simply filling the scheduling horizon greedily with shifts
assignments based only on the cover requirements of the problem instance. Additionally,
a basic variant of the acceptance mechanism that is described in section 4.7.2 was used
that only considered cost changes produced by the violation of soft constraints.

To investigate the effects of the CP based perturbation procedure, at this development
stage another variant of iterated local search was also considered, using a simple random
perturbation strategy that just randomly reassigns conflicted cells.

Results which were produced using the CP based perturbation procedure are displayed in
table 5.8 and 5.9. Results which were produced using the random perturbation procedure
are displayed in tables 5.10 and 5.11. Table 5.12 compares the best results produced
by both variants with results produced by a state of the art heuristic that is based on
ejection chains. Additionally, the box plot in figure 5.1 shows a visualized comparison of
the best outcomes for instances 1-13 scaled towards the best known solutions [Cur14].

The results from this development stage already provided promising results for many
of the instances. The variant using a constraint programming based perturbation was
able to determine good solutions and in many cases beats the heuristic based on ejection
chains from the literature. However, at this stage the algorithm was not able to produce
any feasible solution within a time limit of 60 minutes for instances 20-22.

Final Experiments

In the last phase of development the construction heuristic was extended to generate an
initial solution that tries to satisfy as many hard constraint as possible. Additionally,
the acceptance mechanism as well as the evaluation function were extended to consider
changes in cost and the number of conflicted cell assignments. Details about the applied
construction heuristic can be found in section 4.6. Information about the evaluation
function and the acceptance mechanism can be found in sections 4.2 and 4.7.2.

The first set of experiments with the final implementation can be seen in tables 5.13 and
5.14. The following parameter values were used for those experiments: Tabu list factor
= 1.0, CP reset probability = 0.1, α = 100, β = 1000.

In the first set of the final experiments, the completed hybrid algorithm already was able
to solve all of the instances and could improve many results that were produced by the
state of the art heuristic based on ejection chains.

52

5.3. Experimental Evaluation of the Hybrid Approach

Table 5.8: Results produced using a CP based perturbation under a time limit of
10 minutes. The columns show results that were produced by the algorithm in five
independent runs. Results formatted in bold face denote proven optimal solutions.

Run 1 Run 2 Run 3 Run 4 Run 5
Instance 1 607 607 607 607 607
Instance 2 828 828 828 828 828
Instance 3 1001 1003 1001 1003 1001
Instance 4 1724 1734 1730 1722 1734
Instance 5 1238 1247 1238 1237 1244
Instance 6 2246 2245 2353 2357 2251
Instance 7 1187 1187 1187 1078 1078
Instance 8 1635 1929 1549 1668 -
Instance 9 461 461 468 455 462
Instance 10 4967 4769 4853 4769 4769
Instance 11 3567 3571 3459 3475 3473
Instance 12 4820 4856 4647 5024 4629
Instance 13 3461 3638 3921 3576 3527
Instance 14 1762 1668 1860 2085 -
Instance 15 5677 - 5470 4861 5522
Instance 16 3869 - 4151 4246 -
Instance 17 7237 - 7035 7121 7527
Instance 18 - - 6618 5944 -
Instance 19 7491 - 7473 7665 6551
Instance 20 - - - - -
Instance 21 - - - - -
Instance 22 - - - - -
Instance 23 - 480064 485916 493543 498007
Instance 24 1208758 1264847 1208465 1202862 1212804

After the algorithm’s parameters were tuned with irace, an extended set of experiments
was conducted. For those experiments, ten repeated runs per instance were performed
within a time limit of 10 minutes and five repeated runs per instance were performed
within a time limit of 60 minutes.

The final results can be seen in tables 5.15 and 5.16. Table 5.17 shows a comparison of
the best results acquired with state of the art results that use heuristic methods and
exact approaches based on integer programming. A visual comparison of the best results
from state of the art methods and the hybrid solver is shown in figure 5.2.

The final results show that the proposed hybrid solver is able to produce better results
than the ejection chain based heuristic for all instances except for instance 24. Figure
5.2 shows a visualization of the best results from both algorithms scaled against the best

53

5. Experimental Evaluation

Table 5.9: Results produced using a CP based perturbation under a time limit of
60 minutes. The columns show results that were produced by the algorithm in two
independent runs. Results formatted in bold face denote proven optimal solutions.

Run 1 Run 2
Instance 1 607 607
Instance 2 828 828
Instance 3 1001 1002
Instance 4 1717 1718
Instance 5 1235 1236
Instance 6 2268 2165
Instance 7 1084 1072
Instance 8 1452 1446
Instance 9 455 455
Instance 10 4750 4851
Instance 11 3551 3462
Instance 12 4228 4216
Instance 13 3006 2767
Instance 14 1512 1615
Instance 15 4980 4737
Instance 16 - 3636
Instance 17 6710 6606
Instance 18 6118 5604
Instance 19 4573 5464
Instance 20 - -
Instance 21 - -
Instance 22 - -
Instance 23 332659 321094
Instance 24 942501 955883

known upper bounds. An application of the wilcoxon signed-rank test over the scaled
best results under the hypothesis that the median of the outcomes produced by the
hybrid approach is less then the median of the outcomes produced by the ejection chain
heuristic results in a p-value of almost 1. Therefore, it can be assumed that the proposed
hybrid approach performs significantly better than the state of the art heuristic under a
very high probability.

Furthermore, the hybrid approach delivers competitive results also when compared with
results produced by state of the art exact methods. The obtained results are comparable
with those produced by Gurobi for all of the considered instances and the hybrid approach
could further improve results for eight of the instances.

Additionally, new upper bounds could be acquired for instances 19-24 by giving the

54

5.3. Experimental Evaluation of the Hybrid Approach

Table 5.10: Results produced using a random perturbation procedure under a time limit
of 10 minutes. The columns show results that were produced by the algorithm in five
independent runs. Results formatted in bold face denote proven optimal solutions.

Run 1 Run 2 Run 3 Run 4 Run 5
Instance 1 607 607 607 607 607
Instance 2 829 828 828 828 828
Instance 3 1001 1003 1001 1003 1003
Instance 4 1723 1721 1724 1723 1722
Instance 5 1247 1245 1342 1244 1247
Instance 6 2254 2345 2453 2257 2351
Instance 7 1176 1176 1280 1278 1278
Instance 8 - - - - -
Instance 9 555 560 466 469 470
Instance 10 - 5076 4973 5167 4960
Instance 11 3578 3580 3672 3580 3672
Instance 12 4736 - 4736 4538 -
Instance 13 3639 3750 3647 3921 3568
Instance 14 - - - - -
Instance 15 - - - - -
Instance 16 4057 4057 - - 4151
Instance 17 - - 7121 7237 6902
Instance 18 - - 5525 - -
Instance 19 6654 - - - -
Instance 20 - - - - -
Instance 21 - - - - -
Instance 22 - - - - -
Instance 23 507211 - 494133 488156 488396
Instance 24 1264847 1211463 1264847 1208465 1215276

hybrid approach an extended time limit of three days. The current best bounds that are
known for all instances are available at [Cur14].

55

5. Experimental Evaluation

Table 5.11: Results produced using a random perturbation procedure under a time limit
of 60 minutes. The columns show results that were produced by the algorithm in two
independent runs. Results formatted in bold face denote proven optimal solutions.

Run 1 Run 2
Instance 1 607 607
Instance 2 828 828
Instance 3 1003 1003
Instance 4 1718 1719
Instance 5 1237 1240
Instance 6 2258 2159
Instance 7 1178 1180
Instance 8 1886 -
Instance 9 479 475
Instance 10 4997 4875
Instance 11 3494 -
Instance 12 4768 -
Instance 13 3066 2801
Instance 14 - -
Instance 15 - -
Instance 16 - -
Instance 17 6916 -
Instance 18 - 5509
Instance 19 - 4748
Instance 20 - -
Instance 21 82541 -
Instance 22 - -
Instance 23 320788 332659
Instance 24 940803 -

56

5.3. Experimental Evaluation of the Hybrid Approach

Table 5.12: This table compares the best results produced by a CP based perturbation with
the best results that were produced using a random perturbation technique. Additionally,
results produced by a metaheuristic method from the literature [CQ14] based on ejection
chains are displayed. Results formatted in bold face denote proven optimal solutions.

Instance CP perturbation Random perturbation Ejection Chain [CQ14]
10 min 60 min 10 min 60 min 10 min 60 min

Instance 1 607 607 607 607 607 607
Instance 2 828 828 828 828 923 837
Instance 3 1001 1001 1001 1003 1003 1003
Instance 4 1722 1717 1721 1718 1719 1718
Instance 5 1237 1235 1244 1237 1439 1358
Instance 6 2245 2165 2254 2159 2344 2258
Instance 7 1078 1072 1176 1178 1284 1269
Instance 8 1549 1446 - 1886 2529 2260
Instance 9 455 455 466 475 474 463
Instance 10 4769 4750 4960 4875 4999 4797
Instance 11 3459 3462 3578 3494 3967 3661
Instance 12 4629 4216 4538 4768 5611 5211
Instance 13 3461 2767 3568 2801 8707 3037
Instance 14 1668 1512 - - 2542 1847
Instance 15 4861 4737 - - 6049 5935
Instance 16 3869 3636 4057 - 4343 4048
Instance 17 7035 6606 6902 6916 7835 7835
Instance 18 5944 5604 5525 5509 6404 6404
Instance 19 6551 4573 6654 4748 6522 5531
Instance 20 - - - - 23531 9750
Instance 21 - - - 82541 38294 36688
Instance 22 - - - - - 516686
Instance 23 480064 321094 488156 320788 - 54384
Instance 24 1202862 942501 1208465 940803 - 156858

57

5. Experimental Evaluation

1.0

1.1

1.2

1.3

Ejection Chains ILS ILS+CP

S
ol

ut
io

n
co

st
 d

iv
id

ed
 b

y
be

st
 k

no
w

n
co

st

Figure 5.1: This figure compares the best results produced by iterated local search using
a CP based perturbation (ILS+CP) and a random perturbation technique (ILS) with the
best results from the ejection chain based metaheuristic (Ejection Chains). Only results
for instances 1-13 have been taken into account because the result set regarding larger
instances was incomplete for some of the algorithms. Results were scaled against the all
time best known solutions (available at [Cur14]), where a value of 1.0 means that the
best known solution could be reached.

58

5.3. Experimental Evaluation of the Hybrid Approach

Table 5.13: First set of results produced using the complete hybrid algorithm within a
time limit of 10 minutes. The columns show results that were produced by the algorithm
in five independent runs. Results formatted in bold face denote proven optimal solutions.

Run 1 Run 2 Run 3 Run 4 Run 5
Instance 1 607 607 607 607 607
Instance 2 829 828 828 828 828
Instance 3 1003 1003 1003 1003 1004
Instance 4 1815 1720 1722 1719 1722
Instance 5 1237 1240 1241 1245 1243
Instance 6 2250 2155 2266 2250 2163
Instance 7 1080 1087 1189 1283 1086
Instance 8 1658 1844 1663 1652 1863
Instance 9 460 462 466 473 459
Instance 10 4887 4864 4884 4865 4860
Instance 11 3483 3477 3474 3467 3482
Instance 12 5346 5148 5153 5153 5280
Instance 13 3548 4089 3543 3536 3659
Instance 14 1544 1433 1741 1544 1939
Instance 15 5688 5463 5860 5368 5671
Instance 16 4258 3850 4071 3664 4258
Instance 17 7345 7325 8147 7325 7313
Instance 18 5921 5611 5921 5611 6643
Instance 19 5838 5068 5147 5509 5838
Instance 20 9957 - 10132 10847 10006
Instance 21 - - - 43355 -
Instance 22 - - 211956 - -
Instance 23 267836 269953 260760 260703 260341
Instance 24 844619 783109 - 792434 877646

59

5. Experimental Evaluation

Table 5.14: First set of results produced using the complete hybrid algorithm within a
time limit of 60 minutes. The columns show results that were produced by the algorithm
in two independent runs. Results formatted in bold face denote proven optimal solutions.

Run 1 Run 2
Instance 1 607 607
Instance 2 828 828
Instance 3 1003 1001
Instance 4 1718 1718
Instance 5 1239 1239
Instance 6 2066 2149
Instance 7 1106 1181
Instance 8 1550 1534
Instance 9 459 456
Instance 10 4680 4778
Instance 11 3473 3486
Instance 12 4455 5164
Instance 13 3530 3424
Instance 14 1530 1541
Instance 15 4890 5069
Instance 16 3759 3749
Instance 17 6506 6605
Instance 18 5615 5600
Instance 19 4922 5417
Instance 20 7006 7569
Instance 21 23571 23622
Instance 22 54087 63284
Instance 23 53322 55081
Instance 24 246570 251360

60

5.3. Experimental Evaluation of the Hybrid Approach

Table 5.15: Experimental results using the hybrid algorithm’s final version within a time
limit of 10 minutes. The columns show results that were produced by the algorithm in
ten independent runs. Results formatted in bold face denote proven optimal solutions.

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
Inst. 1 607 607 607 607 607 607 607 607 607 607
Inst. 2 828 828 828 828 828 828 828 828 828 828
Inst. 3 1003 1003 1001 1003 1003 1003 1003 1002 1002 1002
Inst. 4 1720 1719 1719 1721 1722 1721 1716 1722 1723 1719
Inst. 5 1249 1245 1242 1243 1246 1244 1237 1237 1150 1246
Inst. 6 2247 2156 2251 2249 2164 2250 2145 2161 2161 2154
Inst. 7 1182 1095 1171 1177 1091 1191 1090 1183 1172 1176
Inst. 8 1644 1548 1661 1668 1655 1554 1567 1647 1644 1662
Inst. 9 454 459 465 462 456 455 464 461 461 459
Inst. 10 4871 4866 4660 4955 4859 4761 4769 4878 4863 4878
Inst. 11 3478 3472 3479 3470 3488 3475 3476 3476 3478 3570
Inst. 12 4519 4429 4833 4338 4746 4636 4535 4430 4733 4535
Inst. 13 3468 3671 3157 3365 3552 3577 3631 3755 3458 3652
Inst. 14 1632 1626 1731 1623 1450 1743 1728 1637 1733 1430
Inst. 15 5052 5280 4967 5467 4871 4943 4943 5056 4971 4962
Inst. 16 4062 4258 4253 4151 3834 3834 4165 4366 4248 3754
Inst. 17 7214 7335 7017 7014 7621 7020 6724 7010 7520 6720
Inst. 18 5914 5995 5813 5400 6005 6112 5920 5519 6113 6717
Inst. 19 5192 5555 5185 5085 4780 5166 4861 5269 5171 5166
Inst. 20 11591 9162 9583 10575 9365 8763 12253 10575 9591 9595
Inst. 21 33163 - 168833 - 48304 52630 51383 - 53872 42602
Inst. 22 - - - - - 192946 - - - -
Inst. 23 199376 195233 198980 189850 195744 196694 199194 201523 202131 227209
Inst. 24 534093 525837 526984 519173 522333 522182 523493 520832 525675 527633

61

5. Experimental Evaluation

Table 5.16: Experimental results using the hybrid algorithm’s final version within a time
limit of 60 minutes. The columns show results that were produced by the algorithm in
five independent runs. Results formatted in bold face denote proven optimal solutions.

Run 1 Run 2 Run 3 Run 4 Run 5
Instance 1 607 607 607 607 607
Instance 2 828 828 828 828 828
Instance 3 1002 1001 1001 1001 1002
Instance 4 1718 1716 1717 1717 1717
Instance 5 1156 1236 1147 1241 1236
Instance 6 2150 2050 2148 2070 2148
Instance 7 1093 1087 1100 1086 1084
Instance 8 1566 1554 1470 1464 1552
Instance 9 456 456 454 461 454
Instance 10 4763 4667 4766 4676 4761
Instance 11 3465 3467 3473 3460 3457
Instance 12 4348 4308 4332 4549 4338
Instance 13 3149 2961 3319 3269 3249
Instance 14 1529 1535 1432 1530 1528
Instance 15 4851 4570 5056 4770 5064
Instance 16 3847 3756 3748 3853 3949
Instance 17 6909 6609 6800 6894 6900
Instance 18 5523 5787 5696 5611 5416
Instance 19 4544 4639 4543 4693 4364
Instance 20 7216 6654 6895 6992 7078
Instance 21 - 25599 23162 28265 22549
Instance 22 - 56587 49218 48382 69274
Instance 23 41158 38337 39011 38957 38614
Instance 24 177037 177833 180891 194325 191083

62

5.3. Experimental Evaluation of the Hybrid Approach

Table 5.17: This table compares the best results produced with the proposed hybrid
approach with results produced by methods from [CQ14]. Results formatted in bold face
denote proven optimal solutions.

Instance Hybrid Solver Ejection Chain Branch & Price Gurobi10 min 60 min 10 min 60 min
Instance1 607 607 607 607 607 607
Instance2 828 828 923 837 828 828
Instance3 1001 1001 1003 1003 1001 1001
Instance4 1716 1716 1719 1718 1716 1716
Instance5 1150 1147 1439 1358 1160 1143
Instance6 2145 2050 2344 2258 1952 1950
Instance7 1090 1084 1284 1269 1058 1056
Instance8 1548 1464 2529 2260 1308 1323
Instance9 454 454 474 463 439 439
Instance10 4660 4667 4999 4797 4631 4631
Instance11 3470 3457 3967 3661 3443 3443
Instance12 4338 4308 5611 5211 4046 4040
Instance13 3157 2961 8707 3037 - 3109
Instance14 1430 1432 2542 1847 - 1280
Instance15 4871 4570 6049 5935 - 4964
Instance16 3754 3748 4343 4048 3323 3233
Instance17 6720 6609 7835 7835 - 5851
Instance18 5400 5416 6404 6404 - 4760
Instance19 4780 4364 6522 5531 - 5420
Instance20 8763 6654 23531 9750 - -
Instance21 33163 22549 38294 36688 - -
Instance22 192946 48382 - 516686 - -
Instance23 189850 38337 - 54384 - -
Instance24 519173 177037 - 156858 - -

63

5. Experimental Evaluation

●

●

1.0

1.5

2.0

Ejection Chains Hybrid Approach

S
ol

ut
io

n
co

st
 d

iv
id

ed
 b

y
be

st
 k

no
w

n
co

st

Figure 5.2: This figure compares the best results that were produced by the proposed
hybrid approach with the best results produced by a state of the art heuristic method
which is based on ejection chains [CQ14]. Results were scaled against the all time best
known solutions (available at [Cur14]), where a value of 1.0 means that the best known
solution could be reached. (One massive outlier for the ejection chain based heuristic at
point 13.63 has been removed for formatting reasons.)

64

CHAPTER 6
Conclusion

In this thesis two novel solution methods have been proposed to solve a well known
variant of the employee scheduling problem.

The first approach introduced for the first time a partial weighted Boolean maximum
satisfiability model for an employee scheduling problem. With the proposed model, a
number of maxSAT instances were generated using four different cardinality constraint
encoding methods. Additionally, the effects of the different cardinality encoding methods
have been compared on two leading maxSAT solvers. It has been shown that there is a
need to experimentally select an efficient combination of cardinality constraint encodings
for each solver separately. A comparison between the two solvers could not point out a
clear winner for all of the considered benchmark tests. While WPM3 performed better
on smaller instances, Optiriss was able to produce better results for many of the larger
instances.

Currently an exact approach based on integer programming provides better results than
maxSAT for most of the considered instances. However, maxSAT could provide optimal
solutions for two of the instances and obtained solutions for two very large instances
within four hours, which could not be solved by integer programming within one hour.
Therefore, as nowadays different maxSAT solvers are available and their performance
is consistently improving, exact maxSAT techniques can be useful for solving employee
scheduling problems in the future.

The second approach that has been proposed in this thesis introduced a novel method of
using iterated local search together with a constraint programming based perturbation
function. Within this method, appropriate search neighborhoods from the literature
have been combined and utilized using a min conflicts based local search as well as a
novel construction heuristic. Furthermore, we introduce a novel constraint programming
approach for solving sub-problems of the considered employee scheduling problem. The
approach has delivered very good results for the considered employee scheduling problem.

65

6. Conclusion

Parameters have been tuned using an automatic parameter tuning software and an
empirical evaluation has shown that the results can compete with both heuristic as well
exact methods that have been proposed in the recent literature. Further, results produced
by state of the art techniques were improved for 6 out of 24 problem instances. With
the use of the hybrid approach five new unknown upper bounds for the instances from
[Cur14] have been provided.

Possible improvements and extensions concerning the proposed maxSAT model could be
subject of future work. For example, it would be interesting to investigate if symmetries
can be broken. Apart from that, using the results of the simplified instances as a starting
point for local search could be beneficial and a hybridization of maxSAT with heuristic
techniques within the framework of very large neighborhood search could be considered.
Regarding the hybrid approach it would be interesting to investigate the performance
of other techniques that could be used within iterated local search instead of constraint
programming. For example, one could also consider the use of maxSAT as a perturbation
method.

66

List of Figures

4.1 An illustration of a shift change neighborhood move. 25
4.2 An illustration of a vertical cell swap neighborhood move. 26
4.3 An illustration of a horizontal cell swap neighborhood move. 26
4.4 Examples for block moves of the shift change, vertical cell swap, and horizontal

cell swap neighborhoods. 27
4.5 Example for a minimum consecutive shifts constraint violation and its corre-

sponding conflicted cells. 29

5.1 Comparison of the best results produced by iterated local search using a CP
based perturbation and a random perturbation technique with the best results
from the ejection chain based metaheuristic. 58

5.2 Comparison of the best results produced by the proposed hybrid approach
with results produced by state of the art solutions. 64

List of Tables

5.1 Details about the benchmark instances from [CQ14]. 42
5.2 Overview on the number of generated variables as well as the hard- and

soft-clauses for all the cardinality constraint/encoding pairs for instance five. 44
5.3 Best results found by Optiriss using different combinations of cardinality

encodings. 45
5.4 Best results found by WPM3 using different combinations of cardinality

encodings. 46
5.5 The final results obtained for Instance 1-21 using WPM3 and Optiriss, using

the selected cardinality constraint encodings. 47
5.6 Elite candidate parameter configurations determined by irace. 50

67

5.7 Experimental results from the first development stage. 51
5.8 Results produced using a CP based perturbation under a time limit of 10

minutes. 53
5.9 Results produced using a CP based perturbation under a time limit of 60

minutes. 54
5.10 Results produced using a random perturbation procedure under a time limit

of 10 minutes. 55
5.11 Results produced using a random perturbation procedure under a time limit

of 60 minutes. 56
5.12 Comparison of the best results produced by a CP based perturbation with

the best results that were produced using a random perturbation technique. . 57
5.13 First set of results produced using the complete hybrid algorithm within a

time limit of 10 minutes. 59
5.14 First set of results produced using the complete hybrid algorithm within a

time limit of 60 minutes. 60
5.15 Experimental results using the hybrid algorithm’s final version within a time

limit of 10 minutes. 61
5.16 Experimental results using the hybrid algorithm’s final version within a time

limit of 60 minutes. 62
5.17 Comparison of the best results produced by the proposed hybrid approach

with results produced by state of the art solutions. 63

68

List of Algorithms

4.1 Min conflicts heuristic with tabu list . 31

4.2 Employee swap algorithm . 32

4.3 Employee improvement algorithm . 32

4.4 Day improvement algorithm . 33

4.5 Constraint programming algorithm . 35

4.6 Construction heuristic for employee scheduling 36

4.7 Select cells for CP search algorithm . 39

4.8 Iterated local search for employee scheduling 40

69

Glossary

Glossary

branch and bound Branch and bound is an algorithm design paradigm that uses a
systematic enumeration of candidate solutions. Branches of the search tree are only
enumerated if estimated lower and upper bounds can be produced by the candidate
solutions of the branch [RvBW06]. 33, 34

conjunctive normal form A Boolean logic formula is in conjunctive normal form if it
is a conjunction of clauses, where a clause is a disjunction of literals [BHvMW09].
12

constraint programming Constraint programming is a programming paradigm where
relations between variables are stated in form of constraints [RvBW06]. 3, 8, 11,
12, 23, 33–35, 37–39, 52, 65, 66

constraint propagation Constraint propagation methods try to enforce local consis-
tency conditions in constraint satisfaction problems. Local consistency conditions
are properties related to the consistency of subsets of variables and constraints
[RvBW06]. 11, 33, 34

construction heuristic A construction heuristic starts with an empty solution and
repeatedly extends the current solution using heuristics until a complete solution is
obtained [GK06]. 23, 36–38, 50, 52, 65

decision variables The main variables of a problem are called decision variables. The
aim of the problem is to decide which values should be assigned those variables
[BHvMW09]. 9, 15, 18

dynamic programming Dynamic programming is a method for solving a complex
problem by breaking it down into a collection of simpler subproblems and solving
each of those subproblems just once [RvBW06]. 11

ejection chains Ejection chain methods describe heuristic search techniques, that chain
together sequences of paired steps as their search moves. The first component of

71

each paired step always creates an inducement for further change, while the second
component tries to restore the solution [Glo96]. 2, 9, 11, 52, 57

forward checking Forward checking is a look ahead mechanism for backtracking search.
After each variable assignment, it checks whether other variables can take values
that are consistent with the assignment [RvBW06]. 12, 34, 49

hill climbing Hill climbing is an iterative algorithm that starts with an arbitrary solution
to an optimization problem and attempts to find a better solution by incrementally
changing a single element of the solution [HS04]. 11

integer programming Integer programming deals with solution strategies for mathe-
matical optimization problems in which some or all of the variables are restricted
to be integers [RvBW06]. 2, 9, 41, 42, 47, 48, 53, 65

iterated local search Iterated local search defines a modification of local search. An
iterative sequence of perturbing a solution and then performing local search enhances
the possibilities of the search to escape local optimal solutions [LMS01]. 3, 23, 33,
37, 39, 49, 50, 52, 65, 66

local search Local search algorithms move from solution to solution in the search space
by applying local changes, until a supposedly optimal solution is found or a time
limit has passed [HS04]. 12, 23–25, 27, 28, 30, 31, 33, 35, 37, 38, 48–50, 65, 66

mathematical programming Mathematical programming means to use mathematical
optimization models in order to assist in taking problem related decisions [RvBW06].
1, 8, 9

maximum satisfiability problem The maximum satisfiability problem is the problem
of determining the maximum number of clauses of a given Boolean formula that
can be made true by an assignment of truth values [BHvMW09]. 1

metaheuristic A metaheuristic describes a higher-level heuristic designed to obtain good
solutions for optimization problems. Such a heuristic makes only few assumptions
about the concrete problem being solved and can therefore be used for a variety of
different problems [GK06]. 1, 2, 8, 9, 57, 58, 67

min conflicts heuristic The min conflicts heuristic is a heuristic repair algorithm that
tries to improve candidate solutions by performing neighborhood moves that reduce
the number of conflicts in the given solution [MJPL92]. 28, 30, 31, 37, 65

NP-hardness NP-hard problems denote a class of problems in complexity theory that
are considered to be at least as hard as any problem in the class NP. NP includes
problems that are solvable in non deterministic polynomial time [PGW+96]. 1, 12

72

satisfiability problem The Boolean satisfiability problem is the problem of determining
if there exists a truth value assignment that satisfies a given formula [BHvMW09].
1

simulated annealing Simulated annealing is a probabilistic metaheuristic to approxi-
mate the global optimum of a function [GK06]. 12, 38

tabu search Tabu search is a metaheuristic method, that tries to escape local optima
by preventing the repetition of recently or frequently performed search moves in
local search [GK06]. 12

variable depth search A variant of local search, where multiple neighborhood moves
are allowed within one search step [Glo96]. 11

73

Acronyms

Acronyms

CNF conjuctive normal form. 12, Glossary: conjunctive normal form

CP constraint programming. 11, 31, 33, 49, 52, Glossary: constraint programming

DIMACS center for discrete mathematics & theoretical computer science. 43

ILS iterated local search. Glossary: iterated local search

IP integer programming. 2, 9, 11, Glossary: integer programming

maxSAT maximum satisfiability problem. 1–3, 8, 12, 13, 15–17, 19–21, 41, 43, 44, 47,
48, 65, 66, Glossary: maximum satisfiability problem

SAT satisfiability problem. 1, 8, 12, 13, Glossary: satisfiability problem

VDS variable depth search. 11, Glossary: variable depth search

75

Bibliography

[ADG15] Carlos Ansótegui, Frédéric Didier, and Joel Gabàs. Exploiting the structure
of unsatisfiable cores in maxsat. In Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, pages 283–289, 2015.

[aH00] Harald Meyer auf’m Hofe. Solving rostering tasks as constraint optimization.
In Practice and Theory of Automated Timetabling III, Third International
Conference, PATAT 2000, Konstanz, Germany, August 16-18, 2000, Se-
lected Papers, pages 191–212, 2000.

[ANOR09] Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-
Carbonell. Cardinality networks and their applications. In Theory and
Applications of Satisfiability Testing - SAT 2009, 12th International Con-
ference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings,
pages 167–180, 2009.

[BC14] Edmund K. Burke and Timothy Curtois. New approaches to nurse rostering
benchmark instances. European Journal of Operational Research, 237(1):71–
81, 2014.

[BCP+08] Edmund K. Burke, Timothy Curtois, Gerhard F. Post, Rong Qu, and Bart
Veltman. A hybrid heuristic ordering and variable neighbourhood search
for the nurse rostering problem. European Journal of Operational Research,
(2):330–341, 2008.

[BCQB10] Edmund K. Burke, Timothy Curtois, Rong Qu, and Greet Vanden Berghe.
A scatter search methodology for the nurse rostering problem. JORS,
61(11):1667–1679, 2010.

[BCQB13] Edmund K. Burke, Timothy Curtois, Rong Qu, and Greet Vanden Berghe.
A time predefined variable depth search for nurse rostering. INFORMS
Journal on Computing, 25(3):411–419, 2013.

[BGM+10] Andreas Beer, Johannes Gärtner, Nysret Musliu, Werner Schafhauser,
and Wolfgang Slany. An ai-based break-scheduling system for supervisory
personnel. IEEE Intelligent Systems, 25(2):60–73, 2010.

77

[BGSV15] Miquel Bofill, Marc Garcia, Josep Suy, and Mateu Villaret. Maxsat-based
scheduling of B2B meetings. In Integration of AI and OR Techniques in
Constraint Programming - 12th International Conference, CPAIOR 2015,
Barcelona, Spain, May 18-22, 2015, Proceedings, pages 65–73, 2015.

[BHvMW09] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applica-
tions. IOS Press, 2009.

[BLQ10] Edmund K. Burke, Jingpeng Li, and Rong Qu. A hybrid model of integer
programming and variable neighbourhood search for highly-constrained
nurse rostering problems. European Journal of Operational Research,
203(2):484–493, 2010.

[CQ14] Tim Curtois and Rong Qu. Computational results on new staff scheduling
benchmark instances. Technical report, ASAP Research Group, School of
Computer Science, University of Nottingham, NG8 1BB, Nottingham, UK,
October 2014.

[Cur14] Timothy Curtois. Staff scheduling benchmark instances, 2014. http:
//www.cs.nott.ac.uk/~psztc/NRP/index.html, Accessed: 2016-
03-07.

[dBBB+13] Jorne Van den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeule-
meester, and Liesje De Boeck. Personnel scheduling: A literature review.
European Journal of Operational Research, (3):367–385, 2013.

[DM14] Emir Demirovic and Nysret Musliu. Modeling high school timetabling as
partial weighted maxsat. In LaSh 2014: The 4th Workshop on Logic and
Search (a SAT / ICLP workshop at FLoC 2014), July 18, Vienna, Austria,
2014.

[EJKS04] Andreas T. Ernst, Houyuan Jiang, Mohan Krishnamoorthy, and David
Sier. Staff scheduling and rostering: A review of applications, methods and
models. European Journal of Operational Research, (1):3–27, 2004.

[GK06] Fred W. Glover and Gary A. Kochenberger. Handbook of metaheuristics,
volume 57. Springer Science & Business Media, 2006.

[Glo96] Fred Glover. Ejection chains, reference structures and alternating path
methods for traveling salesman problems. Discrete Applied Mathematics,
65(1):223–253, 1996.

[GO15] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2015.

[HS04] Holger H Hoos and Thomas Stützle. Stochastic local search: Foundations
& applications. Elsevier, 2004.

78

http://www.cs.nott.ac.uk/~psztc/NRP/index.html
http://www.cs.nott.ac.uk/~psztc/NRP/index.html

[Kir84] Scott Kirkpatrick. Optimization by simulated annealing: Quantitative
studies. Journal of Statistical Physics, 34(5-6):975–986, 1984.

[KKMS15] Lucas Kahlert, Franziska Krüger, Norbert Manthey, and Aaron Stephan.
Riss solver framework v5. 05. SAT-Race, 2015.

[LD10] Ailsa H. Land and Alison G. Doig. An automatic method for solving discrete
programming problems. In 50 Years of Integer Programming 1958-2008 -
From the Early Years to the State-of-the-Art, pages 105–132. 2010.

[LIDLSB11] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, and Mauro
Birattari. The irace package, iterated race for automatic algorithm configu-
ration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre
de Bruxelles, Belgium, 2011.

[LMS01] Helena R Lourenço, Olivier Martin, and Thomas Stützle. A beginner’s
introduction to iterated local search. In Proceedings of MIC, volume 2,
pages 1–6, Porto, Portugal, July 2001.

[max15] Max-sat evaluation 2015, 2015. http://www.maxsat.udl.cat/15/,
Accessed: 2016-22-07.

[MJPL92] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird.
Minimizing conflicts: A heuristic repair method for constraint satisfaction
and scheduling problems. Artif. Intell., 58(1-3):161–205, 1992.

[MML14] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-wbo: A
modular maxsat solver,. In Theory and Applications of Satisfiability Testing
- SAT 2014 - 17th International Conference, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings,
pages 438–445, 2014.

[Mus06] Nysret Musliu. Heuristic methods for automatic rotating workforce schedul-
ing. International Journal of Computational Intelligence Research, 2(4):309–
326, 2006.

[PGFP09] Javier Puente, Alberto Gomez, Isabel Fernández, and Paolo Priore. Medical
doctor rostering problem in a hospital emergency department by means of
genetic algorithms. Computers & Industrial Engineering, 56(4):1232–1242,
2009.

[PGW+96] Christos H. Papadimitriou, Oded Goldreich, Avi Wigderson, Alexander A.
Razborov, and Michael Sipser. The future of computational complexity
theory: part I. SIGACT News, 27(3):6–12, 1996.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of
Constraint Programming, volume 2 of Foundations of Artificial Intelligence.
Elsevier, 2006.

79

http://www.maxsat.udl.cat/15/

[Sin05] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality
constraints. In Principles and Practice of Constraint Programming - CP
2005, 11th International Conference, CP 2005, Sitges, Spain, October 1-5,
2005, Proceedings, pages 827–831, 2005.

[Stü97] Thomas Stützle. Lokale suchverfahren für constrain satisfaction probleme:
die min conflicts heuristik und tabu search. KI, 11(1):14–20, 1997.

80

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aims of this Thesis
	Main Results
	Organization

	Problem Statement and Related Work
	Problem Definition
	Related Work
	Background on applied Solution Techniques

	Modeling the Employee Scheduling Problem as Partial Weighted MaxSAT
	Decision Variables
	Cardinality Constraints
	Modeling of Hard Constraints

	A Hybrid Approach for the Employee Scheduling Problem
	Problem Representation
	Evaluation of Solutions
	Search Neighborhoods for Employee Scheduling
	Local Search Methods for Employee Scheduling
	Constraint Programming for Employee Scheduling
	A Construction Heuristic for Employee Scheduling
	An Iterated Local Search for Employee Scheduling

	Experimental Evaluation
	Experimental Environment
	Experimental Evaluation of the MaxSAT Model
	Experimental Evaluation of the Hybrid Approach

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Acronyms
	Bibliography

