
DIPLOMARBEIT

A new Tabu Search Framework and it’s Application

Ausgeführt am Institut für

Informationssysteme (184),
Database and Artificial Intelligence Group (184/2)

der Technischen Universität Wien

unter der Anleitung von: O.Univ.Prof. Dr. Georg Gottlob
Univ.Ass. Dr. Nysret Musliu

durch

Michael Mörz

Hans Kutra Gasse 10/2
1210 Wien

7, November 2006
Michael Mörz

ii

Abstract

In the area of computer science heuristics are very important when it comes to
solving NP hard problems. Though they neither provide an accurate method of
finding a solution nor a provable approximation like Approximation algorithms,
they nevertheless find reasonable good solutions to NP hard problems usually
while consuming a reasonable amount of computation time and memory.

A well known class of Heuristic methods are Local Search techniques. Those
techniques focus on starting with a solution, creating a neighbourhood for the
solution by applying small changes to the solution, evaluating the solutions of
the neighbourhood and choosing a solution of the neighbourhood for the next
iteration. The algorithm terminates when the termination condition is fulfilled.

Whenever a problem is solved with Tabu Search in a program the structural
and algorithmic definitions of Tabu Search have to be implemented. A solution
to avoid reimplementing Tabu Search again and again, is to create a framework
providing a basic design for Tabu Search. To remove the cumbersome process of
defining those structural and algorithmic definitions the framework of this thesis
provides an object oriented design for Tabu Search. In order to utilise it the
developer has to subclass four classes and implement their missing functionality.
Basically those four classes provide the following problem dependent information
to the framework: how to store a possible solution for the given problem, how to
evaluate such a solution regarding its fitness, how to represent a move operation
on a solution and how to generate a neighbourhood by creating move operations.
The rest of the Tabu Search framework can be used like a black box, taking the
four classes as an input, and solving the given problem.

The state of the art research already provides us with a set of Modern Heuris-
tic frameworks. Some of those frameworks are either already specialized on Tabu
Search or they provide a limited, but functional Tabu Search algorithm. Neither
of them provides a design for frequency memory. Therefore an enhancement of
the framework in this thesis is to remove the negligence of frequency memory.
So the framework of this thesis provides an approach for storing and querying
frequency information. In addition it also provides the developer with tools for
managing a list of elite solutions.

In order to verify the frameworks capability to handle Tabu Search algo-
rithms, a NP-complete problem from literature has been chosen and an example
program has been successfully implemented which solves the selected problem.

iii

iv

German Kurzfassung

Im Gebiet der Informatik sind Heuristiken besonders wichtig, wenn es um die
Lösung von NP harten Problemen geht. Obwohl diese weder eine akurate Meth-
ode noch eine approximative, wie Approximative Algorithmen, zum Finden
einer Lösung sind, können sie dennoch verhältnismäßig gute Lösungen inner-
halb einer akzeptablen Zeit und mit akzeptablem Zeit- und Speicher-Verbrauch
finden.

Eine bekannte Klasse von Algorithmen der Heuristic ist die Technik der
Lokalen Suche. Diese basiert auf folgenden Schritten: Beginn mit einer
möglichen Lösung, Erzeugung deren Nachbarschaft durch das Anwenden von
kleinen Änderungen an der Lösung, Evaluierung der Lösungen und dem Neube-
ginn mit einer besseren Lösung. Wenn keine bessere gefunden werden kann, oder
eine ausreichend gute Lösung gefunden wurde, terminiert der Algorithmus. Ein
bekanntes Beispiel aus der Literatur für die Lokale Suche ist die Tabu Suche
und mit dieser beschäftigt sich diese Diplomarbeit.

Sobald ein Program mittels Tabu Search ein Problem lösen soll, muß die
Struktur und der Algorithmus von Tabu Search implementiert werden. Das
Framework dieser Diplomarbeit erleichtert diesen Prozeß durch ein objektori-
entiertes Design, welches die Basis der Struktur und den Algorithmus für Tabu
Search definiert. Um dieses Framework zu verwenden, müssen vier neue Klassen
von vier abstrakten Klassen des Frameworks abgeleitet werden, damit folgende
problemspezifische Informationen an das Framework weitergegeben werden: wie
eine mögliche Lösung für das gegebene Problem gespeichert wird, wie eine de-
rartige Lösung bezüglich ihrer Fitness evaluiert wird, wie eine Move Operation
repräsentiert wird und wie eine Nachbarschaft durch Move Operationen erzeugt
wird. Der Rest des Frameworks kann als Black Box gesehen werden, welche die
vier Klassen als Input nimmt und als Output die Lösung des Problems liefert.

Der heutige Stand der Technik stellt uns bereits einige Moderne Heuristik
Frameworks zur Verfügung. Einige dieser Frameworks sind entweder auf Tabu
Suche spezialisiert oder stellen einen funktionellen aber eingeschränkten Tabu
Suche Algorithmus bereit. Keines dieser enthält ein Design für das Speich-
ern von Informationen über Auftrittshäufigkeit. Deshalb stellt das Framework
dieser Diplomarbeit als Erweiterung im Vergleich mit dem heutigen Stand der
Technik eine Möglichkeit für das Speicher und Abfragen von Frequenz Informa-
tionen bereit. Zusätzlich wird auch noch ein Design zum Verwalten von elitären
Lösungen zur Verfügung gestellt.

Um die Anwendbarkeit dieses Frameworks für Tabu Suche zu überprüfen,
wurde ein NP-complete Problem aus der Literatur gewählt, welches durch ein
Beispiel Programm mit Hilfe des Frameworks erfolgreich gelöst worden ist.

v

vi

Acknowledgements

Firstly, I want to express my thanks towards my supervisors Prof. Dr. Georg
Gottlob and Ass. Dr. Nysret Musliu. Without their help including but not
limited to their assistance, constructive criticism and invaluable support, this
diploma thesis would not have been possible.

I would also like to thank the people of the university in general, especially
the staff members I came in contact with during my computer science education.
Their variety of understanding in the area of computer science heavily influenced
the way I perceive computer science nowadays, which helped me creating this
thesis as it is.

Last but by no means least I want to thank my family. My parents for their
unfaltering support. Without their guidance and advice my life so far would not
have been as gratifying. My brother for his help by reviewing my work and his
helpful suggestions. My mother in law for looking after my little daughter giving
me the time to create this thesis. My wife for her support, encouragement and
guidance whenever I started to get distracted with less important things than
my thesis. My little daughter just for being and giving her love freely whenever
I needed a little day off time.

vii

viii

Contents

1 Introduction 1

2 Basics and state of art 5
2.1 Tabu Search . 5

2.1.1 A short description of the algorithm 5
2.1.2 Moves . 7
2.1.3 Tabu memory . 7
2.1.4 Intensification and Diversification 8
2.1.5 Aspiration . 9

2.2 Frameworks . 9
2.2.1 Object orientation . 10
2.2.2 UML . 12
2.2.3 Definition of Frameworks 19
2.2.4 Validation . 20
2.2.5 Development . 20
2.2.6 Design Patterns . 21
2.2.7 Meta Patterns . 22
2.2.8 Modelling Patterns . 22
2.2.9 Design Issues . 22

2.3 State of the art Meta Heuristic frameworks 23
2.3.1 OpenTS . 23
2.3.2 EasyLocal++ . 24
2.3.3 HOTFRAME . 25
2.3.4 Templar . 27
2.3.5 TSF . 29
2.3.6 OptLets . 29
2.3.7 HSF . 31
2.3.8 Localizer++ . 31
2.3.9 INCOP . 31
2.3.10 GAILS . 32

3 Design 33
3.1 The design requirements . 33
3.2 Creating the Design . 34

3.2.1 Recency information . 36
3.2.2 Frequency information . 36

3.3 Design Tools . 36
3.4 The design of the framework . 36

ix

x CONTENTS

3.4.1 A first view on the framework 36
3.4.2 Details of the design . 39

3.5 Implementation . 57
3.6 C++ . 58
3.7 Implementation Specifics . 59

4 Application of the framework - A case study 61
4.1 An example problem . 61

4.1.1 Rotating workforce scheduling 62
4.1.2 Solving rotating workforce scheduling 63
4.1.3 Results . 66

5 Conclusion, Questions and Perspectives 71

Appendices 73

A Example Problem Source Code 73
A.1 The main part . 74
A.2 The solution representation . 75
A.3 The objective function . 79

A.3.1 Neighbourhood generation 83
A.4 Move . 84
A.5 CSwapShiftMoveIterator . 86

B Installation 91

C Execution 93

Bibliography 95

List of Figures

2.1 UML class diagram . 14
2.2 UML class diagram with inheritance 14
2.3 UML class diagram associations 14
2.4 UML class diagram aggregation and composition 14
2.5 UML object diagram . 17
2.6 UML use case diagram . 17
2.7 UML state diagram . 17
2.8 UML sequence diagram . 17
2.9 UML communication diagram . 18
2.10 UML component diagram . 18
2.11 UML deployment diagram . 18
2.12 class diagram of OpenTS . 26
2.13 class diagram of EasyLocal++ by Gaspero and Schaerf [6] 26
2.14 class diagram of Templar by Jones[21] 28
2.15 class interaction diagram of Templar by Jones[21] 28
2.16 framework architecture of TSF by Hoong et. al [25] 30

3.1 Overview UML class diagram . 38
3.2 UML class diagram of the interfaces 42
3.3 UML class diagram of the Object class 42
3.4 Counter UML class diagram . 42
3.5 TabuSearch UML class diagram 46
3.6 Solution and related classes UML class diagram 46
3.7 UML class diagram of memory related classes 53
3.8 Move package UML class diagram 53

xi

xii LIST OF FIGURES

List of Tables

4.1 One typical week schedule for 9 employees by Mörz and Musliu
[27] . 63

4.2 solution schedule for Problem 1 67
4.3 solution schedule for Laporte . 67
4.4 solution schedule for Hellerplan 68
4.5 solution schedule for 27-Groups 69
4.6 examples result statistics . 69

xiii

Chapter 1

Introduction

Nowadays computer science is an ever growing area which influences common
day life more and more. One of it’s most prominent questions is to be found in
theoretical computer science: The relationship between the complexity classes
P and NP. This is studied in computational complexity theory which is con-
cerned about the required resources for the computation of a solution for a
given problem. The most interesting resources for research are:

• Memory consumption, inquiring how much memory it will consume to
solve the problem.

• Time, measuring how many steps it takes to solve a problem.

In the context of the computational complexity theory the class P can be
explained according to Ausiello et. al [1] as: Class P consists of all those decision
problems that can be solved on a deterministic Turing machine in an amount
of time that is polynomial in the size of the input.

Ausiello et. al [1] also detail class NP that consists of all those decision
problems whose positive solutions can be verified in polynomial time given the
right information, or equivalently whose solution can be found in polynomial
time on a non-deterministic Turing machine.

So one of the biggest open questions in theoretical computer science concerns
the relationship between those classes:

Is P equal to NP?

Actually this is a question that is not answered yet. Decades of research just
have proven that it is a very difficult question, and today some computer scien-
tist even believe that the question may be independent of the currently accepted
axioms, and therefore impossible to prove or disprove. Afterall this diploma the-
sis cannot answer this question, yet it is concerned with methods for solving NP
hard problems as explained below.

As Ausiello et al. [1] show: in complexity theory, the NP-complete problems
are the most difficult problems in NP, in the sense that they are the ones most
likely not to be in P. The reason is that if you could find a way to solve a NP-
complete problem quickly, then you could use that algorithm to solve all NP
problems quickly.

1

2 CHAPTER 1. INTRODUCTION

As presented NP-complete problems are not directly solvable in an exact
manner by computers within a feasible amount of time. To alleviate this prob-
lem other ways to find a solution are needed. Therefore other approaches like
randomized search, approximation algorithms, heuristics or metaheuristics have
been devised.

According to Vazirani [36] an approximation algorithm solves NP hard prob-
lems in polynomial time, but normally provides non-optimal solutions, with a
provable solution quality and within provable run time bounds.

A heuristic is a replicable method or approach for directing one’s attention in
learning, discovery, or problem-solving. It is originally derived from the Greek
“heurisko”, the verb which Archimedes’ famous exclamation of “eureka” was
derived from, which means “I find”. In contrast to approximation algorithms,
heuristics are only concerned to find reasonably good solutions in a reasonable
amount of time, but offer no performance guarantee.

A metaheuristic is a heuristic method for solving a very general class of
computational problems by combining user-given black-box procedures, usually
heuristics themselves, in a hopefully efficient way. Actually meta is again a
Greek word which means “beyond”.

An advanced and well known modern metaheuristic search technique class
is Local Search. That is a collection of several methods that have a special
structure for solving problems. According to Michalewicz and Fogel [28] Local
Search techniques have the following steps in common:

1. Pick a solution from the search space and evaluate it’s merit. Define this
as the current solution.

2. Apply a transformation to the current solution to generate a new solution
and evaluate its merit.

3. If the new solution is better than the current solution, exchange it with
the current solution; otherwise discard the new solution.

4. Repeat steps 2 and 3 until no transformation in the given set improves
the current solution.

While this structure shows a basic Local Search algorithm, there exist more
sophisticated local search algorithms like tabu search, simulated annealing and
others. They have in common that they step from one solution to another in
the space of candidate solutions, which is also called the search space.

The class of problems solvable by Local Search can be formulated as finding
a solution maximising or minimising a criterion among a number of candidate
solutions.

A mathematical notation expressing a broad class of the solvable problems of
Local Search algorithms is now given as a basis for a discussion of Local Search
and Tabu Search features. As proposed by Glover and Laguna [16] the class
of problems can be characterised as minimising or maximising a function f(x)
subject to x ∈ X , where f(x) may be linear or non-linear, and the set X sum-
marises constraints on the vector of decision variables x. The constraints may
include linear or non linear inequalities, and may compel all or some components
of x to receive discrete values.

Taking that definition of a problem and utilising Local Search, each x ∈ X

has got a neighbourhood N(x) ⊂ X , and each solution x′ ∈ N(x) is reached by

3

an operation called move. When applying that mathematical notation to the
presented structure of Local Search algorithms the resulting structure definition
is:

1. Pick a x ∈ X to start the search

2. Define N(x)

3. Find the best x′ where x′ ∈ N(x)

4. If no such x′ can be found or time bound is exceeded terminate, otherwise
go to 2.

This Thesis is concerned with Tabu Search, which is a heuristic algorithm
and a Local Search technique, offers several useful features as outlined in detail
by chapter 2.1. Some of the most useful features are for example:

• determinism - starting at a specific point, the search will always make the
same steps and end in the same solution. Therfore the path of search can
be reconstructed just by a giving a starting solution.

• dynamic neighbourhood - even when a solution is visited more than once,
it’s neighbourhood is very likely to be different than the last times, since
the list of tabu moves will be different.

• avoids cycles when the tabu tenure is set properly.

Anyway the basic structure of Tabu Search is always the same according to
the nature of heuristics. So whenever a problem is solved with Tabu Search
the complete structure and algorithm has to be written from scratch. Therefore
everyone implementing Tabu Search has to spend time on creating a design
and implementing it. Afterwards, the implementation has to be tested and
errors have to be fixed. So creating a Tabu Search implementation is known
to be an error prone task like any other programming task. Moreover, one
cannot benefit from the design and implementation ideas of others easily. This
is neither a technological nor economical feasible situation. To alleviate that
situation, software reuse is utilised. Two important forms of software reuse are
libraries and frameworks.

Still, there is a big distinction between libraries and frameworks, since the
former is normally concerned about function reuse and the latter is about design
reuse. Therefore they provide different sets of capabilities as outlined later in
chapter 2.2. A very important feature concerning reuse is how much time the
developer has to spend on learning how to use the reusable software component
properly. According to Mohamed Fayad et. al [10] frameworks need more time
to be learned using them compared to libraries. Although that is a disadvantage,
frameworks are much more flexible since they try to provide the user with a
generic design avoiding to limit the user to a specific functionality. Anyway
the line between libraries and frameworks is rather fuzzy, therefore it is hard to
distinguish if a software is one or the other, because it might offer features of
both approaches.

That leads to the interesting question whether it is possible to reduce the
work needed to create a Tabu Search algorithm by providing some sort of library.
Because Tabu Search has got a basic structure and algorithm, it might imply

4 CHAPTER 1. INTRODUCTION

that an implementation as a library or framework might be beneficial. Actually
it is, as the sheer number of state of the art frameworks for heuristics might
suggest. Their details are outlined in chapter 2.3.

The intention of this diploma thesis is not to simply design and implement
an other framework for Tabu Search, but to give a framework for Tabu Search
that has been extended with a feature not yet seen in any of the state of the art
frameworks. That feature is implemented in the form of a new design part which
has not yet been used by state of the art frameworks. This is accomplished by
providing the developer with tools for extracting frequency information. The
developer is given the possibility to query how often a specific move or solution
has been visited in the past of the search process.

To ease legibility personal pronouns are limited to the male gender through-
out the text, although female gender is also referred by them.

This thesis starts with an explanation of the Tabu Search algorithm and its
features. The basic structure and algorithm of Tabu Search is outlined. Since
several people contributed and influenced the evolution of this algorithm the
most important ideas are explained. Afterwards the topic “frameworks” and
their significance is discussed along with a general overview about the design of
frameworks. Then necessary tools are explained like object orientation, which
is used in frameworks, and the Unified Modelling Language, that is frequently
utilised to describe object oriented designs. Then chapter 2 is concluded with an
overview about the state of the art heuristic and metaheuritic frameworks. Some
of those frameworks are solely committed to Tabu Search, some of them provide
additional algorithms besides Tabu Search and some of them are metaheuristic
frameworks without an explicit implementation of Tabu Search.

Following the presentation of all those details, chapter 3 concentrates on
the object oriented design of the framework of this thesis. It starts with the
initial design requirements that have been proposed prior to creating the design.
Those are then compared with the state of the art frameworks and similarities
and differences are outlined. Then an overview about the general interaction
between the classes is given. This is followed by an explanation of the interfaces
used. Afterwards each class is explained in detail by describing it’s attributes,
methods and the way they are expected to interact with other classes. As a
conclusion the implementation specifics regarding C++ and linux are given.

To verify that the framework is truly capable of handling Tabu Search ap-
plications, a program has been written solving a NP-hard problem by utilising
the framework of this diploma thesis. The problem solved by the program is
a NP-complete problem from literature, which is explained in chapter 4 along
with the implementation specifics of the program. Afterwards the results of the
program are given and compared to literature. Additionally the most important
parts of the source code of the program can be found in Appendix A along with
a in depth discussion.

The finishing touch is given at the end of the thesis when the conclusion and
perspectives are discussed. Additionally improveable areas of the framework are
pointed for possible future work.

Chapter 2

Basics and state of art

The following chapter starts with a description of the modern heuristic algorithm
called Tabu Search. It is followed by a characterisation of the general principles
of framework design. Afterwards an overview of the state of art work in the
combined area of both topics will be given.

2.1 Tabu Search

The modern heuristic, called Tabu Search, derives from Glover [15]. Others
have contributed to the algorithm by suggesting modifications:

• Reactive Tabu Search as explained by Battiti and Tecchiolli [2]

• strict Tabu Search introduced by Glover and Laguna [14]

• robust Tabu Search defined by Taillard [34].

According to Reeves [32] those contributions to the algorithm are still influencing
the evolution of the method and they are also responsible for the growing number
of successful applications. Therefore Tabu Search has become a powerful modern
heuristic technique.
The Oxford dictionary defines ’tabu’ as:

Its name tabu is derived from a Polynesian language where it is used to
indicate things that cannot be touched because they are sacred.

However, the most important connection to traditional use is the fact that
tabus are transmitted by means of social memory and can change over time.
And that is, what makes Tabu Search so different from other search techniques
- the search process is guided by the known past of it.

2.1.1 A short description of the algorithm

Before any specific details are given, the term “solution” has to be defined to
avoid any confusion, since in the context of this text that term is used with
relaxed definition. Therefore a “solution” does not necessarily mean to be a
final solution of the problem. A “solution” is just an element of the space of
candidate solutions presented in chapter 1.

5

6 CHAPTER 2. BASICS AND STATE OF ART

Tabu Search is a local search technique and therefore follows the local search
technique’s common structure as presented in chapter 1. Since the following
section gives an in depth discussion of the relationship of Tabu Search and
Local search, the common structure is listed again for a better understanding:

1. Create initial solution

2. Create neighbourhood for the chosen solution

3. Pick best solution in neighbourhood

4. If solution is not good enough, then continue at 2.; otherwise terminate
search.

Step 1 contains the challenging task to choose an initial solution. There are
two commonly used methods for finding such a solution. On one hand there
is randomisation which provides a completely random solution. On the other
hand there is the construction of a solution that satisfies a set of constraints.
This can be beneficial when the move operations are designed in a way that they
don’t disturb the already satisfied set of constraints, since it reduces the number
of computations necessary for finding a solution. Anyway it is impossible to
always fulfil all constraints by this method according to the nature of NP hard
problems.

As the structure shows, some part of it is repeated. In computer science
such a repetition of a process within a computer program can be called iteration
according to the Dictionary of Computer Science [23].

The constructed initial solution is the starting point for the iterative algo-
rithm. For a better understanding the starting solution of an iteration is called
the current solution. Therefore the first current solution must be the initial
solution. For each loop a neighbourhood of the current solution is created by
applying small changes with so called moves to the current solution. When a
move is applied, a look up in the memory of the Tabu Search takes place. If the
move is found in the tabu list there, it’ll be tabu, otherwise it’s non tabu. In
case it’s tabu, the move is ignored as long as there is no aspiration criteria that
overrides the tabu status. Since aspiration criteria is a rather complex topic it
is discussed in detail below in Aspiration Criteria 2.1.5. At the moment it’s just
necessary to know that aspiration criteria can override the tabu status and that
makes them useful for escaping local optima.

While creating the neighbourhood, a search for the best solution is conducted
within it. That solution is found by evaluating the solutions in respect to
the constraints that should be satisfied. When a better solution is found, the
algorithm starts over with that new solution. If there is no better solution,
further computations will be done which are outlined in greater detail in chapter
2.1.5.

Normally the iteration terminates when a threshold is reached like a max-
imum number of iterations, by finding a really good solution or by exceeding
some time limit.

An important difference of Tabu Search compared to other Local Search
techniques is it’s deterministic behaviour. A good definition for deterministic
is given by the Dictionary of Computer Science [23] as: deterministic means
permitting at most one next move at any step in computation. That implies that

2.1. TABU SEARCH 7

a deterministic computation in computer science is a computation that starting
with a specific initial state will always produce the same final state when given
the same input. Actually this is an important feature of Tabu Search that has
to be kept in mind when creating moves, constructing the neighbourhood and
choosing the next solution.

2.1.2 Moves

Creating the neighbourhood of a solution is essential for Local Search techniques
in general. That makes it an important topic that needs to be discussed in depth.

In Tabu Search small changes are applied to the current solution in order to
construct its neighbourhood. How and where those small changes are induced,
is defined in operators that are so called moves. Therefore a move is making
small changes to a solution, which creates a new solution in turn.

Such moves are not atomic and can be broken down into so called move
attributes. According to Michalewicz and Fogel [28] an attribute of a trial move
from xnow to a tentative solution xtrial can encompass any aspect that changes
as a result of the move. So a move attribute can be a specific change in the
solution’s features. For example that might be the change of a variable from
one value to an other. Therefore a move can consists of one or more attributes.
Attributes themselves may be a set of other attributes, though that doesn’t nec-
essarily mean that they contain more information that can be used to contribute
for a better search process.

Any attribute of a move may be broken down even further into so called
component attributes called from-attribute and to-attribute as shown by Fogel
and Michalewicz[28]. Those component attributes are taken from the attributes
of the xnow or the xtrial solution for the from- or the to-attribute accordingly.
This information is important when storing tabu information as described in
the following paragraphs.

Either a complete move is stored and it’s reversal is then forbidden, or the
move attributes that compose the move are stored and their reversal is forbidden.
Forbidden moves are called tabu. Storing the tabu state of the attributes of a
move gives the tabu evaluation a finer granularity, because moves that have
never been done before, may also be tabu. Forbidden move attributes are said
to be tabu active. The tabu status of those moves is caused by having one or
more tabu active attribute. This stems from the fact that they might contain
one or more move attribute that are tabu active.

2.1.3 Tabu memory

According to Glover [15] the memory structure in Tabu Search operates by
reference to four principal dimensions: quality, influence, recency and frequency.

• Quality stands for identifying elements that are common to good solutions
or paths that lead to them.

• Influence is about the impact of a choice to make a certain move. So it
records information about the impact to change a specific element.

• Recency stores the elements that have been changed in the past of the
ventured search path.

8 CHAPTER 2. BASICS AND STATE OF ART

• Frequency stores for each element, that has been modified in the past,
how often it has been changed.

There are two styles of memory used in Tabu Search and they are called
explicit and attributive. Explicit memory records complete solutions, which
is normally used for remembering very good solutions visited during the search
process. Those very good solutions are also called “elite solutions”. The purpose
of explicit memory is to expand the search by providing information that can
be analysed and applied to step to unvisited parts of the search space.

Quite in contrary attribute memory records the changes that where made
while advancing from one solution to the next. That information is used to guide
the search because it is utilised for inhibition or encouragement of following a
certain search direction.

So explicit and attribute memory is used to construct the short term and
the long term memory of Tabu Search. As their names suggest one stores
short term information and the other long term data about the search process.
Anyway both influence the generation of a modified neighbourhood N∗(x) which
is N∗ ⊂ N(x) where N∗(x) = {x′ ∈ N(x)|∀x′ that are not tabu}.

That shows the importance of the tabu classification which is normally stored
in short term memory when a simple Tabu Search algorithm is used. Once
an element is declared tabu and stored in short term memory, it modifies the
neighbourhood. To avoid blocking an element forever, the so called tabu tenure
has been introduced. That is a boundary that defines how many iterations an
element has a tabu classification. Accordingly this is a parameter that heavily
influences short term memory, since it defines how many elements it will contain.
For example a tabu tenure of 5 suggests that a chosen element is tabu for the
next 5 iterations. Therefore a maximum of 5 elements will be in the short term
memory. It is important to note that short term memory stores information in
the recency dimension of the four principal dimensions of Glover [15] mentioned
above. In contrast long term memory is used to store frequency information
and therefore operates in the frequency dimension.

2.1.4 Intensification and Diversification

Intensification is the encouragement of moves and solution features that have
been found good in the history of the search. It concentrates on examining the
neighbours of elite solutions, where neighbours are not only solutions that are
reachable by standard moves, but also solutions that have been created by the
components of good solutions. Since intensification needs the history of elite
solutions it is tightly linked to explicit memory.

The counterpart to intensification is diversification, since it focuses on ex-
ploring unvisited regions of the search space and on generating solutions signif-
icantly different to those seen before. This technique is important when trying
to escape from a local optimum.

A possible approach to the computation of a moves intensification or diver-
sification value is to analyse elite solutions, as already defined in chapter 2.1.3
and the moves that lead to them. When comparing the moves by breaking them
down into so called move attributes and comparing those, specific patterns can
be recognised about the move attributes as listed here:

2.2. FRAMEWORKS 9

1. move attributes that often lead to elite solutions can be said to have a
high intensification.

2. move attributes that don’t lead to elite solutions have a bigger diversifi-
cation.

2.1.5 Aspiration

When no better solution can be found within the neighbourhood of non tabu
solutions, the search is expanded into the space of tabu solutions as shown by
Glover and Taillard [17]. Aspiration criteria define the part of tabu solutions
that are examined; e.g. those might be removing tabu restriction when a move
yields a solution that is better than the best obtained so far.

Of course different aspiration criteria can lead to different tabu restrictions
to be removed and in turn different solutions could become non tabu. To decide
which of them takes precedence some sort of measurement is needed. One pos-
sibility is to create a static order of evaluation of aspiration criteria. An other
possible approach is to measure the significance of an aspiration criteria at a spe-
cific point in the search by calculating its influence. Fogel and Michalewicz[28]
show a precise definition for the influence of aspiration criteria: Influence mea-
sures the degree of change induced in solution structure or feasibility. They
add that high influence with it’s high degree of change is important for escaping
from local optima. So choosing between aspiration criteria also involves the cur-
rent search strategy regarding intensification and diversification. It may even go
beyond that by inducing a change to that strategy in favour of diversification.

Aspiration criteria can be split up into two categories: One so called move
aspiration revokes a move’s tabu restriction. The other is named attribute as-
piration meaning the revocation of a move attribute’s tabu active status.

Actually aspiration criteria are usually dynamic and adapt themselves to
the current situation of the search. For example an aspiration criteria using
influence tolerates moves of lower influence until the gain seems negligible. If
that is the condition and no improving moves can be found, the aspiration
criteria should shift towards influential moves.

When looking at tabu attributes and taking aspiration criteria into account,
a third state can be introduced as defined by Fogel and Michalewicz [28]: A
pending tabu attribute is an attribute where aspiration is satisfied and that is
otherwise tabu-active.

2.2 Frameworks

Nowadays reuse is a very important aspect not only in software development but
in system development in general according to Gamma et. al [11]. This stems
from the requirement to shorten the development time and money needed in
creating systems. The basic idea of reuse is to create a system by utilising
components that can be used again when building similar systems. Since those
components only need to be built once, the development time can be reduced
significantly, when the components have been created and documented properly.

Therefore the concept of “reuse” helps in software development, when it
saves time and effort by removing the ordeous task to recreate software that
already has been built once.

10 CHAPTER 2. BASICS AND STATE OF ART

Even when looking at simple software systems an inherent complexity can
be seen. According to Champlain and Patrick [5] two major paradigms have
dominated the software landscape to tackle that complexity.

The first and older paradigm divides development work into two distinct
parts:

• Identification of real world entities and mapping as structures or records
(data).

• Writing of subprograms to act upon the data (behaviour).

This method of development is called procedural approach. The primary disad-
vantage of this method is the separation of data and behaviour. This happens
when subprograms utilise global variables for sharing data and that leads to a
distribution of behaviour between those subprograms. Therefore difficulties can
arise when testing, debugging or maintaining procedural applications.

The second paradigm divides the development work into two very different
tasks:

• Identification of data and behaviour of real world entities and subsequent
encapsulation into a single structure called class.

• Creation of objects from the classes and interaction between those objects
for providing a solution to the given problem.

Therefore this paradigm is known as the object oriented approach, which can
provide reuse and it’s benefits.

2.2.1 Object orientation

As already explained, Object orientation itself is concerned with classes which
are structures that relate to real world entities. According to Booch and Grady
[3] detail how objects and classes interact and interrelate as given below. An
object is created from a class, which is also referred to as an instantiation of
the class. It consists of so called features, which can be split into attributes
and operations. The attributes represent the data of the real world entities and
the operations contain the behaviour of the real world entities. However, object
orientation does not only revolve around objects and classes, but also utilises
abstraction, inheritance, polymorphism and encapsulation for further describing
aspects of the object. Important parts are message sending, associations and
associations for detailing interactions and relationships between the classes and
objects.

Abstraction is to filter the object’s attributes and operations until only the
ones you need are left.

Inheritance is a special relationship between two classes, one referred to
as superclass, the other as subclass. The subclass inherits the features of the
superclass, meaning the subclass has got the attributes and operations of the
superclass.

Polymorphism only concerns operations with the same name throughout
different classes, when those operations differ in their internal working. For
example, open() can be an operation for a book, newspaper or a window. For

2.2. FRAMEWORKS 11

a newspaper and a book they are similar, but compared to a window, it’s quite
different and therefore polymorphism is needed to override the open() operation.

Encapsulation is the process of information hiding. Its intention is to hide
the way how an operation internally works. The advantage of this approach is
to reduce the amount of work needed when methods of a class malfunction due
to coding errors. Since the functionality is encapsulated within a method of an
object, most likely only the malfunctioning operation needs to be fixed and any
other classes interacting with that operation don’t need to be changed. The
set of operations a class presents to the outside can be called ”interface” of the
class.

Message sending is: Objects work together by sending messages to each
other. So one object sends a message to an other object which contains a
request to perform an operation and the other object executes it.

Associations are relationships between objects that can be uni- or bi- direc-
tional. An important attribute in this context is the multiplicity of an associa-
tion which defines how many objects of a class relate to one object of an other
class. Commonly used multiplicities are one-to-one and one-to-many.

Aggregation is a special kind of association, which describes that a set of
classes compose an other class. For example a car is consists of tires, the gear
stick, trunk, etc. and therefore the car is an aggregation of them. A strong
relationship between an aggregate object and it’s components, where the com-
ponents only exist within the composite object, is called composition.

Object Orientation was first introduced in a computer language by Smalltalk.
Since performance has always been crucially important, other languages that
aimed at performance were more widely accepted and used than Smalltalk. For
example C is such a language that was created by Dennis Ritchie in the early
1970s, but it doesn’t provide an object oriented approach. So Bjarne Stroustrup
designed C++ which is based on C and extends it with object orientation. Nev-
ertheless C++ doesn’t provide a complete ”everything is an object” approach,
like Smalltalk did. In C++ it’s rather an option that can, but doesn’t need to be
utilised. An even newer language is Java, which is known for it’s Just in Time
compilation feature, that allows execution of a program on a variety of plat-
forms and is mostly independent of its hardware features. Although Java was
built with object orientation in mind and forces the user to utilise classes and
objects, it still has got gaps in the object orientation like data types that aren’t
objects. A very recent language is C# utilising the ”everything is an object”.
Since computer hardware also has reached a certain speed, the penalty caused
by C# is going to be neglectable. Therefore C# is standing a good chance to
be widely accepted and utilised as a modern computer language. An other im-
portant factor of course is Microsoft, which has developed and introduced C#
and therefore has a high interest of making it a standard.

Not even the most powerful and perfect computer language can guarantee the
success of any software project nowadays, since they don’t focus on programming
anymore. In the early days of software development drafts were merely more
than something written on the back of a napkin, and programming the software
started right away. Today it’s crucially important that the client can see the
direction of the development and can correct it when the needs of the client
aren’t properly satisfied. An other important role plays the developer who
needs to know how he should do his work and also needs an understanding of
the “big picture” and how he should fit in his work. Therefore the client, who

12 CHAPTER 2. BASICS AND STATE OF ART

orders the software project and gives insights into his business process, talks
to the analyst. The analyst in turn creates a design and a documentation that
needs to be read by the client and by the programmer. Needless to remark that
this documentation needs to be understood by the client and the programmer
in the first place, otherwise the outcome wouldn’t be likely to be satisfying to
the client.

According to Schmuller [33] before the Unified Modelling Language (UML)
was defined, there has been no standard defined about how to design, create
and document a model for a software project.

As computer technology advances, software systems with higher complexity
can be implemented. So the questions arises how to get your hands around
the growing complexity. Schmuller [33] explains that the key is to organise
the design process in a way that the analyst, the client, the programmer and
others involved in system development understand and agree on it. The Unified
Modelling Language provides that organisation.

2.2.2 Unified Modelling Language (UML)

Grady Booch, James Rumbough and Ivar Jacobson are the initial creators of
UML. Each of them started their work independently from each other and im-
proved it by borrowing bits and pieces from each other’s methods. As employees
of Rational Software Corporation they started together their drafts about UML.
Those drafts found quite a good response in the software development area and
created feedback which induced changes to the draft. At that point many com-
panies found the idea of UML promising and so they founded the UML consor-
tium. Members of that consortium were Hewlett Packard, Microsoft, Oracle,
Texas Instruments, Rational and others. That consortium produced version 1.0
of the UML and all subsequent version.

UML itself is a modelling language that is composed of a variety of different
diagrams described below. Those diagrams can present different views of a
system describing a model of the system. Therefore UML provides a good way
to describe systems in general. The parts of UML presented below not only
give an overview about the capabilities of UML, but also try to go into detail
whenever it is necessary for understanding the description of the diploma thesis
framework design later on.

Class Diagram

A class diagram is used to model object oriented design. A class is represented
by a rectangle, where the top contains it’s name, the middle it’s attributes
and the bottom it’s operations. The attribute or operation section can be left
empty or not present at all, but that doesn’t imply that the class necessarily
lacks attributes or operations. It just expresses that they’re not shown. Because
that might be confusing to the reader the attribute or operation section might
be terminated with a . . . in order to signal that not all attributes or operations
are shown. That process is called an ellipsis and the verb for it is to elide. A
good example for a class is presented in figure 2.1 (a). It shows a single car
class, with attributes for the number of doors, the vendor and the gasoline load
and methods for starting/stopping the engine, breaking and steering. Whereas
in figure 2.1 (b) an ellipsis of the same class can be seen.

2.2. FRAMEWORKS 13

As the explanation of object orientation already has shown, it not only
consists of classes, but also several other parts. So their definition in UML is
detailed in the following paragraphs.

Inheritance which is also called generalisation in UML, because the super-
class generalises the subclass. So a child or so called subclass inherits the at-
tributes and operations from a parent or so named superclass. In the diagram
this is represented by a line running from the child to the parent that ends with
a triangle pointing to the parent as shown in figure 2.2.

A special case is a class that has got no parents and therefore it’s called
a base or root class. An other special case is a class lacking children, which
is called leaf class. In addition to those cases a differentiation between single
inheritance and multiple inheritance is also conducted, the former for classes
having got only one parent, the later for classes having more than one parent.
A further special case is a so called abstract class, which is a class that doesn’t
provide objects.

A different kind of relationship compared to the ones explained so far is the
so called dependency. A dependency shows that the signature of an operation
is using an other class. In the diagram it is represented by a dashed line leading
from the operation to the class ending with an arrow head pointing to the class.

As previously mentioned associations can be uni- or bi- directional. Further
bi-directional associations can be split into uni-directional ones as shown in
figure 2.3 by (a) as the bi-directional and (b) the uni-directional case for the
relationship between a tee-shirt and it’s sleeves. Additionally the association
can have a name expressing the relationship, so that it can be read like: a tee-
shirt has got a sleeve or a sleeve belongs to a tee-shirt. The multiplicity of an
association can be shown by writing it’s numbers at the ends of the association,
e.g.: A customer of a garage can have one or more cars (one-to-many) and a
car can have one customer (one-to-one). One or more is a special case that is
encoded with a * in UML. Figure 2.3 (c) shows that customer - car association
in an UML diagram.

An aggregate class’s association to a set of component classes is also called
“whole part” association in UML. It is represented by a line running from the
component class to the “whole part” class ending with a diamond as can be
seen in figure 2.4 (a).

As already defined, a composite is a strong type of aggregation, which is
shown by the same symbol as the aggregation with the exception that the dia-
mond is filled as can be seen in figure 2.4 (b).

An interfaces consists of a set of operations, which define specific behaviour
and are accessible by other classes. The relationship between an interface and
a class is called realisation, because the class has to ”realise” the behaviour of
the operations of the interface by implementing them. In the class diagram this
is expresses by a dashed line between the class and the interface ending with a
triangle pointing to the interface.

Every class feature has a level of visibility, which defines the accessibility of
the feature by other classes.

1. The public level is accessible by all classes.

2. The protected level only by classes inheriting from the original class.

3. The private level is only accessible by the original class itself.

14 CHAPTER 2. BASICS AND STATE OF ART

car
- vendor : string
- doors : int
+ enginestart()
+ enginestop()
+ break()
+ stear()
+ accellerate()

(a) (b)

Figure 2.1: UML class diagram

FocusAstraC
ar

Figure 2.2: UML class diagram with inheritance

TshirtSleevehas_aTshirtSleevehas_abelongs_to Car1*Customer
(a) (b) (c)

Figure 2.3: UML class diagram associations

CarEngineTire TshirtSleeveBody
(a) (b)

Figure 2.4: UML class diagram aggregation and composition

2.2. FRAMEWORKS 15

In the diagrams public attributes and operations are prefixed by a ’+’, pro-
tected ones by a ’#’ and private ones by a ’-’. An example for the different
levels of accessibility can be seen in figure 2.1 which only shows private at-
tributes, one protected method called and the rest of the operations are public.
Following list of notation conventions concerning the name construction for at-
tributes and operations, which are introduced in Schmuller [33], have been used
throughout the paper:

• The name of a class begins with an uppercase letter

• A multi word class name runs all the words together, and each word begins
with an uppercase letter.

• The name of a feature (attribute or operation) begins with a lowercase
letter

• A multi word feature name runs all the words together, and each word
begins with an uppercase letter except for the first one.

• A pair of parentheses follows the name of an operation.

This naming schema allows an easier and quicker distinction between classes
and their features, which is perhaps overkill in a diagram, but when the imple-
mentation in a programming language starts, it improves legibility.

Object Diagram

As we already know, an object is an instance of a class. Figure 2.5 shows the
representation of an object in UML. It’s a rectangle with an underlined name
where the left part before the colon is the object name and the right part is
the class name. Anonymous objects can be defined by providing the class name
only as seen in figure 2.5 with the Tires class. The necessity for object diagrams
might not be directly visible, because class diagrams might provide the same
information. Still they can show information that cannot be represented within
class diagrams by describing a special case and the way the objects interact
with each other.

Use Case Diagram

A use case diagram describes a system from the user’s point of view. Therefore
it gathers information about a system from the user’s standpoint. That explains
its importance for building a system when focusing on usability, which expresses
how good a user can use the system. Figure 2.6 shows the use case within the
rectangle and the little stick figure is the so called “actor”. In general the actor
can be a person or another system that initiates the use case. Important to
note is that the “actor” is always outside the use case.

State Diagram

State diagrams capture the state of objects and the transition between the
states. For example figure 2.7 shows the starting, ignition and running of the
engine.

16 CHAPTER 2. BASICS AND STATE OF ART

Sequence Diagram

Since objects interact with each other in a running system, those interactions
need to be described too. This can be done by utilising sequence diagrams.
They capture the sequence of the messages getting sent between the objects. A
message sent from one object to an other is represented by an arrow leading from
the sending object to the receiving one. The time line is encoded in the vertical
dimension of the diagram. Processes, consuming time inside a class, are drawn
as rectangles on the time line of the corresponding object. As an example, figure
2.8 shows some of the interactions of the electronics, the gasoline pipe and the
engine.

When putting a scenario into a sequence diagram, a so called instance se-
quence diagram has been created. When including all of a use case’s scenarios
while creating the diagram, it is named generic sequence diagram. The UML
2.0 standard permits labelling of a sequence diagram by encapsulating it in a
box, tagging it with its name. This opens up the opportunity to replace re-
peating sequences by a single box with an inscribed sequence name in sequence
diagrams.

Communication Diagram

Describing how elements of a system work together, can not only be done by
utilising the so called sequence diagram shown in figure 2.8, but also by present-
ing the information in communication diagrams. As presented in figure 2.9 the
communication diagram shows the same information as the previously mention
sequence diagram, but instead of encoding time in a vertical direction, the order
of the messages is marked by numbers.

As the sequence and the communication diagram display show interactions
between objects, UML summarises them by the term ”interaction diagrams”.

Component Diagram

Today software development breaks software systems into components in order
to create the possibility of semi independent development. Since this is rather
important for team based development, it should be used when more than one
developer is going to implement the design described in UML. The figure 2.10
shows an example component.

Deployment Diagram

To present the physical structure of a computer based system, a deployment
diagram can be used. For example a system with two HP Proliant servers and
a NetApp storage machine can be seen in figure 2.11.

Conclusion

The Unified Modelling Language has been presented as a modern tool for cre-
ating and describing designs so that the analyst, the client, the developer and
others have a common basis for talking about a design of a system.

2.2. FRAMEWORKS 17

Audi:Car:Engine
Figure 2.5: UML object diagram

Car User

drive

Car

Figure 2.6: UML use case diagram

starting running

Figure 2.7: UML state diagram

:Electronics :Engine:GasolinePipe:SendGasoline()
:Ignite()

:UseGasoline()

Figure 2.8: UML sequence diagram

18 CHAPTER 2. BASICS AND STATE OF ART

:Electronics
:Engine :GasolinePipe3:UseGasoline()
2:UseGasoline()
1:SendGasoline()

Figure 2.9: UML communication diagram

component
An example

<<component>>

Figure 2.10: UML component diagram

HP Proliant DL385

NetApp FAS250

HP Proliant DL350

Figure 2.11: UML deployment diagram

2.2. FRAMEWORKS 19

2.2.3 Definition of Frameworks

Today frameworks try to provide developers with an object oriented design that
is aimed at reuse. Although that gives an idea about frameworks, it scarcely
describes them. So the main purpose of frameworks is best characterised by the
definition of Mohamed Fayad et. al [10]: ”A framework is a reusable design
of all or part of a system that is represented by a set of abstract classes and the
way their instances interact.”

Of course that definition does not provide a complete insight into all tasks
that are needed to create a framework. Nonetheless this gives a good hint
about the idea that is driving the creation of frameworks. Reuse, abstraction,
interaction and the design are however not the only topics that a good framework
should be concerned about.

As the definition states, frameworks have a static aspect of object interaction
which is predefined by the designer of the framework. So to some extent a
framework determines the overall structure and flow of any program that utilises
it.

An area that is most often covered with frameworks is Graphical User In-
terface (GUI) programming. Those kind of frameworks like to use the Mod-
el/View/Controller, also called MVC, concept. It was first introduced by Trygve
Reenskaug in the user interface of Smalltalk. Actually MVC is not a real de-
sign pattern, when definitions are applied precisely, since it’s not generically
applyable, but rather a specialisation for graphical user interfaces.

MVC splits up the software system into three entities: Model (for storing
the data), View (for presentation of the data) and Control (for the program
logic). Its goal is a flexible design of the program allowing to change or ex-
tend the functionality and to reuse single components. In addition it reduces
the complexity and therefore introduces an organisation and overview into the
overall design, that can be used to distribute roles for the different parts of the
model accordingly:

• Control - the software design is implemented by a programmer

• View - is created by a GUI designer

• Model - database experts take care of design and proper data storage.

Frameworks can ease and simplify development greatly when they provide
design patterns like the Model/View/Control example shows. But frameworks
do not only offer benefits. For example one drawback is their time consumption
when creating a framework, since more time has to be spent on building an
easily understandable and generic design and it’s documentation. Therefore
it also needs more knowledge when designing a good framework compared to
function libraries which are quite straight forward in development. Another
disadvantage is the time that is needed to learn using the framework, since it
normally takes more time compared to function libraries. One reason is the
need of more time and knowledge to created frameworks. An other reason is
learning to use a framework consumes more time than learning to use a method
library with a similar functionality. When taking this into account a framework
designer has to make a trade off between a higher degree of flexibility or a higher
easyness to learn utilising it.

20 CHAPTER 2. BASICS AND STATE OF ART

Creating a framework consists of more than just inventing a good design.
After the design is created, the following step is to validate it. Then the devel-
opment has to take place which not only includes programming, but also writing
of the documentation. At the end a real application can use the framework and
test if the framework is properly working. That information can influence an
other development cycle, stepping through the phases of framework development
again in order to refine the framework.

Several areas are of high importance, when the design is done. These are
usability, patterns, convenience, documentation and freedom as outlined in the
following subsections.

2.2.4 Validation

Validation is a topic that is rather difficult to tackle while designing a framework.
This stems from the fact that it is harder to validate generic components in the
abstract than to validate a part of a program.

The lack of standards regarding how to design, implement and document
frameworks is making validation a difficult task. In addition patterns of col-
laboration are not clearly shown in today’s programming languages. Therefore
they must be documented. So validating those patterns of collaboration links
the analysis of the source code to the analysis of the documentation.

2.2.5 Development

Usually development starts out by conducting a domain analysis, which needs
a number of examples to begin with. First those examples have be collected.
Then each of them is analysed and the extracted information is used to define
the domain of the framework.

A fundamental technique used in framework design is the so called white box
reuse and it’s counterpart the black box reuse. Whitebox reuse is concerned
with providing a basic structure for the user where the developer has to fill
in missing code. Most often the user has to create quite a lot on his own in
order to finish the functionality. Never the less the design structure reduces the
amount of work spent on designing. In contrast blackbox reuse is focused on
providing components that present the user an interface and an explanation of
the interface. How those components look like internally or what they really
do, is hidden from the user. Therefore, they are called blackbox cause they act
like a black box, getting some input from the user, doing something with it and
giving back the expected result.

The first version of the framework mostly consists of white box reuse com-
ponents. By implementing examples and by using the framework to build an
application, weak points of the framework can be found. The gathered experi-
ence then leads to improvements that can change pieces of the framework from
whitebox reuse design to blackbox reuse one.

Actually according to Fayad et. al [10] the only way to find out what is
wrong about a framework is to use it. Another important statement about the
development of frameworks by Fayad et. al [10] is that the development should
be conducted by a research group that is composed of different people than the
ones that are utilising the framework.

2.2. FRAMEWORKS 21

2.2.6 Design Patterns

According to Gamma et. al [13] Patterns in general give an architectural ab-
straction that has the following 4 features:

• Structure - interface of a set of basic elements as well as the static and/or
dynamic structures that relate to them in composition.

• Functionality - provides useful functionality

• Abstraction - identifies and names a composition of elements of a certain
internal structure and certain functionality.

• can be applied multiple times

One prominent design pattern for frameworks is the so called “hot spot”. It
stands for a flexible part of the framework that can be implemented by the user
in order to adapt the framework for a specific application. According to Fayad
et. al [10] a good framework documentation should outline the “hot spots” in
detail.

According to Fayad et. al [10] three different types of patterns are of use for
framework design:

• Design Patterns focus on technical design and implementation.

• Modelling Patterns focus on modelling.

• Meta Patterns focus on structural interrelationship.

Design Patterns are Alexandrian Patterns - they express solutions in an ab-
stract way. Whereas Modelling Patterns express solutions in non abstract, but
generally described classes.

Fayad et. al [10] explains that Framework design itself provides features at
two levels:

• domain features - domain relevant features useful for applications

• structural characteristics - features facilitating the adoption and evolution
of the framework.

The domain features researched help in creating an abstract domain model for
the framework. That model is important for understanding the framework and
needs to be defined in the frameworks documentation.

Design patterns are used to define designs. They can be split into three
categories:

• patterns dealing with flexible object creation

• patterns dealing with structural aspects of object systems

• patterns dealing with behavioural aspects of object systems

Generalising a solution leads to a design pattern. Describing the pattern
is tougher than finding it. Structural aspects are easier to describe than the
problem that is solved and the context in which it can be applied.

22 CHAPTER 2. BASICS AND STATE OF ART

2.2.7 Meta Patterns

Meta Patterns are defined according to a perspective on class methods. They
describe the structural interrelationship between the methods. In order to create
accurate Meta Patterns class methods need to be described accordingly. Class
methods in turn can be characterised according to two methods:

• hook method is a method that does nothing other than returning to its
caller, but is designed to be overridden in subclasses.

• template method provides either behaviour which can vary for subclasses
or avoids duplication of code or controls at which points subclassing is
allowed.

Depending on the content and context of the method, a method can be either
hook or template method or both.

Meta Patterns are applied in order to obtain abstract decoupling in a design
and they are developed in an analytical manner. They can be used to describe
Design Patterns.

2.2.8 Modelling Patterns

A Modelling Pattern is an abstraction of a small group of classes that is likely
to be helpful again and again according to Fayad et. al [10]. Some of them
can be used both when analysing a problem domain and when designing and
implementing software. Modelling Patterns are found by trial and error and by
observation.

2.2.9 Design Issues

In the early days of object-oriented class libraries the design was created for
programmers who wrote every line of application code themselves. Today visual
builders and wizards, present the programmer a GUI Interfaces and generate
much of the code. The generated classes are tied together by interfaces with a
minimum of handwritten code.

Therefore, today’s good frameworks must address visual programmers and
programmers who write all application code themselves. To satisfy both sets
of needs, the so called “part” has been designed. That “part” is a class with
special characteristics to support visual programming and code generation. The
part interface is composed into:

• attributes - provides access to selected properties of a part

• actions - provides access to selected behaviours of a part

• events - a means to notify other parts that something has changed within
a part.

One major difference between parts and classes is the capability to notify other
parts that something has changed within a part. Implementing that feature in
classes reduces that distinction. Another most widely felt difference between
ready to wear parts and tailor made classes is related to their different usage.
When using classes, the programmer uses subclassing to utilise their feature.

2.3. STATE OF THE ART META HEURISTIC FRAMEWORKS 23

In contrast, Visual Builders, which are Graphical User Interfaces used to create
source code from modelling patterns, provide features by the means of configu-
ration options.

When it comes to code generation the advantages and disadvantages of visual
builders can be seen easily. This can be done by comparing following three main
factors of framework design:

1. ease of coding

2. performance and size

3. robustness

Visual builders have the drawback that they impose some standards on how
classes have to look like. This may cause problems e.g. the type of a vari-
able in the definition of the interface can be incompatible with the needs of
the programmer. That problem could be solved by overloading the method in
question.

On the other hand, visual builders can show their strength when it comes
to complex refactoring like renaming class features.

Anyway if visual builders are utilised or not, the ultimate goal for a class
designer is reduction of complexity in the framework by reducing the number of
classes and the number of member functions that must be overloaded or called
to accomplish a task.

2.3 State of the art Meta Heuristic frameworks

Today there are several frameworks available that provide a design for modern
heuristic algorithms. Only a subset of those frameworks have been taken into
account since not all of them are capable of handling Tabu Search. Some of
those frameworks provide a basic design for Tabu Search and therefore ease the
implementation of Tabu Search algorithms. Others focus not on a single Meta
heuristic technique, but on topics like providing a design for a set of algorithms
and a hybridisation model for a set of several methods. The following section
focuses on those frameworks and will give an overview of them and present an
in depth analysis regarding their support for Tabu Search.

2.3.1 OpenTS

Harder [18] designed a Tabu Search framework called OpenTS that has been
implemented in Java. It uses object orientation and permits the implement of
a specific Tabu Search algorithm by deriving new classes from the framework
one’s. The key features of OpenTS are:

• Flexibility is provided by having the user provide her/his own data repre-
sentation for a solution and therefore avoiding to limit the user to prede-
fined data types.

• Black box reuse is offered for the central TabuSearch class and the tabu
list components. Though it’s still possible to derive user defined classes
with extended functionality.

24 CHAPTER 2. BASICS AND STATE OF ART

• The neighbourhood generation has to be defined by the user.

• Additional aspiration criteria can be created by the user.

• Integrated goal programming.

• Multidimensional fitness values can be utilised by the objective function
component.

In figure 2.12 you can see an UML diagram showing the structure of OpenTS.
As pointed out by Harder [19] the core classes that must be implemented by
the user, are the solution representation, the objective function, the move and
a move manager. The user can supply several different move types by creat-
ing more than one class that derives from Move. But the class derived from
MoveManager must be capable of handling all of those moves, since the Move-
Manager class doesn’t provide that capability. So this is left over for the user
to implement when all moves have to be taken into account in the same Tabu
Search algorithm. The class derived from Solution has to store a single solution
representation and must provide a clone() method that duplicates the solution
representation completely including the duplication of any referenced data. The
class derived from the ObjectiveFunction has to provide an evaluation method
that is capable of computing a fitness value for a given solution - move pair.

The framework provides a well defined interface for the interaction between
the classes. This is an advantage for understanding the interactions, but it limits
the user to that interface since there is no way to easily enhance the interactions.
Hence modifying the way the classes interact by extending or changing that
interface, is a very difficult task. For simple Tabu Search algorithms that may
not be needed, but in more complex scenarios this can become a substantial
drawback of the framework according to Hoong et. al [25].

Furthermore there is no utility for implementing a frequency based memory
dimension of Tabu Search as described by Glover and Laguna [14]. Additionally
breaking down moves into move attributes by utilising the ComplexMove class
restricts the composite attribute type to integer.

The framework concentrates on providing a very basic design for Tabu Search
algorithms around the most common features of Tabu Search.

2.3.2 EasyLocal++

Gaspero and Schaerf [6] present a framework named EasyLocal++. That frame-
work is not restricted to Tabu Search algorithms, but it is designed to be usable
for local search techniques in common. It’s key features can be described as:

• Predefined designs for several common metaheuristics like Simulated An-
nealing, Hill Climbing, Tabu Search are offered.

• Allows to utilise hybrid methods to solve problems.

• Blackbox reuse of the central core of the framework.

• Whitebox reuse of the predefined algorithms.

• New Algorithms can be defined and integrated easily in already existing
algorithms and programs.

2.3. STATE OF THE ART META HEURISTIC FRAMEWORKS 25

As Gaspero and Schaerf [7] explain, local search is a paradigm for optimi-
sation which is based on the idea of navigating the search space by iteratively
stepping from one state to one of it’s ”neighbours”. The Neighbourhood for a
state is composed by the states which are obtained by applying a simple change
to the current one. As OpenTS EasyLocal++ is also an object oriented frame-
work. So its core is composed of a set of cooperating classes. Each of them is
responsible for a different part of the search process. The developer, utilising
EasyLocal++, has to derive his own classes from a subset of those classes. As
Gaspero and Schaerf [6] mention, the classes in the framework can be split into
five categories:

• Data classes which store the state of the search space, the moves and the
input/output data.

• Helpers which perform actions related to some specific part of the search.
For example, the Neighbourhood Explorer is responsible for everything
concerning the neighbourhood.

• Runners are responsible for performing a run of a local search technique,
starting at an initial solution and leading to a final one.

• Solvers control the search by generating the initial solution and deciding
how and in which sequence, runners have to be activated.

• Testers represent a simple predefined interface of the user program and
shall be a help for debugging and testing the produced code.

Figure 2.13 provided by Gaspero and Schaerf [8] shows a structural overview
of architecture of the framework EasyLocal++.

The big advantage of the framework are the hybridisation models which
allow the utilisation of different Local Search techniques while solving a problem.
However the hybridisation capability is not perfect according to Breitschopf et.
al [4], because it lacks an easy possibility to create and integrate new schemes.

The provided design for Tabu Search is a basic design that doesn’t provide
any specialisation capabilities out of the box. The frequency memory dimension
is equally ignored as in OpenTS, since only short term memory is provided for
storing tabu status. Long term memory and an interface for its evaluation
regarding frequency information is not defined in the framework.

2.3.3 HOTFRAME

Fink and Voß[12] proposed a (iterated) Local Search, Simulated Annealing and
Tabu Search framework known as the Heuristic OpTimization FRAMEwork
(HOTFRAME). It is primarily based on the use of templates in C++ to obtain
a generic and flexible approach.

The authors suggest some potential advantages of their design such as run-
time efficiency and enhanced decoupling of components that would lead to a
black box reuse. Therefore the framework presents following key features:

• blackbox reuse of tabu search, simulated annealing, and other local search
techniques.

• runtime efficiency

26 CHAPTER 2. BASICS AND STATE OF ART

Move

ComplexMove SimpleMoveSolutionAdapterComplexTabuList

MoveManager

Solution

BestEverAspirationCriteria

TabuList

SimpleTabuList AspirationCriteria

TabuSearch

ObjectiveFunction

Figure 2.12: class diagram of OpenTS

Figure 2.13: class diagram of EasyLocal++ by Gaspero and Schaerf [6]

2.3. STATE OF THE ART META HEURISTIC FRAMEWORKS 27

• extensible with new metaheuristics components

Fink and Voß[12] propose that the features common to metaheuristics are
captured in metaheuristic algorithms. These algorithms operate on problem
specific structures, in particular the solution space and the neighbourhood.

Basically HOTFRAME can be divided into three core templates, the problem
data, the iterator and the neighbourhood. The problem data and the neighbour-
hood has to be defined by the user. Whereas the iterator is hidden within the
chosen algorithm and may be defined by the user when implementing his own
iterator template.

Although HOTFRAME can be used in most problems, it lacks the capability
that would allow developers to adaptively guide the search process according to
Hoong et. al [25] The provided Tabu Search iterator template presents a basic
Tabu Search algorithm that neither stores nor computes frequency information
of the search path.

2.3.4 Templar

Jones published the Templar Framework in [21]. Like EasyLocal++ it’s a meta-
heuristic framework for solving NP hard problems. The Templar Framework is
object oriented and written in C++. It’s key features are:

• Handling of strategies by a single control mechanism

• Whitebox reuse of a basic Tabu Search design

The Templar frameworks three most fundamental classes are TrEngine, Tr-
Problem and TrRepresentation as shown by figure 2.14. TrEngine is the base-
class for implementing a given optimisation technique. So the user would derive
his own class from TrEngine for programming an algorithm like simulated an-
nealing. TrProblem contains deferred methods that have to be implemented for
a specific problem by deriving a class from it. TrRepresentation is a base class
for representing a solution in computer memory. The user has to derive his own
class from TrRepresentation for his/her domain.

Interaction between different TrEngine objects is possible via so called Tr-
Conduits as presented by figure 2.15. These TrConduits have a wide range of
messages that can be sent forth and back. To even increase the flexibility the
messages can be filtered by TrConduit objects.

The Templar Framework is even thread safe and provides the option to
execute different TrEngines in different threads. The framework provides fea-
tures and functions for synchronisation and serialisation. It is even supports
to distribute execution between computers, but that is dependent on its imple-
mentation. The author introduced that drawback, since utilising CORBA for
distribution would have created a more complex solution and would not have
allowed an easy way of switching from non distributed source to distributed
source implementations.

The functionality of the Templar Framework can be summarised as follows:
It is a metaheuristic framework for solving NP hard problems, that can be used
to create local search techniques.

28 CHAPTER 2. BASICS AND STATE OF ART

TrEngine TrProblem

SAEngine GAEngine TSP

TrRepresentation

TrPermutation

Figure 2.14: class diagram of Templar by Jones[21]

TrEngine2TrEngine1 TrConduit1

Figure 2.15: class interaction diagram of Templar by Jones[21]

2.3. STATE OF THE ART META HEURISTIC FRAMEWORKS 29

2.3.5 TSF

A recently proposed framework called TSF, is described by Hoong et. al [25] as:
It is composed of 4 categories of components: interfaces, control mechanism,
search engine and strategies software libraries as shown in figure 2.16.

The interfaces define the basic components used by Tabu Search in an object
oriented architecture. The control mechanism is for advanced users to define
rules that guide the search adaptively in response to events encountered. TSF
eliminates the tedious routine task of programming the search engine. The
TSF search engine interacts with the interfaces and collects information which
is passed dynamically to the control mechanism to readjust future search tra-
jectory. Finally, TSF includes a strategy software library consisting of a set of
software components to support various user-defined search strategies.

The key features of this framework are:

• Flexibility by utilising the provided interfaces for defining a problem

• Well defined interaction scheme between the frameworks classes

• External strategy software library for advanced search strategies

• Event triggered control mechanism

According to Hoong et. al [25] their framework performs better compared to
others, because the user can influence the search process by utilising the event
triggered control mechanism and the external software library.

The overall design is similar to OpenTS and therefore also lacks an interface
for the acknowledgement of frequency memory as defined in Glover and Laguna
[14].

2.3.6 OptLets

Breitschopf et. al [4] introduce the HeuristicLab Framework in the article “A
Generic and Extensible Optimization Environment”. Their framework provides
a design structure that is fit for implementing Evolutionary Algorithms, Local
Search or Swarm Algorithms.

OptLets has the following key features:

• High level of genericity by supporting a vast set of Meta Heuristics

• Hybridisation of Meta Heuristic techniques

• fast kick off by easy installation and introduction to the framework

• GUI front end offering basic visual builder capabilities

The big advantage of the OptLets Framework compared to others is the
possibility to add new algorithms easily. Although this helps when the user
needs a specific algorithm, it leaves a lot of the design to the user. Of course this
is the trade off made in order to gain the high degree of flexibility that OptLets
offers. Therefore it lacks in depth design for the Meta Heuristic methods, which
must be provided by the user. That limits the out of the box usability, since
the knowledge and the implementation of the algorithms is left to the user.

30 CHAPTER 2. BASICS AND STATE OF ART

Figure 2.16: framework architecture of TSF by Hoong et. al [25]

2.3. STATE OF THE ART META HEURISTIC FRAMEWORKS 31

Another drawback is the incapability to interweave the defined algorithms by
hybridisation when solving a problem.

Summarised OptLets is yet another framework that strives to be applicable
for a big set of Meta Heuristic techniques. It’s most prominent feature not
found in other frameworks is the GUI that helps with the installation and basic
configuration options.

2.3.7 HSF

The Heuristic Search Framework, also called HSF, was created by Dorne and
Voudouris [9] as a Java object-oriented framework. It supports the easy imple-
mentation of a single solution algorithms like Local Search, population-based
algorithms such as Genetic Algorithms, and hybrid methods being a combina-
tion of the two. Its key features are:

• Reuse of components between different search techniques

• Flexible and generic design for metaheuristics

According to the authors the main idea in HSF is to break down any of these
heuristic algorithms into a plurality of constituent parts. Thereafter, a user can
use the library of parts to build existing or new algorithms. The major moti-
vation of HSF is to provide a ”well-designed” framework dedicated to heuristic
methods in order to offer a representation of existing methods and to retain
flexibility to build new ones. In addition, the use of the infrastructure of the
framework avoids the need to re-implement parts that have already been incor-
porated in HSF and reduces the code necessary to extend existing components.
Although it is a framework for more than one Meta Heuristic technique it doesn’t
offer hybridisation of algorithms.

2.3.8 Localizer++

Michel and Hentenryck [22] report Localizer++ as an extensible object-oriented
library for local search. It supports both, declarative abstractions to describe the
neighbourhood and high-level search constructs to specify local moves and Meta
Heuristics. A variety of features typically found only in modelling languages are
supported and its extensibility permits an easy integration of new, user defined
abstractions.

Of particular interest is the conciseness and readability of Localizer++ state-
ments and the efficiency of the Localizer++ implementation.

2.3.9 INCOP

INCOP is presented by Neveu and Trombettoni [31]. They created a library
written in C++, which provides incomplete algorithms for optimising combi-
natorial problems. Neveu and Trombettoni [31] refer to their implementation
as a library, though it has to be regarded as a framework. INCOP offers lo-
cal search methods such as Simulated Annealing, Tabu Search as well as a
population based method, Go With the Winners. Several problems have been
encoded, including constraint satisfaction problems, graph colouring, frequency
assignment. The user can easily add new algorithms and encode new problems.

32 CHAPTER 2. BASICS AND STATE OF ART

The neighbourhood management has been carefully studied. First, an original
parameterised move selection allows to easily implement most of the existing
Meta Heuristics. Second, different levels of incrementality can be specified for
the configuration cost computation, which highly improves efficiency.

2.3.10 GAILS

Varrentrapp presents his Guided Adaptive Iterated Local Search - Method and
Framework in [35]. It incorporates machine learning into local search techniques
by utilising reenforcement learning techniques. So called Local Search Agents
are used for realisation of the reenforcement learning. The key features of the
framework are:

• Support for Local Search techniques

• Reenforcement learning support

Tabu Search is discussed in the documentation of the framework though it
doesn’t provide a specific design for it. Frequency memory is not referred to in
the documentation.

An advantage offered by OptLets is it’s blackbox design for hybridisation.
Since the framework itself doesn’t provide an extensive set of predefined Meta
Heuristics, their implementation is left to the user providing a high level of
flexibility. On the other hand this needs a programmer that is proficient in the
area of Meta Heuristics and it consumes time.

Chapter 3

Design

As a result to the previously presented literature research, the intention of this
diploma thesis framework is to take the design of the state of the art frameworks
and enhance it. This chapter presents the proposed Tabu Search framework
along with an outline of it’s differences to the state of the art frameworks.

3.1 The design requirements

Before a design is drafted, it’s design requirements are put together in order to
create some goal that should be reached.

Since those are written down first when a design is created, they are the best
place to start explaining the accomplished work. Their purpose is to predefine
goals, that should be reached within the design.

• The Framework should provide a design of the main features of the Tabu
Search algorithm.

• The design should be problem independent for NP hard problems.

• The problem definition should define how a solution looks like in compu-
tational terms. (The data structure of the solution)

• There should be a way to specify a neighbourhood step function. Accord-
ing to Tabu Search terms this involves the definition of move operators.
Those are utilised to construct a neighbourhood for a given solution. The
construction of the neighbourhood should be conducted by applying the
move operators to the given solution creating new solutions.

• A move and an algorithm should be able to generate a neighbourhood.

• The algorithm should be able to do a search when given a problem defi-
nition, a neighbourhood step function and a way to evaluate a solution.

• More than one neighbourhood should be possible.

• A tabu list should be maintained automatically.

• Additional configuration via aspiration criteria should be possible.

33

34 CHAPTER 3. DESIGN

• It should stop the search when reaching a termination condition:

– time limit exceeded

– number of neighbourhood steps reached (That are the times the
neighbourhood function got applied)

– number of iterations

– number of evaluations

When the chosen and defined limit or limits get exceeded, the Tabu Search
algorithm should terminate and remember the last best solution.

• Statistical data has to be maintained about the search:

– number of evaluations

– size of neighbourhood

– size of the tabu list

– change of fitness during iterations

– number of moves chosen. That’s the number of moves that lead di-
rectly from the initial solution to the solution found by Tabu Search.

– time - How much time was spent in evaluations

• Short term and long term tabu mechanisms should be provided

• information about the search history should be kept

– short term - should store the moves that have been visited recently

– long term - should store the frequency of usage of the applied moves

• Selection of the solution for the next iteration should be able by:

– picking the best non tabu solution

– picking the best solution (tabu and nontabu)

– utilising aspiration criteria

– considering short term memory

– considering long term memory

3.2 Creating the Design

The previously introduced state of the art frameworks provide a variety of in-
teresting and good design patters for Tabu Search. Therefore the framework of
this diploma thesis should not create a completely new design, but rather takes
some of the already existing ideas into account and adds a new idea to it. So
the new idea should not have been included by any other framework yet.

The analysis of the design of the modern heuristics frameworks presented
above, shows that all of them provide a very simple design for the tabu mem-
ory. For example Harder [18] provides 2 classes for storing tabu moves called
SimpleTabuList and ComplexTabuList. Both of them provide an interface to
query recency information that provides information about current tabu moves.

3.2. CREATING THE DESIGN 35

But there is no way to acquire frequency information that would show us how
often a specific move has been used in the search path.

Gaspero and Schaerf [6] do not provide a tabu list directly, but encapsulate
it’s functionality in their Prohibition Manager, which is a class used to store
tabu moves. The interface to implement by the user is the computation of the
inverse of a move. Two more functions are provided as an interface, but they
do not need to be implemented by the user. They can be replaced when their
functionality is not sufficient for the needs of the user. These two functions are
move insertion and a test to check weather a certain move is tabu or not. The
move insertion called InsertMove is defined to insert the move into the list and
to assign a tenure period and it also discards all moves who’s tenure period is
expired. The test to check weather a move is tabu or not can also be defined by
user. But there is no way to query for frequency information or the content of
the tabu list that is stored in the class called Prohibition Manager. Therefore
you can only access recency based information and frequency information is not
available.

That makes the interface rather generic. It can be used to implement fre-
quency based Tabu Search decisions, but it doesn’t provide a basic design for
doing so. Hence that framework does not provide a design for the frequency
dimension of tabu memory.

The intention of this diploma thesis is not to create a completely new frame-
work for Tabu Search, but to create a framework that provides something that
the other’s don’t. Therefore the analysis of the state of the art was essential for
detecting uncovered areas. As the section on state of the art framework shows,
it is possible to discover that the state of the art frameworks lack an in depth
design of the tabu memory compared to the definition of tabu memory pro-
vided by Glover [15]. That was a rather sound area to start with, since the tabu
memory is a core element of Tabu Search and it would be an interesting part to
experiment with. So the idea for the new part of the diploma’s framework was
to create something that covers a broader part of the four dimensions of Tabu
Search memory structures than any of the other frameworks.

The next step was to make a decision about how far the design in respect
of recency, frequency, intensification and diversification would be taken. Since
recency has been covered by all present frameworks, it has to be covered as well.
But frequency, intensification and diversification cannot be found in the design
of any state of art framework.

So the exploratory focus is aimed on those three dimensions. Frequency
information can be stored easily, since storing how often a specific move has been
made is straight forward. But not all of them can be so easily incorporated into
a framework. Putting intensification and diversification into a design structure
is problematic, since they are tightly linked to the given problem. Therefore it’s
hard if not hardly possible to extrapolate a structure that can be used for all
kinds of Tabu Search problems.

Therefore creating a design that gives the user the tools for recency and
frequency based Tabu Search memory, seemes reasonable. Both of them can
be extracted from the path of the search, as long as it contains solutions and
moves. For a better understanding the algorithms for computing recency and
frequency information for a move, are described below.

36 CHAPTER 3. DESIGN

3.2.1 Recency information

Recency based information is acquired by searching the recently added moves
of the search path. The tabu tenure defines how many of the last recently seen
moves of the search path are tabu. So it gives the number of moves that have
to be compared with a new move in order to determine the tabu status of the
new move. If the tenure is x, then the x last moves of the search path have to
be compared. When any move of the search path is found to be the inverse of
the new move then the new move is tabu. Otherwise the new move is non-tabu.

3.2.2 Frequency information

On the other hand frequency information is gathered by stepping through the
whole search path and counting the occurrences of the moves found within.

The last step in the process of creating the design was to make design pat-
terns for recency and frequency memory. Before starting to explaining them in
detail, an overview of the overall design of the diploma thesis framework will be
given in the next section.

3.3 Design Tools

Before starting with the explanation of the design itself, a list of the design
patterns and tools, that have been used in it’s creation, is given.

Accessors are provided by utilising get/set functions.
All class variables are prefixed with an m in order to show that they are

member variables of a class.
Variables in general use the Hungarian notation when their type is predefined

by the programming language. For other variable types the Hungarian notation
was not used, because that would have had the need of defining custom prefixes
and those might mislead others, since they might have other preferences regard-
ing creating prefixes for custom types. For better legibility the variables, that
are defined by using user defined types, have names that give a good hint about
their content and usage. In order to not further increase complexity pointers
are an exception to that rule, because they are always prefixed with a p to mark
explicitly, that they point to some sort of memory.

3.4 The design of the framework

This section starts with an overview of the general structure of the framework
by describing the relationships between the different classes. Along with that
description a basic understanding of the interaction of those classes will be given.
Afterwards all the details about the interfaces, generics and classes composing
the framework will be explained.

3.4.1 A first view on the framework

Since diagrams can give a good overview, figure 3.1 shows the class structure of
the framework. The diagram shows us that the most important class is called
TabuSearch. It has got an aggregation relationship with several other classes

3.4. THE DESIGN OF THE FRAMEWORK 37

in order to conduct the actual search. It is the central core of the framework
that guides the search process. Some classes don’t have an aggregation relation-
ship with the TabuSearch class, though those are used by classes that have an
aggregation relationship with the the TabuSearch class.

The TabuSearch class uses the abstract Solution class as a way to access the
user defined solution representation. This is necessary due to the fact that the
actual implementation of such a Solution class is problem specific. Therefore
the framework provides an abstract Solution class that the user has to subclass.
The problem specific solution representation has to be put into the derived
class. Tightly related to the Solution class is the ObjectiveFunction class, since
it has to evaluate Solution objects regarding their fitness. Since that is problem
specific too, the user has to derive his own class from it that should provide the
needed functionality.

The memory container classes called SearchHistory and TabuList are essen-
tial for the search, since the former stores a list of moves visited in the past and
the later can tell if some move is tabu or not. The SearchHistory is coupled to
the EliteSolutionList class that is a container for so called elite solutions. The
decision if a solution is elite or not, is encapsulated in that class by a method.
So if the default, which is set to best 5 percent of solutions, is not appropriate,
the user has to derive his own class and overload the method with an other
algorithm.

An other class that is directly accessed by the TabuSearch class is the Move-
Manger which is a container for MoveIterator objects. The MoveIterator class
in turn is an iterator for the neighbourhood of a solution that is created by a
specific move type. That move’s definition is stored by the Move or the At-
tributeMove class. The idea of the Move class is to store one set of parameters
for a move type, which defines the changes to make to a Solution object and to
store the algorithm that is capable of applying the move to a Solution.

The last class that is directly accessed by the TabuSearch class is the Aspi-
ration Manager. It is a container for AspirationCriteria objects, who have to be
derived from the AspirationCriteria class by the user.

3
8

C
H

A
P

T
E

R
3
.

D
E

S
IG

N

#m_CurrentIteration

#m_pSearchHistory

TS::TabuSearch
m_CurrentIteration : Counter
m_StartTime : mytime
m_EndTime : mytime
m_lMaxIterations : long
m_lMaxEvaluations : long
m_MaxRunTime : mytime
m_lDebug : long
m_pBestNonTabu : SolutionMovePair*
m_pBestTabu : int
+ Search()
Init()
CreateSearchHistory()
CreateTabuList()
isSearchEnd()
FindBestMoves()
FindNextMove()
SetCurrent()
FreeBestSolutions()
+ GetMaxIterations()
+ GetMaxEvaluations()
+ SetMaxIterations()
+ SetMaxEvaluations()
+ GetBestSolution()
+ GetRunTime()
+ GetIterations()
+ GetEvaluations()
+ SetDebug()
+ GetDebug()
+ isDebug()
+ TabuSearch()
+ ~ TabuSearch()

#m_pMoveManager

TS::Move::Manager
m_TabuSearch : TabuSearch*
+ AddMoveIterator()
+ Begin()
+ End()
+ GetRandomMoveIterator()
+ Find()
+ Erase()
+ MoveManager()
+ ~ MoveManager()

#m_pAspirationManager

TFitness
TS::TSimpleFitness
m_Fitness : TFitness
+ GetValue()
+ SetValue()
+ TSimpleFitness()

TS::Move::Move
m_MoveIterator : MoveIterator*
+ Move()
+ ~ Move()

TS::ObjectiveFunction
m_iEvaluationCount : Counter
SetFitness()
+ Evaluate()
+ GetEvaluationCounter()
+ ObjectiveFunction()

TS::Fitness

TS::EliteSolutionList
m_iMaxSize : int
m_dFitnessSum : double
m_lFitnessCount : long
m_iFitnessMax : int
m_iFitnessMin : int
+ EliteSolutionList()
+ ~ EliteSolutionList()
+ Test()
+ Begin()
+ End()
+ SetMaxSize()
+ GetMaxSize()
+ GetFitnessAverage()
+ GetFitnessMedian()
+ GetFitnessMax()
+ GetFitnessMin()
+ Clear()
isElite()

TS::Aspiration::Manager
m_pTabuSearch : TabuSearch*
+ isTabuOverridden()
+ Add()
+ Begin()
+ End()
+ Find()
+ Erase()
+ AspirationManager()
+ ~ AspirationManager()

TS::SolutionMovePair
m_bEmpty : bool
m_pSolution : Solution
m_pMove : TS::Move::Move
+ SolutionMovePair()
+ ~ SolutionMovePair()
+ GetSolution()
+ GetMove()
+ Set()
+ SetIfBetter()
+ Clear()
+ isEmpty()
+ Write()

TAttrib
TS::Move::TAttribute

m_From : TAttrib
m_To : TAttrib
+ SetFrom()
+ GetFrom()
+ SetTo()
+ GetTo()
+ Attribute()
+ ~ Attribute()

TS::Solution
m_pFitness : Fitness
+ GetFitness()
SetFitness()
+ Initialize()
+ Clone()
+ DeepCopy()
+ Write()
+ Solution()
+ ~ Solution()

TS::Move::AttributeMove
m_Attributes : std::vector< Attribute* >
+ AttribMove()
+ ~ AttribMove()
+ ApplyOn()
+ CreateInverse()
+ Compare()
+ Clone()
+ DeepCopy()
+ Write()
+ Add()
+ Clear()

TS::Aspiration::Criteria
m_pAspirationManager : AspirationManager*
SetManager()
+ isTabuOverridden()
+ AspirationCriteria()
+ ~ AspirationCriteria()

#m_pBestNonTabu

TS::Move::Iterator
- m_pMoveManager : Manager
- m_pSolution : Solution*
+ GetManager()
SetManager()
+ GetSolution()
SetSolution()
+ Next()
+ Prev()
+ Begin()
+ End()
+ MoveIterator()
+ ~ MoveIterator()

TS::SearchHistory
m_pTabuSearch : TabuSearch*
+ m_pStartSolution : Solution*
+ m_pStartList : Solution*
m_iMaxSize : int
SetTabuSearch()
+ Add()
+ GetSize()
+ GetStartSolution()
+ GetMoveAt()
+ GetLastMoveAt()
+ GetSolutionAt()
+ GetLastSolutionAt()
+ GetMoveCount()
+ Clear()
+ SearchHistory()
+ ~ SearchHistory()

TS::TabuList
- m_pTabuSearch : TabuSearch*
m_iTenure : int
- m_pSearchHistory : SearchHistory*
+ isTabu()
+ isTabu()
+ SetTenure()
+ GetTenure()
+ TabuList()
+ ~ TabuList()

#m_pCurrentSolution

TS::Move::Attribute
m_AttributeMove : AttributeMove*
+ SetAttributeMove()
+ GetAttributeMove()

TS::Counter
m_lCount : long
+ Inc()
+ GetCount()

#m_pObjectiveFunction

#m_pMove

+m_pFitness
+m_pSolution

#m_pTabuList

+m_AttributeMove

+m_iEvaluationCount

Figure 3.1: Overview UML class diagram

3.4. THE DESIGN OF THE FRAMEWORK 39

3.4.2 Details of the design

The following description gives an insight into the different interfaces, generics
and classes of the framework. Their purposes are given along with a discussion
of their details.

Interfaces

As already in discussed in 2.2.2 the main purpose of interfaces is to provide a
generic access to specific functionality. Several classes of the framework need
a similar functionality, but they do not share a domain in a way that a parent
class can be devised. Instead a few interfaces were created and then those classes
implement one or more interfaces. To create a remarkable distinction to other
parts of the framework the name of any interface always starts with a capitalised
“I” to signal that it is an interface. Some of the interfaces are generic enough
to be discussed outside the context of the framework while others cannot. The
following paragraphs discusses those generic ones. The rest of the frameworks
interfaces will be introduced in detail in the appropriate context. Though their
names will be listed here to give a complete list of all the interfaces of the
framework.

The commonly applicable interfaces are called ICompareable, ICloneable and
ISerializeable and are presented in figure 3.2 in a UML diagram. IApplyable
is an interface that is limited to a specific area of application the so called
Solution class. Therefore it will be explained in greater detail when it’s area of
application is discussed in conduction with the Move class.

ICloneable

It represents an interface for objects that can be cloned. Creating a clone of an
object is the process of making a complete copy of the object. Normally that
involves doing a so called “deep copy” of the data stored within the original ob-
ject as presented by Champlain and Brian [5]. During the “deep copy” variable
content is simply copied from the original object into the clone. But referential
data types are not so simply handled, since a copy would mean that the clone
references the same data as the original object. Therefore the referenced data
has to be cloned too. That in turn leads to an other “deep copy”. This repeat-
ing copy mechanism is actually summarised by the name “deep copy”, since the
“deep copy” is invoked for each referential data type found within the original
object’s data.

In order to provide a generic interface for cloning 2 abstract methods Clone()
and DeepCopy() have been designed. Both of methods need a way to have a
common referential type to act on, because the data type is normally not known
in advance and might change because new classes are introduced. That leads
to the need of a parent class that must be derived from when utilising this
interface. In the case of this framework that parent class is called Object. It
will be described in detail later on since it’s only purpose at the moment is to
provide a commonly usable type for passing forth and back references to objects.
The diagram in figure 3.2 presents the complete interface.

The method Object* Clone() should return a new object containing the
“deep copied” data. Any allocations involved when creating a new object should
be done in the method.

40 CHAPTER 3. DESIGN

The method void DeepCopy(Object* pObj) should create a “deep copy” of
the data of the supplied object by copying it into the object that the method
was invoked on. The parameter pObj object references an object by using a
pointer. That object’s data should be deep copied into the invoking object’s
one.

ICompareable

It is an interface for comparing 2 objects to each other. Since it just provides the
methods and doesn’t define the way the comparison should be done, a definition
of the comparison is given as follows: The comparison taking place should be
about the internally stored data. Other comparisons may be implemented by
this interface, but they’re not intended and not needed within this framework.
Similar to the cloning the comparison should not stop at referential data types,
but continue by comparing the data the referential data types refer to.

As figure 3.2 shows the interface provides 2 methods, one called Compare,
the other named Equals. The method int Compare(Object* pObj) compares the
internally stored data to the supplied object’s one and it returns an integer value
representing the result. When the internal data is less, matches or is greater
than the supplied object’s one, an integer smaller, equal or greater than 0 will
be returned respectively. The method bool Equals(Object* pObj) is a test if the
supplied object’s data is equal to the invoking one or not. When it is then it
returns true, otherwise false is returned.

ISerializeable

ISerializeable is an interface for writing the data of an object to some means of
output. Therefore it provides a way to store the contents of an object during
run time. So it provides a limited sort of debug functionality for the framework.
That implies that it is not necessary for solving Tabu Search problems. Nev-
ertheless it is a handy tool for searching for bugs. It is also interesting for fine
tuning parameters of the Tabu Search and evaluating their quality.

In the case of C++ the means of output is a so called output stream. Nor-
mally the data of the invoking object is written to the supplied stream.

The method Write(ostream &stream) writes the object’s contents to the
supplied stream. Whether the data is formatted or not depends on the user’s
choice. The parameter stream is the output stream to write the data to.

IInvertible

It gives an interface that makes certain assumptions about the data stored in
a class. Therefore it is not as commonly applicable as the previously defined
interfaces. The interface IInvertible assumes that the class utilising it, stores
invert able data. So there must exist a way to compute the inverse of one
object’s data. IInvertible provides an interface to those objects.

IInvertible is an interface for objects that contain invertible data that needs
to be accessed from outside the class. The method Object* CreateInverse()
should create a new object containing the inverse data. Any necessary alloca-
tions should be done too. This method uses a referential data type to the master
class Object again. Otherwise the definition of the interface wouldn’t be generic

3.4. THE DESIGN OF THE FRAMEWORK 41

enough. Anyway the returned pointer is referring to a newly allocated object,
having the same type as invoking object, but containing the inverse data.

IApplyable

It defines an interface for objects that are applicable on Solution objects. It’s
only purpose is to provide access and force the implementation of the ApplyOn()
operation. The ApplyOn method applies the object’s contents on the supplied
Solution object. That implies that the function changes the data of the supplied
Solution object. In the framework this sort of functionality makes only sense
for move operation related classes. Though no default approach can be given
for applying a Move object on a Solution object. Therefore this interface has
been created in order to provide a common interface for all objects that can be
applied on a Solution object. The necessity of this interface will be shown below
when the Move class and it’s related classes will be explained. One method is
defined by the interface. That is function is ApplyOn(Solution* pSolution) and
it should apply the changes stored in the object to the supplied Solution object.

Object

Is a special class since it is the class that many of the other classes derive from.
It’s purpose is to provide a class type that the other classes can derive from.
This is rather important for the way of type casting in object oriented languages
work, since they normally provide a high type safety. Therefore it is possible to
type cast a derived class to the Object class type. This enables the definition of
methods for interfaces since future class definitions done by the user cannot be
known. So a generic and well known class type needs to be used in the definition
of interfaces because they need to work with any class type. Otherwise interface
definition would be rather limited and not really useful in object oriented design.
Therefore it is necessary to have a base class. That is the Object class in the case
of this framework and it is a base class for other framework classes and eases
their handling quite a lot. This idea of base class has already been utilised earlier
by other other frameworks. A perhaps very prominent example is the Microsoft
Foundaction Class framework. So a lot of other frameworks provide a class with
similar design qualities. Modern Computer languages even go step further by
defining a parent class that is always the master parent, even when no parent
was defined. A good example for that case is C# providing a class called Object
that is such a master parent as explained by Liberty [26]. When implementing
the framework in C#, the framework’s Object class would be rendered obsolete.
But since that is an implementation specific issue, it is discussed in Chapter 3.5.

Figure 3.3 shows the definition of the Object class and the following para-
graph gives an insight about it’s methods.

The only function is bool is(std::type info pType) which returns true when
the supplied type matches the type of the object. Otherwise it returns false.
The constructor of the Object class is empty.

Counter

The Counter class is a rather important class throughout the framework since
it is used to count different types of things. For example the central TabuSearch
class utilizes it in order to count the number of iterations.

42 CHAPTER 3. DESIGN

«interface»
IInvertible

+ CreateInverse() : Object*

«interface»
ICompareable

+ Compare(pObj : Object*) : int
+ Equals(pObj : Object*) : bool

«interface»
IApplyable

+ ApplyOn(pSolution : Solution* = NULL) : bool

«interface»
ICloneable

+ Clone() : Object*
+ DeepCopy(pObj : Object*)

«interface»
ISerializeable

+ Write(stream : std::ostream&)

Figure 3.2: UML class diagram of the interfaces

Object

+ Object()
+ is(pType : std::type_info) : bool

Figure 3.3: UML class diagram of the Object class

Counter
m_lCount : long
+ Inc()
+ GetCount() : long

Figure 3.4: Counter UML class diagram

3.4. THE DESIGN OF THE FRAMEWORK 43

Figure 3.4 shows the UML class diagram of Counter and presents it’s at-
tributes and methods. The following list describes their functionality:
m lCount is an integer value that stores the counter value. It is a protected
values since there is no need to manipulate it outside the Counter class.
The method Inc() is just for increasing the counter value by 1.
The function GetCount() retrieves the current counter value.
The constructor Counter() simply initialises the counter value to 0.

TabuSearch

All state of the art frameworks present us a central class that contains at least
major parts of the Tabu Search algorithm. Therefore this framework is also
constructed around an important class that follows the same motivation. That is
to contain the Tabu Search algorithm and to utilise other parts of the framework
during the search process.

In figure 3.5 the complete TabuSearch class is shown in order to give an
overview of the class for the following explanation. The actual Tabu Search
algorithm is split up and distributed over several methods of the class. The
purpose for the division of the algorithm is the ease of modification. That stems
from the possibility to replace small parts of the algorithm by simply overloading
a single function in a derived class. So there is no need to completely rewrite the
whole algorithm when you want to change a small part of it. It will only be a
matter of overloading and hence rewriting the functionality of a small method.
The next paragraphs give an insight on the hotspots of the TabuSearch class.

Must define HotSpot
Init() can be used to set up variables with meaningful values before the search in
the Search() method starts. This function should be overridden with a method
that contains at least the creation of the initial Solution object.

May define HostSpots
The central method for the Tabu Search algorithm is Search(pSolution : Solu-
tion*) : void. First it initialises the object’s variables by calling Init(). Then the
method loops until isSearchEnd() reports true. The function bool isSearchEnd()
returns true when the break condition of the search process is met. The TabuSe-
arch class provides the following three break conditions: maximum number of
evaluations is reached, maximum number of iterations is reached or a run time
limit is reached. Other break conditions may be defined by overloading is-
SearchEnd();

The actual search logic is not found within the Search() function, but in
FindBestMoves() and FindNextMove(). Former searches the neighbourhood for
the best non tabu and tabu solutions. Later decides if the non tabu or the tabu
solution will be the next solution for the loop as a starting point.

The following two methods can be overridden when the developer wants
to utilize her or his own classes instead of the predefined one’s of the frame-
work. The method CreateSearchHistory() creates a SearchHistory object when
m pSearchHistory has not been initialised with a SearchHistory object by the
constructor of the class. CreateTabuList() works similar by analysing
m pTabuList and initialising it with a TabuList object when it has not been
initialised by the constructor.

static Methods
void SetCurrent (SolutionMovePair *pPair) deallocates the current Solution

44 CHAPTER 3. DESIGN

object, then stores the new current Solution. Additionally it stores the so-
lution - move pair in the history. The supplied solution and move from the
SolutionMovePair object get cloned (newly allocated). Therefore they must be
destroyed. Releasing of the memory of the solution object is done here and
TabuSearch(), but the cloned move must be released by the SearchHistory.

void FreeBestSolutions() deallocate the tabu and non tabu SolutionMovePair
objects called m pBestTabu and m pBestNonTabu. The deallocation takes only
place when possible the pointers are not null and the pointers get set to NULL
afterwards.

mytime GetRunTime() retrieves the current runtime by using m StartTime
and the current time in order to calculate the time the search has already
consumed.

long GetEvaluationCount() is a special method used to query the supplied
ObjectiveFunction object for the numbers of evaluations done.

The constructor TabuSearch() has got several parameters. Those take all
major objects of the framework in order to provide the capability to customise
parts of the algorithm of the search. All parameters are pointers to objects.
They following objects are essential and therefore must be given to the con-
structor: A MoveManager object, an ObjectiveFunction object and an Aspira-
tionManager object. The SearchHistory and the TabuList objects are optional.
When they are not supplied, the TabuSearch class will create it’s own by utiliz-
ing the SearchHistory class or the TabuList class respectively. That behaviour
can be changed when CreateSearchHistory or CreateTabuList is overridden as
describe above.

For utilising the provided Tabu Search algorithm for a simple case, the user
only needs to create an instance of the TabuSearch class and call the Search
function with an Solution object that is an instance of a class derived from
Solution.

To give a better understanding of the internal functionality of the class the
following list contains the variables of the TabuSearch class along with a de-
scription of their access methods:
m CurrentIteration stores the number of the current iteration in the form of
an object of type Counter. It’s counter value can be queried by invoking GetIt-
erationCount(). Manipulation of the counter itself is limited to the TabuSearch
class, since it counts the number of iterations of the search process which is
conducted by the TabuSearch class.
m pCurrentSolution is a pointer to the a SolutionMove pair object contain-
ing the current solution object and the move that lead to it. It’s content can
be retrieved by calling GetCurrent(). It can be set by the method SetCur-
rent(pPair:SolutionMovePair).
m StartTime stores the start time of the search. It can be queried by Get-
StartTime(). Changing the value is limited to the TabuSearch class.
m EndTime stores the end time of the search (when search terminates) and
retrieval is possible by calling GetEndTime(). Setting the value is again limited
to the TabuSearch class.
m lMaxIterations contains a limit for the number of iterations. Can be ac-
cessed with SetMaxIterations() and GetMaxIterations(). When it is set to 0 it
is ignored and doesn’t impose a termination clause.
m lMaxEvaluations stores the number of maximum evaluations. If it is 0,
then it will not be used to terminate the search process. SetMaxEvaluations()

3.4. THE DESIGN OF THE FRAMEWORK 45

and GetMaxEvaluations() can be used to access it’s value.
m MaxRunTime stores the maximum run time of the search process.
m pBestNonTabu is equal to m pCurrentSolution, but stores the best non
tabu solution and move. This variable has not got any access methods, since
it’s use is completely limited to the TabuSearch class.
m pBestTabu is similar to m pBestNonTabu, but contains best tabu solution
and move. It also has not got any access methods, since it is limited to TabuSe-
arch’s use too.
m pMoveManager references a MoveManager object that is a container for
MoveIterator objects that create a neighbourhood for a solution. The method
GetMoveManager() provides access to that variables value.
m pObjectiveFunction stores a ObjectiveFunction object for evaluating So-
lution object regarding their fitness. Access is possible by the method GetOb-
jectiveFunction.
m pAspirationManager saves an AspirationManager object that can over-
ride the tabu state of a specific move by querying it’s AspirationCriteria for
overrides. It can be queried by GetAspirationManager(). m pSearchHistory
contains an object for saving the search’s history with the type SearchHistory.
The method GetSearchHistory returns it’s value.
m pTabuList stores the tenure value and determines the tabu state of a move.
GetTabuList can be used to access the value of m pTabuList.

Solution

The purpose of this class is to store a solution representation. Therefore the
Solution class is defined to be abstract and just provides an interface and a
predefined storage for a fitness value. That abstraction approach to tackle
the solution definition is equal to other Tabu Search frameworks like Harder’s
[18] or Gaspero and Schaerf [7] or Hong et. al [25]. Both of them leave the
implementation and data structure definition to the user of the framework,
since it’s hardly possible to define a generic data structure that could possibly
contain any problem’s data.

That implies that no objects of type Solution can be created directly, but
a class has to be derived from Solution that implements the abstract interface.
The design and structure of the data for storing the solution representation
is completely left over to the user, since a generic definition is going to have
unwanted drawbacks. Most likely that would include performance penalties,
excessive use of memory and the major drawback that the user must adapt his
problem model to the solution storage of the framework. To avoid those limita-
tion the Solution class just provides an interface so that the rest of the frame-
work may have a way to access it’s essential data. That interface is presented
in figure 3.6 Other important classes in this context are the ObjectiveFunction,
the Fitness and the Move class, since they depend on the data structure of the
solution representation. Those classes also provide only an abstract interface
like the solution class. A discussion in depth of their structure is given below.
So the user needs to implement a class that derives from Solution, which must
contain a data structure capable of storing a solution representation for the
user’s problem.

The only variable, that this class provides, is called m pFitness. It is for

46 CHAPTER 3. DESIGN

TabuSearch
m_CurrentIteration : Counter
m_StartTime : mytime
m_EndTime : mytime
m_lMaxIterations : long
m_lMaxEvaluations : long
m_MaxRunTime : mytime
m_lDebug : long
m_pBestNonTabu : SolutionMovePair*
m_pBestTabu : int
+ Search(pSolution : Solution*)
Init()
CreateSearchHistory()
CreateTabuList()
isSearchEnd() : bool
FindBestMoves()
FindNextMove()
SetCurrent(pPair : SolutionMovePair*)
FreeBestSolutions()
+ GetMaxIterations() : long
+ GetMaxEvaluations() : long
+ SetMaxIterations(lMax : long)
+ SetMaxEvaluations(lMax : long)
+ GetBestSolution() : Solution*
+ GetRunTime() : mytime
+ GetIterations() : long
+ GetEvaluations() : long
+ SetDebug(lDebug : long)
+ GetDebug() : long
+ isDebug(lDebugset : long) : bool
+ TabuSearch(pMM : MoveManager*, pOF : ObjectiveFunction*, pAM : AspirationManager*, pSH : SearchHistory*, pTL : TabuList*)
+ ~ TabuSearch()

Figure 3.5: TabuSearch UML class diagram

Solution
m_pFitness : Fitness
+ GetFitness() : Fitness
SetFitness(iFitness : TFitness)
+ Initialize()
+ Clone() : Solution*
+ DeepCopy(pSolution : Solution*)
+ Write(stream : std::ostream&)
+ Solution()
+ ~ Solution()

SolutionMovePair
m_bEmpty : bool
m_pSolution : Solution
m_pMove : TS::Move::Move
+ SolutionMovePair(pSolution : Solution*)
+ ~ SolutionMovePair()
+ GetSolution() : Solution*
+ GetMove() : Move*
+ Set(pSolution : Solution*, pMove : Move*)
+ SetIfBetter(pSolution : Solution*, pMove : Move*)
+ Clear()
+ isEmpty() : bool
+ Write(stream : std::ostream&) : std::ostream&

ObjectiveFunction
m_iEvaluationCount : long
SetFitness(pSolution : Solution*, Fitness : Fitness)
+ Evaluate(pSolution : Solution*) : Fitness
+ GetEvaluationCount() : long
+ ResetEvaluationCount()
+ ObjectiveFunction()

Fitness

«interface»
ICompareable

+ Compare(pObj : Object*) : int
+ Equals(pObj : Object*)

«interface»
ICloneable

+ Clone() : Object*
+ Clone(pObj : Object*)

«interface»
ISerializeable

+ Write(stream : std::ostream&)

TFitness
TSimpleFitness

m_Fitness : TFitness
+ GetValue() : TFitness
+ SetValue(Fitness : TFitness)
+ TSimpleFitness(Fitness : TFitness)

+m_pFitness

+m_pSolution

Figure 3.6: Solution and related classes UML class diagram

3.4. THE DESIGN OF THE FRAMEWORK 47

storing a value representing the fitness of a solution. That variable reduces the
number of evaluations by caching the fitness value that is normally calculated
by a class derived from ObjectiveFunction. The accessor function for m Fitness,
called GetFitness(), is public and returns the value of the protected variable. In
contrary the mutator SetFitness() is protected and it can only be used by the
ObjectiveFunction class for setting the fitness value. Since there is no need for
any other class beside the ObjectiveFunction class to change the fitness value.

Must define HotSpots
Initialize() is an abstract method that must be overloaded with code that sets
up the additional variables introduced for storing the data that represent the
problem. There are another two functions that must be overloaded. Both are
part of the ICloneable interface that the Solution class derives from. So Clone()
and DeepCopy() have to be defined like the description of ICloneable interface
suggests. When the framework’s debugging capabilities are enabled, then the
Solution class derives a second interface called ISerializeable. Therefore a further
method has to be defined. It’s called Write() and it’s purpose has already been
outlined by the ISerializeable interface.

Static Methods
The methods SetFitness() and GetFitness() manipulate and give access to the
m pFitness attribute as explained above. The constructor of the class simply
initialises m pFitness with a null value in order to store whether the Solution
object has been evaluated or not. So when a Solution object doesn’t have a
corresponding Fitness object, then it hasn’t been evaluated yet.

ObjectiveFunction

The ObjectiveFunction class encapsulates the objective function of the Tabu
Search algorithm as seen in the OpenTS framework by Harder [18] or Hong et.
al [25]. The UML diagram 3.6 presents the abstract ObjectiveFunction class.

The class contains only one variable named m EvaluationCounter for
counting the number of evaluations during a Tabu Search run. It is an object
of the Counter class. It can be retrieved by a public GetEvaluationCounter()
method. In contrary the manipulation of the counter is limited to the Objective-
Function class, since it’s the only place where evaluations take place. Therefore
there is no need to change the number of evaluations done so far anywhere else.

Must define HotSpot
Since the evaluation of a solution is problem specific as the data structure of the
solution itself, the developer has to derive a class from the ObjectiveFunction and
to overload one function. The one to overload is: virtual TFitness Evaluate(
pSolution). It should compute a fitness value for the solution given by the
parameter pSolution.

Static Methods
The computed fitness should be stored in the supplied Solution object utilising
the function SetFitness(Solution *pSolution, TFitness Fitness) of the Objec-
tiveFunction class. That is the only way to manipulate the fitness variable of
the Solution object since it’s mutator method is protected and only the Objec-
tiveFunction class can access it.

An other static method is the GetEvaluationCounter() which returns the
EvaluationCounter object as already mentioned above.

48 CHAPTER 3. DESIGN

Fitness

Fitness values are also problem specific data. Once it needs an integer value to
represent the fitness, an other time it’s a float. Even multidimensional fitness
values may be necessary. Therefore predefining the fitness value type is most
likely restricting the freedom of the developer. That leads to only one solution,
which is the abstract Fitness class. State of the art frameworks provide different
approaches to this topic. For example Harder [18] doesn’t provide a class but
predefines the fitness value as an array of floating point values. The array may
have be one, or higher dimensional. Though that might lead to a problem in
case of multi-dimensional fitness values since there is no direct way to attach
a comparison to an array of floating point values. That is avoided when the
fitness value is encapsulated in a class.

So the Fitness class provides an interface for fitness values computed by
the ObjectiveFunction class. So the user has to derive a class from the Fitness
class and implement the abstract methods. The diagram 3.6 shows the UML
definition of the Fitness class as a collection of the interfaces ICompareable,
ISerializeable and ICloneable. The implementation of ISerializeable is only nec-
essary when the framework’s debugging capabilities are enabled. ICompareable
is necessary since two fitness values must be compared by the TabuSearch class
in order to judge if a specific move leads to a better solution. The interface
ICloneable is needed, because the user has to create a derived class and the rest
of the framework needs a way to create new objects of that user defined type.
So as already explained above the ICloneable interface provides the necessary
methods.

TSimpleFitness

The TSimpleFitness class is a template class that implements the interface of
the abstract Fitness class as presented in figure 3.6. In addition to the interface
of the Fitness class it defines a template based variable called m Fitness that
stores the generic fitness value. The access method is called GetValue() and
retrieves the template’s fitness value. Manipulation of the template’s fitness
value can be conducted via SetValue(Fitness). The initialisation is conducted by
the constructor TSimpleFitness(TFitness value). Because the class is a template
class any type can be used as a fitness value as long as the ObjectiveFunction
can compute and store the fitness value. So this template class provides an
easily utilised interface implementing the abstract Fitness class’s. Therefore it
is a part of the framework solely aimed at convenience.

SearchHistory

The SearchHistory class is a storage container for the path of the Tabu Search
and presented in figure 3.7. It saves the starting solution of the search process.
In addition the moves of the Tabu Search and their order are stored too. This
is done by assigning the number of the iterations done so far to the move and
storing the combination. For a better understanding the correlation of moves
and the iteration count is explained 2 paragraphs below. Anyway providing
a history to search in the manner the SearchHistory class does, is a new con-
cept compared to the current state of the art frameworks. All of them provide

3.4. THE DESIGN OF THE FRAMEWORK 49

a way to store and recognise tabu solutions. But to store and retrieve infor-
mation about how often a specific solution has been seen, as provided by the
SearchHistory class, has never been shown in any other framework mentioned
in 2.3.

May define HotSpot
The iteration count is essential when storing moves in the SearchHistory class.
The starting solution has an iteration count of zero and therefore the first move
stored starts also at zero. The next move would get a one assigned, the next a
two, and so on. This assignment is done automatically by the function void Add
(Solution * fromSolution, Move * move). You can see it takes two parameters
- a solution and a move object. Former is not necessary, but it is provided in
the case that a developer wants to extend the basic functionality of this class
by deriving his/her own. Later is important, since the move is stored with the
iteration count as it’s key.

Removing single elements of the search history is not possible, but to clear
the complete history it is possible to use Clear(). That method is responsible
to free any previously allocated memory and therefore it is also utilised in the
destructor for deallocation.

By knowing the iteration count, it is possible to fetch the move applied at
that specific iteration by calling Move * GetMoveAt (int position). Using
the same knowledge about the iteration count, it enables the acquisition of
the solution at that specific iteration by the method Solution * GetSolutionAt
(int position). The methods Move * GetLastMoveAt (int position) and
Solution * GetLastSolutionAt (int position) provide a simlar functionality like
GetMoveAt() and GetSolutionAt(). They just don’t start their count at the
start of the search, but at the last iteration. So their indexing starts with 0 at
the latest iteration and ends at the start of the search with the current iteration
count.

Static Methods
Since memory consumption can become an issue with larger problems, the num-
ber of moves that can be stored is limited and can be queried by GetSize(). That
approach sets a boundary for the length of the history. If that limit is reached
and a new move added, then the oldest move gets discarded. The maximum
number of moves that can be stored, can be set by the constructor of the Search-
History class. Though that number itself as a threshold imposed by stl::vector
which is the storage container for the moves. That maximum number can always
be queried by int GetSize().

An other method called int GetSize (Move * move) returns the number of
moves stored so far. To reset the SearchHistory the method clear() can be used
to empty the storage by deallocating the list of moves and the initial solution.

The constructor SearchHistory(int iMaximumSize) initialises the maximum
number of history elements that will be stored as explained below at the m iMaxSize
attribute.

Several private attributes of the SearchHistory class influence it’s behaviour
and store different aspects of the search path as listed below:
m pTabuSearch is a pointer to the related TabuSearch object and provides
flexibility for user derived classes.
m pStartSolution contains the initial Solution object, where the Tabu Search
started at. It can be queried by using GetStartSolution()
m pStartList stores the solution where the search history starts at. In order

50 CHAPTER 3. DESIGN

to access it the previously explained GetSolutionAt() or GetLastSolutionAt()
can be used.
m MoveList is a standard template library container for the moves. Direct
access to it is only possible within the SearchHistory class. The public useable
access method is GetMoveAt() or GetLastMoveAt(), which have been described
earlier.
m MoveCounts contains the frequency counts for moves. By using GetMove-
Count(Move::Move* pMove) the supplied frequency count of pMove is looked
up in m MoveCounts and returned. When the move is not found, then -1 is
returned.
m pEliteSolutionList is a pointer to an EliteSolutionList class. The pointer
might be null in case that no EliteSolutionList is to be used. When it is not null
then the referenced object will be utilized to store elite solutions of the search
path. The exact operation of the EliteSolutionList class is described further
below.
m iMaxSize limits the maximum number of solutions stored within the search
history when it doesn’t exceed the maximum number of elements store able in
stl::vector. It can be set with SetMaxSize() and it can be retrieved by GetMax-
Size().

TabuList

This class stores the tenure and can determine in conjunction with a SearchHis-
tory object if a move is tabu or not. It’s UML diagram presents that relationship
in figure 3.7. The concept of a tabu list is widely used in the state of the art
frameworks which are given in 2.3. Though it most often just stores the tenure
and the tabu moves. The TabuList class of this framework uses the same basic
idea as the state of the art. That is to store the tabu tenure and to decide
whether a move is tabu or not. Still the TabuList class is different, because it
doesn’t store any tabu moves or solutions. Though it has to decide the tabu
status of a move. In order to determine it, the TabuList class queries the Search-
History object for the last recently added moves. The tenure is an integer value
limiting the depth of the query by specifying how many iterations a chosen move
has to stay tabu as explained in chapter 2.1.3.

The class stores three variables that are explained in the following list:
m pTabuSearch is a pointer to the related TabuSearch object. The only way
to change it’s value is in the constructor of the TabuList class. The method
GetTabuSearch() can be used to retrieve it.
m pSearchHistory is a pointer to the related SearchHistory object. It can
only be manipulated by the constructor of the TabuList class. The method
GetSearchHistory might be used to query it.
m iTenure is the number of iterations that a move is tabu when it has been
used in the search process. The manipulation method for changing the tenure
is void setTenure(int Tenure). In order to retrieve it’s value int getTenure() can
be utilised.

Static Methods
The class TabuList provides two methods for queries about tabu status of moves
and solution objects. One method is bool isTabu(Move * pMove) that returns
the tabu status of the supplied move. When that move is found within the last

3.4. THE DESIGN OF THE FRAMEWORK 51

n, where n = m iTenure, moves of the SearchHistory object, then the move is de-
clared tabu. Otherwise it is non tabu. The other method is bool isTabu(Solution
* pSolution) which returns tabu when a solution is found within the last n,
where n = m iTenure, solutions of the SearchHistory object. Non tabu is re-
turned when it’s not found. The constructor of the class TabuList(SearchHistory
* pSearchHistory, int iTenure) takes a pointer to a SearchHistory object and
the desired tabu tenure.

EliteSolutionList

The EliteSolutionList class is an optional part in the framework. It’s purpose
is to store a number of solutions with the best fitness so far encountered. The
motivation of elite solutions has been outlined in 2.1. Although the aspects of
elite solutions can improve the search, the state of the art framework presented
in 2.3 do not provide a design that is capable of providing elite solutions out of
the box. Though some of them mention elite solutions approaches like Harder
[18].

The following list describes the attributes of the EliteSolutionList class.
m iMaxSize contains the threshold value determining how many elite solu-
tions might be stored. It can be manipulated with SetMaxSize(int MaxSize) and
queried by GetMaxSize(). m pFitnessSum is a pointer to a Fitness object con-
taining the fitness sum of all elite solutions. It is for class internal use only and
therefore has not got any access or manipulating methods. m FitnessCount
is a counter that counts the number of elite solutions. As the previously intro-
duced attribute, this value is also for class internal use only. m pFitnessMax
contains the best elite solution found so far and can be queried by GetFitness-
Max(). m pFitnessMin stores the elite solution with the worst fitness. It can
be accesses by GetFitnessMin().

Must Define Methods
GetFitnessAverage() returns the computed average of all fitness values.
GetFitnessMedian() calculates the median for all fitness values.
bool isElite(Solution* pSolution) tests if the supplied solution is an elite solution
or not and returns true or false respectively.

May Define Methods
Test(Solution* pSolution) is the method used for testing a solution for elite
characteristics and registering the fitness value of the solution regardless of it’s
elite status.
Clear() is responsible for clearing and deallocating all elite solutions stored.

Static Methods
Begin() returns an stl constant iterator to the list of elite solutions.
The method End() returns similar to Begin() an stl constant iterator, but it
points at the end of the list.

The constructor EliteSolutionList() doesn’t need any additional parameters
since the class is used by SearchHistory when the SearchHistory object is ex-
plicitly told so.

Move

The class called Move is a collection of interfaces and therefore an abstract
class. It’s intention is to store a single move which is an algorithm that applies

52 CHAPTER 3. DESIGN

a small change to a solution that in turn creates a new solution. This new
solution is part of the neighbourhood of the original solution. Therefore the
Move class is designed to represent a so called “move” operation of the Tabu
Search terminology which can be used to create a new solution from a given
one. That new solution is then part of the neighbourhood of the given solution.

Most often such a move has got one or more parameters. Since a set of values
for those parameters define a specific move, they have to be stored in the class.
The already introduced coupling of the Move with the Solution class, makes it
necessary for the Move class to know the data structure of the Solution class.
Otherwise it wouldn’t be possible for any Move objects to change the Solutions
objects and hence generate new Solutions. So according to the abstract nature
of the Solution class, the Move class is an other class that the user must derive a
class from in order to utilise the framework. In order to create a structure that
is easier to understand, the framework consists of a few packages that contain
parts of the framework. The Move class is part of the Move package, which
contains all the class that are directly related to the Move class.

m pMoveIterator is the only variable stored by the abstract Move class
and is a pointer to the related MoveIterator object that manages the Move
object.

The rest of the interface of the Move class is defined by deriving from the
ICompareable, ICloneable, IApplyable, ISerializeable and IInvertible interfaces
as seen in figure 3.8. That UML diagram presents not only the Move class, but
the other classes of the Move package and several interfaces of the framework.

Attribute

Similar to the Move class the Attribute class is abstract and derives it’s methods
from interfaces. Those are: ICompareable, ICloneable, IApplyable, ISerialize-
able and IInvertible. The Attribute class is designed to store an algorithm doing
an atomic change to a solution. Therefore it represents the “move attribute”
definition of Tabu Search. As mentioned before moves might be broken down
into so called “move attributes” in Tabu Search that . In the case this is nec-
essary for a specific Tabu Search implementation the abstract Attribute class
provides an interface for those “move attributes”. Since the Attribute class is
abstract the user needs to provide a derived class implementing the interface in
order to utilise the framework’s capabilities for “move attributes”. In order to
ease the utilisation of that feature a template class has been defined that might
help and avoid the need for implementing a derived class. It is called TAttribut
and is explained right after the Attribut class.

The UML diagram in figure 3.8 presents the class and it’s relationship with
the other classes of the Move package. This diagram shows that the Attribute-
Move class utilises a list of Attribute classes in order to compose a single move.

The only private variable of Attribute is m AttributeMove, which stores
a pointer to the corresponding AttributeMove object. It can be manipulated
with SetAttributeMove(AttributeMove* pAttributeMove) and queried by GetAt-
tributeMove().

3.4. THE DESIGN OF THE FRAMEWORK 53

EliteSolutionList
m_iMaxSize : int
m_dFitnessSum : double
m_lFitnessCount : long
m_iFitnessMax : int
m_iFitnessMin : int
+ EliteSolutionList()
+ ~ EliteSolutionList()
+ Test(pSolution : Solution*) : bool
+ Begin() : const_iterator
+ End() : const_iterator
+ SetMaxSize(iSize : int)
+ GetMaxSize() : int
+ GetFitnessAverage() : float
+ GetFitnessMedian() : float
+ GetFitnessMax() : int
+ GetFitnessMin() : int
+ Clear()
isElite(pSolution : Solution*) : bool

TabuList
- m_pTabuSearch : TabuSearch*
m_iTenure : int
- m_pSearchHistory : SearchHistory*
+ isTabu(pMove : Move*) : bool
+ isTabu(pSolution : Solution*, pMove : Move*) : bool
+ SetTenure(iTenure : int)
+ GetTenure() : int
+ TabuList(pSearchHistory : SearchHistory*, iTenure : int)
+ ~ TabuList()

SearchHistory
m_pTabuSearch : TabuSearch*
+ m_pStartSolution : Solution*
+ m_pStartList : Solution*
m_iMaxSize : int
SetTabuSearch(pTabuSearch : TabuSearch*)
+ Add(fromSolution : Solution*, move : Move*)
+ GetSize() : int
+ GetStartSolution() : Solution*
+ GetMoveAt(position : int) : Move*
+ GetLastMoveAt(position : int) : Move*
+ GetSolutionAt(position : int) : Solution*
+ GetLastSolutionAt(position : int) : Solution*
+ GetMoveCount(move : Move*) : int
+ Clear()
+ SearchHistory(iMaximumSize : int, pTabuSearch : TabuSearch*)
+ ~ SearchHistory()

-m_pSearchHistory

Figure 3.7: UML class diagram of memory related classes

TAttrib
TAttribute

m_From : TAttrib
m_To : TAttrib
+ SetFrom(Attrib : TAttrib)
+ GetFrom() : TAttrib
+ SetTo(Attrib : TAttrib)
+ GetTo() : TAttrib
+ Attribute(from : TAttrib, to : TAttrib)
+ ~ Attribute()

AttributeMove
m_Attributes : std::vector< Attribute* >
+ AttribMove()
+ ~ AttribMove()
+ ApplyOn(pSolution : Solution*) : bool
+ CreateInverse() : Object*
+ Compare(pMove : const MoveBase*) : int
+ Clone() : Object*
+ DeepCopy(pObj : Object*)
+ Write(stream : std::ostream&)
+ Add(pAttrib : MoveBase*)
+ Clear()

Move
m_MoveIterator : MoveIterator*
+ Move()
+ ~ Move()

«interface»
ICloneable

+ Clone() : Object*
+ Clone(pObj : Object*)

«interface»
ICompareable

+ Compare(pObj : Object*) : int
+ Equals(pObj : Object*)

«interface»
IApplyable

+ ApplyOn(pSolution : Solution* = NULL) : bool

«interface»
ISerializeable

+ Write(stream : std::ostream&)

«interface»
IInvertible

+ CreateInverse() : Object*

Object

+ Object()
+ is(pType : std::type_info) : bool

Attribute
m_AttributeMove : AttributeMove*
+ SetAttributeMove(AttributeMove : AttributeMove*)
+ GetAttributeMove() : AttributeMove*

+m_AttributeMove

Figure 3.8: Move package UML class diagram

54 CHAPTER 3. DESIGN

TAttribute

The TAttribute class is a template class derived and implementing the interface
of Attribute. Additionally it provides storage for two template based values.

One called m From that should store the from value of the move attribute.
Its access method is called GetFrom() and it’s manipulation method is named
SetFrom(). An other called m To which has to contain the to value of the move
attribute. Similar to the m From variable m To has also got access an access
method called GetTo() and a manipulation method named SetTo().

The template’s constructor TAttribute(TAttrib from, TAttrib to) just ini-
tialises the internally stored m From and m To with the supplied values.

This template class is used best for creating specific “move attributes” and
for storing them in the container of the AttributeMove class.

AttributeMove

The intention of this class is to provide the possibility of breaking tabu search
moves down into so called “move attribute”. The flexible class structure tries
to avoid limiting the developer to a predefined data structure for “move at-
tributes”. Other frameworks like OpenTS created by Harder [18] try to provide
a limited approach to move attributes. Harder [18] for example represents “move
attributes” by an array of integer values as defined in the ComplexMove class
of his framework. The class AttributeMove stores a list of pointers to Attribute
objects. It’s parent class is Move as shown in 3.8. Therefore the AttributeMove
class has to implement the interface of the Move class in order to define a non
abstract class. Each of the methods ApplyOn(), CreateInverse(), Compare(),
Clone(), DeepCopy() and Write() steps through the internal list of Attribute
objects and utilize the corresponding methods of the Attribute object. To pro-
vide storage for Attribute objects it contains a list named m Attributes. That
list is only accessible from inside the AttributeMove class and derived ones, since
there is no need to manipulate it’s contents once the according Attributes have
been stored inside. Never the less the list can be emptied by calling the method
Clear(). In contrast the Add(Attribute* pAttrib) method adds Attribute objects
to the list.

MoveIterator

The class MoveIterator simplifies the neighbourhood generation for a solution
by providing an iterator interface that steps through the moves of that neigh-
bourhood. This approach to create the neighbourhood step by step, is similar
to the neighbourhood generation of Gaspero and Schaerf [6]. Therefore the
MoveIterator object must know how to handle a Move object and it’s param-
eters. This depends on the implementation of the Move object, which is done
by the developer utilising the framework. Therefore the developer has to cre-
ate one MoveIterator derived class per move type, that knows how to utilise
the corresponding Move object and build a neighbourhood with a set of those
objects.

The only protected variable is m pSolution which points to a Solution ob-
ject. So the generation of the neighbourhood is done for that stored Solution
object. The method GetSolution() gives access to the stored object and SetSo-
lution(Solution* pSolution) can be used to set it to the supplied Solution object.

3.4. THE DESIGN OF THE FRAMEWORK 55

m pMoveManager is a pointer to a container class managing move iterators.
The method GetManager() can be used to retrieve that M oveManager object
and SetManager(MoveManger* pMoveManager) is to be used for manipulating
it.

Must define HotSpots
The iterator interface provides 4 methods Begin(), End(), Next(), Prev() that
must be defined by the developer. The functions Begin(Solution* pSolution)
and End(Solution* pSolution) initialise the iterator by providing a Solution
object. When the pointer to the Solution object is null, then the previously
used solution is kept and the neighbourhood generation is reset. The methods
Next() and Prev(), advances or backtracks the iterator in the neighbourhood.
Both methods return an initialised Move object that can be used to create a
solution of the neighbourhood of the stored solution.

Static Methods The static methods of the class have already been intro-
duced, since they are the access and manipulation functions for the attributes
of the class. The constructor MoveIterator() simply initialises internally stored
variables with zero values.

MoveManager

This class is a container class for sets of MoveIterator objects. It manages the
supplied MoveIterator objects by saving them in a list and providing access to
it. That list then can be used to step through the neighbourhoods and to choose
a best tabu move and non tabu one.

The MoveManager object doesn’t need to be derived. It’s main purpose is
to be a container of the possible moves in order to structure the neighbourhood
generation. So it’s possible to generate several neighbourhoods and choosing
the best solution. For example TSF by Hoong et. al [] shows a similar approach
by providing a Neighbourhood Generator Interface, but it provides a higher
flexibility by even taking constraints into account.

The variables stored with the Movemanager class are given by the follow-
ing list: m pTabuSearch is a pointer to the related TabuSearch object, that
utilises the MoveManager object for stepping through the list of MoveIterator
objects.
m MoveIteratorList contains a list of MoveIterator objects. It can be ac-
cessed by Begin(), End(), Find() and GetRandom() as described below. Ma-
nipulation is possible with Add() and Erase() as detailed by the static methods
description.

Static Methods
Add(MoveIterator *pMoveIterator) adds the supplied MoveIterator object to
the internal list.
Begin() returns the start of the internal list of MoveIterator objects as a stl
constant iterator.
End() returns the end of the internal list of MoveIterator objects as a stl con-
stant iterator.
Find(const MoveIterator *pMoveIter) searches the internal list for the specified
MoveIterator objects.
Erase(const MoveIterator *pMoveIter) removes the the specified MoveIterator
objects from the internal list.
GetRandom() returns a MoveIterator objects at random. The constructor

56 CHAPTER 3. DESIGN

MoveManager() simply initializes the internal list to be empty.

AspirationCriteria

The AspirationCriteria class is an abstract base class for aspiration criteria. So
this class would be a parent class for the developer defined aspiration criteria.

A similar design can be found in HSF by Dorne and Voudouris [9] in the
form of an interface or in OpenTS by Harder [19] as a single class that might
contain more than one aspiration criteria.

m pAspirationManager is the only attribute of the class. It is defined as a
pointer to the container of this class and it can be accessed by GetManger(). Ma-
nipulation is possible with SetManager(AspirationManager* pAspriationMan-
ager), but only by the class AspiritionManager. The variable needs only to
be changed when the AspirationCriteria object is registered with it’s container
AspiritionManager. So there is no need to manipulate it any place else.

Must define HotSpot
isTabuOverridden(const Solution * pSolution, const Move::Move * pMove) is
a method capable of overriding the tabu status of a move, when no better non
tabu move is found. The parameter pSolution is a pointer to a solution object
and pMove is a pointer to a Move object. Both may be needed in order to
determine whether the tabu status is overridden or not.
The constructor AspiritionCriteria() doesn’t take any arguments and is just the
default one.

AspirationManager

Is a storage class for sets of AspirationCriteria objects, which have to be checked
after each iteration when the non tabu move is not creating a better solution.
The supplied AspirationCriteria objects are utilised in a first come, first serve
basis. Therefore the objects registered first are used first in order to determine
the aspiration. Adaption of the way the stored aspiration criteria are evalu-
ated can be created by deriving this class and replacing it’s isTabuOverridden()
method.

OpenTS by Harder [19] only stores one aspiration criteria, and doesn’t pro-
vide a way to choose between different aspiration criteria.

m pTabuSearch is a pointer to the corresponding tabusearch object and
it can be manipulated with SetTabuSearch() only by the TabuSearch. It’s value
can be queried by GetTabuSearch().
m CriteriaList is a STL list type containing AspirationCriteria objects. It
can be accessed by Begin(), End(), Find() and GetRandom() as described be-
low. Manipulation is possible with Add() and Erase() as detailed by the static
methods description.

Static Methods
isTabuOverridden(const Solution *pSolution, const Move::Move *pMove) utilises
the stored list of AspirationCriteria objects in order to determine the tabu state
of the supplied Move and Solution objects. The actual computation is delegated
to the isTabuOverridden() of the AspirationCriteria objects. Once such an ob-
ject returns true for the tabu override, then this result is taken and returned
equally.

3.5. IMPLEMENTATION 57

Add(AspirationCriteria *pAspCrit) adds the supplied AspirationCriteria ob-
ject to the internal list.
Begin() returns the start of the internal list of AspirationCriteria objects as a
stl constant iterator.
End() returns the end of the internal list of AspirationCriteria objects as a stl
constant iterator.
Find(const AspirationCriteria *pAspCrit) searches the internal list for the spec-
ified AspirationCriteria objects.
Erase(const AspirationCriteria *pAspCrit) removes the specified AspirationCri-
teria objects from the internal list.

The constructor AspiritionManager() initialises the internal list as empty.

SolutionMovePair

The SolutionMovePair class is a container for a solution - move pair. It is used
by the TabuSearch in order to store solution - move pairs for the best tabu and
non tabu move.

Since this a rather special helper class for storing the relationship between
Solution and Move objects, no equivalent class could be found in the state of
the art frameworks.

The following list explains the various attributes of the class: m bEmtpy
is a boolean value that stores whether the SolutionMovePair object is empty or
not. The method isEmpty() returns it’s value.
m pSolution is used to store a pointer to a Solution object and can be queried
by GetSolution().
m pMove finally contains a Move object that can be retrieved with GetMove().

May define HotSpot
SetIfBetter(Solution *pSolution, Move::Move *pMove) stores the supplied solu-
tion - move pair only when the fitness of the internally stored one is worse than
the fitness of the supplied solution - move pair.

Static Methods
Set() is a method for simply storing the supplied solution - move pair.
Clear() deallocates the internally solution - move pair and sets m bEmpty to
true.
Write(std::ostream& stream) just invokes the Write() methods of the stored So-
lution and the Move objects. The constructor SolutionMovePair(Solution *pSo-
lution, Move* pMove) initialises the internal variables to represent an empty
state, only when pSolution and pMove point contain null values.

3.5 Implementation

One part in framework development is the creation of the design Another is
to actually use the framework in order to see if it’s applicable or not and to
find problematic parts. Afterwards those areas can be eliminate by changing
the design. This shows that framework development is an ongoing process that
cycles again and again as outlined in [10].

Depending on the programming language chosen there might be the need
to adopt the design in order to utilise the features of the language. Therefore
a short primer about the computer language of the framework of this thesis

58 CHAPTER 3. DESIGN

and some of the advantages and disadvantages of that language is given. Ad-
ditionally special features and enhancements for the framework introduced by
the chosen language are outlined afterwards.

3.6 C++

Most of the framework parts are actually independent from the choice of object
oriented computer language. Nevertheless some are restricted to C++, because
the framework was first designed with the notion of implementing it in C++
later, though they might be implemented with small changes in other languages
offering similar capabilities like C++. Anyway the chosen computer language
used for implementing the framework in the first place was C++. The choice
made was based on several facts:

• It is a well known object oriented language, since it has a long history of
use and can therefore be judged to be stable.

• It is very portable, since there is a well known standard definition known
as ANSI C++. There are compilers for Windows and Unix operating
systems supporting that standard.

• It offers a high level of performance when compared to other object ori-
ented languages.

Besides those benefits there are some other benefical tools that C++ pro-
vides. For example genericity, so called templates that can be used to define
methods and functions that are type independent.

An other benefit are so called inline functions which can be used to define a
method whose source code is inserted at the place where it is invoked. This can
improve performance improvements for a inlined function having a small code
foot print.

A further benefit is the const operator, which used on a variable, makes it
read-only. In case of an object being declared const, modifications of its contents
are forbidden. In functions that return some part of the contents of the const
object, have to be declared const too, otherwise access to them is forbidden by
C++.

One major disadvantage of C++ is related to the goto command and labels,
since those statements can create source code that is very hard to read. There-
fore this thesis avoids their use. Of course there lots of other problems like the
goto command, revolving around the origin of C++’s origin in C. They have
been avoided too.

Casting objects to a specific parent or child class can be problematic if
the type is not known at the time of writing the program, but when it will
be determined at run time. To remove that problem C++ provides the dy-
namic cast<>() template function, which does the cast and throws an exception
when the specified type cast cannot be conducted.

Another major benefit of C++ is the Standard Template Library, which is
a library that contains several algorithms and data storage structures. These
are quite easy to use and the programmer doesn’t need to go through the error
prone development process to write simple data storage structures on his own.

3.7. IMPLEMENTATION SPECIFICS 59

3.7 Implementation Specifics

As already outlined before, a special class has been defined called Object. Its
only purpose is to provide an absolute parent for other classes, so that there
is a global parent class. This makes the definition of the previously introduced
interfaces of chapter 2.2.2 possible. Other object oriented languages might pro-
vide such a master parent class type, like C# does. Therefore this is a definition
specifically introduced to C++.

The file structure in the file system is also important for understanding the
source code. The framework uses three different file endings: .h, .hpp, .cpp
Therefore one class usually has a .h and a .cpp file. The .h file is the so called
header file containing the class and type definitions whereas the .cpp file contains
the functions and their code for that class. The .hpp file is quite special since
it contains inline functions and template definitions and is always included by
the corresponding .h file.

The UML template TSimpleFitness class is defined as a C++ template class
with a template parameter named TFitness. So fitness values can be of any
type the user might chose.

Similar the UML template TAttribute class is defined as a C++ template
class with a template parameter called TAttrib.

The classes utilising Standard Template Library features provide type defini-
tions to shorten certain type declaration like: typedef std::vector<Attribute*>

AttribVec; in order to enhance the readability of the source code.

60 CHAPTER 3. DESIGN

Chapter 4

Application of the
framework - A case study

As already discussed in chapter 2.2.4 a framework alone is not enough to testify
it’s usability, but a program utilising the framework can be used to do so.
Therefore this chapter is concerned with an example application utilising the
diploma thesis framework. A problem from literature has been chosen and is
described in detail at the start of this chapter. Then an application is presented,
which solves it by utilising the framework of this diploma thesis. Afterwards
the gathered computation results are presented and compared to literature.

4.1 An example problem

The best way to test the design of the framework is by writing one or more
applications utilising it. During the application development and implementa-
tion, problem spots within the tested framework can be found. Then a new
development cycle of the framework can take place, where the gathered results
of the test application are used to improve the design in order to remove the
problem spots.

In the case of the Tabu Search framework of this diploma thesis, a NP hard
problem from literature has been chosen. Because a test is best conducted with
an example that has been proven to be solvable by Tabu Search, a well known
problem had to be taken. The rotating workforce scheduling problem presented
by Musliu et. al [30] fulfils that criteria. As its name suggests, rotating workforce
scheduling is concerned with creating schedules for a number of employees where
monotonic repetition of shifts is avoided by rotating shift assignments between
employees. That might sound a bit complicated, but it is worth the effort, since
workforce schedules affect both the health and the social life of the employees.
Badly planned schedules can also increase the risk of work-related accidents.
Therefore it is of high practical relevance to find workforce schedules, that on
one hand fulfil the ergonomic criteria for the employees, and on the other reduce
costs for the organisation.

61

62CHAPTER 4. APPLICATION OF THE FRAMEWORK - A CASE STUDY

4.1.1 Rotating workforce scheduling

Before discussing how the framework was utilised to solve the problem, the
problem definition as found in Musliu et. al [30] is presented:
Instance:

• Number of employees: n.

• Set A of m shifts (activities) : a1, a2, . . . , am, where am represents the
special day-off “shift”.

• w: length of schedule. The total length of a planning period is n × w

because of the cyclic characteristics of the schedules.

• A cyclic schedule is represented by an n×w matrix S ∈ Anw. Each element
si,j of matrix S corresponds to one shift. Element si,j shows which shift
employee i works during day j or whether the employee has time off. In
a cyclic schedule, the schedule for one employee consists of a sequence of
all rows of the matrix S. The last element of a row is adjacent to the first
element of the next row, and the last element of the matrix is adjacent to
its first element.

• Temporal requirements: (m− 1)×w matrix R, where each element ri,j of
matrix R shows the required number of employees for shift i during day
j.

• Constraints:

– Sequences of shifts permitted to be assigned to employees (the com-
plement of inadmissible sequences): Shift change m×m×m matrix

C ∈ A(m3). If element ci,j,k of matrix C is 1, the sequence of shifts
(ai, aj , ak) is permitted, otherwise it is not.

– Maximum and minimum length of periods of consecutive shifts: Vec-
tors MAXSm, MINSm, where each element shows the maximum
respectively minimum permitted length of periods of consecutive
shifts.

– Maximum and minimum length of blocks of workdays: MAXW ,
MINW .

In order to create a better understanding of the area of rotating workforce
scheduling an example schedule found in [29], [27] is discussed here:

A workforce schedule represents the assignments of the employees to the
defined shifts for a period of time. In Table 4.1 a typical representation of
workforce schedules is presented. This schedule describes explicitly the working
schedule of 9 employees during one week. The first employee works from Monday
until Friday in a day shift (D) and during Saturday and Sunday has days-off.
The second employee has a day-off on Monday and works in a day shift during
the rest of the week. The forth employee has got day-off starting with Monday
and ending with Thursday and works in afternoon shifts (A) on Friday, Saturday
and Sunday. Further, the last employee works from Monday until Wednesday
in night shifts (N), on Thursday and Friday has days-off, and on Saturday and
Sunday works in the day shift.

4.1. AN EXAMPLE PROBLEM 63

Table 4.1: One typical week schedule for 9 employees by Mörz and Musliu [27]

Employee/day Mon Tue Wed Thu Fri Sat Sun

1 D D D D D - -
2 - D D D D D D
3 D - - N N N N
4 - - - - A A A
5 A A A A - - -
6 N N N N N - -
7 - - A A A A A
8 A A - - - N N
9 N N N - - D D

Each row of this table represents the weekly schedule of one employee.
According to Musliu et. al [30] there are two main variants of workforce

schedules: rotating (or cyclic) workforce schedules and non-cyclic workforce
schedules. In a rotating workforce schedule all employees have the same basic
schedule but start with different offsets. Therefore, while the individual pref-
erences of the employees cannot be taken into account, the aim is to find a
schedule that is optimal for all employees. In non-cyclic workforce schedules
the individual preferences of the employees can be taken into consideration and
the aim is to achieve schedules that fulfil the preferences of most employees. In
both variations of workforce schedules other constraints such as the minimum
number of employees required for each shift have to be met. In this paper we
will consider the problem of rotating workforce scheduling. This problem is a
NP-complete problem.

4.1.2 Solving rotating workforce scheduling

This section is concerned with the creation of an algorithm solving the presented
rotating workforce scheduling problem by utilizing the framework. According
to the design presentation in chapter 3 following classes must be subclassed:
Solution, ObjectiveFunction, Move and MoveIterator. The source code of each
function presented here, is given in appendix A along with an in depth discussion
of its source code.

Two additional data types have been defined for easing the implementation:
eDay and CRequirements. First both are discussed, since the understanding of
them is important for understanding the rest of the source code.

For storing schedules, an enumeration data type called eDay has been de-
fined, enumerating the days of a week.

Most important, for beeing able to solve a number of rotating workforce
problems, is the flexibility regarding constraints. To satisfy this need, the class
CRequirements has been defined and is used to save and load problems defined in
text files. The class itself stores the number of shifts and employees, the number
of shifts per day, the prohibited sequences of shifts, the maximum length of work-
or day off - blocks and the maximum and minimum number of consecutive shifts
of a specific shift type.

64CHAPTER 4. APPLICATION OF THE FRAMEWORK - A CASE STUDY

Solution

Solution is derived by CWeek which represents one week schedule. Since it has
to represent a single week schedule, it has to store that information. This is done
with a memory block of integer values, where each integer represents a shift of a
day for an employee. In order to know the number of shifts and employees, the
class CWeek needs access to the information of the CRequirements class. That
access is provided by supplying the constructur with a CRequirements object.
All necessary functions required by the Solution class are implemented like:
DeepCopy(), Clone(), Write(), Compare() and Equals(). They fulfil the speci-
fication as presented with the coresponding interface in chapter 3.4.2 handling
the internally stored week schedule. Appendix A.2 shows the implementation
of those methods. Initialisation of the solution is done with Initialize() which
sets up a solution that fulfils the number of shifts per day constraints. That in
turn reduces the complexity of the problem, when the used move operators do
not violate those constraints. In addition, the functions getShift(int iEmployee,
eDay day) and setShift (int iEmployee, eDay day, int iShiftValue) have been
defined as an easy way to access the week schedule. In order to calculate the
fitness, a method is needed to step forth and back from one shift to another. A
way to define such a stepping is to step from one day to the next in the shifts of
one employee. When Sunday is reached, a wrap around to the next employee’s
Monday is done. The functions nextShift (int *iEmployee, eDay *day) cal-
culates the next shift of that stepping, in contrary prevShift (int *iEmployee,
eDay *day) steps the other way round.

ObjectiveFunction

ObjectiveFunction is derived by CObjectiveFunction which creates an integer
fitness value stored with the template class TSimpleFitness<int> for a specific
CWeek object.

The evaluation of solutions is the most time consuming task compared to
the rest of the algorithm, because each solution has to be checked for many
constraints. So it is especially vital for a successful implementation to pick
a good and fast evaluation. Such an evaluation is presented in Musliu [29]:
For each violation of a constraint a determined number of points (penalty) is
given, based on the constraint and the degree of the constraint violation. The
fitness of a population member is calculated as the sum of those points for the
population member. So the fitness represents the sum of all penalties caused
by the violation of constraints. Since the problem to be solved has only hard
constraints, the solution will be found when the fitness of the solution reaches
the value 0. The fitness is calculated like in Musliu [29]:

Fitness =

NW∑

i=1

P1 × Distance(WBi ,WorkBRange) +

ND∑

i=1

P2 × Distance(DOBi ,DayOffBRange) +

NumOfShifts∑

j=1

(

NSj∑

i=1

P3 × Distance(SBij ,ShiftSeqRangej)) +

4.1. AN EXAMPLE PROBLEM 65

P4 × NumOfNotAllowedShiftSeq

Where - according to Musliu [29] - NW , ND, represent respectively, the
number of work -, and days off - blocks, whereas NSj , represents number of
shift sequences blocks of shift j. WBi, DOBi, represent, a work block i, and
days-off block i. SBij , represents the i-th shifts block of shift j. The function
Distance(XBlock, range) returns 0 if the length of the block XBlock is inside
the range of two numbers (range), otherwise returns the distance of length of
XBlock from the range. For example, if the legal range of work blocks is 4 − 7
and length of work block XBlock is 3 or 8 then this function will return value
1.

In the example program the following penalty weights are used: P1 =
1, P2 = 1, P3 = 3, P4 = 2

Move

Move is derived by CSwapShiftMove, which defines a swap of two shift blocks
as defined in Musliu [29]. The major advantage of this operation is to leave the
shift requirements of the days intact. The Move class provides a set of interfaces
that must be implemented. Accordingly the required methods: CreateInverse(),
ApplyOn(), Compare(), Equals(), Clone(), DeepCopy() and Write() have been
implemented as can be seen in Appendix A.4. CreateInverse() just passes back
a copy of the CSwapShiftMove object, because a CSwapShiftMove is also the
inverse of itself. ApplyOn() does the actual swap on a CWeek object by swap-
ping the shift block as specified by the internal variables when the contents of
the shift block are not equal. If the contents are equal, the move will be futile
and therefore not done. In that case ApplyOn returns false, otherwise it returns
true. Compare() conducts a comparison of the internal variables of the CSwap-
ShiftMove object with the supplied CSwapShiftMove object. It returns -1, 0 or
1 if the internal values are found, to be less than, to match, or be greater than
the supplied CSwapShiftMove ones. Clone() creates a new object containing the
same internal values. DeepCopy() just assignes the supplied CSwapShiftMove
object’s data to the internal variables. For each variable of m eDay, m iShift1,
m iShift2 and m iLength an access method and a manipulation method have
been defined. Since experiments have shown that a single swap is sometimes not
solving the problem, a number of consecutive shifts can be swapped. Therefore
the move stores, the day, two employees - who’s shifts get swapped, and a length
which defines the number of shifts to swap.

MoveIterator

MoveIterator is subclassed by CSwapShiftMoveIterator defining a MoveIterator
that handles the CSwapShiftMove. The interface of MoveIterator is imple-
mented by defining four functions: prev(), next(), begin() and end(). begin()
and end(), which simply set the internal variables to the first or the last move
and return a move representing the corresponding move. next() and prev() step
through the moves by changing the internal variables storing the current posi-
tion. The internal variables are the same as the ones of the CSwapShiftMove.
They are used to construct a CSwapShiftMove object whenever getMove() is
called. To limit the maximum length of a block getting swapped the variable
m iMaxLength is defined and can be set with the constructor.

66CHAPTER 4. APPLICATION OF THE FRAMEWORK - A CASE STUDY

Aspiration::Criteria is subclassed by CBestAspiration and overrides the tabu
state of a move when it leads to a solution that is better than the current
solution. Therefore it implements the isTabuOverridden() method which queries
the Aspiration::Manager for the TabuSearch object in order to gain access to
the fitness of the current solution. Then the fitness of the current solution is
compared to the solution’s fitness generated by the tabu move. If it’s better,
then true is returned which overrides the tabu state of the move. Otherwise
false is returned.

The main program glues everything together. In order to provide a little bit
of flexibility for testing purposes, command line arguments have been added,
allowing a higher verbosity or starting with a specific random seed so that
the initial solution is a specific one. As the source code in A.1 shows a set
of objects needs to be created. The ones originating from the framework are:
a TabuSearch, a MoveManager, an Aspiration::Manager, a SearchHistory and
a TabuList object. The TabuSearch object provides the central Search class
used to start the search and to retrieve the result. The SearchHistory and the
TabuList provide the tabu memory for the search. The Manager classes manage
the MoveIterator objects and the Aspiration::Criteria objects respectively. The
MoveManager object needs at least one MoveIterator object and therefore it
gets a new CSwapShiftMoveIterator object added by a call to Add(). The
Aspiration::Manager doesn’t need an Aspiration::Criteria object. Still it gets
an object of type CBestAspiration added, because this is needed in order to
make the Tabu Search working for this problem.

The only remaining necessary step is to initiate the search process by calling
Search() of the TabuSearch object, passing it an instance of a Solution object,
which is in our case a CWeek object. The rest of the search process is now done
by the framework with the help of the supplied objects: CWeek, CObjective-
Function, CSwapShiftMove, CSwapShiftMoveIterator and CBestAspiration.

When the search terminates, the results are printed and the program termi-
nates.

4.1.3 Results

Depending on the number of employees, the shifts, and the different constraints,
the algorithm might work better or worse. Therefore four different example
problems in the area of rotating workforce scheduling have been chosen from
literature as found in Mörz and Musliu [27] and solved. They are called Laporte,
Heller and 27 Groups problem. The following sections define the constraints of
those problems and include a solution that was found by the example program.
Basically each problem has to fulfil the following constraints:

There exist three non overlapping shifts D, A, and N. A week schedule has to
be constructed that fulfills: (1) Rest periods should be at least two days off, (2)
Work periods must be between 4 and 7 days long. (3) minimum of consecutive
D shift is 2, maximum is 7 (4) minimum of consecutive A shift is 2, maximum
is 6 (5) minimum of consecutive N shift is 2, maximum is 4.

Problem 1

In addition to the basic constraints following constraints must be fulfilled: 4
employees, and requirements are 1 employees in each shift and every day.

4.1. AN EXAMPLE PROBLEM 67

Table 4.2: solution schedule for Problem 1

Employee/day Mon Tue Wed Thu Fri Sat Sun

1 - D D A A N N
2 N - - D D D D
3 D A A - - A A
4 A N N N N - -

Table 4.3: solution schedule for Laporte

Employee/day Mon Tue Wed Thu Fri Sat Sun

1 - - - D D D A
2 A N N - - A A
3 N N - - - D D
4 D D D - - - D
5 D D D D D - -
6 A A A A A - -
7 - A A A A A N
8 N - - N N N N
9 - - N N N N -

The solution found by the example program is given in table 4.2.

Problem 2 Laporte

Actuall this is not a specification that would fulfill the contraints for the problem
presented by Laporte [24], but it’s rather a subset of constraints of that problem.

In addition to the basic constraints following constraints must be fulfilled: 9
employees, and requirements are 2 employees in each shift and every day.

The solution found by the example program is presented in table 4.3.

Problem 3 Hellerplan

Heller [20] has shown a problem that is more difficult to solve than the presented
problem by Laporte [24]. In addition to the basic constraints following addi-
tional ones must be fulfilled: 17 employees, and requirements are 4 employees
in each shift and every day except for following day - shifts combinations. D
shift and A shift on monday have to have 5 employees. D shift on sunday has
to be 3. N shift on Tuesday, Wednesday and Thursday have to be 3.

The solution found by the example program is shown in table 4.4.

Problem 4 27-Groups

In addition to the basic constraints following additional ones must be fulfilled:
27 employees, and 7 employees in each shift on Monday, Tuesday, Wednesday,
Thursday and Friday and 4 employees in each shift on Saturday and Sunday.

68CHAPTER 4. APPLICATION OF THE FRAMEWORK - A CASE STUDY

Table 4.4: solution schedule for Hellerplan

Employee/day Mon Tue Wed Thu Fri Sat Sun

Emp0 D D N N N - -
Emp1 D D D D - - -
Emp2 A A A A A - -
Emp3 D D D D N N -
Emp4 - A A A A A -
Emp5 - - A A A A A
Emp6 A - - N N N N
Emp7 - - D D D A A
Emp8 A - - - D D D
Emp9 D - - D D D D
Emp10 A A A - - - D
Emp11 D D D - - D D
Emp12 N N N - - N N
Emp13 N N - - D D N
Emp14 N - - A A N N
Emp15 N N - - - A A
Emp16 A A N N N - -

The solution found by the example program is given in table 4.5.

Average results for 100 runs

The table 4.6 gives the average results acquired by executing 100 runs per prob-
lem. It shows the number of evaluations, the number of iterations and the time
it took to find a solution with fitness zero. The measurements have been taken
on an AMD Athlon 3200+ with 1GB RAM and Debian Gnu Linux (testing)
with a kernel version 2.6.8 as an operating system. All unnecessary programs
have been shut down for the measurements, so only the following daemons have
been running aside the rotating workforce scheduling problem solver:

/ sb in /portmap − i 1 2 7 . 0 . 0 . 1
/ sb in / sy s l ogd
/ sb in / klogd
/ usr / sb in /cupsd
/ usr /bin /dbus−daemon −−system
/usr / sb in /exim4 −bd −q30m
/usr / sb in / ine td
/ usr / sb in / sshd
/ usr / sb in /famd −T 0
/usr / sb in /atd
/ usr / sb in / cron

The presented results show that the framework was used successful to solve
the rotating workforce scheduling problem. The implementation gives similar
results like the Tabu Search approach in Musliu [29].

4.1. AN EXAMPLE PROBLEM 69

Table 4.5: solution schedule for 27-Groups

Employee/day Mon Tue Wed Thu Fri Sat Sun

Emp0 - A A A A - -
Emp1 - - D D D A A
Emp2 N N - - A A A
Emp3 A - - D D D N
Emp4 N - - - - A A
Emp5 A N N N - - D
Emp6 D A A - - - N
Emp7 N N N - - N N
Emp8 N N - - D D D
Emp9 N N N N - - -
Emp10 A A N N N - -
Emp11 N N N N N - -
Emp12 A A A A A - -
Emp13 A A A N N N -
Emp14 - D D D D D D
Emp15 - - D D N N -
Emp16 - - A A N N N
Emp17 - - - D D A A
Emp18 A A - - - D D
Emp19 D D D D D - -
Emp20 D D D A A - -
Emp21 N N N N N - -
Emp22 D D D D D - -
Emp23 D D A A A - -
Emp24 D D N N N - -
Emp25 D D D A A - -
Emp26 A A A A A - -

Table 4.6: examples result statistics

Problem evaluations iterations time

1 54286 317,29 0.62 seconds
2 66673,9 92,76 0.52 seconds
3 1894687,3 924,54 4 Minutes 35.45 seconds
4 81573502,6 28945,23 26 Minutes 45.34 seconds

70CHAPTER 4. APPLICATION OF THE FRAMEWORK - A CASE STUDY

Chapter 5

Conclusion, Questions and
Perspectives

This diploma thesis presented a framework for Tabu Search, which is intended
to alleviate the time consuming task to reimplement the basic structure and
algorithm of Tabu Search. Therefore it should lead to a reduction in time and
resources needed for creating programs solving problems with Tabu Search. The
state of the art frameworks already provide solutions, for the reimplementation
of the basic structure and algorithm of Tabu Search. Still none of those frame-
works acknowledges the frequency memory by providing a design for it. By
extending the basic structure and algorithm of Tabu Search by a facility to
gather frequency information the framework of this thesis provides a feature
which is not yet to be found in state of the art.

The presentation of the design was created with the help of UML, which is
known to be a modern tool for describing object oriented designs. The design of
the framework itself provides a basic structure and algorithm for Tabu Search.
The developer must derive 4 classes of the framework in order to provide the
framework with the necessary information about the problem. The super classes
that need to be subclassed are: Solution, ObjectiveFunction, Move and MoveIt-
erator. The framework works like a blackbox, taking those 4 classes as an input
and providing a solution to the given problem. Nevertheless the developer can
modify the algorithms of that black box by deriving further classes, which in
turn replace functionality in the framework.

A successful application of the proposed framework has been shown for a
NP-hard problem. As the results of this application suggest, the work needed
for creating Tabu Search algorithms can be reduced by utilising the framework.

The designs of the state of the art frameworks show that there are a lot of
possible design extension that could be added to the framework proposed in this
diploma thesis. Among those, the following design idea is most likely one of the
more important ones. A future extension could be the design of a messaging
system for the framework in a similar fashion like the one found in OpenTS. Such
a messaging system generates messages when certain events occur like finding a
new non-tabu solution, etc. Those messages can be intercepted by user defined
call back functions, which have registered in the messaging system. This allows
the developer to influence the search process at certain places without the need

71

72 CHAPTER 5. CONCLUSION, QUESTIONS AND PERSPECTIVES

to derive and implement major parts of the framework. Therefore this offers a
convenient and easier way to extend and adopt the frameworks functionality to
the users need. Additionally it would add the possibility to influence the search
for the end user, when an user interface has been created for that task.

Appendix A

Example Problem Source
Code

This section presents and discusses the source code to the program that solves
the rotating workforce scheduling problem as shown in chapter 4.1.1. First the
main program is given in order to present a high-level overview before looking
into the details of the used objects.

73

74 APPENDIX A. EXAMPLE PROBLEM SOURCE CODE

A.1 The main part

The following lines of code show the creation of the Tabu Search objects, their
feeding into the framework’s TabuSearch, followed by the starting of the search
and ending by displaying the results.

For a better understanding the class names of problem specific objects have
been prefixed with a “C” , so that you can easily identify classes that are not
part of the framework.

Listing A.1: Main program main.cpp

1 int main (int argc , char ∗∗ argv) {
2 try {
3 CSett ings S e t t i n g s (15 ,45 ,DEFAULTPROBLEMFILE) ;
4 CRequirements Req ;
5

6 Se t t i n g s . ParseCmdlineArgs (argc , argv) ;
7 Se t t i n g s . S e e d I n i t i a l i z e () ;
8

9 Req . Load (S e t t i n g s . GetFilename () . c s t r ()) ;
10

11 MoveManager ∗pMM = new MoveManager ;
12 CSwapShiftMoveIterator ∗pSMI = new CSwapShiftMoveIterator(&Req , 4) ;
13 pMM−>Add((MoveIterator ∗)pSMI) ;
14

15 Asp i rat ion : : Manager ∗pAM = new Asp i rat ion : : Manager () ;
16 CBestAspirat ion ∗pCBA = new CBestAspirat ion () ;
17 pAM−>Add(pCBA) ;
18

19 CObject iveFunction ∗pObjFunc = new CObject iveFunction(&Req) ;
20 SearchHistory ∗pSH = new SearchHistory (S e t t i n g s . GetHistory ()) ;
21 TabuList ∗pTL = new TabuList (pSH, S e t t i n g s . GetTenure ()) ;
22 TabuSearch ∗Tb = new TabuSearch (pMM, pObjFunc , pAM, pSH, pTL) ;
23

24 CWeek Week (&Req) ;
25 Week . I n i t i a l i z e () ;
26

27 Tb−>SetMaxIterat ions (24000) ;
28

29 i f (S e t t i n g s . i sVerbose ())
30 Tb−>SetDebug (DEBUG TS BEFORE LOOP
31 | DEBUG TS AFTER LOOP
32 | DEBUG TS MOVE APPLIED
33 | DEBUG TS TABU STATUS
34 | DEBUG TS SAVESOLUTION BEFORE
35 | DEBUG TS SAVESOLUTION AFTER
36) ;
37

38

39 Tb−>Search (&Week) ;
40 CWeek ∗pW = (CWeek ∗) Tb−>GetBestSolut ion () ;
41 cout << ”Best So lu t ion found : ” << end l << ∗pW << end l
42 << ”Runtime : ” << Tb−>GetRunTime () << end l
43 << ” I t e r a t i o n s : ” << Tb−>Get I t e r a t i on s ()−>GetCount ()
44 << end l

A.2. THE SOLUTION REPRESENTATION 75

45 << ”Evaluat ions : ” << Tb−>GetEvaluations ()−>GetCount ()
46 << end l ;
47 } catch (const char ∗ s t r) {
48 cout << ” caught : ” << s t r << end l ;
49 return 1 ;
50 }
51 delete Tb ;
52

53 return 0 ;
54 }

CSettings is a container object for the settings of the example program like
which problem has to be read, which random seed is to be utilised, etc.

CRequirements is a problem specific object containing the constraints that
have to be satisfied. It loads the constraints from a file who’s filename was
determined above.
Line 6 parses the command line parameters.
Line 7 initializes the random seed of the random number generator.
Line 9 loads the requirements from a problem file.
Line 11 creates a MoveManger object which is part of the framework. It’s
purpose is to be container for objects that create neighbourhood sets for a
specific solution.
Line 12 creates a neighbourhood generating object that is problem specific and
therefore is not part of the framework.
Line 13 adds the problem specific neighbourhood generation to the container’s
content.
Line 15 creates a container object for aspiration criteria.
Line 16 creates an aspiration object that removes tabu status when it is the
best solution for the complete neighbourhood.
Line 19 creates a problem specific objective function for evaluating solutions
regarding their fitness.
Line 20 creates a framework object that will contain the last 40 moves and their
fitness values.
Line 21 creates a tabu list object and sets it’s tenure to 20 and tells it to utilise
the previously created history object for verifying if something is tabu or not.
Line 22 creates the TabuSearch object which is the framework’s main object
that contains the tabu search algorithm.
Line 24 and 25 create a problem specific solution representing object and ini-
tialise it.
Line 29 turns off verbosity according to command line parameters.
Line 39 starts the actual search.
Line 40 to 46 show the best solution found.

A.2 The solution representation

The framework provides an abstract class called Solution for representing so-
lutions. Their purpose is to store a solution of the search space regardless it’s
fitness.

The class CWeek is derived from the Solution class and therefore it has
to implement the abstract clone() functions. If the debugging facility of the

76 APPENDIX A. EXAMPLE PROBLEM SOURCE CODE

framework is used, then the write() function must also be defined. Since the
debugging is turned on as default, it must be provided.

Listing A.2: class CWeek

1 CWeek : : CWeek (CRequirements ∗pRequirements) : So lu t ion ()
2 {
3 this−>m pRequirements = pRequirements ;
4 this−>m piWeek = new int [m pRequirements−>GetEmployeeCount () ∗
5 m pRequirements−>GetLengthOfSchedule ()] ;
6 SetF i tnes s (new TSimpleFitness<int> (100000)) ;
7 }
8

9 CWeek : : CWeek (const CWeek & Week) : So lu t ion ()
10 {
11 int iA l l o c S i z e = 0 ;
12

13 this−>m pRequirements = Week . m pRequirements ;
14 iA l l o c S i z e = m pRequirements−>GetEmployeeCount () ∗
15 m pRequirements−>GetLengthOfSchedule () ;
16 this−>m piWeek = new int [iA l l o c S i z e] ;
17 memcpy (this−>m piWeek , Week . m piWeek , s izeof (int) ∗ iA l l o c S i z e) ;
18 }
19

20 CWeek : : ˜CWeek ()
21 {
22 i f (this−>m piWeek)
23 delete [] m piWeek ;
24 }
25

26 void

27 CWeek : : I n i t i a l i z e (void)
28 {
29 int ∗map = new int [this−>m pRequirements−>GetShiftCount ()] ;
30 int ∗day R = new int [this−>m pRequirements−>GetShiftCount ()] ;
31 int i S h i f t ;
32 int iMaxShift ;
33 int iEmployee ;
34 int iH e lpSh i f t ;
35 int iRandomEmployee ;
36 int y ;
37

38 m bChanged = true ;
39

40 for (int iDay = 0 ; iDay < 7 ; iDay++) {
41 this−>m pRequirements−>GetRequirements (day R , (eDay) iDay) ;
42

43 y = 0 ;
44 for (int x = 0 ; x < this−>m pRequirements−>GetShiftCount () ; x++) {
45 i f (day R [x] > 0)
46 map [y++] = x ;
47 }
48 iMaxShift = y ;
49 for (iEmployee = 0 ;
50 iEmployee < m pRequirements−>GetEmployeeCount () ;

A.2. THE SOLUTION REPRESENTATION 77

51 iEmployee++) {
52 i f (iMaxShift == 0) {
53 break ;
54 }
55 i S h i f t = random () % iMaxShift ;
56 s e t S h i f t (iEmployee , (eDay) iDay , (map [i S h i f t] + 1)) ;
57

58 day R [map [i S h i f t]]−−;
59 i f (day R [map [i S h i f t]] == 0) {
60 memmove (&map [i S h i f t] , &map [i S h i f t + 1] ,
61 s izeof (int) ∗ (iMaxShift − (i S h i f t + 1))) ;
62 iMaxShift−−;
63 }
64 }
65

66 i f (iEmployee != 0) {
67 for (iEmployee ;
68 iEmployee < m pRequirements−>GetEmployeeCount () ;
69 iEmployee++) {
70 iRandomEmployee = random () % iEmployee ;
71 iH e lpSh i f t = g e t S h i f t (iRandomEmployee , (eDay) iDay) ;
72 s e t S h i f t (iRandomEmployee , (eDay) iDay ,
73 m pRequirements−>GetShi ftFree ()) ;
74 s e t S h i f t (iEmployee , (eDay) iDay , iH e lpSh i f t) ;
75 }
76 } else {
77 for (iEmployee ;
78 iEmployee < m pRequirements−>GetEmployeeCount () ;
79 iEmployee++) {
80 s e t S h i f t (iEmployee , (eDay) iDay ,
81 m pRequirements−>GetShi ftFree ()) ;
82 }
83 }
84

85 }
86

87 delete map ;
88 delete day R ;
89 }
90

91 void CWeek : : DeepCopy (const Object ∗ pSolut ion){
92 int iA l l o c S i z e = 0 ;
93 const CWeek ∗pWeek = dynamic cast<const CWeek ∗> (pSolut ion) ;
94

95 a s s e r t (this−>m pRequirements == pWeek−>m pRequirements) ;
96 iA l l o c S i z e = m pRequirements−>GetEmployeeCount () ∗
97 m pRequirements−>GetLengthOfSchedule () ;
98 memcpy (this−>m piWeek , pWeek−>m piWeek , s izeof (int) ∗ iA l l o c S i z e) ;
99

100 SetF i tnes s (dynamic cast<Fitnes s ∗> (pWeek−>GetFitness ()−>Clone ())) ;
101 }
102

103 Object ∗CWeek : : Clone (void) const

104 {

78 APPENDIX A. EXAMPLE PROBLEM SOURCE CODE

105 CWeek ∗pNewWeek = new CWeek(∗ this) ;
106 pNewWeek−>SetF i tnes s (dynamic cast<Fitnes s ∗> (GetFitness()−>Clone ())) ;
107 return pNewWeek ;
108 }
109

110 void CWeek : : Write (std : : ostream &stream) const

111 {
112 stream << ∗ this << end l ;
113 }
114

115 int CWeek : : Compare (const Object ∗ pObj) const

116 {
117 const CWeek ∗pWeek = dynamic cast<const CWeek ∗> (pObj) ;
118

119 for (int iEmployee=0;
120 iEmployee < m pRequirements−>GetEmployeeCount () ;
121 iEmployee++) {
122 for (int iDay = 0 ; iDay < 7 ; iDay++) {
123 i f (g e t S h i f t (iEmployee , (eDay) iDay) <

124 pWeek−>g e t S h i f t (iEmployee , (eDay) iDay)) {
125 return −1;
126 }
127 i f (g e t S h i f t (iEmployee , (eDay) iDay) >

128 pWeek−>g e t S h i f t (iEmployee , (eDay) iDay)) {
129 return −1;
130 }
131 }
132 }
133 return 0 ;
134 }
135

136 bool CWeek : : Equals (const Object ∗ pWeek) const

137 {
138 return Compare (pWeek) ? true : fa l se ;
139 }

Line 1-7 show the constructor, which initializes and allocates internal variables
for the solution representation.
Line 9-14 shows a copy constructor for the class.
Line 20-24 shows the destructor deallocating memory resources.
Line 26 the initialization Function which creates a schedule that fullfills the
requirement matrix as outlined in Chapter 4.
Line 40 starts the outer loop over the 7 days of a week.
Line 41 copies the shift requirements containing how many shifts of a specific
type the day must contain into a temporary vector.
Line 43 to 47 initialises an array that keeps track of the shifts whose day re-
quirements haven’t been met yet.
Line 49 starts a loop over the employees of a day that’s either terminated when
no more employees are available or all shift requirements are met (Line 31-33).
Line 55,56 set the shift value of an employee to a random shift.
Line 58 to 62 removes the shift previously used from the requirements.
Line 66 to 83 fill the rest of the day with day off shifts when there are employees
still left.

A.3. THE OBJECTIVE FUNCTION 79

Line 91 shows the DeepCopy(const Object *pSolution) function that should copy
the contents of the pSolution object to the invoking one. A very important issue
to notice here is that the cloning should not be a copying of pointers, but of
the memory they point to. If necessary allocation of new memory takes place
here. In the case of the rotating workforce scheduling example there is no extra
allocation necessary since all allocations can take place in the constructor of
CWeek, because the memory size needed is known on object creation.
Line 96 calculates the size of the array of shifts for all employees for a week.
Line 98 copies the memory contents from the pWeek object to this*.
Line 100 copies the fitness value too.
Line 103 defines the Clone() function that creates a new object and returns it.
Line 105 allocates the new object and copies the memory contents by using a
copy constructor.
Line 110 defines the Write() function which is only necessary for debugging.
Line 115 defines the Compare() function which compares two week schedules
shift by shift. When a difference is found the function terminates with the
appropriate return value.
Line 136 defines the Equals function that simply utilises the Compare() function
for testing of equity between two week schedules.

A.3 The objective function

The framework’s class representing the objective function is called Objective-
Function. The problem specific implementation, deriving from it, is named
CObjectiveFunction. The user only needs to implement one function called
evaluate which returns the fitness of the supplied solution object.

Listing A.3: class CObjectiveFunction

1 CObject iveFunction : : CObject iveFunction (
2 CRequirements ∗pRequirements)
3 : Object iveFunct ion ()
4 {
5 m pRequirements = pRequirements ;
6 }
7

8 Fitnes s ∗ CObject iveFunction : : Evaluate (So lu t ion ∗ pSolut ion)
9 {

10 Object iveFunct ion : : Evaluate (pSolut ion) ;
11

12 INTLIST : : c o n s t i t e r a t o r I n t I t e r ;
13 FAILURES f a i l u r e s ;
14 TSimpleFitness<int> ∗pValue ;
15 int iValue = 0 ;
16

17 Detec tFa i lu r e s ((CWeek∗) pSolut ion , f a i l u r e s) ;
18

19 I n t I t e r = f a i l u r e s . SequenceLength . begin () ;
20 while (I n t I t e r != f a i l u r e s . SequenceLength . end ()) {
21 iValue += (∗ I n t I t e r) ∗ 3 ;
22 I n t I t e r++;
23 i f (g l debug)

80 APPENDIX A. EXAMPLE PROBLEM SOURCE CODE

24 cout << ”Sequence l ength e r r o r ” << end l ;
25 }
26

27 I n t I t e r = f a i l u r e s . WorkBlocks . begin () ;
28 while (I n t I t e r != f a i l u r e s . WorkBlocks . end ()) {
29 iValue += ∗ I n t I t e r ;
30 I n t I t e r++;
31 i f (g l debug)
32 cout << ”workblock l ength e r r o r ” << end l ;
33 }
34

35 I n t I t e r = f a i l u r e s . FreeBlocks . begin () ;
36 while (I n t I t e r != f a i l u r e s . FreeBlocks . end ()) {
37 iValue += ∗ I n t I t e r ;
38 I n t I t e r++;
39 i f (g l debug)
40 cout << ” f r e e b l o c k l ength e r r o r ” << end l ;
41 }
42

43 I n t I t e r = f a i l u r e s . NoSequences . begin () ;
44 while (I n t I t e r != f a i l u r e s . NoSequences . end ()) {
45 iValue += (∗ I n t I t e r) ∗ 2 ;
46 I n t I t e r++;
47 i f (g l debug)
48 cout << ”NoSequence e r r o r ” << end l ;
49 }
50

51 pValue = new TSimpleFitness<int>(iValue) ;
52 SetF i tnes s (pSolut ion , pValue) ;
53

54 return pValue ;
55 }
56

57 bool CObject iveFunction : : Detec tFa i lu r e sS ta r tSea rch (CWeek ∗ pW,
58 int ∗piEmpl , int ∗piDay)
59 {
60 int iHe lp1 = 0 ;
61 int iHe lp2 = 0 ;
62 bool bIsFree = fa l se ;
63

64 ∗piEmpl = 0 ;
65 ∗piDay = eMon ;
66

67 i f (iHelp1 == this−>m pRequirements−>GetShi ftFree ()
68 && iHelp2 == this−>m pRequirements−>GetShi ftFree ()) {
69 bIsFree = true ;
70 } else i f (iHelp1 != this−>m pRequirements−>GetShi ftFree ()
71 && iHelp2 != this−>m pRequirements−>GetShi ftFree ()) {
72 bIsFree = fa l se ;
73

74 for (∗piEmpl = 0 ; ∗piEmpl < this−>m pRequirements−>GetEmployeeCount () ;
75 (∗piEmpl)++) {
76 for (∗piDay = eMon ; ∗piDay <= eSun ; (∗piDay)++) {
77 iHe lp1 = pW−>g e t S h i f t (∗piEmpl , (eDay) ∗ piDay) ;

A.3. THE OBJECTIVE FUNCTION 81

78 i f (bIsFree
79 && iHelp1 != this−>m pRequirements−>GetShi ftFree ()) {
80 return true ;
81 }
82 i f (! b I sFree
83 && iHelp1 == this−>m pRequirements−>GetShi ftFree ()) {
84 return true ;
85 }
86 }
87 }
88

89 }
90

91 void CObject iveFunction : : Detec tFa i lu r e s (CWeek ∗ pW, FAILURES & f a i l u r e s)
92 {
93 int iWorkBlockMin = this−>m pRequirements−>GetMinWorkBlocks () ;
94 int iWorkBlockMax = this−>m pRequirements−>GetMaxWorkBlocks () ;
95 int iFreeBlockMin = this−>m pRequirements−>GetMinFreeBlocks () ;
96 int iFreeBlockMax = this−>m pRequirements−>GetMaxFreeBlocks () ;
97 const SHIFT ∗ pSh i f t ;
98 eDay sDay = eMon ;
99 int iEmpl = 0 ;

100 int iStartEmpl = 0 ;
101 int iStartDay = 0 ;
102 bool bNextRoundEnd ;
103 bool bEnd ;
104

105 f a i l u r e s . iFreeBlockCount = 0 ;
106 f a i l u r e s . iNoSeqCount = 0 ;
107 f a i l u r e s . iSeqLenCount = 0 ;
108 f a i l u r e s . iWorkBlockCount = 0 ;
109 f a i l u r e s . FreeBlocks . c l e a r () ;
110 f a i l u r e s . NoSequences . c l e a r () ;
111 f a i l u r e s . SequenceLength . c l e a r () ;
112 f a i l u r e s . WorkBlocks . c l e a r () ;
113

114 Detec tFa i lu r e sS ta r tSea rch (pW, &iStartEmpl , &iStartDay) ;
115 i S h i f t = pW−>g e t S h i f t (iStartEmpl , (eDay) iStartDay) ;
116

117 iWorkcount = 0 ;
118 iFreecount = 0 ;
119 i Sh i f tCount = 0 ;
120

121 iEmpl = iStartEmpl ;
122 sDay = (eDay) iStartDay ;
123 pW−>p r evSh i f t (&iEmpl , &sDay) ;
124 i L a s t S h i f t = pW−>g e t S h i f t (iEmpl , sDay) ;
125 iEmpl = iStartEmpl ;
126 sDay = (eDay) iStartDay ;
127

128 bNextRoundEnd = fa l se ;
129 bEnd = fa l se ;
130 do {
131 i f (m pRequirements−>NoSequenceFind (iLa s tSh i f t , i S h i f t)) {

82 APPENDIX A. EXAMPLE PROBLEM SOURCE CODE

132 f a i l u r e s . iNoSeqCount++;
133 f a i l u r e s . NoSequences . i n s e r t (f a i l u r e s . NoSequences . end () , 1) ;
134 }
135 i f (i L a s t S h i f t != m pRequirements−>GetShi ftFree ()) {
136 pSh i f t = m pRequirements−>Sh i f tF ind (i L a s t S h i f t) ;
137 i f (iSh i f tCount == 0) {
138 } else i f (iSh i f tCount > pShi ft−>SequenceLength . iMax) {
139 f a i l u r e s . iSeqLenCount++;
140 f a i l u r e s . SequenceLength . i n s e r t (f a i l u r e s .
141 SequenceLength . end () ,
142 i Sh i f tCount −
143 pShi ft−>SequenceLength .
144 iMax) ;
145 } else i f (iSh i f tCount < pShi ft−>SequenceLength . iMin) {
146 f a i l u r e s . iSeqLenCount++;
147 f a i l u r e s . SequenceLength . i n s e r t (f a i l u r e s .
148 SequenceLength . end () ,
149 pShi ft−>SequenceLength .
150 iMin − i Sh i f tCount) ;
151 }
152 }
153 i Sh i f tCount = 0 ;
154 }
155 i f (i S h i f t != m pRequirements−>GetShi ftFree ()) {
156 f a i l u r e s . iFreeBlockCount++;
157 f a i l u r e s . FreeBlocks . i n s e r t (f a i l u r e s . FreeBlocks . end () ,
158 iFreeBlockMin −
159 iFreecount) ;
160 f a i l u r e s . iFreeBlockCount++;
161 f a i l u r e s . FreeBlocks . i n s e r t (f a i l u r e s . FreeBlocks . end () ,
162 iFreecount −
163 iFreeBlockMax) ;
164 }
165 }
166 iWorkcount++;
167 } else {
168 f a i l u r e s . iWorkBlockCount++;
169 f a i l u r e s . WorkBlocks . i n s e r t (f a i l u r e s . WorkBlocks . end () ,
170 iWorkBlockMin −
171 iWorkcount) ;
172 f a i l u r e s . iWorkBlockCount++;
173 f a i l u r e s . WorkBlocks . i n s e r t (f a i l u r e s . WorkBlocks . end () ,
174 iWorkcount −
175 iWorkBlockMax) ;
176 }
177 }
178 iFreecount ++;
179 }
180 i L a s t S h i f t = i S h i f t ;
181 i Sh i f tCount++;
182 pW−>nex tSh i f t (&iEmpl , &sDay) ;
183 i S h i f t = pW−>g e t S h i f t (iEmpl , sDay) ;
184 i f (bNextRoundEnd)
185 bEnd = true ;

A.3. THE OBJECTIVE FUNCTION 83

186 i f (iEmpl == iStartEmpl && iStartDay == sDay)
187 bNextRoundEnd = true ;
188 }
189 while (! bEnd) ;
190 }

Line 1-6 defines the constructor which stores a pointer to the requirements
object.

Line 8 defines the evaluation function which differs between the 4 different types
of violations. Each violation is stored accordingly with its weight value. The
complete fitness is calculated by summing up all violations multiplied by the
according weigth.

Line 10 calls the evaluate of the parent class.

Line 17 does the actual failure detection (which will be explained below).

Line 19-49 creates a sum from the different failure types and counts with pre-
defined weights for each failure type.

Line 51-52 sets the new fitness value for the solution.

Line 57-89 contains the function DetectFailuresStartSearch which is a helper
function that searches for the first occurance of a change from shift to day off
shift or day off shift to shift. This information is needed by the DetectFailures()
function below.

Line 92-112 initialize helper variables.

Line 114 retrieves the starting point for the evaluation in the schedule matrix.

Line 117-119 initialises another set of variables

Line 121-126 preload the previous shift for the starting shift, since this infor-
mation is needed insinde the following loop

Line 130-189 steps through the complete schedule and detects any violation.

Line 137-152 recognizes minimum and maximum shift block violations

Line 155-166 recognizes free shift block violations

Line 167-177 recognizes workblock length violations

Line 180-188 are responsible for loading the next shift and deciding about the
termination of the loop.

A.3.1 Neighbourhood generation

For generating neighbourhoods the framework basically provides 3 classes. Ac-
tually there are 5, but for writing a simple Tabu Search algorithm they aren’t
necessary.

The basic part is the Move class. It’s purpose is to store a single move
operation and to apply it to a solution. Since it must know how a solution looks
like in order to have the ability to modify it, it has to be derived by a user’s
class.

The second part is the MoveIterator class. It creates a neighbourhood given a
solution as a start point. Then it can be used to step through the neighbourhood.
Again this class is coupled tightly with the representation of a solution and must
be derived by a user’s class.

The third and last one is the MoveManager which is a container class for
MoveIterator objects. This class normally provides everything that it needs to,
so there is no need to create a class that derives from it.

84 APPENDIX A. EXAMPLE PROBLEM SOURCE CODE

A.4 Move

The Move class has 4 abstract functions named createInverse, applyOn, compare
and clone. Therefore those have to be implemented by deriving classes.

In the case of rotating workforce scheduling a simple move to define is the
swapping of the shifts of two employees within one day. This sounds quite
complex, but in truth it’s quite easy. Just think of picking one day and then
swapping the shifts of two employees. The benefit of this move definition is that
it doesn’t violate the shift requirements of a day.

Listing A.4: class CSwapShiftMove

1 CSwapShiftMove : : CSwapShiftMove (
2 eDay Day , int i S h i f t 1 , int i S h i f t 2 , int iLength)
3 : Move ()
4 {
5 m eDay = Day ;
6 m iSh i f t 1 = i S h i f t 1 ;
7 m iSh i f t 2 = i S h i f t 2 ;
8 m iLength = iLength ;
9 }

10

11 Object ∗
12 CSwapShiftMove : : Creat e Inver se () const

13 {
14 return (Move∗) (new CSwapShiftMove (m eDay ,
15 m iShi ft2 , m iSh i ft1 , m iLength)) ;
16 }
17

18 bool CSwapShiftMove : : ApplyOn (So lu t ion ∗ s o l u t i o n) const

19 {
20 eDay HelpDay ;
21 CWeek ∗pWeek = (CWeek∗) s o l u t i o n ;
22

23 HelpDay = m eDay ;
24 for (iLen=0; iLen < m iLength ; iLen++) {
25 i S h i f t 1 v a l = pWeek−>g e t S h i f t (m iSh i ft1 , HelpDay) ;
26 i S h i f t 2 v a l = pWeek−>g e t S h i f t (m iSh i ft2 , HelpDay) ;
27

28 pWeek−>s e t S h i f t (m iSh i ft1 , HelpDay , i S h i f t 2 v a l) ;
29 pWeek−>s e t S h i f t (m iSh i ft2 , HelpDay , i S h i f t 1 v a l) ;
30 pWeek−>nex tSh i f t (& iU se l e s s ,&HelpDay) ;
31 }
32

33 return bResult ;
34 }
35

36 int CSwapShiftMove : : Compare (const Object ∗move) const

37 {
38 const CSwapShiftMove ∗castmove ;
39

40 castmove = dynamic cast<const CSwapShiftMove ∗> (move) ;
41 i f (m eDay < castmove−>m eDay)
42 return −1;

A.4. MOVE 85

43 else i f (m eDay > castmove−>m eDay)
44 return 1 ;
45

46 i f (m iSh i f t 1 == castmove−>m iSh i f t 2 &&
47 m iSh i f t 2 == castmove−>m iSh i f t 1)
48 return 0 ;
49

50 i f (m iSh i f t 1 < castmove−>m iSh i f t 1)
51 return −1;
52 else i f (m iSh i f t 1 > castmove−>m iSh i f t 1)
53 return 1 ;
54

55 i f (m iSh i f t 2 < castmove−>m iSh i f t 2)
56 return −1;
57 else i f (m iSh i f t 2 > castmove−>m iSh i f t 2)
58 return 1 ;
59

60 i f (m iLength < castmove−>m iLength)
61 return −1;
62 else i f (m iLength > castmove−>m iLength)
63 return 1 ;
64

65 return 0 ;
66 }
67

68 bool CSwapShiftMove : : Equals (const Object ∗pObj) const {
69 return Compare (pObj) ? true : fa l se ;
70 }
71

72 Object ∗ CSwapShiftMove : : Clone () const

73 {
74 return new CSwapShiftMove (m eDay , m iSh i ft1 ,
75 m iShi ft2 , m iLength) ;
76 }
77

78 void CSwapShiftMove : : DeepCopy (const Object ∗ pObj) {
79 const CSwapShiftMove ∗pMove =
80 dynamic cast<const CSwapShiftMove ∗> (pObj) ;
81

82 m eDay = pMove−>m eDay ;
83 m iSh i f t 1 = pMove−>m iSh i f t 1 ;
84 m iSh i f t 2 = pMove−>m iSh i f t 2 ;
85 m iLength = pMove−>m iLength ;
86 }
87

88 ostream& operator << (ostream &stream , CSwapShiftMove move)
89 {
90 cout << ”Day : ” << move . m eDay << ” Sh i f t 1 : ”
91 << move . m iSh i f t 1 << ” Sh i f t 2 : ” << move . m iSh i f t 2
92 << ” Length : ” << move . m iLength ;
93

94 return (stream) ;
95 }
96

86 APPENDIX A. EXAMPLE PROBLEM SOURCE CODE

97 void CSwapShiftMove : : Write (std : : ostream &stream) const

98 {
99 stream << ∗ this << end l ;

100 }

Line 1-9 show the constructor which initializes internal variables with the given
parameters. Line 11-16 defines the inverse of the move which is simply the
swapping of the shifts. Actually in this case the move’s inverse is a special case,
since you do not necessarily need it, because the move can reverse itself. This
is caused by the move’s definition. Since it swaps the shifts of two employees,
it can be undone by swapping the same shifts again. It doesn’t matter in which
order the two employees are stored and therefore the actual inverse is not really
necessary.
Line 18-34 define the function for modifying solution objects. It swaps the shifts
and returns true, when those shifts aren’t the same. When both shift types are
identical it returns false and does nothing, since this sort of swap doesn’t change
anything (e.g. swapping a night shift with a night shift).
Line 36-66 defines the comparison of two Moves, that return -1, 0 or 1 if the
move object compared to is bigger, equal or smaller.
Line 68-70 define a function testing for equity between two Move objects. When
they are equal, true is returned, otherwise false
Line 72-76 defines a clone function which allocates a new object of type Move.
Line 78-86 defines DeepCopy() by loading the data from the given Move object.
Line 88-100 contain debug output functions.

A.5 CSwapShiftMoveIterator

The CSwapShiftMoveIterator creates the neighbourhood of a solution by al-
locating new CSwapShiftMove objects. In order to know how to initialize
those CSwapShiftMove object, it remembers the day and the two shifts bee-
ing swapped by the last CSwapShiftMove object.

Listing A.5: class CWeek

1 CSwapShiftMoveIterator : : CSwapShiftMoveIterator (
2 CRequirements ∗pRequirements , int iMaxLength)
3 : MoveIterator ()
4 {
5 m pRequirements = pRequirements ;
6 m pMove = new CSwapShiftMove (eMon , 0 , 0 , 1) ;
7 begin (NULL) ;
8 m iMaxLength = iMaxLength ;
9 }

10

11 CSwapShiftMoveIterator : : ˜ CSwapShiftMoveIterator ()
12 {
13 }
14

15 TS : : Move : : Move ∗
16 CSwapShiftMoveIterator : : beg in (So lu t i on ∗pSo lut ion)
17 {

A.5. CSWAPSHIFTMOVEITERATOR 87

18 m pSolution = pSo lut ion ;
19 m eDay = eMon ;
20 m iSh i f t1 = 0 ;
21 m iSh i f t2 = 1 ;
22 m iLength = 1 ;
23

24 return getMove () ;
25 }
26

27 TS : : Move : : Move ∗
28 CSwapShiftMoveIterator : : end (So lu t i on ∗pSo lut ion)
29 {
30 m pSolution = pSo lut ion ;
31 m eDay = eSun ;
32 m iSh i f t1 = m pRequirements−>GetEmployeeCount () − 2 ;
33 m iSh i f t2 = m pRequirements−>GetEmployeeCount () − 1 ;
34 m iLength = m iMaxLength ;
35

36 return getMove () ;
37 }
38

39 in l ine bool CSwapShiftMoveIterator : : setNext ()
40 {
41 m iSh i f t2++;
42 i f (m iSh i f t2 >= m pRequirements−>GetEmployeeCount ()) {
43 m iSh i f t1++;
44 m iSh i f t2 = m iSh i f t1 + 1 ;
45 i f (m iSh i f t1 >= m pRequirements−>GetEmployeeCount () − 1) {
46 i f (m iLength > m iMaxLength)
47 return fa l se ;
48 m iLength++;
49 m eDay = eMon ;
50 } else {
51 m eDay = (eDay) ((int)m eDay + 1) ;
52 }
53 m iSh i f t1 = 0 ;
54 m iSh i f t2 = 1 ;
55 }
56 }
57 return true ;
58 }
59

60 TS : : Move : : Move ∗CSwapShiftMoveIterator : : next ()
61 {
62 i f (setNext ())
63 return getMove () ;
64 return NULL;
65 }
66

67 in l ine bool CSwapShiftMoveIterator : : s e tPrev ()

88 APPENDIX A. EXAMPLE PROBLEM SOURCE CODE

68 {
69 m iSh i f t1 = m iSh i f t2 − 1 ;
70 return true ;
71 m iLength−−;
72 m eDay = eSun ;
73 } else {
74 m eDay = (eDay) ((int)m eDay − 1) ;
75 }
76 m iSh i f t1 = m pRequirements−>GetEmployeeCount () − 2 ;
77 m iSh i f t2 = m pRequirements−>GetEmployeeCount () − 1 ;
78 }
79 }
80 return fa l se ;
81 }
82

83 TS : : Move : : Move ∗CSwapShiftMoveIterator : : prev ()
84 {
85 i f (se tPrev ())
86 return getMove () ;
87 return NULL;
88 }
89

90 in l ine
91 TS : : Move : : Move∗ CSwapShiftMoveIterator : : getMove ()
92 {
93 m pMove−>setDay (m eDay) ;
94 m pMove−>s e t Sh i f t 1 (m iSh i f t1) ;
95 m pMove−>s e t Sh i f t 2 (m iSh i f t2) ;
96 m pMove−>setLength (m iLength) ;
97

98 return m pMove ;
99 }

Line 1-9 define the constructor initialising the iterator with Mondays first two
shifts.

Line 18-26 define the function that sets the iterator to the beginning of the
neighbourhood. Since the iterator is for the CSwapShiftMove, it starts at Mon-
day with the first two shifts.

Line 27-37 show the function for setting the iterator to the end of the neighbour-
hood. Since the beginning is the start of the week, the end of the neighbourhood
is Sunday’s last two shifts which is actually the end of the week’s schedule.

Line 39-58 define a helper function for advancing to the next move. Since the
move stores a day and two employees who’s shift get swapped, there are three
values to take care of. The second employee is set to the next employee until
there aren’t any more employees. Then the first employee is set to it’s next
employee and the second employee is the new first employee’s next one. If the
first employee is set to the last employee the second employee would be set to a
non existing one. Therefore the whole loop is started over with on the next day.
When the current day is Sunday and the first employee is the last employee on
that day, then there are no further moves and false is returned.

A.5. CSWAPSHIFTMOVEITERATOR 89

Line 60-65 show the actual accessible next() function that first tries to advance
to the next move. If it’s successful, then the next move is returned, otherwise no
next move exists (since the iterator is already at the end of the neighbourhood)
and therefore NULL is returned.
Line 67-81 calculates the previous CSwapShiftMove object by a similair tech-
nique like the setNext() function.
Line 83-88 show the prev() function which steps back to the previous move
operator.
Line 90-99 define getMove which returns the current CSwapShiftMove object.

90 APPENDIX A. EXAMPLE PROBLEM SOURCE CODE

Appendix B

Installation

The framework was developed using Linux and is currently limited to the ap-
plication on Linux.

The source code is to be found on the supplied CD. In the root directory
a file named framework.tgz is stored. Following commands are necessary to
extract the source code from the compressed archive:

ta r −xz f framework . tgz

That will create a directory name fw containing the source code of the frame-
work and the source code of the presented example.

In order to build the framework and the example program automake, auto-
conf and libtool have to be installed on the unix system. Additionally a c++
compiler is needed. Then following command can be issued in the directory fw:

. / boots trap −−make

That will create a library for the framework and an executeable for the
example program.

The source code of the framework can be found in the subdirectory src.
Dokumentation to the source code of the framework can be found in the subdi-
rectory doc. Any example programs can be found in the subdirectory examples.
Each example program has got its own directory. The problem definition files
utilised by the example programs are to be found in the subdirectory data.
An other directory is m4, which is only utilised by automake and not of high
interest.

91

92 APPENDIX B. INSTALLATION

Appendix C

Execution

After installation and compilation, the example program can be execute by
typing the following command in the fw directory:

examples/bsp2/example −r

Pseudo random sets of numbers can be created on linux utilizing libc func-
tions. The pseudo number generator can be initialized with a so called seed
that allows it to reproduce a set of pseudo random numbers. This feature is
quite useful for recreating initial workforce schedules. Therefore the program
has an interactive capability where you can set the initial seed. The following
execution enables that feature with a command line argument:

examples/bsp2/example − i

Then the program asks whether it should take the last known seed. Pressing
any key and the return key takes the last known seed, while pressing ’n’ and
the return key leads to the next question. That one asks whether it should use
the presented random seed or not. Again pressing any key and enter accepts
the random seed, otherwise an input prompt for a seed is shown where one can
enter a seed value. After entering an integer value and pressing enter, the value
is used as a new seed. The following lines present such an interactive input.

examples/bsp2/example − i
Oldseed : 134554050 [Y/n] : n
Random Seed : 6720 [Y/n] : n
Seed : 12345

Whenever the program terminates, it prints its last solution and some data
to the screen like:

Seed used : 12345
Best So lu t i on found :
Employee | Mon | Tue | Wed | Thu | Fr i | Sat | Sun Fi tne s s : 0
Emp0 | − | A | A | N | − | A | A
Emp1 | D | D | N | − | D | D | D
Emp2 | N | − | D | D | N | − | A
Emp3 | A | N | − | A | A | N | −
Runtime : Seconds : 0 M i l l i s e c s : 32388
I t e r a t i o n s : 48

93

94 APPENDIX C. EXECUTION

Eva luat ions : 6503
SHi s tS i z e : 45
SHistCount : 36

First the seed is shown, then the best solution found and it’s fitness value.
Afterwards the runtime is printed and the number of iterations and evaluations.
The last two values concern the search history, which is 45 entries long and
accommodates 36 entries.

Bibliography

[1] G. Ausiello, P. Crescenzi, G. Gambosi, A. Marchetti-Spaccamela V. Kann,
and M. Protasi. Complexity and Approximation Combinatorial optimiza-
tion problems and their approximability properties. Springer Verlag, 1999.

[2] R. Battiti and G. Tecchiolli. The reactive tabu search. OSRA Journal on
Computing, 6(2):126–140, 1994.

[3] Grady Booch. Object-Oriented Analysis and Design with Applications.
Addison-Wesley, 1993.

[4] Th. Scheidl Ch. Breitschopf, G. Blaschek. Optlets: A generic framework
for solving arbitrary optimization problems. WSEAS Transactions on In-
formation Science and Applications, 2(5), 2005.

[5] Michel de Champlain and Brian G. Patrick. C#: Practical Guide for
Programmers. Morgan Kaufmann Publishers, 2005.

[6] Lucia di Gaspero and Andrea Schaerf. Easylocal++: An object-oriented
framework for flexible design of local search algorithms. Technical Report
UDMI/13/2000/RR, Università di Udine, Udine, Italy, 2000.

[7] Lucia di Gaspero and Andrea Schaerf. Easylocal++: an object-oriented
framework for the flexible design of local-search algorithms. Software: Prac-
tice and Experience, 36(10):733–765, 2003.

[8] Lucia di Gaspero and Andrea Schaerf. Easylocal++: An object-oriented
framework for flexible design of local search algorithms and metaheuristics.
In In Proc. of the 4th Metaheuristic International Conference (MIC2001),
pages 287 – 292, Porto, Portugal, July 16-20, 2001.

[9] Raphael Dorne and Christos Voudouris. HSF: the iOpt’s framework to
easily design metaheuristic methods. Kluwer Academic Publishers, Norwell,
MA, USA, 2004.

[10] Mohamed E.Fayad, Douglas C.Schmidt, and Ralph E. Johnson. Building
Application Frameworks. Wiley Computer Publishing, 1999.

[11] Ralph Johson Erich Gamma, Richard Helm and John Vlissides. Desirgn
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

95

96 BIBLIOGRAPHY

[12] A. Fink and S. Voß. Hotframe - heuristische lösung diskreter planungsprob-
leme mittels wiederverwendbarer software-komponenten. OR News, 4:18–
24, 1998.

[13] Ralph Johnson Gamma Erich, Richard Helm and John Vlissides. Design
Patterns: Elements of Reusable Object Oriented Software. Addison-Wesley,
1995.

[14] F. Glover and M. Laguna. Tabu Search. Readings. Kluwer Academic Pub-
lishers, 1997.

[15] Fred Glover. Tabu search–part I. ORSA Journal on Computing, 1(3):190–
206, 1989.

[16] Fred Glover and Manuel Laguna. Tabu search. Kluwer Academic Publish-
ers, 1997.

[17] Fred Glover and Eric Taillard. A user’s guide to tabu search. 41(1):1–28,
1993.

[18] Robert Harder. Opents. Internet, 2001. http://www.coin-
or.org/Presentations/OpenTS.ppt.

[19] Robert Harder. Opents. Internet, 2001. http://www.coin-or.org/OpenTS/.

[20] N. Heller, J. McEwen, and W. Stenzel. Computerized scheduling of police
manpower. St. Louis Police Department, St. Louis, MO, 1973.

[21] Martin Stuaert Jones. An object-oriented framework for the implemen-
tation of search techniques. Master’s thesis, University of East Anglia,
Norwich, UK, 2000.

[22] P. Van Hentenryck L. Michel. Localizer++: An open library for local
search. Reseach Report CS02-01, Brown University, 2001.

[23] PA Laplante. Dictionary of Computer Science: engineering, and technol-
ogy. CRC Press Boca Raton, 2001.

[24] G. Laporte. The art and science of designing rotating schedules. Journal
of the Operational Research Society, 50:1011–1017, 1999.

[25] Hoong Chuin Lau, Wee Chong Wan, and Xiaomin Jia. A generic object-
oriented tabu search framework. In Proceedings of MIC’2003 - 5th Meta-
heuristics International Conference, 2003.

[26] Jesse Liberty. Programming C#, 3rd Edition. O’Reilly, 2003.

[27] Nysret Musliu Michael Mörz. Genetic algorithm for rotating workforce
scheduling. In In Proc. of the 2nd IEEE Internation Conference on Com-
putational Cybernetics, pages 121 – 126, Vienna, Austria, 2004.

[28] Z. Michalewicz and B. F. Fogel. How to solve it: modern heuristics.
Springer-Verlag, 2000.

BIBLIOGRAPHY 97

[29] Nysret Musliu. Heuristic methods for automatic rotating workforce schedul-
ing. International Journal of Computational Intelligence Research, to ap-
pear, 2006.

[30] Nysret Musliu, Johannes Gärtner, and Wolfgang Slany. Efficient genera-
tion of rotating workforce schedules. Discrete Applied Mathematics, 118(1-
2):85–98, 2002.

[31] Bertrand Neveu and Gilles Trombettoni. Incop: An open library for in-
complete combinatorial optimization. In Dans Proc. International Confer-
ence on Principles Constraint Programming, CP’03, volume 2833 of LNCS,
pages 909–913, Kinsale,Ireland, 2003.

[32] Colin R. Reeves, editor. Modern Heuristic Techniques for Combinatorial
Problems. Halsted Pr., 1993.

[33] Joseph Schmuller. SAMS Teach Yourself UML in 24 Hours. Sams Pub-
lishing, 800 East 96th Street, Indianapolis, Indiana, 46240 USA, 2004.

[34] E. Taillard. Robust tabu search for the quadratic assignment problem.
Parallel Computing, 17:443–445, 1991.

[35] K. Varrentrapp. Gails: Guided adaptive iterated local search - method and
framework. Technical Report AIDA-04-05, FG Intellektik, FB Informatik,
TU Darmstadt, 2004.

[36] Vijay Vazirani. Approximation Algorithms. Berlin ; New York : Springer,
2001.

