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Abstract

Shift design and break scheduling problems are important employee scheduling problems
that have been investigated recently in the literature. The shift design problem arises
in a variety of large organizations. It involves efficient usage of personnel resources to
reduce costs as much as possible, while satisfying several constraints. Break scheduling
problem is an important phase in the general employee scheduling in several organizations
that needs a high level of concentration. The loss of concentration can end up with a
dangerous consequences. Therefore, it is important that the workers have from time to
time breaks to keep the concentration level high.

The purpose of the shift design problem is to find a minimum number of legal shifts,
that reduce the shortages and excesses of workers in every time slot during the planning
period. In the break scheduling, the breaks are assigned within their shifts conveniently
with respect to several constraints and also trying to keep the deviation of workforce for
the time slots as minimal as possible.

In this thesis, we introduced integer linear programming formulation explicitly for
solving shift design and break scheduling problems. The explicit model is investigated
based on enumeration of each shift or break from the possible shift or breaks starts and
lengths. To solve the integer programming model for the shift design problems from
the literature, we performed experiments with state-of-the-art solvers Cplex and Gurobi.
The Cplex Solver shows better time performance compared to Gurobi Solver. Our results
show that these solvers can be used successfully for the shift design problem. Indeed,
new optimal solutions are obtained for several benchmark examples.

Exact method shows also superior performance for break scheduling problem with
using Cplex Solver. However, our formulation fails to run in the real life instances of
break scheduling problem, due to introduced restrictions in our problem formulation.
We improved the previous solutions for several randomly generated examples in break
scheduling problem.
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CHAPTER 1
Introduction

In this thesis, we investigate an integer programming approach to solve two hard problems,
shift design and break scheduling. These two problems are important employee scheduling
problems and are introduced recently in the literature. The shift scheduling problem
has been first introduced by Edie (1954 )[Edi54] in the context of toll booth operators
scheduling. The shift scheduling problem today is very different from the one introduced
by Dantzig [Dan54] and Edie [Edi54]. The relative importance of needed employees
in scheduling decision has grown due to the economic considerations. Part time jobs,
flexible work hours, lunch breaks and monitor breaks are the some of reasons to increase
research attention. Although several approaches have been used successfully to solve real
life problems, the optimal solution for several problems are still not known. Therefore,
these problems are still challenging problems.

The shift design problem arises in a variety of large organizations such as airlines,
hospitals, telephone companies, police departments, etc. It involves efficient usage of
personnel resources to reduce costs as much as possible, while meeting several constraints.
The professional planners can construct solution for small practical problems by hand, but
for the large number of different demands and solutions, the solution space is too large
for an efficient manual approach. Even though finding a solution manually is possible,
it is unlikely, that the optimum solution will be found. Furthermore, finding a solution
manually usually takes very long time [DGGM+13]. Therefore, different approaches in
the literature [MSS04] [DGGK+07] [DGGM+13] [Abs13] have been proposed to solve
this problem.

The break scheduling problem is an important phase in the general employee scheduling
in several organizations that needs a high level of concentration, such as air traffic control,
security checking, supervision, assembly line workers, etc. The loss of concentration in
such organization can end up with a dangerous consequences. It is necessary that the
workers have from time to time breaks to keep the concentration level high.

In the break scheduling problem, breaks need to be assigned to shifts over one week.
The slot length is usually 5 minutes, therefore, huge number of possible assignments of
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breaks exist. Due to the problem’s size and complexity, to calculate optimum breaks for
large number of shifts is impossible. Automatic or computer aided break scheduling is
usually the only way to reach high quality shift plans. Therefore, this problem has been
considered by researchers in the literature [BGM+08] [BGMS10] [WM14].

The aim of this master’s thesis is to investigate new solution techniques for shift design
and break scheduling problems. We will introduce an integer programming approach
for solving shift design and break scheduling. The integer programming formulation for
shift design and break scheduling problem is expected to find optimal solutions for many
instances or at least to improve the existing results.

1.1 Aim of The Work

The aim of our thesis are:

• Investigate integer linear programming formulation for shift design and break
scheduling problems.

• Apply state-of-the-art solvers, Cplex Solver and Gurobi Solver to solve benchmark
problems from the literature.

• Compare solutions of our approaches to results of existing state-of-the-art in the
literature on benchmark examples.

1.2 Results of the Master’s Thesis

The main results of this master’s thesis are given as follows,

• We propose an integer linear formulation for shift design and break scheduling
problems. For break scheduling, due to the large number of constraints and variables,
we restricted the problem definition.

• We compared state-of-the-art solvers for shift design problem. In a few instances
of shift design problem, we could not obtain results in 2 hours time limit and for
these instances we experimented with three different parameters of Cplex Solver.
By using these parameters, we can not guarantee that the optimal solution is found.
However, we achieved better solutions for these instances by using these parameters.
For the break scheduling problem, only the Cplex Solver was applied.

• We compare our algorithms with the best existing results for the both problems
in literature. We obtained the best existing result in each instance (except one).
However, our formulation fails to run in the real life instances of break scheduling
problem, due to introduced restrictions in this problem.
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1.3 Structure of the Master’s Thesis
The remaining parts of this thesis are organized into the following chapters:

• In Chapter 2, we introduce the shift design and the break scheduling problem.
The formal definition of shift design and break scheduling problems, that we have
solved in this thesis, are given.

• In Chapter 3, we give an overview of state-of-the-art. We discuss the proposed
integer linear programming formulations for a similar problem called shift scheduling
problem and then we give the related work for shift design and break scheduling
problems.

• In Chapter 4, we present our integer linear programming formulations for both
problems in details. The variables, constraints and objective functions be described.

• In Chapter 5, we present the computational results obtained by our integer linear
programming formulations for shift design and break scheduling problems. We
compared state-of-the-art solvers for shift design problem and experiment different
parameters in Cplex Solver for long lasting instances of shift design problem. At
last, we compare our results with the best known result in the state-of-the-art for
both problems.

• In Chapter 6, we conclude this thesis by summarizing the work presented and
give ideas for potential future work.
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CHAPTER 2
Problem Statements

In this chapter, the formal definition of shift design and break scheduling problems, that
we have solved in this thesis, are given.

2.1 Shift Design Problem
Below we give the definition of the shift design problem. Our description is based on the
problem definition from [GMS01] [MSS04]:

• Planning period consists of n consecutive time slot [a1, a2), [a2, a3), ..., [an, an+1),
all having the same length slotlength in minutes. The needed number of workers
wi for each interval [ai, ai+1). The shift design problem has a cyclic structure,
therefore the end of the planning period an+1 is equal to the first time point a1.
The format of time points is: day : hour : minute

• The shifts can be generated depending on y shift types v1, ..., vy. Each shift type
has a minimum/maximum start and minimum/maximum length.

vj .minStart : Earliest start of the shift types j.
vj .maxStart : Latest start of the shift types j.
vj .minLength : Shortest duration of the shift types j.
vj .maxLength : Longest duration of the shift types j.

In Table 2.1 an example of four shift types is given.

• In original definition of shift design problem, there are also two scalar real-valued
quantities, used to define the distance from the average number of duties.

AS : The upper limit for the average number of working shifts per week per
employee.
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Shift type MinStart MaxStart MinLength MaxLength

M 05:00 08:00 07:00 09:00
D 09:00 11:00 07:00 09:00
A 14:00 16:00 07:00 09:00
N 21:00 23:00 07:00 09:00

Table 2.1: An example of shift types

AH : Average number of working hours per week per employee.

These two parameters are not used in our integer programming formulation.

The purpose of the shift design problem is to generate k shifts s1, s2, ...sk, which
belongs to one of the shift types. Every shift has a start point vj .start and length vj .length
parameters. Additionally, each real shift sp has adjoined parameters sp.wi,∀i ∈ {1, ..., C}
(C represents the number of days in the planning period and usually considered a week)
representing the number of workers in shift sp during the day i. The aim is to minimize
the four components given below:

F1 : Sum of the excesses of workers in each time slot during the planning period
F2 : Sum of the shortages of workers in each time slot during the planning period
F3 : Number of shifts
F4 : Distance of the average number of duties per week in case it is above a certain

threshold. This component is meant to avoid an excessive fragmentation of workers load
in too many short shifts.

This is a multi criteria optimization problem. Unlike the four weighted components
in the original definition, we have used the first three like in the article [DGGK+07].
These remaining three components have different importance depending on the situation.

The formal representation of the shift design problem is given in detail in the article
[GMS01] [MSS04].

2.2 Break Scheduling Problem
Below we give the definition of break scheduling problem. Our description is based on
the problem definition from [BGMS10]:

• Planning period divided into n consecutive time slot [a1, a2), [a2, a3), ..., [an, an+1),
all with the same length slotlength usually 5 minutes. The break scheduling
problem has also cyclic structure, therefore the last time slot tn+1 is equal to the
first time slot t1.

• There are k shifts (s1, s2, ..., sk), indicating the work schedule of employees. The
break time per shift si is calculated based on the shift length. If shift length is less
or equal to 10 hours, break time is,
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si.breakT ime = floor((minutes(ShiftLength)− 20)/50) ∗ 10 (2.1)

otherwise,
si.breakT ime = ceil(minutes(ShiftLength)/4) (2.2)

• The employee requirements for each time slot, [a1, a2), [a2, a3), ..., [an, an+1) in the
planning period are defined as follows,

– wt is the needed number of workers for the time slot t.
– A staff is considered to be working for the time slot t, if the time slot t is in

the employees working schedule and the employees are not in the break period
in time slot t.

– An employee needs a full time slot (typically 5 minutes) to return back to
work after a break. Thus, the first time slot after the break, the staff is not
considered to be working.

• Shifts and breaks have two parameters, that are the beginning or ending time
points of shifts or breaks. The duration value can be calculated by substracting
the time slots of the start and end of shifts or breaks. Moreover, each break is
associated with a certain shift in which it is scheduled. We distinguish between
two different types of breaks, that are monitor or lunch breaks.

Given a planning period, a set of shifts, the associated total break times, and
the staffing requirements, there are several hard and soft constraints, that need to be
considered for the break scheduling problem. The hard constraints are:

• Each break lies entirely within its associated shift.

si.start ≤ bj .start ≤ bj .end ≤ si.end (2.3)

• Two distinct breaks associated with the same shift, do not overlap in time.

bj .start ≤ bj .end ≤ bk.start ≤ bk.end (2.4)

or

bk.start ≤ bk.end ≤ bj .start ≤ bj .end (2.5)

• Sum of break durations needs to be equal to shift’s break time.

∑
bj∈si

bj .duration = si.breakT ime (2.6)
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Among, all feasible solutions for the break scheduling problem, there are seven soft
constraints. These constraints are useful to assign the breaks within their shifts conve-
niently and to reduce the excesses and shortages of workforce for the time slots. These
seven criteria are explained below,

C1: Break Positions. Each break, bj , may start, at the earliest, a certain number of
time slots after the beginning of its associated shift si, and may end, at the latest, a
given number of time slots before the end of its shift:

bj .start ≥ si.start+ distanceToShiftStart (2.7)

bj .end ≤ si.end+ distanceToShiftEnd (2.8)

C2: Lunch Breaks. A shift si can have several lunch breaks, each required to last a
specified number of time slots (min lunch break duration), and should be located within
a certain time window after the shift start. Let blb be a lunch break. Then,

blb.start ≥ si.start+ distanceToShiftStartLB (2.9)

blb.end ≤ si.end+ distanceToShiftEndLB (2.10)

C3: Duration of Work Periods. Breaks divide a shift into several work and rest
periods. The duration of work periods within a shift must range between a required
minimum and maximum duration:

minWorkDuration ≤ b1.start− si.start ≤ maxWorkDuration (2.11)

minWorkDuration ≤ bj+1.start− bj .end ≤ maxWorkDuration (2.12)

minWorkDuration ≤ si.end− bm.end ≤ maxWorkDuration (2.13)

where (b1, ..., bj , bj+1, ..., bm) are the breaks of si in temporal order.
C4: Minimum Break Times after Work Periods. If the duration of a work period

exceeds a certain limit, the break following that period must last a given minimum
number of time slots (minTsCount):

b1.start− si.start ≥ workLimit⇒ b1.duration ≥ minTsCount (2.14)

bj+1.start− bj .end ≥ workLimit⇒ bj+1.duration ≥ minTsCount (2.15)

C5: Break Durations. The duration of each break, bj , must lie within a specified
minimum and maximum value:
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minDuration ≤ bj .duration ≤ maxDuration (2.16)

C6: Shortage of Employees. At least wt employees should be working in each time
interval, [at, at+1). Sum of the shortages of workers in each time slot during the planning
period indicating the C6.

C7: Excess of Employees. At most wt employees should be working in each time
interval, [at, at+1). Sum of the excesses of workers in each time slot during the planning
period indicating the C7.

This is also a multi criteria optimization problem. For each soft constraint, we have
weight value. These weights can be different depending on the situations. Given an
instance of the break scheduling, our goal is to find a feasible solution, that minimizes
the violation of soft constraints.
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CHAPTER 3
Related Work

In this section, we will give an overview of state of the art in the area of shift design
and break scheduling. The variants of problems, we solved in this thesis are introduced
recently in the literature. However a similar problem called shift scheduling problem
usually with a break or multiple breaks has been extensively investigated in the literature.
We will first give the related work for the shift scheduling problem and then we will give
the state of the art for shift design and break scheduling problems.

3.1 Shift Scheduling with Breaks
Different approaches have been proposed for the shift scheduling problem, especially
based on integer programming formulation. The problem has been first introduced by
Edie (1954) [Edi54] in the context of toll booth operator scheduling. Solving this shift
scheduling problem was originally proposed by Dantzig [Dan54] by the set covering
formulation.

The integer programming model of Dantzig is given below:

min
n∑

j=1
cj ∗ xj (3.1)

subject to:

n∑
j=1

atjxj ≥ bt ∀t = 1, 2, ...m (3.2)

xj ≥ 0, x ∈ Z ∀j = 1, 2, ...n (3.3)

where,
n : number of possible shifts.
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m : number of time slot in the planning period.
cj : cost of assigning an employee to shift j.
xj : number of workers assigned to shift j.
atj : is 1, if time slot t is a work period for shift j, 0 otherwise.
bt : needed number of employees in time slot t.

The solution of this formulation can be found by enumerating the feasible shifts based
on possible shift starts, shift durations, breaks, and time windows for breaks. However,
involving a high flexibility with including different shift start times, lengths, multiple
breaks, multiple break types cause increasing the number of enumerated shifts. For this
reason, to solve with the explicit set covering formulation can be very difficult.

Researchers have proposed different formulations to overcome this difficulty. Moondra
[Moo76] proposed an approach of implicitly representing shifts. The considered model
has two types of shifts; full-time and part-time:

• Full-time shifts: Fixed length and a lunch break window allowing two break starting
times. To assign the break placements, half of the employees take their lunch in
the first period and the remaining half of workers in the second break period.

• Part-time shifts: With a length variable (4-8 hours) and no lunch break. The length
of the part-time shift was represented implicitly.

Bechtold and Jacobs [BJ90] introduced a new integer formulation, that break assign-
ments were modeled implicitly rather than explicitly. The formulation considers a single
break with the same duration in each shift. Although the extended formulation was
shown to be superior compared to the set covering model, approach is restricted to the
less than 24 hours planning period. Thompson [Tho95] combined these two formulation
works of Moondra [Moo76] and Bechtold and Jacobs [BJ90] to achieve a fully implicit
formulation of the shift scheduling problem. This formulation reduces the size and
improve the scheduling flexibility.

Aykin [Ayk96] proposed an implicit integer programming model with LINDO for the
shift scheduling problem with break placement. The problem is extended that employees
have multiple rest breaks and a lunch break. The length of a lunch break is usually 30 to
60 minutes and a rest break is 15 to 30 minutes. The proposed formulation has also time
window for lunch and rest breaks. For instance, Aykin assumed that time window of a
break starts half an hour before the ideal break location and take 90 minutes. Therefore,
6 possible different time slots to assign 15 minute break and 5 different ways for a 30
minute break. It reduces the number of variables needed. The approach is not only
feasible for less than 24 hours planning period, but also suitable for 24 hours continuous
(cyclical problem) planning period.

Aykin [Ayk00] extended Bechtold and Jacobs’s formulation [BJ90] a generalized
version by relaxing the assumptions of it and compared with the model that he presented
in [Ayk96]. Although generalized version of Bechtold and Jacobs’s approach has fewer
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variables, it has more constaints and more non- zero in A-matrix. Its end up with a
worse performance than the model of Aykin.

To overcome the difficulties by explicit set covering formulation, implicit models have
been used to solve shift scheduling problems efficiently. However, implicit models use more
complex formulations to assign feasible shifts. These approaches have some problems
in solving large size problems. This difficulties lead researchers to propose approaches
either using branch and price [MMT00] or using branch and cut approach [Ayk98]. Aykin
[Ayk98] proposed branch and cut algorithm based on an implicit formulation for the
shift scheduling problem. Rounding heuristic is used to add cuts and updated iteratively.
Mehrotra et al. [MMT00] developed a branch and price approach. Their formulations
obtained good results for the large shift scheduling problems, optimal solutions or best
non-optimal solutions were found.

Rekik et al. [RCS10] proposed an implicit formulation of the shift scheduling with
multiple breaks. To increase flexibility, fractionable breaks and work stretch duration
restriction are used. Each break is appropriately assigned by minimum and maximum pre-
and post-break work stretch duration constraints. Breaks can be divided into fractional
breaks and this sub breaks can have different lengths, depends on minimum, maximum
sub break lengths and the sum of the lengths of sub break is equal to the total break
duration of the shift.

3.2 Shift Design

The concept of shift design has been first introduced in [GMS01] [MSS04] [Mus01]. There
are several differences, that characterize the shift design problem. The shifts are generated
over multiple days, usually a week, rather than a day. The shift design problem has a
cyclic structure, therefore the last time slot of the week is connected to the first time slot
of a week. In order to minimize the number of shifts in shift design problem, we need to
consider reusing shifts on all days of the week. Furthermore, the objective function of shift
scheduling is to minimize the number of workers, without any shortages of employees.

In the publications above, a local search approach was proposed with a set of move
types to explore the neighbourhood. In order to avoid cycles in the move selection process,
tabu search mechanism is used. To make the search more effective, the neighbourhood
exploration mechanism is based on analyzing the distance of the current solution to the
optimal solution with respect to the shortages or excesses of workers with the longest
duration and the used shift types. The initial solution of the algorithm is based on
every change of the requirements of employees in each time slot. These differences of
consecutive time slot can be beginning (increase of requirement) or ending (decrease of
requirement) point of a shift.

Di Gaspero et al. [DGGK+07] improved this method and composed a greedy con-
struction heuristic with the local search algorithm. The initial solution is constructed
using new greedy heuristic based on min-cost max-flow. Shifts are edges and workforces
are the edge flows. In the second stage, the local search paradigm is used to explore
the neighbourhood. The hybrid solver outperforms the previous approach. Abseher
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[Abs13] proposed different modelling approaches using answer set programming, but the
performance could not be improved obtained by solving the shift design problem using
the heuristic-based approaches in [DGGK+07].

3.3 Break Scheduling
Beer et al. [BGM+08] introduced the break scheduling problem for call centers and
developed local search techniques based on min-conflicts algorithm. Although min-conflict
search tries to improve the solution incrementally by concentrating on violating con-
straints, is not being able to escape from local optima. Random walk strategy is adapted
to explore further regions with a probability p and the remaining 1-p probability is
used for min-conflict search. In [BGMS10] a break scheduling problem for supervisory
personnel was investigated, that presented in the previous chapter. Authors proposed
tabu search mechanism and simulated annealing algorithm [BGMS10] and the perfor-
mances compared with min-conflicts-random-walk search. The min-conflicts-random-walk
approach outperformed the other two heuristic techniques.

Widl [MSW09] introduced a memetic algorithm for break scheduling problem intro-
duced in [BGMS10]. Initial solutions were constructed randomly or by fast heuristic.
Break patterns created and remained unviolated the constraints C1 -C5 during each itera-
tion. Every individual tries to find the best solutions with using a local search algorithm.
This approach improved the previous results based on min-conflicts-random-walk for the
break scheduling problem.

In [WM14] [Wid10] [WM10] 2 new memetic algorithms were proposed. These ap-
proaches are used a new memetic representation based on time periods instead of on
each shift, therefore these algorithms require different genetic operators. In the first
algorithm, tabu list is used to prevent re-visiting old computed solutions in local search.
To improve the first algorithm, a new crossover operator is developed in the second
algorithm, that every offspring can have more than one parent and each individual can be
parent also. With each iteration, the first offspring is created by joining the best memes
of the current memepool and the remaining are created by applying a k-tournament. Bad
individuals are less likely to be discarded. To calculate the best memes and to discard
some individuals, penalty system was developed. As a result, applying local search for
some instances instead of all of them provided a better result. The approach obtain the
best results for the break scheduling problem.

3.4 Shift Design and Break Scheduling
Generally in the literature, the break scheduling has been addressed mainly as part of
the shift scheduling problem. Such an example, which have multiple rest breaks and a
lunch break, we presented before, is proposed by Aykin [Ayk96].

Gärtner et al. [GMS05] extended shift design problem first time with breaks. However,
the part of break placement are considered differently as break scheduling problem. There
are fewer soft constraints, which are minimal and maximal length of break, minimal and
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maximal distance of start of break from the shift begin, and minimal distance of end
of break from the end of the shift. One or more breaks can be assigned to every shifts.
The shifts are generated first based on local search, that we presented above ([GMS01]
[MSS04]). The solution found by local search converted to shifts with one employee per
day and greedy algorithm was used to assign breaks. The greedy algorithm finds the
best position of the breaks depend on under- and over-covers. Next step is to update the
length of breaks or shifts to increase or decrease to improve solution. Last step creates
the solution with shifts and multiple employees. The algorithm found an average solution.

Gärtner et al. [GMS06] improved this algorithm by using integer programming
formulation based on the set covering model of Dantzig [Dan54] for shift design phase,
rather than local search. The shift design problem was defined with an extra component
compared to the shift design problem presented in this master’s thesis, that is the sum of
the deviations of the shift lengths from the optimal shift length. Same steps were used
for assigning breaks with the previous article [GMS05]. The method gave good results in
practice.

Di Gaspero et al. [DGGM+10] [DGGM+13] proposed an innovative hybrid method
that combines features of local search and constraint programming techniques. The
problem is divided into two sub problems, where the local search technique is used to
determine the shifts in the first phase and the constraint programming model to assign
breaks. This approach could not improve the results obtained by solving the break
scheduling problem separately after generating shifts.
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CHAPTER 4
Formulations

In this chapter, we will present our integer programming formulation for shift design and
break scheduling problems in details. The integer programming approach is explained
separately in two subsections. In each subsection, we describe the variables that we used,
the constraints and the objective function.

4.1 Integer Linear Programming Model for Shift Design
Problem

The explicit set covering formulation have been first proposed for the shift scheduling
problem by Dantzig (1954) [Dan54]. Our integer programming formulation is also based
on an explicit representation of shift design. To formulate the shift design problem
explicitly, we generate all shifts including all feasible combinations of shift start times
and lengths. The model uses the following variables.

4.1.1 Variables

The variables of integer programming formulation consist of two parts, input and decision
variables.

Input Variables

We presented the original problem definition in the second chapter. Here, we will define
the input and the generated variables from the given instance. For shift design problem
formulation, the input variables are:

• slotLength : All time slots have the same length of interval slotLength. For the
shift design problem usually the slot length is 15, 30 or 60 minutes.
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• daysPerCycle : The number of days in the planning period. daysPerCycle is
typically 7 days. The shift design problem has a cyclic structure. Assuming 7 days
of period, the last time slot of the seventh day is equal to the first time slot of the
first day.

• n : Number of consecutive time slots with same slotLength. The calculation of n
variable is,

n = daysPerCycle ∗ 24 ∗ 60/slotLength (4.1)

• m : Number of all enumerated possible shifts. All possible shifts are generated
based on minimum / maximum shift start and minimum / maximum shift length.
The variable m is calculated as follows (y is defined in the problem statement
chapter as the number of shift types),

m =
y∑

i=1
DistinctStarti ∗DistinctLengthi (4.2)

Suppose that, we have given the shift types in Table 2.1. Assuming a slotLength
of 60 minutes, morning shifts (M) can start at 05:00, 06:00, 07:00 or 08:00 and the
length of shifts can be 7, 8 or 9 hours. The number of possible distinct shifts for
the morning shift type is 12 (4 different starting hours * 3 different shift lengths).
Further, there will be 9 possible shifts for the day shift, 9 for the afternoon shift and
9 for the night shift. In total, the number of possible shifts is 39, for the slotlength
60. If the slotlength is 30, there will be 110 possible shifts and if the slotlength is
15, there will be 360 possible shifts.

• xt : Number of employees required for time slot t (defined as variable wi in the
original problem definition).

xt ≥ 0 ∀t = 1, 2, ..., n (4.3)

• ats : For each possible shift s, we set the ats variable to 1, if time slot t is in the
working period of shift s, 0 otherwise.

ats =
{

1 if time slot t is a work period of shift s
0 otherwise (4.4)

ats ∈ {0, 1} ∀t = 1, 2, ..., n ∀s = 1, 2, ...,m (4.5)

For instance, the first enumerated shift based on Table 2.1, will start at 05.00 and
its length is 7 hours. All time slots between [05.00, 12.00) are set to 1 in each day
of the planning period, other time slots must be equal to 0.
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• Wi : Weight of the three components in the objective function.

Wi ≥ 0 ∀i = 0, 1, 2 (4.6)

Decision Variables

The decision variables for the integer linear programming formulation for the shift design
problem are given below,

• bs : For each enumerated shift, we use the variable bs indicating, whether shift s is
used or not.

bs =
{

1 if the shift s is active
0 otherwise (4.7)

The shift s is active, if at least one employee is assigned to it. The variable bs is
initialized in Cplex Solver as,

1 b=cp lex . numVarArray (m, 0 , 1 , IloNumVarType . Bool ) ;

• wsd : Number of employees, that are assigned to a shift s during the day d. The
same shifts can have different number of employees in different days. This decision
variable has two dimensions, shift number and day number. The initialization of
the number of workers wsd in Cplex Solver is illustrated below,

1 w=new IloNumVar [m ] [ ] ;
2 f o r ( i n t s = 0 ; s < m; s++){
3 w[ s ]= cp lex . numVarArray ( daysPerCycle , 0 ,
4 In t eg e r .MAX_VALUE, IloNumVarType . Int ) ;
5 }

• The three components of the objective function are :

F0 : Sum of the excesses of workers in each time slot.
F1 : Sum of the shortages of workers in each time slot.
F2 : Number of shifts.

We initialized these three components of the objective function as follows in Cplex
Solver,

1 F=cp lex . numVarArray (3 , 0 , I n t eg e r .MAX_VALUE, IloNumVarType . Int ) ;

• lt : The load for time slot t. The load lt represents the sum of the number of
workers, who works in time slot t in all shifts. The initialization of load lt in Cplex
Solver is,
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1 l=cp lex . numVarArray (n , 0 , I n t eg e r .MAX_VALUE, IloNumVarType . Int ) ;

• ext : The excesses of workers for each time slot t.

• sht : The shortages of workers for each time slot t.
We illustrate excesses ext and shortages sht of workers for each time slot in Cplex
Solver below,

1 ex=cp lex . numVarArray (n , 0 , I n t eg e r .MAX_VALUE, IloNumVarType . Int ) ;
2 sh=cp lex . numVarArray (n , 0 , I n t eg e r .MAX_VALUE, IloNumVarType . Int ) ;

We defined the variables, that we use in our integer programming model. In the
next section, we will present the constraints.

4.1.2 Constraints

We will present the constraints, we use in our integer programming formulation in the
next two sections based on the components of the objective function ( Excesses and
shortages of workers in each time slot (F0, F1) and number of shifts (F2)).

Excesses and Shortages of Workers in each Time Slot

Usually in the shift scheduling problem, the aim is to minimize the number of employees,
without any shortages. On the other hand, in shift design problem, we need to consider
not only over staffing, but also under staffing component in the objective function. In
order to find the sum of excesses and shortages of employees, first we need to define the
load lt variable of time slot t as follows,

lt =
m∑

s=1
(ats ∗ ws,bdaysP erCycle∗t/nc) ∀t = 1, 2...n (4.8)

The load lt of each time slot t is the sum of employees assigned to shifts that include
this time slot. The variable ats indicates, whether the time slot t is in the time window
of the shift s. If ats variable is equal to 1, the number of workers wsd of the shift s on
this day is added to the equation. The day number d for the variable wsd from the time
slot t is calculated with the following equation,

d = bt/(24 ∗ 60/slotlength)c = bdaysPerCycle ∗ t/nc (4.9)

There is one challenge to find the day number in wsd parameter from the time slot t.
We need to consider the shifts, which start in one day d and continuing into the following
day d+ 1. wsd is the number of workers of shift s, which starts to their shift in day d.
From the calculation above, we needed to update the day number of the time slot of the
next day in variable wsd to the one day before.
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As an example, suppose we have 4 employees at one of the night shifts on the first
day (ws1 = 4) and in the same shift we have 2 employees on the second day (ws2 = 2).
If we calculate with the equation above the day value at 01.00 o’clock on the second
day, the formula will find ws2 = 2, ws2 is the number of workers on shift s on the second
day. However, we need to use the number of employees on the first day, because the
shift started on Monday. Due to this problem, nextDays variable is used that indicates,
whether the shift continues next day or not. If a shift has nextDays set to true and the
time slot t is after midnight, the day number will be decreased by one.

1 IloLinearNumExpr [ ] expr2 = new IloLinearNumExpr [ n ] ;
2 f o r ( i n t t = 0 ; t < n ; t++){
3 expr2 [ t ] = cp lex . linearNumExpr ( ) ;
4 f o r ( i n t s = 0 ; s < m; s++){
5 i f ( t % (24 ∗ 60 / s lo tLength ) < 12 ∗ 60 / s lo tLength
6 && nextDay [ s ] == true ){
7 tempDay = ( ( daysPerCycle ∗ t /n) + daysPerCycle −1)
8 % daysPerCycle ;
9 }

10 e l s e
11 tempDay = ( daysPerCycle ∗ t /n ) ;
12 expr2 [ t ] . addTerm( a [ t ] [ s ] , w[ s ] [ tempDay ] ) ;
13 }
14 cp lex . addEq ( l [ t ] , expr2 [ t ] ) ;
15 }

From the formal definition of the shift design problem in [MSS04], the sum of excesses
and shortages of workers is defined as follows,

F0 =
n∑

t=1
max(lt − xt, 0) ∗ slotlength (4.10)

F1 =
n∑

t=1
max(xt − lt, 0) ∗ slotlength (4.11)

Instead of using maximum operator in Cplex Solver, we calculate the excesses and
shortages of workers in each time slot t as follows,

ext ≥ (lt − xt) ∗ slotlength ∀t = 1, 2...n (4.12)

sht ≥ (xt − lt) ∗ slotlength ∀t = 1, 2...n (4.13)

where excesses ext and shortages sht variable are positive integers. If lt − xt is
negative, the value of parameter ext is equal to 0 and if lt − xt is positive, due to the
minimization of excesses and shortages in objective function, the value of parameter ext

is equal to lt − xt. The shortage sht can be also explained similarly.
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The negative value of xt − lt (lt − xt), the value of the parameters sht (ext) is equal
to 0 and for the positive value of xt− lt (lt− xt), due to the minimization of excesses and
shortages in objective function, the equation is equal to the sht = xt − lt (ext = lt − xt)

As we mentioned in Related Work, Gärtner et. al [GMS06] proposed an integer
programming formulation for the shift design problem. They formulate this constraint as
follows,

lt ∗ slotlength+ sht − ext = xt ∗ slotlength (4.14)

This proposed constraint improved our solution, therefore we have also used this
formulation.

This equation is illustrated in Cplex Solver as below,

1 IloLinearNumExpr [ ] expr3 = new IloLinearNumExpr [ n ] ;
2 f o r ( i n t t = 0 ; t < n ; t++){
3 expr3 [ t ] = cp lex . linearNumExpr ( ) ;
4 expr3 [ t ] . addTerm( s lotLength , l [ t ] ) ;
5 expr3 [ t ] . addTerm(−1.0 , ex [ t ] ) ;
6 expr3 [ t ] . addTerm (1 . 0 , sh [ t ] ) ;
7 cp l ex . addEq ( expr3 [ t ] , s l o tLength ∗x [ t ] ) ;
8 }

The calculation of the sum of excesses/ shortages of workers in each time slot:

F0 =
n∑

t=1
ext (4.15)

F1 =
n∑

t=1
sht (4.16)

1 cp lex . addEq (F [ 0 ] , cp l ex . sum( ex ) ) ;
2 cp l ex . addEq (F [ 1 ] , cp l ex . sum( sh ) ) ;

Number of Shifts

One of the challanges with the shift design problem is that in order to minimize the
number of shifts, we need to reuse the same shift on all days of the week and track
the number of used shifts. Therefore, if any enumerated shift has an employee in at
least one day (

∑daysP erCycle
i=1 wsd > 0), the shift needs to be active (bs = 1). Otherwise,

if it is not active (bs = 0), then the shift must not have any workers in any days
(
∑daysP erCycle

i=1 wsd = 0). The formulation is given below,

daysP erCycle∑
d=1

wsd ≤M ∗ daysPerCycle ∗ bs ∀s = 1, 2, ...,m (4.17)
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We have used variable M to get an upper bound of the maximal number of employees
that each shift can have. The maximum number of workers each shift can have is the
maximum number of needed employees over all time slots. Therefore,

M = max xt, ∀t ∈ {1, 2..., n} (4.18)

M times daysPerCycle gives us the maximum bound of the sum of employees in
each day. Instead of using the sum of workers in all days of every shift, we changed this
constraint to,

wsd ≤M ∗ bs ∀s = 1, 2, ...,m (4.19)

This new constraint is more efficient than the old one, due to the narrower feasible
region. The illustration of the new version of the constraint in Cplex Solver is below,

1 IloLinearNumExpr [ ] expr1 = new IloLinearNumExpr [m] ;
2 f o r ( i n t s = 0 ; s < m; s++){
3 expr1 [ s ] = cp lex . linearNumExpr ( ) ;
4 expr1 [ s ] . addTerm(b [ s ] , i n s t ance . getMaxEmployeeNeeded ( ) ) ;
5 f o r ( i n t d = 0 ; d < daysPerCycle ; d++){
6 cp lex . addLe (w[ s ] [ d ] , expr1 [ s ] ) ;
7 }
8 }

The calculation of the number of shifts:

F2 =
n∑

s=1
bs (4.20)

1 cp lex . addEq (F [ 2 ] , cp l ex . sum(b ) ) ;

4.1.3 Objective function

The objective function is combined with three weighted criteria.

min
2∑

i=0
Wi ∗ Fi (4.21)

The minimization of objective function for the shift design problem is illustrated
below,

1 IloLinearNumExpr obj = cp lex . linearNumExpr ( ) ;
2 f o r ( i n t i = 0 ; i < 3 ; i++){
3 obj . addTerm( weight [ i ] , F [ i ] ) ;
4 }
5 cp lex . addMinimize ( obj ) ;
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4.2 Integer Linear Programming Model for Break
Scheduling Problem

In break scheduling problem, each duty of a shift in each day has several breaks and the
slotLength is typically 5 minutes. The enumeration of all possible breaks including all
feasible combinations of break start times and lengths ends up with large feasible set
of integer linear formulation. It is almost impossible to solve this explicit formulation
without any restriction. Nevertheless, due to the constraints based on work periods, we
need to know the break location sequentially within their shift. Therefore, we give an
integer programming model explicitly, but reduce all combinations of breaks.

The restrictions of our problem is given below,

• There are 7 soft constraints in the problem statement. Instead of using all of them
as soft constraints in our formulation, we initialize our variables, such that they
satisfy the first five soft constraints.

• We assume that every monitor break has duration of exactly 2 time slots (10
minutes).

• We assumed that the first three monitor breaks are before the lunch break and the
remaining monitor breaks are after the lunch break.

We will present these restrictions in the further sections in more details. Our model
uses the following variables.

4.2.1 Variables

The variables of integer programming formulation consist of two parts, input and decision
variables.

Input Variables

In this section, we will present the given instance and will introduce new input variables,
that are generated from the given variables. For break scheduling problem formulation,
the input variables are:

• slotLength : The slotLength is usually 5 minutes for break scheduling problem.

• n : Number of consecutive time slots with same slotlength. n is calculated as
follows,

n = 24 ∗ 7 ∗ 60/slotLength (4.22)

Based on formulation above and considering that slotLength is typically 5 minutes,
number of consecutive time slots n is equal to 2016.
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• sdd : In break scheduling problem, we need to assign breaks for each duty of the
shift in each day. Therefore, we use a variable sdd indicating the number of all
shift-day-duty. Every shift has several workers in each day, to find the shift or the
day from the shift-day-duty number, two tables are used. These tables shiftSDD
/ daySDD consist of shift-day-duty number and shift / day number.

• si.breakT ime : The duration of breaks in shift si is calculated based on the length
of a shift.
if shiftLength ≤ 10 hours,

si.breakT ime = b(minutes(ShiftLength)− 20)/50c ∗ 10 (4.23)

else,
si.breakT ime = dminutes(ShiftLength)/4e (4.24)

In most cases, each shift-day-duty has one lunch break and several monitor breaks.
Lunch breaks are 30 minutes long and the remaining break times are considered as
monitor breaks.
Suppose that we have a shift with a length of 8 hours. Based on 5 minutes
slotlength, there are 96 time slots. Therefore, from the equation above, 18 time
slots of breaks need to be assigned. 6 time slots are considered as a lunch break
and the remaining 12 time slots are monitor breaks.

• m : Number of breaks of shift si. As we mentioned before, we assume that each
monitor break is 10 minutes (2 time slots). Therefore, the number of breaks is
calculated with the equation below,

si.m = (si.breakT ime− si.lunchBreakT ime)/2 + 1 (4.25)

• rt : Number of required staff for each time slot t. These numbers of employees are
needed to be working at each time interval, an example of required employees for
one day is shown in Figure 4.1.

rt ≥ 0 ∀t = 1, 2, ..., n (4.26)

• shiftMinusRequirementt : There are several shifts, that are characterized with
start si.start and length si.length. First, we need to convert each shift si with a
number of workers si.wj in each day j to the number of people working in each
time slot t. This working staff decreased by requirements of workers in each time
slot t to calculate shiftMinusRequirementt variables. In this calculation, we are
not considering the breaks of workers. In Figure 4.2 is shown an example graph
with required employees and present employees (shifts without breaks). The breaks
will fill these space between two curves, as it is shown in Figure 4.3.
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Figure 4.1: The required workers (Blue Line) over a day are shown

Figure 4.2: Shifts are scheduled without breaks. The required workers (Blue Line) and
the present workers (Red Line) over a day are shown

shiftMinusRequirementt ≥ 0 ∀t = 1, 2, ..., n (4.27)

To calculate the number of workers in each time slot between these two curves, we
use Algorithm 4.1.

In the Algorithm 4.1, first we set the shiftMinusRequirementt variable with the
minus needed number of workers in each time slot t (Line 2). The number of day
cycle is considered 7 days (a week) for break scheduling problem (Line 5). Each
day has n/7 time slots. Suppose that the slotlength is equal to 5, time slots [0-
288) is the interval of the first day, second day is between [288, 576), .. , [1928, 0)
is the interval of last day.

The night shifts of last day continue to the beginning of the week, due to the
cyclic structure. Therefore, we need to apply mod n. In line 7, the day number is
converted to the first time slot of a day with (n ∗ j/7)( mod n) and we add the
equation si.start+ l to calculate the each time slot t belongs to the interval of shift
si on day j. The right side of the equation is equal to the number of employees in
day j and shift si.
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Figure 4.3: Breaks are assigned to each shift. The required employees (Blue Line) and
the working employees (Black Line) over a day are shown

Algorithm 4.1: Convert Shift Schedules to the number of Assigned Workers in
Each Time Slot
Input: rt, si.start, si.length, si.wj

Output: shiftMinusRequirementt
1 for t← 0 to n-1 do
2 shiftMinusRequirementt = −rt

3 end
4 for i← 0 to Number of Shifts -1 do
5 for j ← 0 to 6 do
6 for l← 0 to si.length− 1 do
7 shiftMinusRequirement[(si.start+ l + n ∗ j/7)%n]+ = si.wj ;
8 end
9 end

10 end
11 return shiftMinusRequirementt;

• As mentioned in [BGMS10], the common settings and the initialization of the used
parameters in our formulation for the soft constraints C0 to C6 are given below
(The weight of soft constraints are initialised with Wi ∀i = {0, 1, 2...6}. ),

– C0 : The earliest start of the break (earliestStart) is half an hour after the
beginning of the shift and the latest end (latestEnd) half an hour before the
shift’s end. The violation of this soft constraint is penalized with the weight
W0, which is 20.

– C1 : The earliest start of the lunch break (lunchEarliestStart) is 03 : 30
hours and the latest end (lunchLatestEnd) 06 : 00 hours after the beginning
of the shift. The weight value W1 of this constraint is equal to 10.
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– C2 : Work periods are the consecutive time slots between the breaks and
also between the first break and start of a shift and the last break and end
of a shift. These periods need to be between two parameters, that are the
minimum length of work period minWP and maximum length of work period
maxWP . These parameters are set 00 : 30 and 01 : 40 and the weight value
W2 is equal to 20.
Meanwhile, if the start time of the first break is before the earliest start and
the end time of the last break is after the latest end, this situation violates
two soft constraints, that are C0 and C2.

– C3 : Employees need to have more break time minBreakExceedsWorkLimit,
if they exceed a certain limit workLimit. This constraint is violated, if after
50 minutes of the work period, the employee have less than 20 minutes break.
The weight W3 is equal to 20.

– C4 : The break duration of employees needs not to be less than 10 minutes
(minBreakLength) and not more than one hour (maxBreakLength).The
violation of break duration is penalized with the weight W4, which is 1.

– C5 : Sum of the shortages of employees in each time interval during the plan-
ning period. The weight value W5 for each shortage is equal to 10.

– C6 : Sum of the excesses of employees in each time interval during the planning
period. The weight value W6 for each excess is equal to 2 .

Beer et. al in [BGMS10] mentioned that in real world benchmarks, most of these
constraints violations (C0, C1, C2, C3, C4) are less than 5 percent for each instance,
with respect to the weight values above. Therefore, we initialize our variables based
on satisfying these first five constraints and evaluate the objective function with
the remaining two soft constraints, that are excesses and shortages of workers in
each time interval during the planning period.

Decision Variables

For the proposed integer linear programming formulation for break scheduling problem,
the decision variables are given below,

Initialization of Breaks

Each shift-day-duty s has several breaks. We initialize these breaks with three types
of break variables, based on different time windows TWi (i = {0, 1, 2} is the number of
break types). These three break types are blsbt, lst, alsbt.
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In break scheduling problem, breaks can be assigned into time slot t between the
earliest start of the break earliestStart and the latest end of the break latestEnd. Thus,
C0 constraint needs to be satisfied and the breaks must be into this interval. These three
break type variables are assigned to true, if there exists a start of a break in the time
slot t.

blsbt =
{

1 if shift-day-duty s has break b before lunch, it starts from time slot t
0 otherwise

(4.28)

lst =
{

1 if shift-day-duty s has a lunch break, it starts from time slot t
0 otherwise (4.29)

alsbt =
{

1 if shift-day-duty s has break b after lunch, it starts from time slot t
0 otherwise

(4.30)
These time slots are restricted with different time windows, based on types of breaks.

We are assuming that every staff has three monitor breaks before the lunch break and
m− 4 monitor breaks after the lunch break depending on si.breakT ime of shift si. We
will present them as follows, and explain time windows in details:

• blsbt : We assumed each shift-day-duty s has three monitor breaks before lunch.
We need to consider the followings to reduce the time window TW0 (earliest and
latest possible start) of this type of breaks,

- The blsbt can not start before the earliestStart (based on constraint C0).
- These breaks can not end after the lunchLatestEnd (based on constraint C1).
As an example with shift length 8 hours, the time window of before lunch
break (Red) is illustrated below,

0

Start

6 42 72 90 96

End

- We can still restrict the time window TW0. We need to consider that employees
have a lunch break after blsbt and before the lunchLatestEnd. The employees
can have their lunch break at latest in the end of the lunch break period
(lunchLatestEnd− lunchBreakT ime) and before the lunch break, the staff
must work minimum 6 time slots (minWP ), due to the constraint C2.

- The monitor break variables have length of 2 time slots. Consider that time
slot t is the start time of the break. We need to decrease 2 more time slots. The
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illustrated example of the restricted time window of before lunch break with
shift length 8 hours is shown below (Red: Time Window of Before Lunch Break,
Black: Monitor Break, Yellow: MinimumWorking Period, Blue: Lunch Break),

0

Start

6 42 58 60 66 72 90 96

End

From the restrictions above, the time window of blsbt is calculated below,

es0 = earliestStart (4.31)

ls0 = lunchLatestEnd− lunchBreakT ime−minWP − 2 (4.32)

The time windows of these three breaks are also tightened between each other from
the following statements,

- The earliest start of the bls0t (first before lunch break) is the earliestStart.
However, it must end before the other remaining two before lunch breaks(bls1t, bls2t).
Therefore, we consider that bls2t starts at ls0. Before this break the employee
needs to work minWP . bls1t finishes at latest at this point of time. Therefore,
if we decrease 2 time slots (length of second break) and minWP (between
the first and second break), we can find the latest point of the end of the first
break. At last, we need to decrease 2 more time slot (length of first break)
to find the latest start of the bls0t. The illustrated example of the restricted
time window for the first before lunch break with shift length 8 hours is given
below (Red : Time Window of Before Lunch Break, Black: Monitor Break,
Yellow: Minimum Working Period, Blue: Lunch Break),

0

Start

6 42 44 50 52 58 60 66 72 90 96

End

- We have already calculated the latest start of the bls1t, that is ls0−minWP+2.
The earliest start of the bls1t must be after the bls0t, therefore, we need to
add minWP + 2 to the to the earliest start of the bls0t. As an example of the
restricted time window for the second before lunch break with shift length 8
hours is shown below (Red : Time Window of Before Lunch Break, Black :
Monitor Break, Yellow : Minimum Working Period, Blue : Lunch Break),

0

Start

6 8 14 50 52 58 60 66 72 90 96

End
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- With the same rule, the bls2t must start es0 + 2 ∗ (minWP + 2) and latest
start is the ls0. The illustrated example of the restricted time window for the
last before lunch break with shift length 8 hours is given below (Red : Time
Window of Before Lunch Break, Black : Monitor Break, Yellow : Minimum
Working Period, Blue : Lunch Break),

0

Start

6 8 14 16 22 58 60 66 72 90 96

End

As a summary, we added i∗(minWP+2) to the es0 and decrease (2−i)∗(minWP+2)
from the ls0 where i indicating the number of before lunch break -1. The updated
interval of time window TW0 of before lunch break is given below,

es0 = earliestStart+ i ∗ (minWP + 2) (4.33)

ls0 = lunchLatestEnd− lunchBreakT ime− (3− i) ∗ (minWP + 2) (4.34)

∀i = {0, 1, 2} (4.35)

• lst : The shifts have at most one lunch break, therefore this variable is initialized
with two dimensions shift-day-duty s and time slot t. The lunch break can be
between the lunchEarliestStart and lunchLatestEnd− lunchBreakT ime. This
break has length 6 time slots. The illustration of time window TW1 of lunch break
with shift length 8 hours is shown below, (Blue: Time Window of Lunch Break,
Black: Lunch Break),

0

Start

6 42 72 ShiftDuration

End

The earliest start and latest start of a lunch break is given below,

es1 = lunchEarliestStart (4.36)

ls1 = lunchLatestEnd− lunchBreakT ime (4.37)

• alsbt : We assumed each shift-day-duty s has m − 4 monitor breaks after lunch,
based on length of the shift. We need to consider the followings to calculate the
time window TW2 of these types of breaks,
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- The alsbt can not start before the lunchEarliestStart (based on constraint
C1).

- These breaks can not end after the latestEnd (based on constraint C0). As
an example with shift length 8 hours, the time window of after lunch break
(Green) is illustrated below,

0

Start

6 42 72 90 96

End

- Likewise, in before lunch break, we can also reduce the time window TW2 of
after lunch break. We need to consider that employees have a lunch break
before these breaks and after the lunchEarliestStart. Therefore, assuming
that the employees have lunch break in the beginning of the lunch break period
(first 6 time slot) and after the lunch, the staff must have a working period
minimum 6 time slots, due to the constraint C2.

- The monitor break variables have a length of 2 time slots. Consider that time
slot t is the start time of the break. We need to decrease 2 time slots. The
illustrated example of the restricted time window of after lunch break with
shift length 8 hours is shown below (Green : Time Window of After Lunch
Break, Black : Monitor Break, Yellow : Minimum Working Period, Blue :
Lunch Break),

0

Start

6 42 48 54 72 88 90 96

End

As we explained in before lunch breaks, we can also restrict the time window of each
after lunch break TW2 between each other. We add i * ( minWP +2 ) to earliest
start of after lunch break (lunchEarliestStart + lunchBreakT ime + minWP )
and decrease (m - 5- i) * ( minWP +2 ) from latest start of after lunch break
(latestEnd− 2) where i indicating the number of after lunch break -1. From the all
restrictions above, the earliest and latest start of after lunch breaks are calculated
as given below,

es2 = lunchEarliestStart+ lunchBreakT ime+minWP ∗ (i+ 1) + 2i (4.38)

ls2 = latestEnd− 2− (m− 5− i) ∗ (2 +minWP ) (4.39)

∀i = {0, 1, ..,m− 5} (4.40)
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The illustrated example of the restricted time window for the first after lunch break
with shift length 8 hours is given below (Green: Time Window of After Lunch
Break, Black: Monitor Break, Yellow: Minimum Working Period, Blue: Lunch
Break),

0

Start

6 42 48 54 72 74 80 82 88 90 96

End

The illustrated example of the restricted time window for the second after lunch
break with shift length 8 hours is shown below (Green: Time Window of After
Lunch Break, Black: Monitor Break, Yellow: Minimum Working Period, Blue:
Lunch Break),

0

Start

6 42 48 54 56 62 80 82 88 90 96

End

The illustrated example of the restricted time window for the last after lunch break
with shift length 8 hours is given below (Green: Time Window of After Lunch
Break, Black: Monitor Break, Yellow: Minimum Working Period, Blue: Lunch
Break),

0

Start

6 42 48 54 56 62 64 70 88 90 96

End

• stsb : Start time is an integer positive variable, represents the time slot of the start
of the breaks within their shift. Every break b of shift-day-duty s have a start time
and the value of start time is between this interval below,

0 ≤ stsb ≤ ShiftLength− EarliestStart− LatestEnd− 2 (4.41)

∀s = {0, 1...sdd− 1} ∀b = {0, 1, ...,m− 1} (4.42)

We needed the start time of each break to calculate work period between each other.
The equation to calculate the start time will be explained in constraint section.

• wpsb : There are two soft constraints based on a work period in the problem
statement, however, as we mentioned before, we added this constraint directly to
our initialization of the problem. wpsb is defined as follows,

– The duration from the start time of the shift to the beginning of first break.
– The duration from the end time of each break to the start time of the following

break belongs to the same shift-day-duty.
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– The duration from the end of the last break to the end of the shift.

We initialize the work period wpsb variable, based on start time stsb in the constraint
section more clearly. This variable must be due to constraint C2 between the interval
[00:30, 01:40].

Based on the constraint C3, if an employee exceeds 50 minute work period, he must
have 20 minutes break. Each monitor break has 10 minutes length. Therefore, we
initialize, that each work period has between 30 minutes to 50 minutes long, except
two working periods. These two working periods are,

– The working period before the lunch break, because the lunch break is 30 min-
utes long, therefore the employee can exceed 50 minutes working period before.

– The working period after the last break. Because, the employee will finish his
duty and will be free.

We initialize the each working period between interval,

00 : 30 ≤ wpsb ≤ 01 : 40 ∀s = {0, 1...sdd− 1} ∀b = {0, 1, ...,m} (4.43)

We add the constraint whether working period is less or equal to 50 minutes or not
in the following section.

• We added first five soft constraints into our formulation as an hard constraint. The
remaining two components of the objective function are :

– C5 : Sum of excesses of employees in each time slot.

– C6 : Sum of shortages of employees in each time slot.

• To calculate these two components, we needed two variables ext, sht like in shift
design problem,

– ext : Excesses of workers in time slot t.

– sht : Shortages of workers in time slot t.

4.2.2 Constraints

We will present the constraints, we use in our integer programming formulation in 2
sections, soft and hard constraints.
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Hard Constraints

• Each break of shift-day-duty s must assign to exactly one time slot t. For each
break type the equations are shown below,

– For before lunch breaks blsbt,∑
t∈T W0

blsbt = 1 ∀s = {0, 1, ..., sdd− 1} ∀b = {0, 1, 2} (4.44)

– For lunch breaks lst, ∑
t∈T W1

lst = 1 ∀s = {0, 1, ..., sdd− 1} (4.45)

– For after lunch breaks alsbt,

∑
t∈T W2

alsbt = 1 ∀s = {0, 1, ..., sdd− 1} ∀b = {0, 1, ...,m− 4} (4.46)

• stsb : Start time variable indicates the time difference between the start of a break
and the belonging shift start si.start. The start times of each break are initialized
based on each break type, are given below,

– The dimension t in variable blsbt, represent the start point of a break after
the earliest start of before lunch breaks. We calculate the earliest start of
the before lunch breaks es0 as Earliest Start +(minWP + 2) ∗ i, where i is
indicating the number of before lunch break. stsb is initialized for each before
lunch break as follows,

stsb = es0 + t ∗ blsbt ∀s = {0, 1...sdd− 1} ∀t ∈ TW0 ∀b = {0, 1, 2} (4.47)

– There is just one lunch break and it is the fourth break (b = 3). The earliest
start of the lunch break es1 is lunch earliest start. The initialization of it, is
given below,

sts3 = es1 + t ∗ lst ∀s = {0, 1...sdd− 1} ∀t ∈ TW1 (4.48)

– The earliest start of the after lunch breaks es2 is initialized as Lunch Earliest
Start + Lunch Break Time +minWP+(minWP+2)∗i where i is representing
the number of after lunch break. The start times of first 4 breaks are initialized
before, therefore we add 4 to the value of b to initialize start time of after
lunch breaks.

sts(b+4) = es2+t∗alsbt ∀s = {0, 1...sdd−1} ∀t ∈ TW2 ∀b = {0, 1, ..,m−5}
(4.49)
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• wpsb : We add the constraint C2 and C3 into our formulation in this section. The
end time of each break is the addition of start time and break duration (Monitor
breaks : 2 time slots, Lunch breaks : 6 time slots). Therefore, for these constraints,
the work period is initialized based on start time and duration of each break. The
equations to calculate work periods are given below,

– The first work period is equal to the start time of the first break, because the
start time variable is the length from the shift start.

wps0 = sts0 ∀s = {0, 1...sdd− 1} (4.50)

– The last work period is equal to the equation given below,

wpsm = ShiftLength− sts(m−1) − 2 ∀s = {0, 1...sdd− 1} (4.51)

– The work periods of the remaining breaks are between the end of the break
and start of the following break. Therefore, they are initialized as follows,

wpsb = stsb− sts(b−1)− 2 ∀s = {0, 1...sdd− 1} ∀b = {1, 2..,m− 1} (4.52)

The work period variable is already initialized between the interval [00:30, 01:40],
due to constraint C2. We need to decrease the length of the work period to
workLimit (50 minutes) based on constraint C3, if the following break is shorter
than 20 minutes (minBreakExceedsWorkLimit). The work period before lunch
(b=2) and the last work period (b=m) can be more than 50 minutes. Therefore,
we add constraints below,

wpsb ≤ workLimit ∀s = {0, 1...sdd− 1} ∀b = {0, 1, 3, ..,m− 1} (4.53)

Soft Constraints

As we mentioned before, the objective function consists of two remaining soft constraints
(C5, C6) , these are excesses and shortages of employees in each time slot. To find these
components, we use the shiftMinusRequirementt variable, that represent the number
of employees remaining after we reduced the required employee of each time slot from
the working employees (without considering breaks) belongs to all shifts.

In this part, we will include the breaks of employees and decrease from the variable
shiftMinusRequirementt to the employees, that are at lunch or monitor breaks belongs
to each shift-day-duty in each time slot. The result of this equation can be in each time
slot,

• 0 : There are not any excesses or shortages of workers in time slot t.

• Positive : There are excesses of workers ext in time slot t.
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• Negative : There are shortages of workers sht in time slot t.

The same as in shift design problem, we calculate the excesses and shortages of
employees in time slot t with the equation, is given below,

breakst − sht + ext = shiftMinusRequirementt ∀t = {0, 1, 2, .., n− 1} (4.54)

where,

breakst : Sum of employees have break in time slot t

ext : This variable is a positive integer and the positive value of the equation
shiftMinusRequirementt − breakst is equal to excesses ext of employees in time
slot t.

sht : This variable is a positive integer and the negative value of the equation
shiftMinusRequirementt− breakst is equal to shortages sht of employees in time
slot t.

We need to calculate the breakst variable, that is the sum of all employees in before
lunch, lunch or after lunch breaks in time slot t in planning period (t ={0,1, ...,n}).
The illustration of calculation breakst variable and the excesses ext and shortages sht of
employees in time slot t is given in Algorithm 4.2. This variable is calculated based on 2
statements, which are given below,

• We initialized the before lunch breaks, lunch break or after lunch breaks based on
time window of belonging shift-day-duty s and time slot t is the start time value
of break between the time window of each break type. We need to convert this t
value to a general time slot in planning period (0,1, ...,n). For each break type the
calculation is different, based on different time window.

• Each monitor break, before lunch breaks and after lunch breaks, is 2 time slots and
a staff needs a full time slot to continue his work after his each break. This time
slot is considered neither break, nor work period. However, we need to add these
full time slot also to breakst variable to calculate excesses and shortages of workers.
In total monitor breaks need to be considered as 3 time slots and with this extra
time slot, lunch breaks have 7 time slot length.

In Algorithm 4.2 , we use if statements (Lines 5, 9, 11) to get each type of break
from the general time slot i in planning period (i = {0, 1, ...n− 1}) . Each calculation is
different based on earliest start es0 (Line 5), es1 (Line 11), es2 (Line 19) of break types.
mod n is used, due to the cyclic structure and the day number is converted to the first
time slot of a day with (daySDD.get(s) ∗ n/7)( mod n). In Line 6, 13, 20, we calculate
the sum of employees of each break type based on duration of breaks.
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Algorithm 4.2: Algorithm to calculate sum of all employees have break in time
slot t and find excesses and shortages of workers in time slot t
Input: blsbt, lst, alsbt, si.start, shiftMinusRequirementt ..
Output: sht, ext

1 for i← 0 to n− 1 do
2 for s← 0 to sdd− 1 do
3 for t ∈ TW0 do
4 for b← 0 to 2 do
5 if i =

(t+si.start+earliestStart+(minWP+2)∗b+(daySDD.get(s)∗n/7))
mod n then

6 breaksi+ = blsbt + blsb(t−1) + blsb(t−2) ;
7 end
8 end
9 end

10 for t ∈ TW1 do
11 if i = (t+ si.start+ lunchEarliestStart+ (daySDD.get(s) ∗ n/7))

mod n then
12 for j ← 0 to 6 do
13 breaksi+ = ls(t−j) ;
14 end
15 end
16 end
17 for t ∈ TW2 do
18 for b← 0 to m− 5 do
19 if i = (t+ si.start+ lunchEarliestStart+ 6 +minWP +

(minWP + 2) ∗ b+ (daySDD.get(s) ∗ n/7)) mod n then
20 breaksi+ = alsbt + alsb(t−1) + alsb(t−2) ;
21 end
22 end
23 end
24 end
25 breaksi − shi + exi = shiftMinusRequirementi ;
26 end
27 return sht, ext;

38



Sum of excesses/ shortages of workers in each time slot is calculated,

• Sum of excesses of employees in each time slot:

C5 =
n−1∑
t=0

ext (4.55)

• Sum of shortages of employees in each time slot:

C6 =
n−1∑
t=0

sht (4.56)

4.2.3 Objective function

The objective function is combination of two remaining weighted criteria:

min
6∑

i=5
Wi ∗ Ci (4.57)
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CHAPTER 5
Computational Experiments

In this chapter, we present the computational results obtained by our integer linear
formulations for shift design and break scheduling problems. We will explain the environ-
ment for both problems first and then we will give further details in two subsections. In
each subsection, first different benchmark instances for both problems will be introduced
and afterwards present the experiments with different ILP solvers. In the last stage the
results will be compared with the best existing results for this problem.

The formulations presented were implemented using Java programming language in
Eclipse. Furthermore, the simplex algorithm and branch and bound search are performed
by the Cplex ILP Solver 12.6. Cplex Solver solve integer programming formulation
efficiently. For the shift design problem, we also experimented with Gurobi Solver version
5.6.3 and its performance is compared with the Cplex Solver. We have used Cplex Solver
with default parameters in the first step, however, in some instances, which take too long
time, we experimented with some parameters regarding the termination of branch and
bound.

All experiments were performed on a machine, 2.4GHz Intel Core i5 CPU, 8 GB of
RAM

All results, that we obtained are validated. For shift design problem, we developed a
validation program. This validator takes as an input the instance of shift design problem
and the solution file, which is obtained by the integer programming model using Cplex
Solver or Gurobi Solver. For break scheduling problem, we have used the validation
program from the link below,

http://www.dbai.tuwien.ac.at/proj/SoftNet/Supervision/Benchmarks/
Validator.zip

This validator also takes as an input the instance of break scheduling problem and
the solution file.
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5.1 Shift Design

For the computational result of the shift design problem, we will explain first how these
data sets are generated. In the second part, we will give our results and we will compare
them with the the state-of-the-art solutions.

5.1.1 Description of the Instances

We have used the four different sets of problem instances for our experiments. The
information about the data sets can be found in the link below, where the instances can
be downloaded.

http://www.dbai.tuwien.ac.at/proj/Rota/benchmarks.html

These first three benchmark sets are randomly generated and the data set 4 contains
real life instance. These data sets have been first introduced in [MSS04] [Mus01]. These
data sets have been considered also in the literature ([MSS04] [Abs13] [DGGK+07]).
Below, we give a short description of these data sets based on [MSS04] [Mus01]

Data Set 1

The first data set is randomly generated. These instances have neither shortages, nor
excesses of employees in each time slot. Therefore, the solution of shifts is generated
based on shift start and shift length. For each shift type 1 to 5 shifts are generated
randomly with equal probability. The slot length is chosen randomly to be 15, 30 or 60
minutes. The number of duties for each generated shift is chosen randomly between 1 to
5 duty. The week days have the same number of duties with 0.9 probability and for the
weekend the probability of the value changes is 0.6. Each shift has the same number of
duties on Saturday and Sunday with probability 0.9. Weights of shortages and excesses
are 1 and shift weight is equal to the slot length (15, 30 or 60).

Data Set 2

The second set is generated in similar way like the first data set. There are not any over-
or under-cover of workers. However, the first 10 instances (1-10) are generated based on
12 shifts, the second 10 instances (11-20) have 16 shifts and the remaining 10 instances
(21-30) consists of 20 shifts.

Data Set 3

In the third set, problems are generated also from invalid shift, which can deviate up to
4 time slots from normal starting times and lengths. The same number of shifts (valid
and invalid shifts) is used as in data set 2. For the problem in this data set, solution
without excess and shortage does not exist.
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Data Set 4

The last data set consist of three instances, the first one is a real life instance, taken from
a call center. The second and third one is modified from the instance number 5 from set
3. The second instance has 30 minutes slot length instead of 60 minutes and the third
one has doubled workforce.

5.1.2 Computational Results

For shift design problem, Cplex and Gurobi Solvers were used to solve integer linear
programming formulations. The first and second data sets are generated without any
under- or over-staffing. Therefore, to find optimal solutions is easier than for the third
data set.

In Table 5.1 and Table 5.2, we present the optimal solution, number of shifts and the
run time (in second) of Cplex and Gurobi Solver for the data set 1 and data set 2. The
column previous result shows the best existing running times for these examples. We will
discuss the comparison in the next section. We only run these two data sets once in both
ilp solvers and except one instance (27.) in data set 2, we have obtained the optimum
solutions, that have been already found in state-of-the-art [DGGK+07] [Abs13].

We found all the optimal solution within a short time for the first data set. Cplex
Solver reaches these optimal solutions in shorter time than Gurobi Solver. Especially in
instance 17, Gurobi Solver needs much longer time, although it also found all optimal
solutions for data set 1.

As shown in the Table 5.2, for instance number 27 in data set 2, we stopped Cplex
Solver after two hours. To solve this instance, Cplex parameters are used. We will present
these parameters and modifications in the next section in details.

Cplex Solver shows mostly better performance compared to Gurobi Solver also in
data set 2, however, in this data set Gurobi Solver has a shorter run time in several
examples. Gurobi Solver could not solve three instances in this data set (23. - 27. - 28.)
within 2 hours time limit.

The third data set is generated with invalid shifts. This can causes excesses and
shortages of employees. The complexity of the problem is increased and to reach the
optimal solution is harder. However, we have been able to find very good results. -
For data set 3, we present our solution in two tables. The objective function value,
over-staffing, under-staffing, number of shifts and the run time (in second) of Cplex
Solver (Table 5.3) and Gurobi Solver (Table 5.4) are presented. We also run this data
set once in both ILP solvers and for few instances the run times were over 2 hours. We
consider changing Cplex parameters for these instances in the further section.

In third data set, Gurobi Solver could not obtain solution for 8 instances within 2
hours time limit and the run takes longer time than Cplex Solver. In several instances,
Gurobi Solver finds different optimal solutions from Cplex Solver. That is, Gurobi Solver
obtained not only fewer or more under- and over-staffing, but also fewer or more number
of shifts, although the objective function values are the same.
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Instance Optimal Nr. Of Cplex Gurobi Previous Resource
Solution Shifts (sec) (sec) Results (sec)

1 480 8 0 0 0.07 [DGGK+07]
2 300 10 14 75 16.41 [DGGK+07]
3 600 10 0 1 0.11 [DGGK+07]
4 450 15 14 169 26.75 [Abs13]
5 480 8 0 1 0.2 [DGGK+07]
6 420 7 0 0 0.06 [DGGK+07]
7 270 9 0 8 1.13 [DGGK+07]
8 150 10 3 61 10.64 [DGGK+07]
9 150 10 1 26 3.53 [DGGK+07]
10 330 11 1 17 23.19 [Abs13]
11 30 2 1 1 0.21 [DGGK+07]
12 90 6 1 4 0.25 [DGGK+07]
13 105 7 1 13 0.35 [DGGK+07]
14 195 13 56 318 60.97 [DGGK+07]
15 180 3 0 0 0.04 [DGGK+07]
16 225 15 65 258 151.78 [DGGK+07]
17 540 18 29 1334 288.42 [DGGK+07]
18 720 12 0 8 1.71 [DGGK+07]
19 180 12 7 163 126 [DGGK+07]
20 540 9 0 2 0.11 [DGGK+07]
21 120 8 1 18 0.28 [DGGK+07]
22 75 5 1 7 0.65 [DGGK+07]
23 150 10 2 77 6.19 [DGGK+07]
24 480 8 0 4 0.11 [DGGK+07]
25 480 16 43 234 26.38 [Abs13]
26 600 10 1 27 1.5 [DGGK+07]
27 480 8 0 2 0.07 [DGGK+07]
28 270 9 0 14 2.24 [DGGK+07]
29 360 12 1 27 10 [DGGK+07]
30 75 5 1 5 0.26 [DGGK+07]

Table 5.1: Times (in seconds) using Cplex, Gurobi Solver and shortest times in the
literature to reach the best known solution for Data Set 1

44



Instance Optimal Nr. Of Cplex Gurobi
Solution Shifts (sec) (sec)

1 720 12 4 7
2 720 12 3 4
3 360 12 11 19
4 360 12 4 7
5 720 12 4 6
6 360 12 3 4
7 720 12 1 3
8 180 12 406 1162
9 360 12 10 11
10 660 11 9 16
11 480 16 465 1947
12 900 15 41 9
13 900 15 29 5
14 840 14 9 3
15 480 16 318 528
16 240 16 36 24
17 960 16 24 2
18 840 14 28 14
19 240 16 90 59
20 960 16 11 1
21 600 20 101 79
22 1080 18 20 20
23 300 20 684 > 7200
24 600 20 82 1300
25 600 20 39 118
26 1020 17 10 29
27 > 7200
28 300 20 424 > 7200
29 1140 19 30 16
30 1020 17 28 53

Table 5.2: Times (in seconds) to reach the best known solution using Cplex and Gurobi
Solver for Data Set 2
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Instance Optimal Nr. Of Nr. Of Nr. Of Time
Solution Shifts Undercover Overcover (sec)

1 2385 13 825 1365 1
2 7590 17 2550 4530 33
3 9540 15 5280 3810 19
4 6540 15 960 5130 51
5 9720 11 3240 5820 4
6 2070 14 510 1350 8
7 6075 15 4755 1095 7
8 8580 13 3630 4560 1
9 6000 17 2850 2895 47
10 2940 18 1410 990 30
11 5190 16 2610 2100 199
12 4110 25 750 2985 143
13 > 7200
14 9600 17 3000 5580 61
15 11250 18 4230 6480 166
16 10620 10 5580 4440 49
17 4680 19 2370 2025 210
18 6540 18 1500 4500 166
19 > 7200
20 8910 18 7320 1050 21
21 > 7200
22 12600 15 3900 8250 31
23 8280 15 4620 2760 7
24 10260 16 5760 3540 5
25 13020 15 6660 5460 4
26 12780 16 4770 7530 145
27 10020 16 4920 4140 3
28 10440 17 4020 5400 7
29 6510 19 4740 1200 295
30 13320 14 5040 7440 4

Table 5.3: Times (in seconds), objective function components and values using Cplex
Solver for Data Set 3
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Instance Optimal Nr. Of Nr. Of Nr. Of Time
Solution Shifts Undercover Overcover (sec)

1 2385 13 825 1365 5
2 7590 17 2400 4680 26
3 9540 15 5280 3810 23
4 6540 15 1260 4830 4698
5 9720 11 3420 5640 15
6 2070 14 510 1350 44
7 6075 15 4755 1095 29
8 8580 13 3630 4560 24
9 6000 18 2760 2970 128
10 2940 18 1470 930 48
11 5190 16 2610 2100 3731
12 >7200
13 >7200
14 9600 17 2880 5700 61
15 11250 18 4230 6480 770
16 10620 10 5400 4620 18
17 4680 19 2550 1845 1559
18 6540 18 1560 4440 851
19 > 7200
20 >7200
21 > 7200
22 >7200
23 8280 16 4800 2520 23
24 10260 16 5100 4200 5
25 13020 15 6840 5280 12
26 > 7200
27 10020 15 5220 3900 8
28 10440 17 4860 4560 34
29 > 7200
30 13320 14 4680 7800 14

Table 5.4: Times (in seconds), objective function components and values using Gurobi
Solver for Data Set 3

47



Instance Optimal Nr. Of Nr. Of Nr. Of Time
Solution Shifts Undercover Overcover (sec)

4-1 18420 12 10320 7740 1
4-2 9720 11 3000 6060 90
4-3 18780 11 7080 11040 18
3-5 9720 11 3240 5820 4

Table 5.5: Times (in seconds), objective function components and values using Cplex
Solver for Data Set 4 and instance 5 of Data Set 3

Instance Optimal Nr. Of Nr. Of Nr. Of Time
Solution Shifts Undercover Overcover (sec)

4-1 18420 12 10440 7620 1
4-2 9720 11 3720 5340 170
4-3 18780 11 7440 10680 28
3-5 9720 11 3420 5640 15

Table 5.6: Times (in seconds), objective function components and values using Gurobi
Solver for Data Set 4 and instance 5 of Data Set 3

The result of the last data set is shown in Table 5.6. The second and third instances
of dataset 4 are the modification of the instance 5 of dataset 3. Therefore, we added the
result of it in the last row to see difference easier.

The running time of the real life instance (4-1) was one second and a solution with
12 feasible shifts was found. The second instance has half of the slot length of the 5.
instance from the data set 3. As a result of this modification, the objective functions
have the same value with different under- and over-staffing and solving this instance
takes more time. The third one has doubled workforce, this modification ends up with a
double objective function value, with also different excesses and shortages of workers and
has also more run time.

Gurobi Solver obtains also an optimum solution in one second for the real life instance
(4-1). The objective function of the second instance has the same value with different
under- and over-staffing and take a lot more time also with Gurobi Solver. The third one
ends up with a double objective function value, with also different excesses and shortages
of workers.

In the next step, we will present the Cplex parameters and apply Cplex Solver again
with different parameter values to have efficient solutions for several instances, which
have running time more than two hours (27. Instance from Data set 2 and Instances
13-19-21 from Data set 3).

As a summary of the comparison between Cplex and Gurobi Solvers, Cplex Solver is
faster than Gurobi Solver, both find the optimal values most of the time, however Gurobi
Solver could not obtain optimal solutions for more instances due to two hours run time
limit. Therefore, we will use Cplex Solver in the further runs.
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5.1.3 Computational Results with some Limitation in Cplex
Parameters

For our experimentations, we have experimented 3 different parameters in Cplex Solver.
These parameters speed up the process, but change the optimality tolerance. One of
these parameters is a time limit to terminate the Cplex Solver and the remaining two
other parameters are related to gap value between the best found integer solution and
optimal solution. These three parameters are defined in Cplex as follows,

• TiLim : This parameter is time limit in Cplex Solver, it can be set in seconds.

• EpGap : Relative optimality tolerance is set a certain percentage of gap to the
optimal solution. This parameter can be between 0 and 1.

• EpAGap : Absolute optimality tolerance is set an absolute range of the optimal
solution. This parameter can be any positive number.

If the objective function is a small number close to 0, then it is more reasonable to
use absolute gap.

These parameters are set in Cplex Solver as follows,

cp l ex . setParam ( I loCplex . DoubleParam . TiLim , 3600 ) ;
cp l ex . setParam ( I loCplex . DoubleParam .EpGap , 0 . 1 ) ;
cp l ex . setParam ( I loCplex . DoubleParam .EpAGap, 3 0 ) ;

The instances in data set 2 and data set 3, which running time is over the time limit,
are run with different parameters in Cplex and the results are shown in Table 5.7. We
have set the time limit parameter to half an hour and an hour and the EpAGap value to
30. We have tried different values for EpGap parameter for the instance in data set 2
and instances in data set 3. Because the solutions of data set 3 contains thousands of
shortages and excesses of workers. Therefore, the objective functions are very high for
these instances. The value of EpGap is related with the objective function value.

For instance, the optimum value of instance 27 in data set 2 is 300, according to
[Abs13]. If we use the EpGap value equal to 2 %, the gap is set around 6 for optimum
value around 300. As we know in data set 2, the objective function of the optimal
solution is the cost of number shift. And the cost of each shift is 15 (for slot length =
15). Therefore, the gap of 6 between the founded integer value and optimal solution is
too small.

The results of the instances with different parameters show that some of the parameters
did not help us to find a solution, however, we have obtained good results also. We
reached the best results for these instances by setting EpGap value to 0.01 (1% Gap) for
data set 3 and to 0.1 (10% Gap) for data set 2. The larger gap value ends up with larger
objective function value and the less gap does not change the result and increase the
run time. Meanwhile, we have obtained the value 315 as a result of the instance 27 in
data set 2, however, this result is not the best known solution considering to the article
[Abs13].
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Instance Paramater Best Time Nr. Of Nr. Of Nr. Of
Solution (sec) Shifts Undercover Overcover

2-27 EpGap = 20 % 330 473 22 0 0
2-27 EpGap = 10 % 315 655 21 0 0
2-27 EpAGap = 5 % - > 7200 - - -
2-27 EpAGap = 30 - > 7200 - - -
2-27 TiLim = 1800 315 1800 21 0 0
2-27 TiLim = 3600 315 3600 21 0 0
3-13 EpGap = 2 % 4620 120 26 2250 1980
3-13 EpGap = 1 % 4605 181 25 2370 1860
3-13 EpGap = 0.5 % 4605 866 25 2370 1860
3-13 EpAGap = 30 4605 448 25 2370 1860
3-13 TiLim = 1800 4605 1800 25 2370 1860
3-13 TiLim = 3600 4605 3600 25 2370 1860
3-19 EpGap = 2 % 4905 92 24 3060 1485
3-19 EpGap = 1 % 4890 986 23 3645 900
3-19 EpGap = 0.5 % - > 7200 - - -
3-19 EpAGap = 30 - > 7200 - - -
3-19 TiLim = 1800 4890 1800 23 3645 900
3-19 TiLim = 3600 4890 3600 23 3645 900
3-21 EpGap = 2 % 5970 1046 32 2400 3090
3-21 EpGap = 1 % 5925 2026 29 2430 3060
3-21 EpGap = 0.5 % - > 7200 - - -
3-21 EpAGap = 30 - > 7200 - - -
3-21 TiLim = 1800 5925 1800 29 2430 3060
3-21 TiLim = 3600 5925 3600 29 2430 3060

Table 5.7: Times (in seconds), parameters, objective function components and values
using different parameters in Cplex Solver for instances that exceed 2 hours time limit

In the next section, we compare our results with the existing state of the art results
in the literature.

5.1.4 Comparison with Existing Results

In this section, we will compare our results with the previous best results, that were
obtained by [DGGK+07], [MSS04], [Abs13]. Di Gaspero et al. published their results for
the data set 1 and data set 3. Therefore, we will compare our results for two data sets.

First, we will present shortly these previous approaches and give the information
about the machines, that were used by other approaches. In [MSS04] [DGGK+07] [Abs13]
, the following approaches were proposed:

• LS : A local search solvers with a set of move types to explore the neighbourhood,
is proposed by Musliu et al. [MSS04]. We note that algorithm proposed in this
paper consider the optimization of an additional criteria regarding the avarage
number of duties pro week. An extension of local search algorithm was proposed
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and we compare in this paper with this algorithm, because in this paper also only
the three criteria are considered.

• GrMCMF : A greedy construction heuristic based on min-cost max-flow is proposed
by Di Gaspero et al. [DGGK+07].

• GrMCFC+LS : The hybrid solver is proposed by Di Gaspero et al. [DGGK+07].
The initial solution is constructed using new greedy heuristic based on min-cost
max-flow. In the second stage, the local search paradigm is used to explore the
neighbourhood.

• ASP : Different modelling approaches using answer set programming are proposed by
Abseher [Abs13], but the results of [DGGK+07] could not be improved. Therefore,
we compare with these approaches just in data set 1 to compare run time.

The local search approaches were implemented in C++ in the EASYLOCAL++
framework and GNU g++ compiler version 3.2.2 is used to compile. The experiments
were performed on a machine, 1.5 GHz AMD Athlon PC running Linux kernel 2.4.21. The
greedy constructed heuristic was coded in MS Visual Basic and runs on a MS Windows
NT 4.0 computer. Approaches based on answer set programming are implemented on a
machine Intel Xeon E5345 @ 2.33GHz 8 CPU-Cores and with a main memory 48 GB.

As we mentioned before, data set 1 consists of instances without under- or over-
staffing. Therefore, the optimum results are achieved easily. We compare only our run
times with the shortest needed time of each instance from the works of Di Gaspero et al.
[DGGK+07] or Abseher [Abs13] to reach their best known solutions. These results are
presented in Table 5.1.

Note that, because the experiments were performed with different machines. This
comparison should be taken with caution and no clear conclusion can be drawn. However,
from the Table 5.1 we can see that Cplex Solver solves problems in a short amount of
time.

The comparison of the results for the third data set is shown in Table 5.8. We have
achieved really good results with using Cplex Solver and found the optimal solution for
almost all instances. For instances 13, 19, 21, the optimality could not be guaranteed,
however these results were also better than the best known solutions. We have already
presented our run time for data set 3 in Table 5.3 and for the instances 13, 19, 21 in
Table 5.7.
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Instance Cplex GrMCMF LS GrMCMF+LS

1 2,385 2,445.00 9,916.35 2,386.80
2 7,590 7,672.59 9,582.00 7,691.40
3 9,540 9,582.14 12,367.50 9,597.00
4 6,540 6,634.40 8,956.50 6,681.60
5 9,720 10,053.75 10,311.60 9,996.00
6 2,070 2,082.17 4,712.25 2,076.75
7 6,075 6,075.00 12,251.70 6,087.00
8 8,580 9,023.46 10,512.60 8,860.50
9 6,000 6,039.18 11,640.60 6,036.90
10 2,940 2,968.95 4,067.10 3,002.40
11 5,190 5,511.43 7,888.20 5,490.90
12 4,110 4,231.96 11,410.05 4,171.20
13 4,605 4,669.50 10,427.55 4,662.00
14 9,600 9,616.55 10,130.40 9,660.60
15 11,250 11,448.90 13,563.60 11,445.00
16 10,620 10,785.00 11,180.40 10,734.00
17 4,680 4,746.56 11,735.40 4,729.05
18 6,540 6,769.41 9,516.60 6,692.40
19 4,890 5,183.16 10,825.20 5,157.45
20 8,910 9,153.90 12,481.80 9,174.90
21 5,925 6,072.86 14,102.55 6,053.55
22 12,600 12,932.31 16,418.70 12,870.30
23 8,280 8,384.24 9,788.40 8,390.40
24 10,260 10,545.00 11,413.20 10,417.80
25 13,020 13,204.80 14,038.80 13,252.20
26 12,780 13,152.73 17,326.50 13,117.80
27 10,020 10,084.94 10,866.60 10,081.20
28 10,440 10,641.21 11,543.40 10,603.80
29 6,510 6,799.41 12,075.30 6,690.00
30 13,320 13,770.68 14,808.60 13,723.80

Table 5.8: The comparison of objective function values with literature of shift design
problem for Data Set 3
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5.2 Break Scheduling

We will explain first how data sets for break scheduling are generated. In the second
part, we will give our results and we will compare them with the best solutions in the
state-of-the-art.

5.2.1 Description of the Instances

We have used the two different sets of problem instances for our experiments. The
information about the data sets can be found in the link below, where the instances can
be downloaded.

http://www.dbai.tuwien.ac.at/proj/SoftNet/Supervision/Benchmarks/

These instances are generated from the shift design problem. Afterwards, break time
is computed for each shift, and breaks of 10, 20 minutes are added to the shifts, such that
they satisfy the first five soft constraints of break scheduling problem (C0, C1, C2, C3, C4).
In the end, the needed numbers of employees in shift design problem instances are
increased based on the number of needed employees, when breaks are included.

There are also real life instances, that have been used in previous work. These
instances can not be solved with our formulation. The reason is that these instances
have shifts with length more than 12 hours. As we mentioned before, we suppose that
there will be 3 breaks before the lunch. For instance, a shift with a length of 12 hours
should contain 36 time slots of 5 minutes for the breaks Considering 6 as lunch break
and 3 times 10 minutes monitor breaks before lunch, we need to assign 12 breaks with 10
minute length after the lunch. Between these breaks, we need to consider the minimum
working period of 30 minutes. It is impossible to assign 10 breaks after the lunch due to
these conditions.

We will leave this part as a future work and compare our results only for the random
example for break scheduling, that were used in previous works [WM14] [BGMS10].

5.2.2 Computational Results

We have reached the best solution with Cplex Solver for shift design problem. Therefore,
we use only Cplex Solver to solve integer linear programming formulation for break
scheduling problem. In Table 5.9, the results are shown for the instances, which have
been also used in [WM14] [WM10]. The first five soft constraints (C0, C1, C2, C3, C4) are
always fullfilled and in the last two columns of the Table 5.9, we present the violationg
over- and under-cover.

We have restricted our runs with two hours time limit. Due to our restrictions to our
problem formulation, we can not guarantee optimality for these examples.
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Instance Nr. Of Best Time Nr. Of Nr. Of
Shifts(sdd) Solution (sec) Undercover Overcover

random1-1 137 84 3106 7 7
random1-2 164 228 1874 19 19
random1-5 141 360 580 30 30
random1-7 157 228 7200 72 72
random1-9 151 108 3654 9 9
random1-13 124 348 1003 29 29
random1-24 137 408 540 34 34
random1-28 124 228 2349 19 19
random2-1 179 636 7200 53 53
random2-4 162 144 3633 12 12

Table 5.9: Times (in seconds), number of shifts, objective function components and values
using Cplex Solver for randomly generated instance

Instance Nr. Of Cplex MAPBS [WM14]
Shifts(sdd) Best Avg σ

random1-1 137 84 346 440 48
random1-2 164 228 370 476 65
random1-5 141 360 378 418 29
random1-7 157 408 496 583 42
random1-9 151 108 318 423 51
random1-13 124 348 370 445 55
random1-24 137 408 542 611 43
random1-28 124 228 222 318 71
random2-1 179 636 724 889 75
random2-4 162 144 476 535 45

Table 5.10: The comparison of our approach with the best existing results for randomly
generated instance

5.2.3 Comparison with Existing Results

In this section, we will compare our results for each instance with the best existing result
in the state of the art. Our formulation is not sufficient for the real life instance, therefore
we will just compare with the generated random data sets for break scheduling problem.

Widl et al. proposed MAPBS approach in [WM14] [WM10] based on memetic
algorithms and achieve the best known results for break scheduling problem, in each
random generated instance.

The experiments in [WM14] [WM10] were performed on one core with 2.33Ghz of a
QuadCore Intel Xeon 5345 with three runs being executed simultaneously, i.e. three cores
being fully loaded. The machine provides 48GB of memory. Three runs were executed
simultaneously. Each instance runs 10 times with a time limit 3046 seconds. To compare
our results, we decrease the time limit of our runs also to 3046 seconds.

The comparison of the results is shown in Table 5.10. We obtain better solution for
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most of the instances in randomly generated datasets. we could not improve the result
for only the instance random1-28.

As a summary, integer programming formulation for the restricted break scheduling
problem with Cplex Solver obtain the best known solutions for most randomly generated
instances. However, we formulated this problem that assuming each shift has 3 breaks
before the lunch and this assumption ends up with too many breaks after the lunch break
for very long shifts. These assumptions must be reconsidered for the future works.
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CHAPTER 6
Conclusion and FutureWork

6.1 Summary
In this thesis, we developed an integer linear programming formulation for solving shift
design and break scheduling problems. These problems are important employee scheduling
problems and are introduced recently in the literature. The shift design problem arises
in a variety of large organizations. It involves efficient usage of personnel resources to
reduce costs as much as possible, while satisfying several constraints. Break scheduling
problem is an important phase in the general employee scheduling in several organizations
that needs a high level of concentration. The loss of concentration can end up with a
dangerous consequences. Therefore, it is important that the workers have from time to
time breaks to keep the concentration level high.

For the first problem shift design, we proposed integer linear programming model
explicitly. This explicit model is generated based on enumeration of each shift from the
possible shift starts and lengths. We applied state-of-the-art solvers Cplex and Gurobi to
solve our integer linear programming for shift design problem. We have used the four
different sets of problem instances for our experiments, including one real life instance.
The Cplex Solver shows better time performance compared to Gurobi Solver. Therefore,
we continued our further investigations with using Cplex. We obtained the optimal
solution for 89 out of 93 instances from the literature. By experimentations with Cplex
parameters, we could additionally obtain new results for three other instances. These
Cplex parameters speed up the run process for hard instances, however, the optimality
could not be guaranteed. For all instances except one (Instance 27 in dataset 2), we
improved the best known result in literature.

For break scheduling problem, we proposed also explicit integer formulation, due to
the constraints based on work periods between breaks. However, The enumeration of all
possible breaks including all feasible combinations of break start times and lengths ends
up with large feasible set of integer linear formulation. we give an integer programming
model explicitly, but reduce all combinations of breaks. These new hard constraints are,
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assuming each break is 10 minutes and the first three monitor breaks are before the
lunch break. In addition to these constraints, we initialize the variables, such that they
satisfy the first five constraints. We consider as objective function the remaining two soft
constraints, sum of excesses and shortages of employees in each time slot.

We used only Cplex Solver to solve break scheduling problem. For this problem, there
are some real life and two data sets consisting of randomly generated instances. The
real life instances consist of assigned shifts with different shift lengths. We could not
apply our approach to existing real life example from the literature with a longer shift
lengths and larger number of breaks. However, we obtained the best existing results for
randomly generated instances, except one instance.

6.2 Future Work
We improved some of the best known result for the shift design and break scheduling
problem. However, we can reconsider and add some extensions and improvements to our
formulations as future work:

• In the real life instances of break scheduling problem we could not obtain any
solutions. Our integer programming formulation is not convenient for these instances,
because, we formulated this problem with some restrictions and one of them is
supposing that each shift contains exactly 3 breaks before the lunch. As a future
work, we need to reconsider these assumptions and provide integer programming
formulation for the general break scheduling problem.

• We proposed integer linear programming formulation for both problems separately
and solved them sequentially. For the future work, it would be interesting to analyse
solving both problem simultanuously.

• As mentioned by Di Gaspero et al. in [DGGM+13], we can extend the problem
by adding the new futures like employee qualification and task assignment. These
extensions would be useful for professional planners to find better solutions in real
life situations.
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