European Journal of Industrial Engineering, Vol. x, No. x, zrrx

Genetic algorithms for generalized hypertree
decompositions

Nysret Musliu and
Werner Schafhauser®

Institute of Information Systems,

Database and Artificial Intelligence Group (DBAI),
Vienna University of Technology,

Favoritenstrafie 9, 1040 Wien, Austria

Fax: +43 (1) 58801 18492

E-mail: musliu@dbai.tuwien.ac.at

E-mail: schatha@dbai.tuwien.ac.at

*Corresponding author

Abstract: Many practical problems in mathematics and computer sci-
ence may be formulated as constraint satisfaction problems (CSPs). Al-
though CSPs are N'P-hard in general, it has been proven that instances
of CSPs may be solved efficiently, if they have generalized hypertree
decompositions of small width. Unfortunately, finding a generalized
hypertree decomposition of minimum width is an A“P-hard problem.
Based on a genetic algorithm (GA) for tree decompositions we propose
two extensions searching for small-width generalized hypertree decom-
positions. We carry out comprehensive experiments in order to obtain
suitable operators and parameter settings and apply each genetic algo-
rithm to numerous benchmark examples for tree and generalized hy-
pertree decompositions. Compared to the best solutions known from
literature our GAs were able to return results of equal quality for many
benchmark instances and even for some benchmarks improved solutions
were obtained.

Keywords: constraint satisfaction problems; structural decomposi-
tion methods; tree decompositions; generalized hypertree decomposi-
tions; genetic algorithms.

Reference to this paper should be made as follows: Nysret Musliu
and Werner Schafthauser, ‘Genetic algorithms for generalized hypertree
decompositions’, Furopean Journal of Industrial Engineering, Vol. x,
No. X, pp.XXX—XXX.

Biographical notes: Nysret Musliu is an Assistant Professor in
the Database and Artificial Intelligence Group, Vienna University of
Technology, Austria. He received his Ph.D. in Computer Science from
the Vienna University of Technology and his master’s degree in Com-
puter Science and Telecommunication from the University of Prishtina,
Kosova. His research interests include problem solving and search in
artificial intelligence, metaheuristic techniques, constraint satisfaction,
hypertree and tree decompositions, scheduling, and other combinatorial
optimization problems.

Copyright (© 200x Inderscience Enterprises Ltd.



2 N. Musliv and W. Schafhauser

Werner Schafhauser obtained his master’s degree in computer science
from the Vienna University of Technology in 2006. He is currently a PhD
student at the Database and Artificial Intelligence Group at the Vienna
University of Technology. His research interests are constraint satisfac-
tion problems, structural decompositions methods and meta-heuristic
optimization.

1 Introduction

In mathematics and computer science, especially in the fields of operations
research and artificial intelligence, many important real-world problems may be
modeled as constraint satisfaction problems (CSPs). For instance, boolean sat-
isfiability problems, scheduling problems, boolean conjunctive queries, the graph
k-colorability problem and many other interesting tasks possess a representation
as CSP. The main advantage of CSPs is that they represent a very general class,
meaning that all methods for solving CSPs will automatically solve problems which
possess a formulation as CSP. However, CSPs are N"P-hard in general, implying
that all known algorithms which are able to solve CSPs require exponential running
time in the worst case.

Formally speaking, a constraint satisfaction problem is a triple (X, D, C'), where
X is a set of variables, D is a collection of domains for each variable, and C is a
set of constraints. Each constraint in C'is defined over a subset of X, its scope, and
specifies the value combinations which are allowed to be assigned to the variables
in its scope. A solution for a CSP is an assignment of domain values to all variables
which is consistent with all constraints.

The structure of a CSP instance is represented by its constraint hypergraph.
Given a CSP instance the corresponding constraint hypergraph is obtained by in-
troducing a vertex for each variable in X and for each constraint in C' a hyperedge
is introduced containing the vertices which correspond to the variables within the
scope of the constraint.

Example 1. A CSP instance is given below. Each constraint Cj;, is written as
a pair consisting of the variables over which it is defined (its scope) and of the
constraint relation R; specifying the allowed value combinations for those variables.
The constraint hypergraph obtained from that CSP instance is shown in Figure 1.
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Variables: X = {x1, 29, 23,24, 5, 76}
Domains: D={D,,,Dz,,Dyy,Ds,, Dy, Dy, }
Dml = {a’b}7 D$2 = D$3 = = Da:e = {b7 C}

Constraints: C = {C,Cy,Cs}
Cl = <{$1,(E2,LE3},R1>
Co = ({z1,25, %6}, Ra)
Cs = ({3, 24,25}, R3)
Ry ={(a,b,c),(a,c,b),(b,b,c)}
Ry = {(a,b,¢),(a,c,b)}
R3 = {(Cv bv C)? (Cv ¢, b)}

Solution: T =a,ro =bx3=c,x4=bx5 =c,x6 =0

It is well known that acyclic CSPs may be recognized and solved efficiently.
Decomposition methods may be used for identifying and solving tractable classes
of CSPs by exploiting the structure of the constraint hypergraph. Given a CSP
instance I, a decomposition method transforms I into a solution-equivalent and
acyclic CSP instance I’. If I’ can be found in time polynomial in the size of I and
if also the size of the largest constraint relation in I’ is polynomial in the size of T
we may solve I’ in polynomial time since I’ is acyclic (Gottlob et al. (2000)). Many
decomposition methods use a measure called width in order to bound the size of
the largest constraint relation in I’. Informally speaking, the smaller the width of
decomposition of the constraint hypergraph is, the faster the corresponding CSP
may be solved.

The concept of generalized hypertree decompositions was proposed by Gottlob
et al. (2001). Given a (constraint) hypergraph, the minimum width over all its pos-
sible generalized hypertree decompositions is defined as the generalized hypertree-
width of the hypergraph. In order to solve a CSP efficiently, we tend to find
a generalized hypertree decomposition of width near or equal to the generalized
hypertree-width. Unfortunately, the problem of deciding whether there exists a
generalized hypertree decomposition of a hypergraph of width at most k is known
to be N'P-complete (Gottlob et al. (2007)).

McMahan (2004) combined well-known ¢ree decomposition and minimum set
covering heuristics in order to obtain generalized hypertree decompositions. Tree
decompositions, which were introduced in Robertson and Seymour (1986), represent
another decomposition method and have been subject to research during the last
decades.

Larraniaga et al. (1997) proposed a genetic algorithm for decomposing the moral
graph of Bayesian networks, a problem strongly related to tree decompositions.
They applied their algorithm to two benchmark networks and observed that their
genetic approach returned competitive results when compared to other existing
heuristic methods for decomposing Bayesian networks. The genetic algorithm in
Larraniaga et al. (1997) tried to minimize a weight associated with the decompo-
sitions of Bayesian networks which is not exactly the same as the width of tree
decompositions.

In this paper we implemented a genetic algorithm, named G A-tw, searching for
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small-width tree decompositions based on the GA presented by Larranaga et al.
(1997). Unlike the algorithm proposed by Larranaga et al. (1997) we used the
width of tree decompositions as objective function. We did a series of experiments
in order to obtain suitable operators and parameter settings for GA-tw and we
applied GA-tw to benchmark instances from the Second DIMACS graph coloring
challenge (Johnson and Trick (1993)). Furthermore we present two extensions of
G A-tw, named GA-tw+ and GA-ghw, which are used to minimize the width of
generalized hypertree decompositions of hypergraphs. G A-tw—+ follows McMahan’s
approach in order to transform the tree decompositions in G A-tw’s final population
into generalized hypertree decompositions. GA-ghw uses the width in terms of
generalized hypertree decompositions as fitness functions and looks already during
the genetic search process for small-width generalized hypertree decompositions.
GA-tw+ and GA-ghw were evaluated on benchmark hypergraphs from industry
and literature described in Ganzow et al. (2005).

All three genetic algorithms presented in this paper were able return compara-
ble results for tree and generalized hypertree decompositions for many benchmark
instances when compared to the best results in literature. Moreover, for some
benchmarks the genetic algorithms were able to return improved upper bounds on
their treewidth and generalized hypertree-width respectively.

This paper is organized as follows: Section 2 gives the basic definitions used
in this paper. Afterwards, in Section 3, we summarize already existing methods
for generalized hypertree decompositions and related concepts. Next, in Section
4 we describe how tree decompositions and generalized hypertree decompositions
may be obtained via a method called bucket elimination and vertex orderings. In
Section 5 we explain the basics of genetic algorithms and in Section 6 we describe
our genetic algorithms for tree and generalized hypertree decompositions. Section
7 presents our computational results. Finally, we conclude in Section 8.

2 Preliminaries

Definition 1 (Hypergraph). A hypergraph is a structure H = (V, H) that con-
sists of vertices V' = {vy, ..., v, } and a set of subsets of these vertices H = {hq, ..., hy, },
h; C V, called hyperedges. W.l.o.g. we assume that each vertex is contained in at
least one hyperedge. Hyperedges differ from edges of regular graphs in that they
may be defined over more than two vertices. Note that every regular graph may be
regarded as a hypergraph whose hyperedges connect two vertices.

Definition 2 (Tree Decomposition). Let H = (V,H) be a hypergraph. A
tree for a hypergraph H is a pair (T, x) where T = (N, E) is a rooted tree. We
define vertices(T) = N and refer to the vertices of T as "nodes” in order to avoid
confusion with the vertices in H. x is a labeling function which associates to each
node p € vertices(T') the set x(p) C V. A tree decomposition of a hypergraph H is
a tree (T, x) for H which satisfies the following two conditions:

1. for each hyperedge h € H, there exists p € vertices(T) such that h C x(p).

2. for each vertex v € V the set {p € vertices(T) | v € x(p)} induces a (con-
nected) subtree of T' (connectedness condition).
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The width of a tree decomposition (T',X) is marpeyertices(ry|x(p) — 1|. The
treewidth of H, abbreviated tw(H), is the minimum width over all its tree decom-
positions.

Tree decompositions were originally defined by Robertson and Seymour (1986).
Since every graph may be regarded as a hypergraph with two vertices in each of
its hyperedges, Definition 2 covers the definition for tree decompositions of graphs
and extends the concept of tree decompositions onto arbitrary hypergraphs.

r=v.v. v} | [r=0vvd | (=)

Figure 1 Example of a hypergraph and a possible tree decomposition of width=3.

Definition 3 (Generalized Hypertree Decomposition). Let H = (V, H) be
a hypergraph. A generalized hypertree decomposition of a hypergraph H = (V, H)
is a triple (T, x, A) where (T, x) is a tree decomposition of H and \ is a labeling
function which associates to each node p € vertices(T') the set A(p) C H. (T, x, A)
satisfies the following additional condition:

e for each p € vertices(T), x(p) C U (p).

The width of a gen. hypertree decomposition (T', x, A) is mazpeyertices(r)| A D)|-
The generalized hypertree-width of H, abbreviated ghw(H), is the minimum width
over all its generalized hypertree decompositions.

According to the previous definition a generalized hypertree decomposition of
a hypergraph H is a tree decomposition of H at the same time. The additional
condition says that in each node p of the generalized hypertree decomposition each
vertex in the set x(p) must be contained by at least one hyperedge in the set A(p).

3 Algorithms for generalized hypertree decompositions and related con-
cepts

Recently, many methods have been proposed for the generation of (generalized)
hypertree decompositions. Whereas the generation of generalized hypertree decom-
positions of optimal width is N"P-hard, for fixed k, deciding whether there exists a
hypertree decomposition of width at most k, can be done in polynomial time. Note,
that a hypertree decomposition is a generalized hypertree decomposition that in-
cludes an additional condition (fourth condition). That special condition forbids
variables that disappear from the set x in some node p of decomposition hypertree
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x={v.v:,vs}

A={h.h}
X =M.} X ={,vs, v} X={v,v,,v}
A={h} A={h} A={k}

Figure 2 Generalized hypertree decomposition for the hypergraph in Figure 1 of
width=2.

to appear again in the subtrees rooted at p. The exact algorithm opt-k-decomp for
hypertree decompositions, has been developed by Gottlob et al. (1999). For fixed
k this algorithm, decides in polynomial time whether a hypergraph has k-bounded
hypertree-width and, in this case, computes an optimal hypertree decomposition
in normal form. Two implementations of opt-k-decomp are used successfully for
the generation of hypertree decompositions of small instances of CSPs. However,
for larger and important practical cases, the exact algorithm is not practical and
runs out of time and space. Gottlob and Samer (2007) proposed the backtracking-
based algorithm det-k-decomp for generating hypertree decompositions. Compared
to opt-k-decomp this algorithm could be used for larger instances and it gives also
competitive results with other heuristic based approaches, for hypergraphs that are
not too large. Another backtracking algorithm has been recently proposed by Sub-
barayan and Andersen (2007). Although both proposed backtracking algorithms
improve significantly the previous exact algorithms, for larger problems the only al-
ternative for generating hypertree decompositions are heuristic methods. Moreover,
the hypertree-width of a hypergraph can be larger than the generalized hypertree-
width, hw < 3ghw+ 1 (Adler et al. (2005)), which also justifies the use of heuristic
methods.

Different heuristic methods have been proposed for generation of generalized hy-
pertree decompositions. In Korimort (2003) a heuristic method is proposed which
is based on the vertex connectivity of the given hypergraph (in terms of its pri-
mal and incidence graphs). The application of branch decomposition heuristics
for hypertree decomposition was investigated by Samer (2005). These heuristic
methods were used to find hypertree decompositions of small width for problem
instances where the exact algorithm opt-k-decomp did not yield results within a
reasonable amount of time. However, the preliminary heuristics were still not use-
ful to give good results for larger problem instances. An extension of algorithms for
tree decompositions to generate generalized hypertree decompositions is proposed
in Dermaku et al. (2005). In this paper the authors propose also new methods
for generating hypertree decompositions based on hypergraph partitioning algo-
rithms. To our best knowledge the methods proposed in Dermaku et al. (2005)
and Gottlob and Samer (2007) give the best results yet in the literature for CSP
hypergraph library examples from Ganzow et al. (2005). In general the proposed
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methods in literature are able to generate good generalized hypertree decomposi-
tions for different instance sizes. As previously mentioned the generalized hypertree
decompositions can be generated from tree decompositions, and thus methods for
the generation of tree decompositions can also be used for obtaining generalized
hypertree decompositions.

Several complete and heuristic algorithms have been proposed in literature in
order to generate tree decompositions. Examples of complete algorithms for tree
decompositions are Shoikhet (1997) and Gogate and Dechter (2004). Gogate and
Dechter (2004) reported good results for tree decompositions by using the branch
and bound algorithm. They showed that their algorithm is superior compared
to the algorithm proposed in Shoikhet (1997). The branch and bound algorithm
proposed in Gogate and Dechter (2004) applies different pruning techniques, and
provides anytime solutions, which are good upper bounds for tree decompositions.
Heuristic techniques for generation of tree decompositions with small width are
mainly based on searching for a good ordering of graph vertices. Several heuristics
that run in polynomial time have been proposed for finding good vertex orderings.
These heuristics select the ordering of vertices based on different criteria, such as the
degree of the vertices, the number of edges to be added to make the vertex simplicial
etc. Maximum Cardinality Search (MCS) proposed by Tarjan and Yannakakis
Tarjan and Yannakakis (1984) constructs the ordering of vertices iteratively by
picking the next vertex which has the largest number of neighbors in the ordering
(the ties are broken randomly). The min-fill heuristics picks iteratively the vertex
which adds the smallest number of edges when eliminated. The min-degree heuristic
picks the next vertex to be eliminated based on its degree. According to Gogate and
Dechter (2004) the min-fill heuristic performs better than MCS and the min-degree
heuristic. The min-degree heuristic has been improved Clautiaux et al. (2004) by
adding a new criterion based on the lower bound of the treewidth for the graph
obtained when the vertex is eliminated. For other types of vertex-ordering-based
heuristics see Koster et al. (2001). Metaheuristic approaches have also been used for
tree decompositions. Simulated annealing was used by Kjaerulff (1992). A genetic
algorithm for decomposing Bayesian networks, a problem strongly related to tree
decompositions, is presented in Larranaga et al. (1997). A tabu search approach
for tree decompositions has been proposed by Clautiaux et al. (2004). The authors
reported good results for DIMACS vertex coloring instances (Johnson and Trick
(1993)). Their approach improved the previous results in literature for 53% of
instances. Some of the results in Clautiaux et al. (2004) have been further improved
by Gogate and Dechter (2004). Recently, an iterated local search algorithm has
been proposed for tree decompositions by Musliu (2007). This algorithms gives
competitive results to previous proposed approaches and could improve many upper
bounds for the DIMACS vertex coloring instances (Johnson and Trick (1993)). The
reader is referred to Bodlaender (2005) for other approximation algorithms, and the
information about lower bounds algorithms.

4 Bucket elimination

In McMahan (2004) it is shown how a method originating from constraint sat-
isfaction named bucket elimination Dechter (2003) may be used for the creation of
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tree decompositions and generalized hypertree decompositions.

Given a hypergraph H = (V, H) and a vertex ordering o = (vy,...,v,) of the
hypergraph’s vertices, algorithm bucket elimination (Figure 3) returns a tree de-
composition for H. Initially, the algorithm creates a bucket for each vertex of the
hypergraph and puts the vertices of each hyperedge into the bucket of the maximum
vertex within this hyperedge (the maximum vertex of V' C V is the vertex with
the highest index according to o). Afterwards the buckets are processed in order
given by 0. When processing bucket B,,,, we compute the set A := x(B,,) — {v;}.
A is copied to bucket B, of its maximum vertex v;. Additionally B,, and B, are
connected by an edge. Finally we get a tree decomposition, where the buckets and
the introduced edges act as a tree and the contents of the buckets represent the
vertices within the x-sets.

Algorithm: bucket elimination

Input: a hypergraph H = (V, H)
a vertex ordering o = (vy, ..., v,) of the vertices in V
Output: a tree decomposition (T, x) for H

1. initially B=0, E =0
for each vertex v; introduce an empty bucket B.,, x(B.,) :=0
2. fill the buckets B,,, ..., B,,, as follows:

for each hyperedge h € H
let v € h be the maximum vertex of h according to o

X(Bv) = X(Bv) Uh
3. fori=nto 2 do
let A:= x(Bwv,) — {vi}
let v; € A be the next vertex following v; in o
X(ij) = X(ij) ua
E = EU(By,,By;)
4. return (B, E), x), where B ={B,,,..., By, }

Figure 3 Algorithm bucket elimination (McMahan (2004)).

In addition McMahan (2004) showed how bucket elimination can be extended
in order to obtain generalized hypertree decompositions. The main idea behind
his approach is that every generalized hypertree decomposition (T, x,\) may be
considered as a tree decomposition which satisfies an additional property:

e for each p € vertices(T), x(p) € UA(p).

Thus, every tree decomposition may be transformed into a generalized hypertree
decomposition by attaching hyperedges to decomposition nodes until the additional
property is satisfied. In order to keep the width of the resulting generalized hyper-
tree decomposition small we have to attach as few hyperedges as possible to each
tree decomposition node. This task may be described as a series of minimum set
cover problems (Karp (1972)). The minimum set cover problem may be formulated
as minimization problem as follows:

Given T ={t1,....,tn} a set
S={S1,...., 9}, Vi:S; CT a collection of subsets of T'
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Find a subcollection C' C S, such that C' covers all elements of T' and |C| is
minimal. A minimum set cover problem instance is represented as a pair (T, S).

When transforming tree decompositions into generalized hypertree decompo-
sitions, for each decomposition node p we have to solve the minimum set cover
problem (x(p), Hy(p)), Where H, ) is obtained from H by deleting all vertices from

x(p)
the hyperedges in H which are not in x(p). The obtained cover acts as A(p).

Minimum set cover itself is an A"P-hard problem but it can be formulated as an
IP-program (Schrijver (1996)) meaning that exact solutions for small and middle-
size instances may be solved exactly by an IP-solver within a reasonable amount of
time. Moreover there exists a greedy algorithm for the set cover problem (Chvatal
(1979)) which in practice returns a close-to-optimal solution for many instances.

Fortunately, at least one vertex ordering will force algorithm bucket elimination
to return a tree decomposition of minimal width (Kloks (1994)) and at least one
vertex ordering will force algorithm bucket elimination to return a tree decom-
position which may be transformed into a generalized hypertree decomposition of
minimal width (Schafhauser (2006)), if the arising set cover problems are solved
exactly. Therefore, the set of all vertex orderings for a hypergraph H may act as
search space for both the treewidth and the generalized hypertree-width.

2= (M0 ) B, |x=0uvevev) A={hh}|
B, [rtoem) a-tin]
B, [x=tv) I A={h k)
B, [r=twwv) a-(h) |
B, [r=tv () |
B, [x=0x) At

Figure 4 A hypergraph and the tree decomposition obtained via bucket elimination
from the ordering o = (ve, Vs, v4,v2,v1,v3). In the generalized hypertree decomposition
(right) a minimum number of hyperedges was attached to each decomposition node.

5 Genetic algorithms

Genetic algorithms (GAs) were developed by Holland (1975). They try to find
a good solution for an optimization problem by imitating the principle of evolu-
tion. Genetic algorithms alter and select individuals from a population of solutions
for the optimization problem. In the following we describe frequently used terms
within the field of genetic algorithms:
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population ... set of candidate solutions

individual ... a single candidate solution

chromosome ... set of parameters determining the properties of a solution
gene ... single parameter

Figure 5 shows the structure of a genetic algorithm (Michalewicz and Fogel
(2004)). A genetic algorithm tends to optimize the value of an objective function
of an optimization problem, in terms of genetic algorithms also called fitness func-
tion. At the beginning a genetic algorithm creates an initial population containing
randomly or heuristically created individuals. These individuals are evaluated and
assigned a fitness value, which is the value of the fitness function for the solution
represented by the individual. The population is evolved over a number of gen-
erations until a halting criterion is satisfied. In each generation the population
undergoes selection, recombination, also denoted crossover, and mutation.

During the process of selection the genetic algorithm decides which individuals
from the current population are allowed to enter the next population. This decision
is based on the fitness value of the individuals and individuals of better fitness should
enter the next population with higher probability than individuals of lower fitness.
Not selected individuals are discarded and won’t be evolved further.

The process of recombination or crossover combines different properties of sev-
eral parent solutions within one or more children solutions, also denoted offsprings.
Crossover exchanges properties between the individuals and should increase the
average quality of the population.

During the process of mutation the individuals are slightly altered. Mutation is
used to explore new regions of the search space and to avoid convergence to local
optima.

In practice parameters are used in order to control the behavior of a genetic
algorithm. Typical control parameters are mutation rate, crossover rate, population
size and parameters for selection techniques. The choice of the control parameters
has a crucial effect on the quality of the best solution found by a genetic algorithm.

Genetic Algorithm

t=20
initialize population(t)
evaluate population(t)

while —terminated do
t=t+1
select population(t) from population(t — 1)
recombine population(t)
mutate population(t)
evaluate population(t)

Figure 5 The structure of a genetic algorithm (Michalewicz and Fogel (2004)).
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6 Genetic algorithms for tree decompositions and generalized hyper-
tree decompositions

6.1 Algorithm GA-tw

First of all we implemented a genetic algorithm, named GA-tw, searching for
the treewidth of hypergraphs. Figure 6 presents algorithm G A-tw in pseudo code
notation.

The algorithm takes as input a hypergraph and several control parameters. In-
dividual solutions are vertex orderings. Each individual is assigned the width of
the tree decomposition returned by algorithm bucket elimination from the corre-
sponding vertex ordering as its fitness value.

Initially GA-tw generates a population consisting of randomly created individ-
uals. As selection technique we chose tournament selection. Tournament selection
selects an individual by randomly choosing a group of several individuals from the
former population. The individual of highest fitness (smallest width) within this
group is selected to join the next population. This process is applied until enough
individuals have entered the next population. Finally, after a certain number of
generations, algorithm GA-tw will return the best fitness (smallest width) of an
individual found during the search process.

Crossover and mutation operators

Within our genetic algorithms we implemented nearly all crossover operators
and all mutation operators which were also applied in Larrafiaga et al. (1997) for
decomposing the moral graph of Bayesian networks.

Algorithm: GA-tw
Input: a hypergraph H = (H,V)
control parameters for the GA n, p.m,, pe, s and mazr_gen
Output: an upper bound on the treewidth of hypergraph H
t=20
initialize (population(t),n)
evaluate population(t)
while ¢t < maz_gen do

t=t+1

population(t) = tournament_selection(population(t — 1), s)

recombine (population(t), pc)

mutate (population(t), pm)
evaluate population(t)

return the smallest width found during the search

Figure 6 Algorithm GA-tw.

Crossover operators:

e partially-mapped crossover (PMX), Goldberg and Lingle (1985)
e cycle crossover (CX), Oliver et al. (1987)
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e order crossover (OX1), Davis (1985)

order-based crossover (0X2), Syswerda (1991)

position-based crossover (POS), Syswerda (1991)

alternating-position crossover (AP), Larranaga et al. (1994)
Mutation operators:

e displacement mutation operator (DM), e.g. Michalewicz (1992)
e exchange mutation operator (EM), e.g. Banzhaf (1990)

e insertion mutation operator (ISM), e.g. Michalewicz (1992)

e simple-inversion mutation operator (SIM), e.g Holland (1975)
e inversion mutation operator (IVM), e.g. Fogel (1990)

e scramble mutation operator (SM), e.g. Syswerda (1991)

In the following we describe the crossover and mutation operators which re-
turned the best results in our computational evaluation of G A-tw.
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Order Crossover (OX1)

The order crossover operator determines a crossover area within the parents by
randomly selecting two positions within the ordering. The elements in the crossover
area of the first parent are copied to the offspring. Starting at the end of the
crossover area all elements outside the area are inserted in the same order in which
they occur in the second parent.

Order-Based Crossover (0X2)

The order-based crossover operator selects at random several positions in the parent
orderings by tossing a coin for each position. The elements of the first parent at
these positions are deleted in the second parent. Afterwards they are reinserted in
the order of the second parent.

Position-Based Crossover (POS)

The position-based crossover operator also starts with selecting a random set of
positions in the parent strings by tossing a coin for each position. The elements
at the selected positions are exchanged between the parents in order to create the
offsprings. The elements missing after the exchange are reinserted in the order of
the second parent.

Exchange Mutation Operator (EM)

The exchange mutation operator randomly selects two elements in the solution and
exchanges them.

Insertion Mutation Operator (ISM)

The insertion mutation operator randomly chooses an element in the solution and
moves it to a randomly selected position.

parents offsprings

ox1 [i]e] [6]7]] a7 ]s 4 5] 2]s]
[2]4] HEIR [4]s]els 7]1]2]5]

OX2 [JEfaT 5 [T 7 ] >< [1[o]5]ala]s]7]s]
[ fae] = [+ 55 [1 [2[a]a]s 7 [s]e]1]

POS [ [2[ET4]sTe]7 ] [1]4]s]2]s[s]7]s]
[z [aeT e [7 [57 5| [42]z]e 7 65 ]1]

Figure 7 Selected crossover operators for vertex orderings.
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EM 78] —— [1]2]e]4]5]5]7]s]
—
ISM 4[s]e7]e] —— [a]2]4]s]e[7]5]¢]

Figure 8 Selected mutation operators for vertex orderings.

6.2 Algorithm GA-tw+

In our second approach we extended algorithm G A-tw in order to obtain small-
width generalized hypertree decompositions for a given hypergraph. The new al-
gorithm is called GA-tw+. GA-tw+ runs algorithm GA-tw as described above.
In addition it creates generalized hypertree decompositions from the vertex order-
ings within the final population of GA-tw, as described in section 4. The arising
set cover problems are solved exactly by the help of an IP-Solver. The smallest
width of a computed generalized hypertree decomposition is returned as the result
of algorithm G A-tw+.

6.3 Algorithm GA-ghw

Finally we implemented a genetic algorithm, named G A-ghw, which searches for
small-width generalized hypertree decompositions already during the genetic search
process. In contrast to algorithm G A-tw, algorithm G A-ghw assigns individuals the
width of the generalized hypertree decomposition obtained from their corresponding
vertex ordering as fitness value (see section 4).

Arising set cover problems are solved by the greedy set cover heuristic from
Chvatal (1979). The heuristic successively takes a hyperedge containing most un-
covered vertices until all vertices are covered. Ties are broken at random.

6.4 Implementation details

We implemented each genetic algorithm using C++ and STL. In algorithm G A-
tw+ we used the GNU Linear Programming Kit 4.9 (GLPK) as IP-solver to solve
arising minimum set cover problems exactly.

6.5 Control parameters

All algorithms described above require the following control parameters: the
population size n, the mutation rate p,,, the crossover rate p., the tournament
selection group size s, and mazx_gen the number of generations over which the
population will be evolved. The mutation rate p,, represents the probability that
a single individual will be mutated within a generation of the GA whereas the
crossover rate p. specifies the fraction of the population which undergoes crossover
within a single generation of the GA.
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7 Computational results

7.1 Algorithm GA-tw

First of all we tried to find suitable values for the control parameters of algo-
rithm GA-tw. Afterwards we applied algorithm G A-tw to 62 graphs of the Second
DIMACS graph coloring challenge (Johnson and Trick (1993)), using the obtained
parameter values. Each graph is considered as a hypergraph in which each hyper-
edge contains exactly two vertices.

Comparison of crossover and mutation operators

First of all we compared the crossover operators with each other by applying
them to seven selected graphs of the Second DIMACS graph coloring challenge
(Johnson and Trick (1993)).

For each crossover operator and each graph we ran algorithm G A-tw five times
with the following parameter settings, n=50, p,,=0%, p.=100%, s=2 and max_gen=
1000, meaning that we allowed solely the crossover operator to alter individual so-
lutions. Table 1 shows the average width achieved during five runs with different
crossover operators. Since position-based crossover (POS) achieved the best aver-
age width for all instances we chose it as the crossover operator for our further tests.

Instance/Operator PMX CX OX1 0X2 POS AP
games120 50.2 59.2 56.2 46.6 37.0 60.8
homer 72.8 98.0 | 118.4 53.8 42.2 | 143.8
inithx.i.3 331.8 | 368.0 | 321.6 | 204.4 | 129.8 | 370.2
1e45025_d 391.8 | 394.2 | 396.2 | 375.8 | 370.0 | 401.6
myciel7 108.2 | 113.4 | 119.0 86.8 75.0 | 128.8
queenl6_16 217.6 | 224.6 | 224.2 | 213.0 | 207.0 | 227.4
zeroin.i.3 98.0 99.4 93.0 51.4 40.2 | 101.4

Table 1 Comparison of crossover operators.

For a comparison of the mutation operators we ran algorithm G A-tw five times
with the parameter settings, n=>50, p,,=100%, p.=0%, s=2 and max_gen=1000,
allowing solely the mutation operator to alter individual solutions. Table 2 shows
the average width achieved during five runs with different mutation operators. For
a majority of instances the insertion mutation operator (ISM) returned the best
average width, thus we used it as mutation operator in our further experiments.

Instance/Operator DM EM ISM SIM IVM SM
games120 54.0 38.2 37.4 49.8 56.4 48.8
homer 101.2 42.8 43.6 91.6 102.4 81.4
inithx.i.3 243.8 121.2 65.8 230.6 274.8 208.2
le450-25d 384.2 367.2 359.2 390.4 393.2 388.8
myciel7 110.8 78.4 70.4 106.2 113.4 99.6
queenl6_16 217.6 209.0 202.4 222.6 220.2 220.2
zeroin.i.3 81.2 41.2 34.8 64.8 85.0 63.6

Table 2 Comparison of mutation operators.
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Determining suitable crossover and mutation rates

We considered different combinations of the mutation rates, p,, = 1%, 10%, 30%,
and the crossover rates, p. = 80%,90%, 100%, and applied algorithm GA-tw us-
ing those combinations to selected instances of the Second DIMACS graph color-
ing challenge (Johnson and Trick (1993)). For each combination and each graph
we ran algorithm GA-tw five times with the parameter settings, n=200, s=2 and
max_gen=1000. As crossover operator we used position-based crossover (POS),
as mutation operator the insertion mutation operator (ISM). The average width
achieved by each combination during the five runs are shown in Table 3. The
combination of a crossover rate of 100% and a mutation rate of 30% achieved good
average results for all instances and performed best for the large instances le450_25d
and queenl6_16, thus we chose this combination for our further experiments.

Instance/(pec, pm) (80%, 1%) (80%, 10%) (80%), 30%)
games120 34.0 33.0 33.8
homer 32.0 32.0 31.6
inithx.i.3 35.4 35.0 35.0
1le450-25d 344.2 341.8 340.8
myciel7 66.0 66.0 66.0
queenl6_16 194.2 192.8 193.2
zeroin.i.3 33.0 32.8 33.0
Instance/(pe, pm) (90%, 1%) (90%, 10%) (90%, 30%)
games120 33.0 33.6 33.2
homer 31.6 31.6 31.4
inithx.i.3 35.0 35.0 35.0
1le450_25d 341.4 344.4 339.2
myciel7 66.0 66.0 66.0
queenl6_16 191.4 192.0 191.8
zeroin.i.3 32.4 33.0 32.8
Instance/(pe, pm) | (100%,1%) | (100%, 10%) (100%, 30%)
games120 33.4 33.0 34.4
homer 31.2 31.6 31.2
inithx.i.3 35.0 35.0 35.0
le450-25d 342.2 339.8 335.6
myciel7 66.0 66.0 66.0
queenl6_16 191.6 191.8 190.6
zeroin.i.3 33.0 32.8 33.0

Table 3 Comparison of different combinations of crossover rate and mutation rate.

Population size and tournament selection group size

We examined populations of 100, 200, 1000 and 2000 individuals. Table 4 shows
the average width for selected instances returned by algorithm G A-tw after five runs
with the parameter settings p,,=30%, p.=100%, s=2 and max_gen=1000. A pop-
ulation of size n = 2000 achieved the best average results for three out of four
instances. For such populations a tournament selection group size of s =3 or s =4
seems to be the best choice as it can be seen in Table 5.

Instance n = 100 n = 200 n = 1000 n = 2000
le450-25d 342.4 339.66 335 334.8
1e450_5b 273.6 266.33 266.2 264.6
queenl6_16 194.4 191 190.8 189.2
zeroin.i.3 33 32.66 33 33

Table 4 Comparison of different population sizes n.
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Instance s=2 s=23 s=4
le450-25d 334.8 332.2 331.8
1e450_5b.col 264.6 257.4 264.4
queenl6_16 189.2 188.2 187.6
zeroin.i.3 33 33 33

Table 5 Comparison of different group sizes s for tournament selection.

Final results for DIMACS benchmarks graphs

Finally we applied algorithm G A-tw on 62 graphs of the Second DIMACS graph
coloring challenge (Johnson and Trick (1993)). We ran G A-tw with the parameter
settings, n = 2000, p,, = 30%, p. = 100%, s = 3 and gen_max = 2000, obtained in
the previous subsections.

As crossover and mutation operators we used position-based crossover (POS)
and the insertion mutation operator (ISM). For each graph we performed ten runs
on machine with an Intel(R) Pentium(R)- 4 3.40 GHz processor having 1GB RAM.
Table 6 shows the results for the considered graphs. The columns Graph, V and
E present the graph name and the number of vertices and edges of that graph. ub
contains the value of the smallest upper bound for a graph reported in Bachoore
and Bodlaender (2005), Bachoore and Bodlaender (2006), Clautiaux et al. (2003),
Gogate and Dechter (2004) and Musliu (2007). min, max and avg present the best,
worst and average width returned by algorithm G A-tw for an instance whereas std.
dev. contains the standard deviation of the ten results returned by algorithm G A-
tw. Column min-time presents the time which was needed by algorithm GA-tw
for the run which returned the width in column min, avg-time the average running
time of the ten runs. Instances for which GA-tw obtained a new upper bound
on their treewidth are marked with a '+’ in Table 6. Instances for which GA-tw
returned worse results are marked with a ’—’.

Compared with the best upper bounds known from literature for the considered
instances algorithm G A-tw found an improved upper bound on the treewidth for
12 graphs, GA-tw was able to return the same upper bound for 35 graphs, and
for 15 graphs the results delivered by GA-tw were worse. G A-tw achieved most
improvements for the graphs of the class 1le450.

7.2 Algorithm GA-tw+

We tested algorithm GA-tw+ on 25 hypergraphs of the CSP hypergraph li-
brary from Ganzow et al. (2005). GA-tw+ was executed with the parameter set-
tings obtained for algorithm G A-tw. As crossover and mutation operators we used

position-based crossover (POS) and the insertion mutation operator (ISM). We
tested algorithm G A-tw+ on the following three machines:

1. Intel(R) Xeon(TM) 3.20 GHz processor having 4 GB RAM
2. Intel(R) Pentium(R)-4 3.40 GHz processor having 1 GB RAM

3. Intel(R) Pentium(R)-4 2.80 GHz processor having 512 MB RAM
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We chose the first machine as reference for normalizing the execution times.
Table 7 enlists the results of GA-tw+ for the considered hypergraphs. The columns
Huypergraph, V and H present the graph name and the number of vertices and
hyperedges of that graph. Column ub contains the value of the smallest upper
bound on the generalized hypertree-width for a hypergraph reported in Dermaku
et al. (2005) or Gottlob and Samer (2007). min, maz and avg present the best,
worst and average width returned by algorithm G A-tw+ for an instance whereas
std. dev. contains the standard deviation of the ten results returned by algorithm
G A-tw+. Within the column min-time we present the time which was needed by
algorithm G A-tw+ for the run which returned the width in column min, column
avg-time presents the average time of the ten runs. Instances for which G A-tw+
obtained a new upper bound on their treewidth are marked with a '+’ in Table 7.
Instances for which GA-tw+ returned worse results are marked with a ’—’.

Compared with the best upper bounds known for the considered instances from
Dermaku et al. (2005) and Gottlob and Samer (2007) algorithm GA-tw+ found
an improved upper bound on the generalized hypertree-width for 10 hypergraphs,
G A-tw+ was able to return the same upper bound for 4 hypergraphs, and for 11
hypergraphs the width returned by GA-tw+ was worse than the best upper bound
known so far.

7.8 Algorithm GA-ghw

We tested algorithm G A-ghw on the same 25 hypergraphs from Ganzow et al.
(2005) as algorithm G A-tw+.

In order to derive suitable genetic operators and control parameter settings for
algorithm G'A-ghw we applied the same policy as described in section 7.1. For de-
termining applicable crossover and mutation operators and corresponding rates we
tested algorithm G A-ghw with the seven instances adder_99, b10, 499, grid2d_20,
nasa, NewSystem1 and s510 whereas for finding appropriate population and tour-
nament selection group sizes we applied algorithm G A-ghw to the instances 499,
grid2d_20, nasa and s510. Again position-based crossover (POS) and the insertion
mutation operator (ISM) proved themselves to be adequate genetic operators. For
the crossover rate, mutation rate, population size and tournament selection group
size our experiments revealed that we may retain the settings for those parameters
which have been obtained in section 7.1.

We tested algorithm G A-ghw on the following four machines and chose the first
one as reference for normalizing the execution times:

1. Intel(R) Xeon(TM) 3.20 GHz processor having 4 GB RAM

(R)
2. Intel(R) Pentium(R)-4 3.40 GHz processor having 1 GB RAM
3. Intel(R) Pentium(R)-4 2.80 GHz processor having 512 MB RAM
(R)

4. Intel(R) Core(TM)2 Duo 2.40 GHz processor having 2 GB RAM.

Table 8 enlists the results of GA-ghw for the considered hypergraphs. The
columns Hypergraph, V and H present the hypergraph name and the number of
vertices and hyperedges of that graph. ub contains the value of the smallest upper
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bound on the generalized hypertree-width for a hypergraph reported in Dermaku
et al. (2005) or Gottlob and Samer (2007), whereas GA-tw+ gives the smallest
width obtained for a hypergraph by algorithm G A-tw+. min, max and avg present
the best, worst and average width returned by algorithm G A-ghw for an instance
whereas std. dev. contains the standard deviation of the ten results returned by
algorithm G A-ghw. Within the column min-time we present the time which was
needed by algorithm GA-ghw for the run which returned the width in column min,
column avg-time presents the average time of the ten runs. Instances for which
G A-ghw obtained a new upper bound on their treewidth are marked with a '+’ in
Table 8. Instances for which G A-ghw returned worse results are marked with a ’—’.

Compared with the best upper bounds known for the considered instances algo-
rithm G A-ghw found an improved upper bound on the generalized hypertree-width
for 11 hypergraphs, G A-ghw was able to return the same upper bound for 6 hyper-
graphs, and for 8 hypergraphs the width returned by G A-ghw was worse than the
best upper bound known so far.

When comparing algorithm G A-ghw and algorithm G A-tw+ with each other we
observe that for most instances algorithm G A-ghw returned results improving (10
instances) or equalizing (11 instances) the results previously returned by algorithm
GA-tw+. Worse results were returned only for 4 hypergraphs. In general the
results show that using the width in terms of generalized hypertree decompositions
as fitness function already within the genetic search leads to better results. However
this approach takes significantly more time for most instances.

When comparing the proposed genetic algorithms with the heuristic methods
presented in Dermaku et al. (2005), we have to bear in mind that the running times
of the heuristic methods presented in Dermaku et al. (2005) were normalized to a
different machine, namely to an Intel(R) Xeon(TM) 2.2 GHz (dual) processor with
2 GB RAM. Moreover, the algorithms in Dermaku et al. (2005) were executed five
times for each instance, whereas our results were obtained from ten runs. Thus,
the comparison considering the upper bounds should be taken only indicatory.
Based on the running times reported in our experiments we conclude that the time
performance of our algorithms is worse compared to the methods in Dermaku et al.
(2005). However, setting no time limit to our genetic algorithms allowed us to find
some new upper bounds on the generalized hypertree-width for some benchmark
hypergraphs (e.g. nasa problem).

7.4  Comparison with exact methods for hypertree decompositions

In the experiments described in the previous subsections we obtained general-
ized hypertree decompositions of small width for many of the regarded benchmark
hypergraphs. Since the hypertree-width of a hypergraph is a 3-approximation of
its generalized hypertree-width, actually it holds that hw < 3ghw + 1 (Adler et al.
(2005)), it would be interesting to assess the difference between the widths returned
by algorithm G A-ghw and the hypertree-width of those instances. As mentioned in
section 3, several algorithms deciding whether the hypertree-width of a hypergraph
is at most k have been proposed and these algorithms may be used to compute
the exact hypertree-width of hypergraphs, in particular for instances having small
hypertree-width. Thus, for our final experiments we applied the backtracking based
algorithm I's Decomposable for hypertree decompositions from Subbarayan and An-



20 N. Musliv and W. Schafhauser

dersen (2007) to the same benchmark hypergraphs as algorithm GA-ghw and in
addition we considered the results returned by the backtracking based algorithm
det-k-decomp in Gottlob and Samer (2007).

Algorithm I'sDecomposable was executed on an Intel(R) Xeon(TM) 3.20 GHz
processor having 4 GB RAM since the execution times of algorithm G A-ghw were
normalized to that machine. For each instance we gave algorithm IsDecomposable
the average running time of GA-ghw for the instance as time limit. Note that
in Gottlob and Samer (2007) algorithm det-k-decomp was executed on a different
machine, Intel(R) Xeon(TM) 2.2 GHz (dual) processor with 2 GB RAM, and det-
k-decomp was executed five times with a one hour time limit, thus the reported
times may be regarded only as rough reference values.

Table 9 enlists the results returned for the benchmark hypergraph. For each
hypergraph we report the widths obtained by algorithm G A-ghw, IsDecomposable
and det-k-decomp, (column width). Entries representing the hypertree-width of an
instance are marked with a *’. Algorithm IsDecomposable could not be applied to
the instances ¢880, nasa and s641 because they consist of more than one connected
component. Empty entries for algorithm det-k-decomp indicate that det-k-decomp
was not applied to that instances in Gottlob and Samer (2007). Column dif f.
gives the difference between the hypertree-width of a hypergraph and the smallest
width of a generalized hypertree decomposition computed by algorithm GA-ghw.
Finally, column time reports the running times for the regarded algorithms. For
the exact methods running times represent the time for computing the hypertree-
width of the hypergraph. For algorithm IsDecomposable a -’ entry indicates that
the hypertree-width of an instance could not be computed within the given time
limit, for algorithm det-k-decomp an empty entry indicates that det-k-decomp was
not applied to an instance in Gottlob and Samer (2007).

We observe that for many instances with known hypertree-width algorithm G A-
ghw is able to return a generalized hypertree decomposition whose width equals
the hypertree-width or exceeds it by at most one. Only for the instances bridge_50,
bridge 99 and grid2d_20 the width obtained by GA-ghw exceeds the hypertree-
width by 3 and 4. For the instance s510 GA-ghw found a generalized hypertree
decomposition whose width improves the hypertree-width by even 3.

A direct comparison of the generalized hypertree-width and hypertree-width
cannot be done, because while for some of the instances we know the hypertree-
width, this is not the case for their generalized hypertree-width. However, based
on our results, we can conclude that the hypertree-width is very close to the best
known upper bound on the generalized hypertree-width.

Considering the running times of the algorithms we examine that for instances
having small hypertree-width the backtracking based algorithms take significantly
less running time than algorithm G A-ghw. Thus, for instances which are expected
to have small hypertree-width we suggest to apply algorithm IsDecomposable or
algorithm det-k-decomp in order to obtain a good decomposition within short time.
On the other hand, for hypergraphs whose hypertree-widths are supposed to be
large algorithm GA-ghw is able to return better widths than the backtracking
based methods. We conclude that for such instances algorithm G A-ghw is better
suited.
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[ | Graph V E [ wub | min  max | avg std.dev. | min-time avg-time |

anna 138 986 12 12 12 12 0,00 00:03:32 ___00:03:32
david 87 812 13 13 13 13 0,00 00:02:34 00:02:32
huck 74 602 10 10 10 10 0,00 00:02:00 00:01:59
homer 561 3258 31 31 31 31 0,00 00:18:38 00:18:36
jean.col 80 508 9 9 9 9 0,00 00:02:00 00:01:59
games120 120 1276 32 32 32 32 0,00 00:07:42  00:07:32
queend_5 25 320 18 18 18 18 0,00 00:00:33 00:00:33

— queen6_6 36 580 25 26 26 26 0,00 00:00:51 00:00:51
queen7_7 49 952 35 35 36 35,2 0,42 00:01:32 00:01:34
queen8_8 64 1456 45 45 47 46 0,47 00:02:47 00:02:30
queen9_9 81 2112 58 58 60 58,5 0,71 00:03:50 00:03:50
queenl0_10 100 2940 72 72 73 72,4 0,52 00:05:39 00:05:35
queenll_11 121 3960 88 87 90 88,2 1,14 00:08:17 00:07:55
queenl2_12 144 5192 104 104 108 105,7 1,34 00:10:33 00:10:52
queenl3_13 169 6656 122 121 125 123,1 1,29 00:15:06 00:14:50
queenl4_14 | 196 8372 | 141 141 148 144 2,16 00:19:41 00:19:24
queenl5_15 225 10360 163 162 168 164,8 1,87 00:25:44 00:25:17
queenl6_16 256 12640 186 186 191 188,5 1,90 00:34:53 00:31:41
fpsol2.i.1 496 11654 66 66 66 66 0,00 00:33:02 00:32:29

— fpsol2.i.2 451 8691 31 32 33 32,6 0,52 00:24:05 00:23:45
fpsol2.i.3 425 8688 31 31 33 32,3 0,67 00:24:22  00:22:49
inithx.i.1 864 18707 56 56 56 56 0,00 00:56:18 00:55:42

— inithx.i.2 645 13979 31 35 35 35 0,00 00:38:37 00:38:24
— inithx.i.3 621 13969 31 35 35 35 0,00 00:37:41 00:37:17
— | miles1000 128 6432 49 50 50 50 0,00 00:09:19  00:09:24
miles1500 128 10396 7 7 7 7 0,00 00:07:37 00:07:33

— miles250 128 774 9 10 10 10 0,00 00:04:02 00:04:01
— miles500 128 2340 22 24 25 24,1 0,32 00:07:22 00:07:16
— miles750 128 4226 36 37 37 37 0,00 00:08:56 00:08:50
mulsol.i.1 197 3925 50 50 50 50 0,00 00:11:11 00:11:05
mulsol.i.2 188 3885 32 32 32 32 0,00 00:09:44 00:09:48
mulsol.i.3 184 3916 32 32 32 32 0,00 00:09:39 00:09:32
mulsol.i.4 185 3946 32 32 32 32 0,00 00:09:38 00:09:33
mulsol.i.5 186 3973 31 31 31 31 0,00 00:09:44 00:09:31
myciel3 11 20 5 5 5 5 0,00 00:00:14 00:00:14
mycield 23 71 10 10 10 10 0,00 00:00:34 00:00:34
mycielb 47 236 19 19 19 19 0,00 00:01:20 00:01:18
myciel6 95 755 35 35 35 35 0,00 00:03:52 00:03:48

— myciel7 191 2360 54 66 66 66 0,00 00:12:37 00:12:24
— | schooll 385 19095 | 184 | 185 199 | 1925 5,66 01:18:04  01:21:35
— schooll_nsh 352 14612 155 157 170 163,1 5,40 01:10:39 01:09:05
zeroin.i.l 211 4100 50 50 50 50 0,00 00:10:41 00:10:30
zeroin.i.2 211 3541 32 32 33 32,7 0,48 00:09:54 00:09:46
zeroin.i.3 206 3540 32 32 33 32,9 0,32 00:09:45 00:09:38

+ | le450_5a 450 5714 | 253 | 243 263 | 248,3 7,12 01:47:13  01:51:24
1le450_5b 450 5734 248 248 253 249,9 1,60 01:52:12 01:49:50

—+ 1le450_5¢ 450 9803 272 265 272 267,1 2,28 01:38:37 01:35:37
+ 1le450_5d 450 9757 267 265 268 265,6 1,07 01:30:02 01:25:08
— | le450_15a 450 8168 | 264 | 265 275 | 268,7 3,71 01:54:36  01:42:21
+ 1le450_15b 450 8169 270 265 271 269 1,63 01:47:03 01:39:08
+ le450_15¢ 450 16680 357 351 359 352,8 2,44 01:23:17 01:22:05
—+ le450_15d 450 16750 354 353 361 356,9 2,56 01:21:04 01:17:57
— le450_25a 450 8260 221 225 232 228,2 2,10 01:40:25 01:41:05
+ | le450_25b 450 8263 | 228 | 227 239 | 2345 3,47 01:40:45  01:46:06
—+ 1le450_25¢ 450 17343 327 320 331 327,1 3,78 01:43:09 01:34:08
+ le450_25d 450 17425 330 327 335 330,1 2,33 01:51:52 01:35:06
— DSJC125.1 125 736 60 61 63 61,9 0,74 00:08:21 00:07:47
— DSJC125.5 125 3891 108 109 110 109,2 0,42 00:04:21 00:04:19
DSJC125.9 125 6961 119 119 119 119 0,00 00:01:50 00:01:54
DSJC250.1 250 3218 169 169 171 169,7 0,82 00:31:18 00:27:02
DSJC250.5 250 15668 230 230 233 231,4 0,84 00:10:48 00:09:57
DSJC250.9 250 27897 243 243 244 243,1 0,32 00:03:58 00:04:01

Table 6 Final results for DIMACS graphs.
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| [ Hypergraph I |4 H I ub | min max I avg std.dev. I min-time avg-time |
— adder_75 526 376 2 3 3 3 0 00:08:16 00:08:16
— adder_99 694 496 2 3 4 3.4 0.52 00:11:29 00:11:27
— atv_partial_system 124 88 3 4 4 4 0 00:01:51 00:01:51
+ b06 50 48 5 4 5 4.9 0.32 00:00:53 00:00:53
+ b08 179 170 10 9 10 9.1 0.32 00:04:22 00:04:22
+ b09 169 168 10 7 8 7.7 0.48 00:03:41 00:03:40
+ b10 200 189 14 13 14 13.3 0.48 00:05:40 00:06:19
— bridge_50 452 452 2 6 7 6.9 0.32 00:10:36 00:10:32
— bridge_99 893 893 2 7 7 7 0 00:25:19 00:25:18

cl355 587 564 13 13 13 13 0 00:17:47 00:17:45
— c1908 913 880 29 37 38 37.6 0.52 00:38:28 00:39:02
+ c499 243 202 13 11 12 11.1 0.32 00:07:47 00:07:53
+ c880 443 383 19 18 19 18.1 0.32 00:14:53 00:15:07

clique_20 190 20 10 10 10 10 0 00:26:07 00:26:02
— grid2d_20 200 200 7 10 10 10 0 00:10:43 00:10:42
+ grid3d_8 256 256 20 19 19 19 0 02:08:36 02:07:19
+ grid4d_4 128 128 17 13 14 13.3 0.48 01:03:50 01:07:58
+ gridbd_3 122 121 18 14 15 14.4 0.52 03:34:11 03:39:08
- nasa 579 680 21 22 23 22.6 0.52 00:42:45 00:43:41
— NewSystem1 142 84 3 4 5 4.4 0.52 00:02:45 00:02:46
— NewSystem?2 345 200 3 5 5 5 0 00:07:21 00:07:17

s444 205 202 5 5 6 5.7 0.48 00:05:20 00:05:20
+ s510 236 217 20 19 20 19.3 0.48 00:10:37 00:10:33

$526 217 214 | 7 7 8| 71 0.32 | 00:07:00  00:07:04
— | s6a1 433 398 | 7| 11 13| 119 0.57 | 00:11:07 _ 00:10:53

Table 7 G A-tw+ results for selected benchmark hypergraphs.

[ | Hypergraph |V H [ ub  GA-tw+ [ min__ maz | avg std.dev. [ min-time  avg-time
— adder_75 526 376 2 3 3 3 3 0 05:02:54 05:02:51
— adder_99 694 496 2 3 3 3 3 0 08:33:10 08:33:53

atv_partial. 124 88 3 4 3 3 3 0 00:31:09 00:31:10
+ b06 50 48 5 4 4 4 4 0 00:09:39 00:09:44
+ b08 179 170 10 9 9 9 9 0 01:04:39 01:04:44
+ b09 169 168 10 7 7 7 7 0 01:14:43 01:14:54
+ b10 200 189 14 13 11 12 11.8 0.42 01:51:47 01:51:39
— bridge_50 452 452 2 6 6 6 6 0 06:33:56 06:33:25
— bridge-99 893 893 2 7 6 6 6 0 24:18:57 24:18:06
cl355 587 564 13 13 13 13 13 0 09:23:14 09:28:26
+ c1908 913 880 29 37 25 30 27.1 1.79 29:32:47 30:20:22
+ c499 243 202 13 11 11 12 11.7 0.48 02:13:10 02:13:13
+ c880 443 383 19 18 17 18 17.2 0.42 06:54:25 06:55:26
— clique_20 190 20 10 10 11 12 11.2 0.42 01:30:29 01:30:43
— grid2d_20 200 200 7 10 10 10 10 0 01:36:00 01:35:32
— grid3d_8 256 256 20 19 21 22 21.3 0.48 04:53:40 04:49:49
+ grid4d_4 128 128 17 13 15 16 15.3 0.48 01:24:17 01:24:42
=+ grid5d-3 122 121 18 14 16 18 16.7 0.82 01:25:32 01:24:51
+ nasa 579 680 21 22 19 22 19.9 0.74 17:13:13 17:19:44
NewSystem1 142 84 3 4 3 4 3.1 0.32 00:36:45 00:36:59
NewSystem?2 345 200 3 5 4 4 4 0 03:01:16 03:01:36
s444 205 202 5 5 5 5 5 0 01:46:54 01:47:07
+ s510 236 217 20 19 17 17 17 0 02:40:09 02:41:52
s526 217 214 7 7 7 7 7 0 02:23:17 2:23:04
s641 433 398 7 11 7 7 7 0 05:30:43 05:30:27

Table 8 GA-ghw

results for selected benchmark hypergraphs.
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Hypergraph width dif f. time

GA-ghw  IsDec. det-k-dec. ‘ ‘ GA-ghw IsDec. det-k-dec.
adder_75 3 2% 2% 1 05:02:54  00:00:02 00:00:00
adder_99 3 2% 2% 1 08:33:10  00:00:03 00:00:00
atv_partial_system 3 3* 3* 0 00:31:09  00:00:05 00:00:00
b06 4 4* 0 00:09:39  00:00:30
b08 9 25 01:04:39 -
b09 7 17 01:14:43 -
b10 11 27 01:51:47 -
bridge_50 6 2% 2% 4 06:33:56  00:00:03 00:00:00
bridge-99 6 2% 2% 4 24:18:57  00:02:02 00:00:01
c1355 13 45 09:23:14 -
c1908 25 64 29:32:47 -
c499 11 39 02:13:10 -
c880 17 - 06:54:25 -
clique_20 11 10* 1 01:30:29 00:32:33
grid2d_20 10 16 * 3 01:36:00 - 00:52:20
grid3d_8 21 60 04:53:40 -
grid4d_4 15 28 01:24:17 -
grid5d_-3 16 35 01:25:32 -
nasa 19 - 17:13:13 -
NewSystem1 3 3* 3* 0 00:36:45  00:00:05 00:00:00
NewSystem?2 4 3* 3% 1 03:01:16  00:01:03 00:00:00
s444 5 5 5% 0 01:46:54 - 00:06:25
s510 17 43 20%* -3 02:40:09 - 00:34:42
$526 7 14 * 0 02:23:17 - 00:28:35
s641 7 - * 0 05:30:43 - 00:26:51

Table 9 Comparison between GA-ghw and exact methods for hypertree decompositions.
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8 Conclusion

Motivated by the results of McMahan (2004) and Larranaga et al. (1997) we
implemented a genetic algorithm, named GA-tw, searching for small-width tree
decompositions and presented two extensions, GA-tw+ and GA-ghw, for general-
ized hypertree decompositions of hypergraphs. We carried out a series of tests in
order to estimate values for the control parameters of the genetic algorithms and
it turned out that the position based crossover operator (POS) and the insertion
mutation operator (ISM) are well-suited for finding tree decompositions and gen-
eralized hypertree decompositions of small width. We evaluated each of the three
algorithms by a large number of benchmark instances and compared the obtained
results to the currently best solutions for those benchmarks. For many benchmark
instances the genetic algorithms were able to return comparable results and for
some benchmark hypergraphs they found new upper bounds on the treewidth and
generalized hypertree-width.

One interesting point for future research is the development of a self-adapting
genetic algorithm for generalized hypertree decompositions which might be capable
of adjusting the various control parameters during its execution. Another open task
for further research is the combination of genetic algorithms with local optimization
strategies for generalized hypertree decompositions. Furthermore, an interesting
topic of future research is to extend the proposed genetic algorithm to deal with
Weighted Hypertree Decompositions (Scarcello et al. (2004)).
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