
TU
TECHNISCHE UNIVERSITÄT WIEN

DIPLOMARBEIT

Generalized Hypertree Decomposition
based on Hypergraph Partitioning

ausgeführt am

Institut für Informationssysteme
Abteilung für Datenbanken und Arti�cial Intelligence

der Technischen Universität Wien

unter der Betreuung von

Univ. Prof. Dipl. Ing. Dr. Georg Gottlob
Univ. Ass. Dipl. Ing. Dr. Nysret Musliu

durch

Artan Dermaku
Lorezmüllergasse 1A=5002

1200 Wien

Wien, den 21. Dezember 2006 ...

Acknowledgements

I would like to thank Prof. Georg Gottlob and Dr. Nysret Musliu for supervising and
proofreeding of this diploma thesis, and for their useful suggestions and their valuable
support.
Special thanks to my parents Ejup and Fahrije Dermaku and all my family for theirs

moral and �nancial support during my studies. I would like also to thank my �ancee
Krenare Sogojeva for reading this thesis and for her useful suggestions.

This master thesis is supported by the Austrian Science Fund (FWF) project: Nr.
P17222-N04, Complementary Approaches to Constraint Satisfaction (Project time: Sept.
2004-2006).

1

Abstract

The �rst deed of humans to solve any real problem in computer science, is the �nd-
ing of an adequate mathematical model. This model should make possible the simpli�-
cation of the problems and at the same time tries to make it solvable.
The CSP is one such model for many problems in AI, databases or mathematics.

However, it is known that CSPs are in general NP � complete problems and thus in-
tractable. The hypertree decomposition is one of the best decomposition models, which
can be used to solve tractable classes of CSP. However, the �nding of a minimal gen-
eralized hypertree decomposition for bounded width at most k is also NP � complete.
Thus several heuristic approaches are developed to �nd an �optimal� or "nearly opti-
mal" hypertree decomposition.
In this diploma thesis we developed two new heuristic algorithms for generalized

hypertree decomposition. Both these algorithms are based on hypergraph partitioning.
The �rst algorithm tries to �nd recursively the �best local� decomposition of dual

graph. In order to achieve �good� decomposition of the hypergraph, we propose a
method which �nds the cycles of its dual graph and then computes �touch points� of
these cycles. The second algorithm uses the library packages of HMETIS partitioning
approach, known in the literature as one of the best partitioning algorithm.
The computational results of those both approaches show that the heuristics imple-

mented in this diploma thesis can achieve for many problems good results. For some
given benchmark problems from the literature, the proposed heuristics can produce the
generalized hypertree decomposition of minimal width.

2

Kurzfassung

Wenn wir uns in der Informatik mit der Lösung eines realen Problems beschäftigen,
versuchen wir als Erstes ein entsprechendes mathematisches Modell für das Problem zu
�nden. Ein solches Modell sollte uns ermöglichen, eine Vereinfachung des Problems
zu erreichen, es verständlicher zu gestalten und gleichzeitig es lösbar zu machen. Für
viele Probleme im Bereich der AI, Datenbanken und Mathematik, stellt CSP ein solches
Modell dar. Allerdings ist es bekannt, dass das Lösen eines CSP ist im allgemeinen
NP � vollst�andig, das heißt nicht in polynomieller Zeit lösbar, ist. Hypertree Decom-
position ist die beste Zerlegungsmethode, die wir verwenden können, um Klassen von
CS Problemen zu lössen. Trotzdem, das Auf�nden einer minimalen Generalzed Hyper-
tree Decomposition für einen "bounded width" k ist auch NP � vollst�andig. Deshalb
sind bereits einige heuristische Methoden entwickelt, um eine "optimale" hypertree de-
composition zu erzeugen.
In dieser Magisterarbeit entwickelten wir zwei neue heuristische Algorithmen, die

eine generalized hypertree decomposition erzielen. Beide diese Algorithmen basieren
auf Hypergraph Partitioning. Der erste Algorithmus versucht rekursiv die beste �lokale
Decomposition� von dualem Graph zu �nden. Um eine �gute� Decomposition zu er-
reichen, wir schlagen eine Methode vor, die einige Zyklen seines duale Graph �ndet
und dann die �Berührungspunkte� zwischen diese Zyklen berechnet. Der zweite Algo-
rithmus verwendet Bibliotheken des HMETIS Zerlegungs-Methode. Diese Methode ist
bekannt in der Literatur als einer des besten Zerlegungsalgorithmen.
Unsere Tests jener beide Methode zeigen dass die Heuristiken teilweise sehr gute

Ergebnisse produzieren .

3

Contents

1 Introduction 5

2 Fundamentals 8
2.1 Constraint Satisfaction Problems . 8
2.2 Databases and Queries . 14
2.3 Homomorphism Problem . 17
2.4 Hypergraphs . 18

2.4.1 Acyclicity of Hypergraphs . 21
2.4.2 Primal and dual graphs . 23

2.5 Decomposition Methods . 25
2.5.1 Biconected Components (BICOMP) 25
2.5.2 Tree clustering (TCLUSTER) 27
2.5.3 Treewidth . 28
2.5.4 Hinge Decomposition . 29
2.5.5 Hypertree Decomposition . 31

3 Heuristic Algorithms 34
3.1 Bucket Elimination . 34
3.2 Branch Decomposition . 35
3.3 Hypertree - Decomposition through Hypergraph Partitioning 35

3.3.1 Recursive partitioning . 36
3.3.2 Partitioning with Fiduccia-Mattheyses algorithm 37
3.3.3 heurisctic algorithm based on Tabu Search 38

3.4 Two new heuristic algorithms based on partitioning 39
3.4.1 Heuristic algorithm based on HMETIS partitioning 39
3.4.2 New heuristic algorithm based on dual graph 41

4 Evaluations of heuristics 59
4.1 Comparison of heuristics for small problems 59
4.2 Comparison of HMETIS algorithm with other algorithms 66

5 Conclusion 69

4

1 Introduction

In computer sciences, computational problems occurring are classi�ed according to
their complexity, because complexity highly in�uences the solvability of a problem.
One of the classi�cations used is to divide the problems with polynomial running time
from problems with non-deterministic polynomial running time. Many authors have
worked on this topic and have de�ned classes of problems such as P , NP , NP hard
and NP � complete problems.
Only a few problems in computer science those are important and thus needed to be

solved, can be solved in polynomial time, i.e. their worst-case running time isO(nk) for
some constant k. This class of problems in the literature is called P problems. For other
problems which have a practical application we can not �nd an algorithm solving them
in polynomial time but only an exponential algorithm. Exponential algorithms however
bring dif�culties for the computer in cases of rather complex input problems. There ex-
ist a number of problems which are theoretically solvable but their running times change
enormously, that is exponentially, depending on input size. This kind of problems be-
comes unsolvable quickly even for marginal differences in problem size. Instances of
problems that have only been solved with exponential algorithms so far might still have
polynomial time solutions which may be found in future. A number of problems that
have been solved only with exponential algorithms however have the property that for a
given solution we can verify that solution in polynomial time. The class of problems that
have these properties are calledNP (Non-Deterministic Polynomial) problems. If solv-
ing a NP problem in polynomial time makes it possible to solve all other problems of
this class also in polynomial time, we say a problem is NP � hard (Non-Deterministic
Polynomial hard). In other words, the algorithm which allows to solve a NP problem
in polynomial time can be modi�ed and to solve any another NP problem also in poly-
nomial time. And �nally for a problem having both NP and NP � hard properties
we say is NP complete problem. Further we say a problem is tractable if we �nd a
solution in polynomial time, otherwise it is intractable.
The CSPs are the most important class of problems in computer science, which are

known to beNP � complete. This art of problems occur while we try to solve different
problems in AI, Databases and Operation Researches. In order to solve these problems
we have to satisfy a certain number of constraints. With other words, to solve any CSP
problem it is meant to �nd such allowed values, which are assigned to variables of CSP-s
and which will satis�es all given constraints.
A number of problems which can be modelled as Constraint Satisfaction Problems

are Boolean Conjunctive Query (BCQ) , Homomorphism Problem (HOM), Graph k-
Colourability, Advanced Planning, N-Queens Problem, and many other problems.
In order to solve CSP-s we represent them graphically. The graphic structure of CSP

can be a Tree, Graph or Hypergraph. The Hypergraph structure of CS problems will be

5

in focus of this diploma thesis, because according to [5], several NP � complete prob-
lems will be tractable if are restricted to instances with acyclic hypergraphs. Therefore
a number of decomposition methods are developed in order to reduce the cyclicity of
hypergraph, and if it is possible to generate an acyclic hypergraph. All these decom-
position methods de�nes a concept of width which can be interpreted as measure of
cyclicity, such that for each �xed width k, all CSPs of width bounded by k are solvable
in polynomial time [4]. Further those methods try to decompose a given CSP instance
into smaller sub-problems which then can be solved ef�ciently. The meaning of width
k is denoted as the size of the greatest subproblem. The Hypertree Decomposition,
developed by Gottlob et al. [5] , is the most powerful method among decomposition
methods. There exists an implementation of Hypertree Decomposition, opt-k-decomp
[11], which for a given constant k checks in the poynomial time if the hypergraph has
hypertree width k. The smaller k implies a better solution. This algorithm, for a given
hypergraph produces an exact hypertree decomposition. When we solve a CSP, nor-
mally we want to �nd an optimal solution, that is, in our case, to reproduce minimal
hypertree decomposition. The problem is however that k appears in the exponent of
runtime of this algorithm, thus for large problems it will be quickly unusable.
To overcome this problem several heuristic methods are developed. All these meth-

ods try to �nd a nearly optimal solution within a satisfying running time. Some of these
methods are developed by DBAI research group [2]. They are based on vertex ordering
as well as on hypergraph partitioning. These methods usually produce a generalized hy-
pertree decompostions. If the fourth condition in de�niton of hypertree decompostions
is ignored, the corrosponding decomposition is called generalized hypertree decompos-
tion. Note that the �rst three condions of hypertree decompositons are suf�cient to
solve the the corresponding CS problem in polynomial time. The fourth condition was
added to aid the proof that, for a �xed k, determining if a hypergraph H has hypertree
width k can be solved in polynomial time. In this thesis we investigate the genaration
of generalized hypertree decompositions.
The purpose of this diploma thesis was �nding and implementing of new heuristic

approaches for generalized hypertree decomposition based on hypergraph partitioning.
These approaches should solve the problems of given benchmarks which opt-k-decomp
was not able to solve.
We implemented two different heuristics based on partitioning algorithms. The �rst

algorithm tries to �nd a signi�cant number of intersection points between the cycles of
dual graphs. Evaluating of these �touch� points with respect to certain �tness criteria
should lead to a �good� local partitioning of the graph. The experimental results show
that for some problems, this algorithm achieves partly optimal solutions.
The second algorithm is based on HMETIS partitioning algorithm and uses HMETIS

package library. The computational results show that this algorithm yields a very good
solution. In comparison with some other existing heuristic algorithm, we conclude that

6

HMETIS and Bucket Elimination heuristics give the best results.
This thesis is organized as follows. Chapter 1 gives an introduction, and in chapter

2 are given basic de�nitions. Chapter 3 describes two heuristic methods proposed in
this thesis for generation of hypertree decomposition. Furthermore this chapter gives a
survey of previous methods used for hypertree decompositions. Computational results
are given in chapter 4. In chapter 5 are given the conclusion remarks.

7

2 Fundamentals

This chapter gives a short overview and some basic de�nitions about Constraint Satis-
faction Problems (2.1), Boolean Conjunctive Queries (2.2) and Homomorphism Prob-
lems (2.3). All these classes of problems can be represented by the same structure, that
is hypergraph (2.4). Hypertree decomposition is one of the latest methods for decom-
posing hypergraphs developed by Gottlob et al [5] which tends to reduce the complexity
of problems. That can be achived if the cyclicity of these hypergraphs will be restricted
that they will become acyclic or nearly acyclic and thus tractable [8]. Following sec-
tions of this chapter show the background and basis for understanding the problems and
goals of hypertree decomposition.

2.1 Constraint Satisfaction Problems

Many real problems of Articial Intelligence, Database systems, Operation research etc.
can be represented as Constraint Satisfaction Problems (CSP). This art of a modeling of
problems is very useful and sometimes the only way to make them tractable. In order to
describe those mathematical models, below we give some basic de�nitions which can
be found at [5, 6, 15, 20].
For example, the problems of advanced planning and scheduling, network manage-

ment, theory of graphs, electrical engineering, can be represented in such a way that we
de�ne objects as a collection of variables V ar = fX1; X2; :::; Xng which all have to be
assigned values, called domain Di.
In general, different variables can have different domains. The relations assumed

between the values of variables are called Constraints. For a Constraint C we de�ne
its scope, as the set of variables, which are contained in Constraint C. Binary constraint
scopes are scopes containing only two variables. The constraints can be given intention-
ally, i.e. as a formula, extensionally, i.e. as a set, or procedurally, i.e. with a recognising
function. An instance of CSP is a tripple hV ar;D;Ciwhere V ar is a set of variables,D
is a �nite domain of values and C is �nite set of constraints. The constraint satisfaction
problem is to �nd such value inDi for variableXi, 8i 2 f1; :::; ng, so that all constraints
are satis�ed.The CSP can be �nite or in�nite. The �nite CSP involves discrete variables
which have �nite domains.
Further we give some typical examples of �nite-domain constraint satisfaction prob-

lems which are similar with those found everywhere in the literature.

Example 1 The 8-queens problem: Only one queen is allowed to be on the same row,
column or diagonal .

8

Figure 2.1: 8-queens problem

Example 2 A crossword puzzle: The puzzle has to be completed (Figure 2.2).
Given the list of words: HOME, MEAT, EU, GO, EUR, OU, ARITY, ISO, YAF, AG,

WOLF. The words can be inserted in the cross-puzzle only at the locations labeled with
numbers 1,2,...,12 .

1 2 3

4 5 6

7

8 9

11

12

10

Figure 2.2: A crossword-puzzle

Example 3 A cryptography problem: Each letter have to be replaced by a distinct digit.
The sum have to be correct.

9

TWO
+ TWO

==================
F O U R

Example 4 A map coloring problem: All neighbour countries (Figure 2.3) should have
different colours (green, red or blue).

WA

SA

NT

Q

NSW

V

T

Figure 2.3: A map coloring problem refers to the states of Australia

The de�nition of constraint satisfaction problems, varies between authors [19, 5, 6,
7]. In this diploma thesis I will adopt the following formal de�nition

De�nition 1 [15] A constraint satisfaction problem is a sextuple P = (X;�; �; C;�; �)
where

� � is a mapping from the �nite set of variables X onto the set of sets �; for each
x 2 X; � (x) is called the domain of x;

� � is a one-two-one mapping from the �nite set of constraints C onto the set of sets
� satysfaing [� = X; for each c 2 C; � (x) is called the scope of c.

A mapping t from Y � X into [� such that t(x) 2 �(x), for all x 2 Y , is called a
labeling of Y: Each constraint c 2 C is a set of labelings of �(c):

Example 5 We represent Example 4 in formal notation:
Let P = (X;�; �; C;�; �) be the constraint satisfaction problem. Then :

� X = fWA;NT;Q;NSW; V; SA; Tg where each variable stands for a region.

10

� � = ffred; green; bluegg:

� �(Xi) = fred; green; blueg; for i = 0; 1; :::; 6:

� C = fC1; C2; C3; :::; C10g where
C1 � C2 � C3 � ::: � C9 = ffred; greeng; fred; blueg; fgreen; redg;

fgreen; blueg; fblue; redg; fblue; greengg
C10 � fred; green; blueg:

� � = fS1;S2;S3;:::; S10g where the pair of values each Si are the neighbour coun-
tries except S10 which de�nes the country without neighbours, T.
S1 = fWA;NTg S2 = fWA;SAg S3 = fNT; SAg
S4 = fNT;Qg S5 = fQ;SAg S6 = fQ;NSWg
S7 = fSA;NSWg S8 = fSA; V g S9 = fNSW; V g
S10 = fTg

� �(Ci) = Si; i = 1; 2; :::; 10:

There are many possible solutions, such as:
fWA = red;NT = green;Q = red;NSW = green; V = red; SA = blue;
T = blueg

Example 6 We represent Example 3 in formal notation:
Let P = (X;�; �; C;�; �) be the constraint satisfaction problem. Then :

� X = fF;U;R; T;W;Og where each variable stands for a given letter.

� � = ff0; 1; 2; :::; 9gg:

� �(Xi) = f0; 1; 2; :::; 9g; for i = 0; 1; :::; 9:

� C = fC1; C2; C3; C4; C5g where

� C1 = ff1; 2g; f2; 4g; f3; 6g; f4; 8g; f5; 0g; f6; 2g; f7; 4g; f8; 6g; f9; 8gg
C2 = ff0; 0g; f0; 1g; f1; 2g; f1; 3g; f2; 4g; f2; 5g; f3; 6g; f3; 7g; f4; 8g;
f4; 9g; f5; 0g; f5; 1g; f6; 2g; f6; 3g; f7; 4g; f7; 5g; f8; 6g; f8; 7g;
f9; 8g; f9; 9gg

C3 = ff5; 1; 0g; f5; 1; 1g; f6; 1; 2g; f6; 1; 3g; f7; 1; 4g; f7; 1; 5g; f8; 1; 6g;
f8; 1; 7g; f9; 1; 8g; f9; 1; 9gg

11

C4 = ff5; 0; 1g; f5; 0; 2g; :::; f5; 0; 9g; f5; 1; 0g; f5; 1; 1g; :::; f5; 1; 9g; :::;
f5; 9; 0g; f5; 9; 1g; :::; f5; 9; 9g; f6; 0; 1g; :::; f6; 9; 9g; :::; f9; 9; 8gg

C5 = ff1; 2; 3; 0g; f1; 2; 3; 4g; f1; 2; 3; 6g; f1; 2; 3; 8g; f1; 2; 4; 0g; f1; 2; 4; 6g;
f1; 2; 4; 8g; f1; 2; 5; 0g; f1; 2; 5; 4g; f1; 2; 5; 8g; :::; f1; 9; 7; 8gg

� � = fS1; S2; S3; S4; S5g where
S1 = fO;Rg S2 = fW;Ug S3 = fT; F;Og S4 = fT;W;Og
S5 = fF;O; U;Rg

� �(Ci) = Si; i = 1; 2; 3; 4; 5

The solutions to P :

F U R T W O
=======================
1 6 8 7 3 4
1 3 0 7 6 5
1 7 2 8 3 6
1 9 2 8 4 6
1 3 4 8 6 7
1 5 6 9 2 8
1 7 6 9 3 8

De�nition 2 [15] Let P = (X;�; �; C;�; �) be a constraint satisfaction problem.

� Given any constraint c 2 C a labeling t of �(c) is said to satisfy c if t 2 c.

� A labeling t of X is said to be a solution to P if, for every c 2 C ;the restriction
of t to �(c) satis�es c. The set of all solutions to P is denoted Sol(P):

We illustrate this de�nition with an example:

Example 7 Let be t = f1; 6; 8; 7; 3; 4g any labeling of X of example 6.

� For c = C1 = ff1; 2g; f2; 4g; f3; 6g; f4; 8g; f5; 0g; f6; 2g; f7; 4g; f8; 6g; f9; 8gg =)
�(C1) = S1 = fO;Rg: The labeling t of �(c) is t1 = f4; 8g, which satisfy c be-
cause t1 2 C1

12

� A labeling t = f1; 6; 8; 7; 3; 4g is a solution of P , because 8c 2 C, restriction of
t to �(c) satis�es c.

For S1 = fO;Rg =) t1 = f4; 8g satis�es c1
For S2 = fW;Ug =) t2 = f3; 6g satis�es c2
For S3 = fT; F;Og =) t3 = f7; 1; 4g satis�es c3
For S4 = fT;W;Og =) t4 = f7; 3; 4g satis�es c4
For S5 = fF;O; U;Rg =) t5 = f1; 4; 6; 8g satis�es c5

De�nition 3 [15] Let P = (X;�; �; C;�; �) be a constraint satisfaction problem,
and let D be any subset of C. The subproblem of P generated by D is the constraint
satisfaction problem P jD= (X jD; �(X jD); X jXjD ; D; �(D); � jD), where X jD=
[c2D�(c):

For every solution t of P =) the restriction of t to X jDis a solution to P jD :We
can also say that a solution t0 to P jD can be extended to a solution to P if there exists a
solution t to P such that t0 is the restriction of t to X jD [15].

Example 8 ConsiderD1 = fC1; C2g as a subset of the constraints of CSP P of example
6.
Then X jD1= fU;R;W;Og. There are 51 possible solutions.
The set of solutions : Sol(P jD1) = f(0; 2; 5; 1); (0; 4; 5; 2); :::; (4; 2; 7; 1); :::; (6; 8; 3; 4); :::;

(8; 2; 4; 1); :::; (9; 6; 4; 8)g

� For t = f1; 6; 8; 7; 3; 4g, the restriction of t to X jD1is t1 = f6; 8; 3; 4g. We can
verify easily that t1is a solution to P jD1 .

� Conversely a solution to P jD1 t1 = f6; 8; 3; 4g can be extended to a solution of
to a solution to P , because there exists a solution t = f1; 6; 8; 7; 3; 4g to P and
t1is the restriction of t to X jD1

� But a solution to P jD1 t2 = f9; 6; 4; 8g can not be extended to a solution to P ,
becuse t2 cannot be extended to any solution to P .

Two different constraint satisfaction P and P 0 over the same set of variables are
equivalent if Sol(P) = Sol(P 0). [15]

13

2.2 Databases and Queries

CSP problems in general can have a set of �nite relations. In such cases it is very useful
to use database methods to solve them. One of most important classes of database
queries is the class of conjunctive queries (CQs) evaluating of which is known to be
equivalent to solving of constraint satisfaction problems [6, 7, 15, 23]. First we give
some basic concepts and de�nitions of databases and of query problems (taken from [6]
) in detail.
A relation schemaR = fA1; :::; Ang is a �nite set of attributes. Each attributeAi for

1 � i � n has a domainDomfAig. n is called the arity of relation. A relation instance
r over schema R, is a �nite subset of the cartesian productDom(A1)� :::�Dom(An).
The elements of this subset are called tuples.
A database schema DS = fR1; :::; Rmg is a �nite set of relation schemas. A data-

base instance db consists of relation instances r1; :::; rm for the schemas R1; :::; Rm
respectively. More formally is shown by Gottlob [6]. A conjunctive Query on database
consists of a rule of the form

Q : ans(u) r1(u1) ^ ::: ^ rn(un)

where n � 0; r1;:::; rn are relation names of database schema, ans is relation name
not in database schema, and u; u1; :::; un are lists of terms(variables). If ans does not
contain variables i.e., its arity is 0 than the conjunctive query is a Boolean conjunctive
query (BCQ). Such a query can evaluate to true or false.
Conjunctive queries are also equivalent to the SQL queries of the type

SELECT Ri1Aj1 ; :::; RikAjk FROM R1; :::; Rn WHERE cond,

where cond is a conjunction of conditions of the form RiA = RjB or RiA = C; for
C constant [6].

Example 9 We represente Example 4/5 as database

a 1 2 3
R G B
R B G
G R B
G B R
B R G
B G R

e 1
R
G
B

where b � c � d � a

and query :

14

ans a(NT;WA; SA) ^ b(NT; SA;Q)
^c(SA;NSW;Q) ^ d(SA;NSW; V) ^ e(T)

Input of a query problem in general is a database and output is evaluation of query
against that database [5]. If a query have a cyclic associated hypergraph than we say
that the query is also cyclic otherwise the query is acyclic [5].
Conjunctive querie problems are in general NP-hard. If we join all its relation in-

stances we get actually the set of all solution of his equivalent constraint satisfaction
problem [15]. However that requires an exponential time what make it inef�cient. But
there is an exception, acyclic boolean conjunctive query (ABCQ). Yannakakis [19] de-
veloped an algorithm which solved acyclic boolean conjunctive queries in polynomial
time. This algorithm is based on solving JTREE using semijoins.
First we de�ne JTREE (join tree)

De�nition 4 Let Q be a query, T = (atoms(Q); E) a tree and A1; A2 2 atoms. If the
same variable X occurs in both A1 and A2, and A1 and A2 are connected in T which
means that variable X occurs in each atom in the path between A1 and A2, then a tree
T is called join tree.

Example 10 Consider the following query:
Q : ans � a(X; Y) ^ b(X;Z) ^ c(X;Z;W) ^ d(X; Y; V;M) ^ e(X; Y;M) ^

f(X;V;N) ^ g(X;Y; V; P)

A join tree for Q is shown in Figure 2.4

a(X,Y)

b(X,Z)

g(X,Y,V,P)f(X,V,N)e(X,Y,M)c(X,Z,W)

d(X,Y,V,M)

Figure 2.4: A join tree for the acyclic query Q in Example 10

In [6], Gottlob proved that ABCQ and JTREE are both complete for LOGCFLwhere
LOGCFL is the class of problems that are logspace-reducible to a context free Language
and highly parallelizable.

15

There exists a close relationship between Constraint Satisfaction Problems and data-
bases. Where for a given CSP P = (X;�; �; C;�; �), the variables of X can be inter-
preted as attributes, the domains � as the domains of these attributes and a labelling of
subsets Y � X of variables is a tuple of other relation schemes with a set of attributes
Y [15].

De�nition 5 [21] Let S be any ordered set of r variables and let C(S) be a constraint
on S. For any ordered subset S 0 � S, let (i1; i2; ::::; ik) be the indices of the elements of
S 0 in S. De�ne the projection of C(S) onto S 0, denoted �S0(C(S)), as follows

�S0(C(S)) = f(xi1 ; xi2 ; ::::; xik) j 9(x1; x2; :::; xr) 2 C(S)g

De�nition 6 [21] For any constraints C(S1) and C(S2), the join of C(S1) and C(S2),
denoted C(S1) ./ C(S2) is the constraint on S1 [S2 containing all tuples t such that
�S1(ftg) � C(S1) and �S2(ftg) � C(S2).

From these de�nitions we can say that the set of all solutions to CSP is equal to
the join of the relation instances corresponding to the constraints denoted as Sol(P) =
C(S1) ./ C(S2) ./ :::C(Sn). The constraints of CSP are supersets of the projections of
the set of all solutions.
We say a set of constraints is a set of minimal constraints if all constraints are equal

to respective projections of the set of all solutions [15]. With other words, for each
constraint, each member of that constraint can be extended to a solution to the full
problem.

Example 11 Reconsider a constraint satisfaction problem P of Example 6.
The projection of Sol(P) onto S1, the scope of C1, is shown in Table 1.

R ~C1

O R
4 8
5 0
6 2
7 4
8 6

Table 1: The projection of Sol(P) onto S1

This projection is not equal to C1, therefore the set of constraints C is not a set of
minimal constraints. But a new constraint satisfaction problem

�
P = (X;�; �;

�
C;�;

�
�)

with
�
C = f

�
C1;

�
C2;

�
C3;

�
C4;

�
C5g which is equivalent to P and where the scope of

�
Ci is

16

equal to the scope of Ci and the value of
�
Ci is equal to the corresponding projection of

Sol(P), for all i = 1; :::; 5 has a set of minimal constraints.
These minimal constraints are shown in Table 2 as relational database.

R�
C1

R�
C2

R�
C3

R�
C4

R�
C5

O R W U T F O T W O F O U R
4 8 3 6 7 1 4 7 3 4 1 4 6 8
5 0 6 3 7 1 5 7 6 5 1 5 3 0
6 2 3 7 8 1 6 8 3 6 1 6 7 2
7 4 4 9 8 1 7 8 4 6 1 6 9 2
8 6 2 5 9 1 8 8 6 7 1 7 3 4

9 2 8 1 8 5 6
9 3 8 1 8 7 6

Table 2: The constraints of
�
P (Example 10) as a relational database

If the set of relation instances is consistent then the corresponding constraints are
minimal. This close relationship between minimality of a set of constraints and the
consistency can be found at [15].

2.3 Homomorphism Problem

As we denoted at the beginning of this chapter, the Constraint Satisfaction Problem in-
stances can be viewed as a pair of relational structures whose mappings are nothing else
as homomorphism between those relational structures which at same time represented
the solutions of the CSP problem [20].
In order to describe Constraint Satisfaction Problems in algebraic terms and to de�ne

the homomorphism problem, we �rst give the de�nitions of some standard algebraic
notations.

De�nition 7 [20] A 'relational structure' is a tuple , hV;E1; E2; :::; Eki, consisting
of a non-empty set, V , called the "universe" of the relational structure, and a list,
E1; E2; :::; Ek, of relations over V .

De�nition 8 [20] The 'rank function' of a relational structure hV;E1; E2; :::; Eki, is a
function � from f1; 2; :::; kg to the set of non-negative integers, such that for all i 2
f1; 2; :::; kg, �(i) is the arity of Ei.
A relational structure � is 'similar' to a relational structure �0 if they have identical

rank functions.

17

De�nition 9 [20] Let � = hV;E1; E2; :::; Eki and �0 = hV 0; E 01; E 02; :::; E 0ki be two
similar relational structures, and let � be their common rank function. A 'homomor-
phism' from � to �0 is a function h : V ! V 0 such that, for all i 2 f1; 2; :::; kg,
hv1; v2; :::; v�(i)i 2 Ei =) hh(v1); h(v2); :::; h(v�(i))i 2 E 0i.

De�nition 10 [8] (The Homomorphism Problem HOM). Given two �nite structures �
and �0, decide whether there exists a homomorphism from � to �0.
We denote such an instance of HOM by HOM(�;�0).

Proposition 1 [20] For any constraint satisfaction problem instance P = hX;�; Ci
with
C = fhs1; R1i; hs2; R2i; :::; hsq; Rqig, the set of solutions to P equalsHOMh�;�0i,

where � = hX; fs1g; fs2g; :::; fsqgi and �0 = h�; R1; R2; :::; Rqi.

Example 12 We represent Example 4/5 (the map colouring problem) as HOM problem.
The solution of the question if the map is three colourable is actually the solving of
HOMh�;�0i problem for relational structures � and �0 where
� = hX; fs1g; fs2g; :::; fs10gi
�0 = h�; R1; R2; :::; R10i
where
X = fWA;NT;Q;NSW; V; SA; Tg
s1 = fWA;NTg; s2 = fWA;SAg; s3 = fNT; SAg; s4 = fNT;Qg; s5 = fQ;SAg;
s6 = fQ;NSWg; s7 = fSA;NSWg; s8 = fSA; V g; s9 = fNSW; V g; s10 = fTg
R1 = ffred; greeng; fred; blueg; fgreen; redg; fgreen; blueg; fblue; redg; fblue; greengg
R2 � R3 � ::: � R9 � R1
R10 = fred; green; blueg

In Figure 2.5 we have represented a solution as a homomorphism between two
graphs G and K, which corresponds to a three colouring of G.

In [23, 8] was observed that HOM is equivalent to Constraint Satisfaction Problem.
What more, HOM, CSP and BCQ are the same and are NP-complete.

2.4 Hypergraphs

In general humans tends to represent the real problems occourred in theirs life as simple
as possible and easily understandable. One such way is of course a graphic represent-
ing of problems. Therefore it is attempted constraint satisfaction problems to represent
graphically. The graphic structure of the constraint satisfaction problems can be a Tree,

18

green
blue

red
Q

NSW

NT

WA
A SA

V

Tf
g
f
g
f

G K

Figure 2.5: A solution to a graph colorability problem instance

Graph or Hypergraph. As is well known for CSP with a tree-structure exists very ef�-
cient algorithm to solve it, therefore will be tried to convert the CSP of arbitrary structure
into pseudo CSP of tree structure. This will be described in detail in the next chapter.
The graphs simplify the problems but not always are the best solutions. There are

a large number of problems which structure is better represented by hypergraphs than
by graphs. For example several NP complete problems will be tractable if restricted to
instances with acyclic hypergraphs [5] .

De�nition 11 [19] A hypergraph H is an ordered pair (V;E) where V is a �nite set of
vertices and E is a set of edges, each of which is a subset of V .

Further we give some other basic de�nitions [19]
Special cases of hypergraphs are the undirected graphs where each edge contains ex-

actly two vertices. From the formal de�nition of satisfaction problem P = (X;�; �; C;�; �)
we can derive the hypergraphHp = fX;�g which is associated to P the edges of which
are the scopes of the constraints and the vertices are the �nite set of variables.
For the analogy between CSP and their associated hypergraphs we can say that two

vertices are in the same hypergraphs if they occur in the same constraint. If one vertex
belongs exactly to one edge then is called isolated. If one edge contains excactly one
vertex then is called singleton [11].

Example 13 Reconsider the constraint satisfaction problem P of Example 6 (Cryptog-
raphy problem). The hypergraph Hp = fX;�g associated to P is shown in Figure
2.6

19

T

W

R

U

F

O

S5

S1

S2

S3

S4

Figure 2.6: The hypergraph associated with P of Example 5 (Cryptography problem)

Let (V;E)be a hypergraph Hp let H � E, let F � E � H , and let be f1; f2 2 F
any two edges in F . If there exist a sequence of edges e1; e2; :::; en 2 F such that:

1. e1 = f1

2. for i = 1; :::; n� 1 ei \ ei+1 is not contained in [H

3. en = f2

than F is called connected with respect to H [15]. The maximal connected subsets
of E�H with respect toH are called the connected components of E�H with respect
to H . If H is empty than we speak about connected subsets and connected components
of E [15].
Let illustrate that with an example:

Example 14 Let be Hp = (V;E) a hypergraph from Figure 2.7.
Then E = fH1;H2; H3;H4;F0; F1; F2; F3; F4; F5g. If H = fH1;H2; H3;H4g)

H � E, and if F = fF1; F2; F3; F4;F5g) F � E �H:
We say F is connected with respect toH , because 9 a sequence F1; F2; F3; F4, such

that F1 \ F2 and F2 \ F3 and F3 \ F4 are not contained in [H . But for F 0 =
fF0; F1; F2; F3; F4;F5g we say is a connected component of E �H:

The connected components are very helpful in process of �nding of independent
subproblems. The advantage of these subproblems is that they can be solved totally

20

H1 H2

H3

H4

F4

F3

F2

F5

F1

F0

Figure 2.7: The hypergraph Hp of Example 14

independently. We say a hypergraph H = fV;Eg is reduced if none of its edges is
properly contained in any other [15]. It will be obtained by removing of each edge that
is properly contained in another edge.
Given a hypergraph H = fV;Eg; the GY O(H) (Graham, You and Özsoyo�glu

1979)[6] is the hypergraph obtained fromH by repeatedly applying the following rules:

1. Remove the hyperedges that are empty or contained in other hyperedhes;

2. Remove vertices that appear in at most one hyperedge

2.4.1 Acyclicity of Hypergraphs

Acyclicity of Hypergraphs is very important property due to the fact that CSP Problems
with acyclic instances are tractable [6]. In the literature exists different degrees
of acyclicity[15, 26] , and in this chapter we will focus over main acyclcities and

give an overview of some of these. First we give some theoretical de�nitions about
acyclicity of hypergraphs which can be found at [15].

21

Let (V;E) be a connected and reduced hypergraphH , and let F � E be a connected
set of edges. Further let f and g be in F , and q = f \ g. We say that a pair ff; gg is an
articulation pair of F and q is articulation set of F if after moving q from all edges of
F the set of remainder edges is not connected.[15]
We say F is closed if for every edge e 2 E, 9e0 2 F , so that e \ ([F)� e0.
And �nally a connected and reduced hypergraph is acyclic if every closed connected

set of edges consisting of at least two elements has an articulation set.
Graham gives another de�nition of acyclicity. A hypergraphH is acyclic ifGY O(H)

is an empty hypergraph [6].
In [26] are given and compared different characterization of acyclic hypergraph.

Here we give a short overview of some of these.

De�nition 12 [26, 11] A reduced hypergraph is �- acyclic if all its blocks are trivial
(contains less then two members), otherwise it is �- cyclic.

De�nition 13 [26, 11] A hypergraph is � - acyclic if all its subhypergraphs are � -
acyclic.

In Figure 2.8. are given different degrees of cyclicity.

(a) (b) (c)

Figure 2.8: Various degrees of cyclicity: (a) � � acyclic hypergraph, (b) � � acyclic
but � � cyclic and (c) � � acyclic [11]

An easy but not so ef�cient algorithm (O(jHGj2) of checking of acyclicity of hypergraphH
is checking if GY O(H) is empty. There are also some other algorithms, which are lin-
ear. Acyclicity of hypergraphs is into a narrow relationship with join trees. We can
say:

22

A hypergraph H is acyclic if it has a join tree [7]. There exists a linear-time al-
gorithm for computing a join tree [7] , therefore acyclicity of hypergraph is ef�ciently
recognizable.

2.4.2 Primal and dual graphs

We differentiate between primal and dual graph of hypergraph. We say that a graph
G(H) is a primal (Geifman) graph of hypergraph H = (V;E) if for any two vertices
of the same hyperedge of hypergraph H , exists an edge in graph G(H) which connects
these two vertices. [22]
Formally, G(H) = (V;E 0) , E 0 = ffx; ygjx; y 2 V; 9e 2 E : fx; yg � Eg.
Further we say that a graphD(H) is a dual graph of hypergraphH if his vertices are

the edges of hypergraph H and for any two connected vertices in D(H), exists at least
one vertex of H in common.[22]
Formally,D(H) = (V 0; E") , where V 0 = E and E" = ffx; ygjx; y 2 E; 9v 2 V :

v 2 x ^ v 2 yg.

x y

z

v

u

a b c

e

d

fg

h
a b c

h

g f e

d

x y

u

v

z

(a) (b) (c)

Figure 2.9: A simple hypergraph (a), it's primal (b) and dual (c) graph.

23

Although converting of hypergraph into primal and dual graphs have some advan-
tages during decomposition using biconected components (see next chapter), they have
also disadvantages due to the fact that no unique reversible way exists, i.e. some of
information can disappear (see Figure.2.9).

24

2.5 Decomposition Methods
As previously mentioned the CSP problems are in general NP-hard problems [4], and
thus intractable. However there are some classes of CSP problems which are identi-
�ed as tractable [4]. In order to �nd such tractable CSP classes different methods are
developed, among them a method based on restricting of structure [4]. As we know
the structure of CSP problems is much better represented by hypergraphs [5], and the
CSP with acyclic constraint hypergraphs are polynomially solvable [4] therefore the de-
composition methods attempt to reduce the cyclicity of hypergraph, and what more, if
possible to generate an acyclic hypergraph.
Gottlob et al.[4] compares some main decomposition methods. All these decom-

position methods de�nes a concept of width which can be interpreted as measure of
cyclicity, such that for each �xed width k, all CSPs of width bounded by k are solvable
in polynomial time [4].
In general CSP problems that have an importance in practice are not acyclic CSPs,

but they can be transformed into acyclic by applying of some methods which some
edges ore part of them put into new one, which make that the cycles disappear and
the problems become simpler. The advantage of these methods is that they create new
subproblems which then can be solved separately.
In this master's thesis I will give an overview of some of decomposition methods

described at [4] and comparison results found by Gottlob . Fore more details, see [4].

2.5.1 Biconected Components (BICOMP)

This decomposition method is �rst published by Freuder and operates on the primal
graph and not in hypergraph directly. First we give some basic de�nitions
LetG = (V;E) be a graph, and let be p 2 V a vertex. We say p is a separating vertex

of G, if removing him, the graph will be separated into some connected components. If
a graph contains no separating vertex then is called biconnected.[4]

De�nition 14 [11]The biconnected components of a graph G are the maximal bicon-
nected subgraphs of G:

A labelled tree < T; � > where � is a bijective function that associates to each
vertex of the tree either a biconnected component of G, or a singleton containing a
separating vertex for G, is called BICOMP-decomposition of G [4].
The BICOMP decomposition of hypergraphH is the BICOMP decomposition of its

primal graph. The biconnected width of a hypergraph H; BICOMP-width (H) is the
maximum number of vertices over the biconnected components of the primal graph of
H .[4]

25

Example 15 Figure. 2.10 (a) shows a hypergraph H , and 2.10 (b) its primal graph,
and 2.11 the decomposition tree consisting of biconnected components.

A

J

M

I

K

H

L

F

G

D E

B

C

A

CB
D

E

F

G
I

H

J

K
M

L

(a) (b)

Figure 2.10: The Hypergraph H (a) and its primal graph (b)

26

{ A, B, C }

{ I }

{ A }
{ A, D, E }

{ A, F, G }
{ A, I, H }

{ I, J, K } { I, L, M }

Figure 2.11: The BICOMP-decomposition of the hypergraph H in Figure2.10.

From Example 16 we see that the vertices I and A are the separating vertices of the
primal graph (see Figure2.10 (b)). The maximal number of vertices over biconnected
components of the graph G is 3, and thus BICOMP-width (H) = 3.

2.5.2 Tree clustering (TCLUSTER)

This method is proposed by Dechter and Pearl, which transforms the primal graph into
chordal graph.
A graph is chordal if every cycle of length at least 4 has a chord, i.e. an edge joining

two non-consecutive vertices along the cycle [15].
Let G = (V;E) be a primal graph, and G0 a chordal graph of any CSP instance.

The TCLUSTER-decomposition is the acyclic hypergraphH(G0) having the same set of
vertices as G0 and the maximal cliques of G0 as its hyperedges[4].
A primal graph is conformal if each of its maximal cliques corresponds to an edge

in the original hypergraph [15]. Due to the fact that hypergraph is acyclic if its primal
graph is both chordal and conformal, Dechter and Pearl show that the equivalent CSP is
acyclic [15].
They also show that for constraint satisfaction problem P = (X;�; �; C;�; �)

complexity-time of �nding of solution with this decomposition method is O(jX2j) +
O(jXj krr log k) where k is the maximal size of a domain in � and r is the number of
vertices in the largest maximal clique of the triangulated primal graph [15]. Therefore
we can see that the complexity of this technique is exponential in r.

Example 16 [4]Consider the hypergraph H shown in �gure 2.12 (a) . 2.12 (b) shows
its primal graph.

27

x 1

x 2

x 3

x 4

x 5

x 6

x 1

x 2

x 3

x 4

x 5

x 6

(a) (b)

Figure 2.12: The Hypergraph H (a) and its primal graph (b)

This graph can be triangulated as shown in �gure 2.13 (a) . If for each maximal
clique we associate a hyperedge, we get the acyclic hypergraph shown in �gure 2.13 (b)
. This hypergraph is at the same time a TCLUSTER decomposition of hypergraph H:

2.5.3 Treewidth

This method operates also on the primal graph of hypergraph. In [4] can be �nd the
following de�nition of tree decomposition and treewidth.
A tree decomposition of a graph G = (V;E) is a pair hT; �i, where T = (N;F) is

a tree, and � is a labelling function associating to each vertex p 2 N a set of vertices
�(p) � V , such that following conditions are satis�ed:

1. for each vertex b of G, there exists p 2 N such that b 2 �(p) ;

2. for each edge fb; dg 2 E; there exists p 2 N such that fb; dg � �(p);

3. for each vertex b of G, the set fp 2 N j b 2 �(p)g induces a (connected) subtree
of T .

According to this de�nition each vertex must occur in the tree, each edge of graph
must be covered by some vertices in tree, and �nally connectedness condition must be
valid.

28

x 1

x 2

x 3

x 4

x 5

x 6

x 1x 2

x 3
x 4

x 5

x 6

(a)
(b)

Figure 2.13: A triangulation (a) of the primal graph in Figure 2.12 and itsTCLUSTER-
decomposition (b)

The width of the tree decomposition hT; �i is maxp2N j�(p)� 1j. The treewidth
of a graph is the minimum width over all its tree decomposition. If a hypergraph is
acyclic, his treewidth has size 1, otherwise equally treewidth of his primal graph [4] .
TREEWIDTH and TCLUSTER are in fact two equivalent methods [4].

Example 17 Consider the hypergraph H in Figure 2.14 (a). Figure 2.14 (b) shows a
tree decomposition of H

From Figure 2.14 (b) we see that tree decomposition ofH is 2. As only hypergraphs
with acyclic primal graph have treewidth 1 follows that treewidth of Hypergraph is also
2.

2.5.4 Hinge Decomposition

The hinge decomposition is described by Gyssen et al. [15]. Further in [15, 4] can be
found the following de�nitions.
We gave the de�nitions of connected components already in section Hypergraphs.

Further let H be a hypergraph, H � edges(H); and C1; :::; Cn be the connected com-
ponents of H with respect H. Then H is a hinge if, for i = 1; :::; n , there exists an edge
hi 2H such that var(edges(Ci)\var(H)) � hi. A hinge isminimal if does not contain
any other hinge.
A hinge decomposition og H is a tree T such that satis�es the following conditions

1. the vertices of T are minimal hinges of H .

29

x 1

x 2

x 3

x 4

x 5 x 6

x 1

x 2x 1 x 3 x 4 x 5

x 4 x 6

(a) (b)

x 3 x 5

x 3

Figure 2.14: A given hypergraph H (a), and a tree decomposition of hypergraph H (b).

2. each edge in edges(H) is contained in at least one vertex of T .

3. two adjecent vertices of T share precisely one edge of H . Moreover, their shared
vertices are exactely contained in this edge.

4. the vertices of H shared by two vertices of T are entirely contained within each
vertex on their connecting path.

The size of the laregest vertex of T (that is the number of edges contained in vertex)
is the Hinge width of H .

Example 18 Consider the hypergraph in Figure 2.15. The minimal hinges of H are
H1 = fS1; S4; S3; S2g;H2 = fS2; S6; S7; S5g;H3 = fS5; S8g;H4 = fS5; S9g. See

Figure 2.16 .

The cardinality of largest minimal hinges is 4 (hinges H1 and H2), therefore the
HINGE width of H is 4.

30

x 1

x 2

x 3

x 4

x 5 x 6

x7

x8

x9

x10

S 1

S 2

S 3

S4

S5

S6

S7
S8

S9

Figure 2.15: The Hypergraph H

2.5.5 Hypertree Decomposition

Another decomposition method is developed by Gottlob et al (see [5]). This method,
according to the literature is the best decomposition method, which for a given constant
k checks in the polynomial time if the hypergraph has a hypertree width k . In positive
case this method can ef�cient to compute a hypertree decomposition, which actually is
LOGCFL complete.
First we give some basic de�nitions which can be found at [4, 5].
A hypertree for a hypergraph H is a triple hT; �; �i , where T = (N;E) is a rooted

tree, and � and � are labeling functions where �(p) � edges(H) and �(p) � var(H) .
vertices(T) denotes the set of vertices N of T . Further for any p 2 N , Tp denotes

the subtree of T rooted at p .

De�nition 15 [4, 5] A hypertree decomposition of a hypergraphH is a hypertreeHD =
hT; �; �i for H which satis�es the following conditions:

1. for each edge h 2 edges(H), there exists p 2 vertices(T) such that var(h) �
�(p) (we say p covers h);

2. for each variable Y 2 var(H), the set fp 2 vertices(T) j Y 2 �(p)g induces a
(connected) subtree of T ;

3. for each p 2 vertices(T); �(p) � var(�(p));

31

{ S1 , S4 , S3 , S2 } { S2 , S6 , S7 , S5 }
{ S5 , S8 }

{ S5 , S9 }

Figure 2.16: Hinge decomposition of Hypergraph in Figure 2.15

4. for each p 2 vertices(T); var(�(p)) \ �(Tp) � �(p):

The �rst condition meant that each constraint will be present in the tree, at least
as covert hyperedge. The second condition (connectednes condition) makes possible
application of Yannakakis algorithm on hypertree in order to evaluate it. The third
condition says that each variable that occurs in a vertex occurs also in one or several
edges which are part of this hypertree vertex. Fourth condition is only to ensure the
ef�cient computation of the hypertree decomposition.
If the fourth condition in de�niton of hypertree decompostions is ignored, the cor-

rosponding decomposition is called generalized hypertree decompostion.

{ S6 , S7 }{ x4 , x6 , x7 , x8 }

{ S8 , S9 }{ x7 , x8 , x9 , x10 } { S3 , S4 }{ x1 , x3 , x4 , x5 , x6 }

{ S1 }{ x1 , x2 , x3 }

Figure 2.17: A hypertree decomposition of width 2 of hypergraph H in example 19

Further, an edge h is strongely covered in hypertree decomposition if there exists a

32

vertex p such that var(h) � �(p) and h 2 �(p).
Hypertree decomposition of hypergraph H is a complete decomposition of H if

every edge of H is strongely covered in hypertree decomposition.
The width of hypertree decomposition hT; �; �i is maxp2vertices(T) j�(p)j : The hy-

pertree width hw(H) ofH is the minimum width over all its hypertree decompositions.
The acyclic hypergraphs have the hypertree width 1.

Example 19 Consider the hypergraph in Figure 2.15. Figure 2.17 shows a hypertree
decomposition of the width 2 of hyprgraph in Example 19. Figure 2.18 shows complete
hypertree decomposition.

{ S6 , S7 }{ x4 , x6 , x7 , x8 }

{ S5 }{ x7 , x8 }

{ S3 , S4 }{ x1 , x3 , x4 , x5 , x6 }

{ S1 }{ x1 , x2 , x3 }

{ S8 }{ x7 , x9 } { S9 }{ x8 , x10 }

{ S2 }{ x4 , x6 }

Figure 2.18: A complete hypertree decomposition of width 2 of hypergraph H in exam-
ple 19

33

3 Heuristic Algorithms

How ef�ciently we can solve constraint satisfaction problems, depends in particular
from the grade of cyclicity of the problem instances. The smaller grade of cyclicity
implies a better and faster solution. However the problem is how to eliminate these
cycles. As it has been described in the former chapter, in order to minimize or make
the cycles disappears, the different decomposition methods are developed. The newest
method developed by Gottlob et al [4][5][6], Hypertree Decomposition, one of most
powerfull decomposition method, ensures that for a given constant k, it can be decided
in polynomial time, whether a given hypergraph has a hypertree decomposition of width
equal to or smaller then k. The problem is that k appears in the exponent of runtime,
thus for large problems the algorithm becomes slower and requires lot of memory space
and therefore becomes quickly intractable. The implementations of this exact algo-
rithm, opt-k-decomp, are already done by the DBAI research group [11] and by the
research group of the University of Calabria. Because of these runtime behaviour dif-
ferent heuristic algorithms are developed in sense to make hypertree decomposition
useful even for large problems where opt-k-decomp becomes intractable.
In the literature we can �nd some interesting heuristic approaches which give in

partial very good results. They are, however, strongly in�uenced by the structure of the
hypergraphs , and only in few cases achieve a minimal width, so it is very desirable to
�nd approaches, which results deviate minimally from optimality.
In this chapter we will describe some of major heuristic approaches, which are partly

developed by DBAI research group (see [2]). Some of these heuristics are based on
vertex ordering and generate a tree decomposition of a primal or dual graph which then
can be extended to hypertree decomposition. There are also heuristics which are based
on hypergraph partitioning.
In this diploma thesis we propose two methods for generating of generalized hyper-

tree decomposition based on hypergraph partitioning. These methods are described in
details in section (3.4).

3.1 Bucket Elimination [16]
This heuristic approach was developed primarily to solve CSP problems. The method
was applied and modi�ed by McMahan [16]. In this diploma thesis we will give a short
description of this method. This algorithm is based on ordering of variables of any CSP
problem. For any ordering of n variables of hypergraph of the CSP x1; x2; :::; xn the
method creates n buckets, one for each variable. Afterwards for each hyperedge of hy-
pergraph, the method puts the hyperedge variables into the bucket of maximum variable.
The maximum variable is the variable with maximal position in already given ordering

34

of variables. The next step is an iteration on all buckets and their elimination. In every
bucket i the algorithm computes joins between all relations containing the variable xi
and �nally projects out xi . In case of an empty result the Constraint Satisfaction Prob-
lem is also empty, otherweise let j be the largest index in ordering, smaller then i , such
that xj is also a variable of the projected result. Then the results will be moved to bucket
j. Finally, the BE creates a tree decomposition. In order to generate a generalized hy-
pertree decomposition from the tree decomposition, McMahan inserts the hyperedges
in each tree decomposition vertex, if tree vertex contains its variables. To insert the
minimal number of hyperedges in tree vertex, he used different set covering heuristics
[16].
The Bucket Elimination heuristic has the property that for an optimal order, BE will

produce an optimal width of tree decomposition. Since the choosing of optimal BE
order is NP-hard he chooses the order heuristically. For a detailed description of the
algorithm see [16].
Although Bucket Elimination has a very simple concept , it gives very good results,

in particular the best evaluated results for some benchmark problems.

3.2 Branch Decomposition [27]

This method works on graphs. In this diploma thesis we will give a short description
of the method [27]. The �rst step is building of a star from graph, where each edge of
the graph is represented exactly from one edge in the star, additionally labelled with set
of vertices. The process of splitting of vertices (see Figure 3.1) of the star where every
two resulting vertices are connected by the new edge is called branch decomposition
of the graph [27]. This heuristic, used by Sammer (see [27]), �rst constructs a branch-
decomposition for a given hypergraph, then transforms it into tree-decomposition and
�nally into hypertree-decomposition applying set covering heuristic.
Note that for a branch decomposition of the hypergraph of a width k , it is possible

to construct a tree-decomposition of width at most 3k=2 [27]
For a detailed description of the algorithm see [27].

3.3 Hypertree - Decomposition through Hypergraph Partitioning

There are a number of heuristic approaches which are based on hypergraph partition-
ing. The idea of Hypergraph partitioning is to separate a hypergraph (set of vertices
of hypergraph) in two ore more subhypergraphs. At the same time they try to satisfy
the given certain rules or de�nitions, which tends to minimize the number of common

35

Figure 3.1: Splitting a vertex [27]

hyperedges between clusters (see Figure.3.2). In the literature exists several heuristic
approaches which produce hypertree decomposition based on hypergraph partitioning.
One such heuristic, which uses a recursive partitioning where every new cluster is

smaller that original one, is developed by Korimort [14]

Figure 3.2: Example of partitioning of hypergraph in two parts [2]

3.3.1 Recursive partitioning (Korimort [14])

I will give only brief description of this method. This method was developed by Kori-
mort [14]. In general this heuristic approach is composed by the following steps:

1. Computing of connected components of hypergraph

36

2. Decomposition of each component

3. Building of the hypertree

The main challenge during the decomposition routine is how to compute such sepa-
rators (set of hyperedges), such makes a problem smaller and simpler. In order to �nd a
good separator Korimort uses different heuristics. I will give brie�y some of them.

� "Dual graph separators"

First the hypergraph is transformed into weighted dual graph and then the vertex
connectivity of the dual graph is determined . Korimort shows that the vertex connec-
tivity of dual graph equals the size of minimal separator which splits the problem into
more than one subproblems [14].

� "Computing the vertex connectivity of the graph"

This method is based on computing a series of network �ows. Indeed, it is comput-
ing of the vertex connectivity of primal graph. For more details please see [14].

� "Eat up separators"

This method try to produce a subproblem which must be smaller then original one.
It can be done if for an arbitrary node of hypergraph we �nd all hyperedges that intersect
this node.

� "Random separators"

The hyperedges will be chosed incrementally according to already de�ned probabil-
ity distribution over all hyperedges [14].

3.3.2 Partitioning with Fiduccia-Mattheyses algorithm, FM [2]

This method is used and implemented by the DBAI research group [2]. We will give
a short description of the method which can be found at [2]. Fiduccia-Myttheyeses
algorithm is an iterative re�nement heuristic. After the hypergraph is splitt into two
parts, a number of moves of vertices to the opposite partitions is done. After each
move, a moved vertex will be "locked" in order to prevent it from being moved back
again. During those moves will be tried to avoid imbalanced partitionings. This will
be achived if every moving is done according to the selection criterium. This criterium
takes care that the size of the cut decreases. Although the next move isn't always the

37

"best" one, the best solution will be memorised and is taken as the initial solution for
the next pass [2].
In order to keep the connectedness condition after each partitioning step (new in-

serted special hyperedges), our research group has implemented four variants of the
Fiduccia-Matteyses algorithm. Those variants are dependent on handling of special hy-
peredges.There are different handling of special hyperedges. These special hyperedges
can be treated as normal hyperedges, as a minor variant of normal hyperedges or as
abolition of special hyperedges from separators (which can be done by moving of all
nodes contained in that special hyperedges).
For more information about implementing of this heuristic algorithm see [2]

3.3.3 Heurisctic algorithm based on Tabu Search [2]

Another heuristic approach implemented by DBAI research group is based on tabu
search. For complete background of tabu search please see [2]. We will give here
short description about implementing of heuristic.
In the progress of iterations during the searching of solutions, some information

about moves and reverse moves of vertices between partitions will be stored. These
stored informations will be usefull to avoid multiple searching of solutions and will be
kept for the certain number of iterations. In the implementation of tabu search heuris-
tic some modi�cations have been done. For instance, during each iterations process,
the neighbourhood size will be reduced by moving only of vertices which appear in
separators [2]. Another modi�cation is the insertion of some probability rules for one
randomly selected separator. We can expect that with some probability the nodes of
only this separator will be moved.
The �tness criterium used in this implementing is the sum of weights of all hyper-

edges which connect two partitions.

38

3.4 Two new heuristic algorithms based on partitioning

The heuristic approaches which are implemented in this diploma thesis are based on
the hypergraph partitioning. The main difference between two proposed heuristics is
the method of �nding of separators. The �rst implementation is based on HMETIS al-
gorithm [12], according to the literature one of the best partitioning algortithm. This
algorithm works direct on hypergraphs. Please note that the HMETIS algorithm is also
a part of hypertree decomposition library, which was implemented by DBAI research
group (see [2]). The second approach takes into consideration a large number of pos-
sible separators and chooses the best one with respect to certain �tness criteria. This
algorithm is based on dual graphs. In this section I will give a detailed description of
both algorithms.

3.4.1 Heuristic algorithm based on HMETIS partitioning

This approach which we use in order to achieve a good hypergraph partitioning is based
on HMETIS algorithms. HMETIS is a software package for partitioning hypergraphs,
developed at the University of Michigan. According to the literature, HMETIS is one
of the best available packages for hypergraph partitioning [12, 9, 13]. I will give a brief
description of the HMETIS partitioning approach . More information about HMETIS
heuristic can be found in [12, 9, 13]. In general, the algorithm comprises of three phases.
In the coarsening phase the group of vertices of hypergraph will be merged together in
order to create the single vertices and smaller hypergraph. In this way the size of large
hyperedges will be reduced, and it is very helpful because of the fact that FM algorithm
is better than other algorithms when refning smaller hyperedges [9]. There are three
possibilities to merge the vertices during the coarsening phase: the �nding of a maximal
set of vertices which have the common hyperedges (edge coarsening), the merging of
vertices within the same hyperedge (hyperedge coarsening), and �nally the modi�ed
hyperedge coarsening which also merges the vertices within hyperedges that have not
yet been contracted [9].
After the coarser hypergraph is created, the next phase called the initial partitioning

phase computes a bisection of those hypergraphs tending a small cut and a speci�ed
balanced constraint. The coarser hypergraph has a small number of vertices, usually
less than 200 vertices [9], therefore the partitioning time tends to be small. In order
to compute the initial partitioning HMETIS uses two different algorithms followed by
the Fiduccia-Mattheyses (FM) re�nement algorithm [9].. Because the algorithms are
randomised, different runs result in different solutions, and the best initial partitioning
will be selected for the next phase.
During the uncoarsening phase the partitioning will be successively projected to

the next level �ner hypergraph and a partitioning re�nement algorithm will be used

39

to reduce the cut-set in order to improve the quality of partitioning. HMETIS imple-
ments a variety of algorithms that are based on the FM algorithm which repeatedly
moves vertices between partitions in order to improve the cut [9, 13]. The hMETIS
package offers a stand-alone library which provides the HMETIS_PartRecursive() and
HMETIS_PartKway() routines. HMETIS_PartRecursive() routine computes a k-way
partitioning and is based on recursive partitioning of hypergraph in two partitions (mul-
tilevel recursive bisection) [9, 13]. HMETIS_PartKway() routine computes also k-way
partitioning and is based on recursive partitioning of hypergraph in more than two par-
titions (multilevel k-way partitioning) [13]. We use both routines in order to achieve
appropriate partitions, that lead to a hypertree decomposition of small width. The
HMETIS package offers the possibility to change different parameters which have an
impact on the quality of partitioning. Therefore we make a series of tests with parame-
ters of different values, and we come to the conlusion that the parameters which mostly
impact the quality are the number of desired partitions nparts, and the imbalance factor
between partitions ubfactor. For a complete description of parameters see [12]. The test
results show that for nparts less than 3 the hypertree decomposition was not necessarily
better, and usually higher ubfactors lead to smaller hypertree-widths.

40

3.4.2 New heuristic algorithm based on dual graph

We will give a short description of the heuristic. Generally our heuristic performs the
following steps:

1. Find the so-called star structures and decomposes it

2. Find a good separator K (i.e., a set of edges that divides the hypergraph)

3. Divide the hypergraph into subgraphs (subproblems) where the above found sep-
arator K is at the same time at hypertree T a parent node for the new subproblems

4. For each subproblem continue recursively at 2

5. At each hyperedge put back the hypernodes values that were present before the
star structure decomposition

6. Check the hypertree T for star connectedness condition (After disappear of star
structures a connectedness condition can be violated)

7. Return the resulting hypertree

Star structures Nearly at all real practical problems are present star structures, i.e. a
set of hyperedges (more than two) that have at least one common nodes. There are two
reasons why for our heuristic the decomposing of such structures is very signi�cant and
desirable.

� A star structures avoids the �nding of cycles in a dual graph

� A star structures makes divide of the hypergraphs into subgraphs more dif�cult

As we see from Figure 3.4 the common element continues to remain in two hyper-
edges (usually these two hyperedges are the hyperedges that are connected with most
other hyperedges of the hypergraph), in our case let be B and C: The most connected
hyperedge is called a basic star hyperedge. In order to keep further the hyperedges con-
nectivity we insert new temporal variables (X and Y) into the basic star hyperedge B
and into all other star hyperedges that don't contain the common element anymore (A
and D):This temporally variables ensures further the connectivity between hyperedges
The hypergraph structure after star decomposition has become more simple. Now

the hyperedges A;C and D are connected only with basic star hyperedge B but not
directly with each other (see Figure 3.5 (b)). The advantage is that now there are less

41

A

B

C
D

Figure 3.3: A hypergraph star structure

connected hyperedges (i.e. less unnecessary combination during the �nding of separa-
tor K , which next section describes in detail) and now we can �nd cycles. Note that
although from Figure 3.5 (a) we get a cycle (A � B � C), we see from Figure 3.5 (b)
that after star decomposing no such cycle exists anymore. Now they are two differents
graphs.
The disadvantage of the star decomposition is the necessity to check the hypertree

T for star connectedness condition (see the chapter star connectedness condition)
For the real problems star decomposition is computed quickly (Nasa: 680 Con-

straints => Star decomposition time = 16 sec).

42

A

C

D

X

Y

B

Figure 3.4: Hypergraph structure after star decomposing

Computing of separators The main challenge during the computing of the separator

is how to �nd a good separator. A good separator allows a hypertree decomposition of
minimal width. Its subgraphs can be further decomposed in such way that the minimal
width is not exceeded.
Generally such a (good) separator is very hard to compute because in the worst case

we must take in consideration a very large number of possibilities which is almost as
one exact decomposition and we risk a very large running time.
In the implementation of the heuristic we perform the following steps:

1. Find a set of separators

2. Evaluate them (i.e. compare them with respect to certain �tness criteria)

3. Chose the one with the best evaluation

In order to restrict the search space for separators , we assume an upper bound for
the width of separators. Finding a set of separators consists of a lot of trials.
We differentiate between the �nding process of the �rst separator and the �nding

process of the others separator. The separators in hypertree decomposition cannot be
chosen independently because of connectedness. We begin with converting a hyper-
graph into a dual graph. Then, beginning from the most connected edge in that dual
graph, we �nd all cyclic (�rst the smaller cycles) and all acyclic components . After

43

B C

D A

B C

D
A

(a) (b)

Figure 3.5: The hypergraph star structure in dual form (a), and the hypergraph structure
in dual form after star decomposition (b).

that we �nd all touch-points between those components and thus get a set of separator
candidates. The touch-points make it possible to choose such separators whose edges
are close together, which increases the probability that these edges can be covered by a
small separator in the next step.
Finally, we evaluate the separators. Of course this method gives us no certainty

that the best separators can be found, but tells us where the graph can be eventually
divided. Sometimes the separator candidates cannot divide the dual graph, so we need
to combine them as long as either one such separator is found or the given upper bound
is exceeded. However in such cases we can make optimality worse. If however in spite
of that, none of separators splites the dual graph and also upper bound is reached, we
chose simply the largest found separator.
Let us consider an example to illustrate this process. The hypergraph to be decom-

posed and its dual graph are given in Figure 3.6 and 3.7 and upper bound for the width
of separators is equal to 2. The most connected node with other nodes in the dual graph
is D (if no such unique edge exists then choose one randomly). Please note that nodes
in dual graph represent the edges of hypergraph. Beginning from D we try to �nd the
�rst cycle component containing as less as possible nodes. As we see we have two pos-
sibilities D � C � B and D � F � I � H . Our desired cycle component would be
D�C �B. We cut out the found cycle component from the dual graph (see Figure 3.8
) and recursively �nd the next cycle components.
From the dual graph in �gure 3.8 we �nd the next cycle component E�G� I �F .

After we cut out the newly found cycle from the dual graph we �nally get two acyclic
components A and H (see �gure 3.9). We have a set of cycle components Cyc =
fD � C � B;E � G � I � Fgand a set of acyclic components Acyc = fA;Hg.
The next step is to �nd the touch-points between those components. As touch-points

44

A

D

C

H

B

G

F

E

I

a b c

d

h

g

f

is

j

k
l

m

p

o

n

q

r

t

Figure 3.6: The given hypergraph HG

we consider only the nodes that are contained in cycle components. A set of touch-
points would be P = fC;D; F;E; I). However no edge from set P alone divides
the hypergraph, so we must combine the edges that are contained in different cycle
components and are not directly connected. So we get a new set of possible separators
P 0 = fCF;CE;CI;DE;DIg. The given upper bound for the width of separator is
reached.
Generally, for hypergraphs with large number of edges a set of possible separators

P 0 can be very large too, and evaluation time in that case can be a problem. In order to
restrict the evaluation time, we restrict the set of possible separators P 0 heuristically.

The main problem is how to achieve a connectedness by �nding of the other sep-
arators. Our heuristic uses two different methods. We either try a total covering of a
previous separator which sometimes increase rapidly a separators width , or we extend
each found possible separator with edges of a previous separator (Figure 3.10).
Suppose AB is a separator. Then the separator will be totaly covered by edges

45

E

D

B

A C

H

F

I

G

Figure 3.7: It's dual graph

C;D; F . So the next separator will be CDF . This method is easy but increases un-
necessary the separators width. The other method is more ef�cient. We suppose a
set of a new possible separators Poss = fD;Eg. Than we extend the possible sep-
arators with edges of a previous separator, thus get a new set of a possible separators
Poss0 = fDAB;EABg. And �nally we have the unique set of possible of separators
Poss = fCDF;DAB;EABg.
We have special cases where a dual graph is a cycle or is a acyclic. If the dual graph

is a cycle, see Figure 3.11 (a), (the width of separator is exactly 2) than we simply select
two not neighbour edges e.g. AD or EB or. . . CF as e separator and decompose the
graph into acyclic graphs.If a dual graph is a acyclic, see Figure 3.11 (b), (the width of
separator is exactly 1) than we select only one edge as separator e.g.. D or C.
The evaluating of separators begins with determining one �tness criteria that makes

possible to choose separators which divide the hypergraph into subgraphs that are as
independent as possible of each other and that are approximately of equal size.
The evaluation algorithm perform the following steps:

1. Find the number of subgraphs (#Subgraphs)

2. Compute the average value of all subgraphs edges (�)

46

E

A

H

F

I
G D

B

C

Figure 3.8: The dual graph after the cycle component D-C-B is cut out

E

A

H

F

I
G D

B

C

Figure 3.9: The dual graph after the cycle component E-G-I-F is cut out

47

A B

C

D E

F

Figure 3.10: The covering example

3. Compute the deviation of the average value for each subgraph

4. Compute the average value of all deviations (MD)

5. Choose the separator with the least average value of all deviations within the set
of separators.

where

� =

#SubgraphsX
i=1

j#Subgraphij

#Subgraphs
MD =

#SubgraphsX
i=1

jj#Subgraph1j��j

#Subgraphs

Let us consider an example to illustrate this process. We compare two possible
separators from set P 0(Figure 3.7), say DE and CE.

DE divids a hypergraph into subgraphs : HGIF and ACB (see Figure 3.12) =>
#Subgraphs = 2

� = 4+3
2
= 3:5 and MD = j4�3:5j+j3�3:5j

2
= 0:5+0:5

2
= 0:5

CE divides a hypergraph into subgraphs : A and BDFIHG (see Figure 3.13)
=> #Subgraphs = 2

48

A B

C

DE
F

A B

C
D

E

F

(a) (b)

Figure 3.11: A cyclic dual graph (a) and an acyclic graph after decomposing (b)

� = 1+6
2
= 3:5 and MD = j1�3:5j+j6�3:5j

2
= 2:5+2:5

2
= 2:5

As we see the separator DE hase a smallerMD than separator CE which makes it
a better separator.

Star connectedness condition The star decomposition process can have wrong con-

nectedness condition as result. From Figure 3.5 we see that after star decomposition
the edges A;C;D are not anymore directly connected. The won hypertree would be
correct , however only for dual graph after star decomposition, but not for original dual
graph. In order to repair such cases, we check the connectedness condition between all
star edges. If between two vertexes in hypertree (they must be within a subtree) no such
connection exists, we insert common star variables in all vertexes of that subtree.

49

G

I

H

F
B

D

A C
E

Figure 3.12: The resulting subgraphs for graph in Figure 3.7 from separator DE

G

I

H

F
B

D

A C
E

Figure 3.13: The resulting subgraphs for graph in Figure 3.7 from separator CE

Building of generalized hypertree decomposition This heuristic approach is a top-
down algorithm, which after every succsessful found separator creates a new hypertree
node and inserts it in tree as a child. This will be made recursively until the subgraph is
smaller then worst found separator-width .
Let explain it with an example:
Consider the hypergraph in Figure 3.14. We suppose that in �rst step B is chose

as separator, i.e. Sep = fBg. A new node of hypertree is created, see Figure 3.15
(a). The separator divides hypergraph into two subhypergraphs HG1 = fA;D;Eg and
HG2 = fG;C; Fg.
From HG1 are chosen D and E as separator,i.e. Sep = fD;Eg. A new hypertree

node is created and inserted as child in parent node, see Figure 3.15 (b) . Finally we get

50

A B C

D

E F

G

x

y

z v

w p

q

r

s

t

i

m

n

h

k

Figure 3.14: Hypergraph HG

an acyclical graph, only edge A. A new hypertree node is created and inserted as child
in parent node, see Figure 3.15 (c) . Here we break the recursivity, and we begin with
HG2. The won hypertree is shown in Figure 3.15 (d) .
After the hypertree is built we begin with the second(bottom-up) phase. In that phase

we try to optimize the variables of all hypertree nodes. Each parent node should have
only those variables which are necessary to keep connectivity. If an hyperedge occurs in
a hypertree node and can also be found in its parent node, then holds only the variables
which can also be found in its child node, otherwise all variables are assigned to the
hyperedge. If hyperedge occurs in the root of hypertree then it holds all variables. From
Figure 3.16 we see that the hyperedge A occurs at hypertree nodes p and q, therefore at
hypertree node q : var(A) = var(A) \ var(D). However hyperedge A at hypertree
node p; hyperedge C and hyperedge D have to hold all its variablen.
Let be p, p1, p2, p3 the hypertree nodes from Figure 3.15 (d), where �(p) =

fBg; �(p1) = fD;Eg; �(p2) = fAg; �(p3) = fG;Fg; �(p4) = fCg:
We begin with hypertree node p2 :
Hypertree node p2: It is a leaf of hypertree, therefore �(p2) = fx; y; zg:
Hypertree node p1: It is a parent node of hypertree node p2 . The edges D and E

can not be found in hypertree node p therefore they holds all its variables. It is similar
for all other edges.
Finally we get: �(p) = fw; h;m; v; kg , �(p1) = fy; i; w; z; t; vg , �(p2) =

fx; y; zg, �(p3) = fh; s; p; k; r; ng, �(p4) = fp; q; ng:

51

B B

ED

B

ED

A

B

ED

A

G

(a) (b) (c) (d)

F

C

Figure 3.15: Building of hypertree

The Correctness of the Heuristics To prove that our heuristic produces a correct gen-
eralized hypertree decomposition, we show that the heuristic satis�es following three
conditions :

1. Every constraint must appear in hypertree T or is covered, i.e. 8E 2 edgess(HG);9p 2
vertices(T) such that var(E) � �(p)

2. The connectedness condition, i.e. 8x 2 var(HG); all p 2 vertices(T) such that
x 2 �(p) induces a connected subtree

3. That for each variable of the hypertree vertex there exists at least one hyperedge
that accours in that vertex which contains that variable, i.e. 8p 2 vertices(T); �(p) �
var(�(p))

First we give some basic de�nitions which will help us to understand and explain
our heuristic approach and which are necessary to prove the correctness of the method.

De�nition 16 (Subproblem) Let HG = (V;E) be a hypergraph of a problem S: Then
S1 = (V1; E1) is a subproblem if

V1 is the �nite set of hypernodes
E1 is the �nite set of hyperedges

52

BA

CA

D

p

q

r

Figure 3.16: Optimization of variables

where V1 � V and E1 � E

De�nition 17 (Separator) Let S1 = (V1; E1) be a subproblem. Then K = Sep(S1) is
its separator if K � E1 and j var(K) j<j V1 j

Note that the heuristic accepts separators even then they do not split the hypergraph.

De�nition 18 (ParentSeperator) Let S = (V;E) be a problem, K = Sep(S) its
separator and S1 = (V1; E1) a subproblem as result of decomposing by K.
Then K is ParentSeparator for subproblem S1: Formally K = ParentSep(S1)

De�nition 19 (CommonEdges) All edges of subproblem S1 having some common vari-
ables with its ParentSeparator K are called common edges of subproblem with its Par-
entSeparator, formally commEdg(S1;K) = fE 2 E1 j var(E) \ var(K) 6= ?g:
Analogous commEdg(K;S1) = fE 2 edgess(K) j var(E) \ var(S1) 6= ?g are

called common edges of ParentSeparator with its subproblem

De�nition 20 (CommonVariables) All common variables of subproblem with its Par-
entSeparator are called CommonVariables, formally commV ar(S1;K) = commV ar(K;S1) =
var(S1) \ var(K)
We say commV ar(S1;K) is totally covered from commEdg(S1;K).

Now we give a de�nition of the separators used in our heuristic approach. After
every decomposition step we choose as a separator either common edges of subproblem
(complet covering of CommonVariables) or we �nd a new separator from subproblem
and then we extend this with common edges of ParentSeparator.

53

Formally
Sep(S1) = commEdg(S1;K) or Sep(S1) = Sep(S1) [commEdg(K;S1)

From these de�nitions we can show and prove the correctness of the heuristic algo-
rithm:

� The �rst condition is trivial. Because of the fact that we operate on dual graph,
it follows that we decompose our hypergraph as long as all constraints either
become part of separators and thus accour in a hypertree node, or they become
part of an acyclic hypergraph, which is normally a leaf of hypertree.

� From our separator de�nition follows that every new found separator is a child
of previous separator and it either coveres totally the CommonVariables or is ex-
tended with common edges of previous separator. This art of separators ensures
us that all parent-child vertexes have common variables so that no casualties of
connectednnes exists. The second condition is also satis�ed.

� Third condition is also trivial. A separator is a product of hyperedges. So the
variables of separator(vertex of hypertree) is a set of variables of all hyperedges
of that vertex. This is exactly the third condition.

54

A simple example Consider the hypergraph in Figure 3.17. The hyperedges of this

hypergraph are:

A

B

C

D
E

I

M
JL

K

1

2

3
4

5
6

7

8

9 10

11

12 13

14 15

16

1718

1921

20

Figure 3.17: Example of a hypergraph

A = f1; 2; 3; 4g
B = f1; 5; 6g
C = f1; 10; 11g
D = f1; 12; 13g
E = f5; 7; 8g
I = f7; 9; 10g
K = f2; 16; 19; 21g
L = f3; 18; 20g
M = f14; 15; 16g
J = f13; 14; 17; 18; 19g

Further we suppose a hypertree width 2, therefore we give a start (desired) separator
width k = 2:

� Star Decomposition

55

First we �nd all star structures of the hypergraph. We have only one such struc-
ture, that is A � B � C � D. The edge A is the most connected hyperedge of
star structure, therefore we chose it as basic star hyperedge.The common vari-
able is 1. This variable remain again in basic star hyperedge, additional we insert
new temporally variables x and y. Finally we decompose the star structure, see
Figure3.18.

A

B

C

D

E

I

M
JL

K

1

2

3

4

5
6

7

8

9 10

x

12 13
14 15

16
1718

1921

20

11

y

Figure 3.18: Hypergraph after star decomposition

After star decomposition the edges have these variables:
A = f1; 2; 3; 4; x; yg

B = f5; 6; yg
C = f10; 11; xg
D = f1; 12; 13g
E = f5; 7; 8g
I = f7; 9; 10g
K = f2; 16; 19; 21g
L = f3; 18; 20g
M = f14; 15; 16g

56

J = f13; 14; 17; 18; 19g

� Dual Graph
After converting of hypergraph into dual graph (Figure 3.19), we �nd the cycle
components, begining of most connected node, that is A.
The smallest cycle component is: Cyc = fA � D � J �Kg:After this cycle is
cut, we get those acyclic components: Acyc = fL;M;B � E � I � Cg.
All touch points are: P = fA; J;Kg.

AB

E

I C
L

K J

M

D

Figure 3.19: Dual graph of given hypergraph

� Choose of the separators
A set of possible separators is: PossSep = fA; J;Kg . We consider also
AJ;AK; JK as possible separator,because our start separator width (= 2) allows
us, therefore PossSep = fA; J;AJ;AK; JKg.
The �tness function choses AJ as separator, that is K = fA; Jg. We create a
vertex (root of hypertree). This separator divides the graph in the following sub-
graphs(subproblems): S1 = fLg; S2 = fDg; S3 = fM;Kg; S4 = fB;E; I:Cg.
Up to the subproblem S4 we have nothing to decompose, but to create new ver-
texes and to insert them in separator (vertex) K. We decompose further the sub-
hypergraph S4 = fB;E; I:Cg: The common edges of subhypergraph with par-
ent separator are commEdg(S4; K) = fB;Cg:Analogous commEdg(K;S4) =

57

fAg:We have two possibilities to choose the new separatorK1 of subhypergraph.
Either K1 = commEdg(S4; K) = fB;Cg (totally covered), or we get edge E
as a separator of subhypergraph, and extend this with commEdg(K;S4) = fAg,
that is K1 = fA;Eg. The �tness function chose fB;Cg vs. fA;Eg, that is
K1 = fB;Cg. We create a new vertex and insert it as a child in separator (vertex)
K.
The separator K1 = fB;Cg divides further the subhypergraph into S5 = fE; Ig.
Here we break the recursivity and create a new vertex and insert it as a child in
separator (vertex) K1.
The won hypertree (only � set) is shown in Figure

J , A

C , B

 I , E

L K , M D

Figure 3.20: Hypertree decomposition of the hypergraph in Figure 3.18

� Bottom - Up phase
All edges present in vertexes of hypertree, do not occur in any another vertex,
therefore they holds all variables .

� Star connectedness condition
Star connectedness condition is also satis�ed. All star edges fA;B;C;Dg are
connected (see Figure 3.20) therefore no additional proceedings is necessary.

58

4 Evaluations of heuristics
In this chapter we will show computitional results of two heuristics implemented in
this diploma thesis (algorithm based on dual graph and algorithm based on HMETIS
partitioning). Additionally we will give a comparison between them and results of other
heuristics implemented by DBAI research group [2]). All these heuristc algorithms are
tested on different industrial examples from DaimlerChrysler, NASA, ISCAS circuits
and syntethicaly generated examples like Grids and Cliques. The description of these
problems is given in [18].
The experiments were done on two different machines. Because of the fact that the

heuristic algorithm based on dual graph for large problems has not optimal runtime per-
formance we have tested this algorithm for problems having a width size at the most 600
Edges/Notes. These experiments were done in a machine with IntelPentium Proccesor
(1,7 GHz, 1GB Memory).
The algorithm based on HMETIS partitioning is tested in a machine with a Intel

Xenon (2x) Procesor (2,2GHz, 2GB Memory). The experiments of this algorithm are
described also in [2]

4.1 Comparison of heuristics for small problems (600 Edges/Nodes)
In this section we compare the results for two algorithms implemented in this diploma
thesis, as well as opt-k decomp and Korimort algorithm.
The algorithm based on dual graph needs a start parameter which represents our

desired size of separators (see section 2.4.2). Note that, in general for different start
parameters the algorithm gives different results (see Tables 4.1 and 4.2). The results for
opt-k-decomp and Korimort algorithm are taken from [2]. The tables 4.1 and 4.2 show
that the algorithm yields better results for start parameter k=1 then for k=2. However
the runtime is worse. In general there is no guarantee that decompositions started with
smaller desired size of separators yields a better decomposition results. Indeed a found
local "good" separator is not necessary "the best" one.
The HMETIS algorithm is tested for the different number of partitions (nparts = 2

and nparts = 3) and for the imbalance factor between partitions (ubfactor = 5, ubfactor
= 10, ubfactor = 20, ubfactor = 30, ubfactor = 40, ubfactor = 49). The best found width
is taken as the result.
The algorithms are tested on total 101 examples from DaimlerChrysler, NASA, IS-

CAS and Cliques. The obtained results are shown in tables 4.3, 4.4, 4.5, 4.6, 4.7 and
4.8. The tables have the following structure: The �rst column represents the name of
example and its number of atoms and variables. The results and runtime obtained from
opt-k-decomp and from the algorithm of Korimort can be found in columns named with
"opt-k-decomp" respectively "Korimort". The columns named with "Dual Graph" and
"HM" represent the results and runtimes obtained from algorithms implemented in this

59

diploma thesis (algorithm based on dual graph and algorithm based on HMETIS parti-
tioning). Note that the runtime measures are shown in seconds.

For k=1
Instance (Atoms / Variables) Time (sec) Width
adder_2 (11 / 15) 0 2
adder_3 (16 / 22) 0 2
adder_15 (76 / 106) 25 2
adder_30 (151 / 211) 120 2
bridge_4 (38 / 38) 8 2
bridge_12 (110/ 110) 220 2
bridge_32 (290/ 290) 2780 2
atv_partial_system (88 / 125) 65 4

Table 4.1: The results of algorithm based on dual graph with start parameter k=1

For k=2
Instance (Atoms / Variables) Time (sec) Width
adder_2 (11 / 15) 0 3
adder_3 (16 / 22) 0 3
adder_15 (76 / 106) 13 3
adder_30 (151 / 211) 87 3
bridge_4 (38 / 38) 3 3
bridge_12 (110/ 110) 80 3
bridge_32 (290/ 290) 830 3
atv_partial_system (88 / 125) 51 4

Table 4.2: The results of algorithm based on dual graph with start parameter k=2

From tables we conclude that opt-k-decomp is useful only for small examples. The
Korimort algorithm is tested for examples of DaimlerChrysler (adder, bridges, newsys-
tem and atv_partial_system). Although the algorithm for adder and bridges examples
yields the optimal results, it is not useful for larger problems instances, see [2]..
The algorithm based on dual graph is tested for examples of DaimlerChrysler, NASA,

ISCAS and Cliques. For adder and bridges examples the algorithm yields optimal re-
sults. However the larger the problem the worse the result. In comparision to HMETIS
algorithm the dual graph algorithm has a very large runtime. Therefore in order to avoid
a very large runtimes, this algorithm is prefered only for small problem instances (with
at most 600 Edges/Notes) . This algorithm was able to solve all given examples,but not

60

always gives optimal solutions. The total sum of widths of all given examples for Dual
Graph algorithm is 1797. The total runtime is 19.37 hours.
The HMETIS algorithm yields the best results among all other algorithms. The total

sum of widths of all given examples is 1157. The total runtime is 0.32 hours.
Overall the results show that HMETIS algorithm is much better heuristic approch

then the other heuristics shown in this section. Therefore the HMETIS is compaired
also with other heuristics developed by DBAI research group (see [2]). The next section
shows the results of these comparasons.

opt-k-decomp Korimort Dual Graph HM
Instance (Atom / Var) Min W T W T W T k W T
adder_2 (11 / 15) 2 2 1 2 ? 2 0 1 2 0
adder_3 (16 / 22) 2 2 1 2 ? 2 0 1 2 0
adder_4 (196 /274) 2 2 ? 2 ? 2 280 1 2 0
adder_5 (26 / 36) 2 2 3 2 ? 2 1 1 2 0
adder_6 (31 / 43) 2 2 5 2 ? 2 2 1 2 0
adder_7 (36 / 50) 2 2 12 2 ? 2 4 1 2 0
adder_8 (41 / 57) 2 2 17 2 ? 2 5 1 2 1
adder_9 (46 / 64) 2 2 21 2 ? 2 7 1 2 1
adder_10 (51 / 71) 2 2 28 2 ? 2 10 1 2 2
adder_11 (56 / 78) 2 2 29 2 ? 2 14 1 2 2
adder_12 (61 / 85) 2 2 32 2 ? 2 19 1 2 2
adder_15 (76 / 106) 2 2 39 2 ? 2 25 1 2 3
adder_18 (91 / 127) 2 2 42 2 ? 2 34 1 2 4
adder_20 (101 / 141) 2 2 49 2 ? 2 42 1 2 4
adder_25 (126 / 176) 2 2 52 2 ? 2 49 1 2 5
adder_30 (151 / 211) 2 ? ? 2 ? 2 120 1 2 6
adder_40 (201 / 281) 2 ? ? 2 ? 2 232 1 2 8
adder_50 (251 / 351) 2 ? ? 2 ? 2 508 1 2 10
adder_60 (301 / 421) 2 ? ? 2 ? 2 805 1 2 12
adder_75 (376 / 526) 2 ? ? 2 ? 2 1791 1 2 14
adder_85 (426 / 596) 2 ? ? 2 ? 2 2823 1 2 16
adder_90 (451 / 631) 2 ? ? 2 ? 2 3464 1 2 18
adder_99 (496 / 694) 2 ? ? 2 ? 2 6200 1 2 20

Table 4.3: Results of Dual Graph and HMETIS for Adder examples

61

opt-k-decomp Korimort Dual Graph HM
Instance (Atom / Var) Min W T W T W T k W T
bridge_1 (11 / 11) 2 2 ? 2 ? 2 0 1 2 0
bridge_4 (38 / 38) 2 2 ? 2 ? 2 8 1 3 1
bridge_8 (74 / 74) 2 2 ? 2 ? 2 64 1 3 2
bridge_12 (110 / 110) 2 2 ? 2 ? 2 220 1 4 4
bridge_16 (146 / 146) 2 2 ? 2 ? 2 520 1 3 6
bridge_20 (182 / 182) 2 2 ? 2 ? 2 670 1 3 10
bridge_26 (236 / 236) 2 2 ? 3 ? 3 394 2 4 14
bridge_32 (290 / 290) 2 2 ? 3 ? 2 2780 1 3 16
bridge_38 (344 / 344) 2 2 ? 3 ? 3 3273 2 3 18
bridge_46 (416 / 416) 2 2 ? 3 ? 3 4800 2 4 20
bridge_50 (452 / 452) 2 2 2211 3 174 3 7879 2 4 21

Table 4.4: Results of Dual Graph and HMETIS for Bridge examples

62

opt-k-decomp Korimort Dual Graph HM
Instance (Atom / Var) Min W T W T W T k W T
clique_10 (10 / 45) 5 5 0 ? 7 0 4 5 0
clique_11 (11 / 55) ? ? 8 0 4 6 0
clique_12 (12 / 66) ? ? 9 0 4 6 0
clique_13 (13 / 78) ? ? 10 0 4 7 0
clique_14 (14 / 91) ? ? 11 1 4 8 0
clique_15 (15 / 105) 8 ? ? 12 1 4 8 1
clique_16 (16 / 120) ? ? 13 2 4 8 1
clique_18 (18 / 153) ? ? 15 3 4 10 1
clique_20 (20 / 190) 10 ? ? 17 4 4 10 1
clique_22 (22 / 231) ? ? 19 6 4 11 2
clique_24 (24 / 276) ? ? 21 8 4 13 2
clique_25 (25 / 300) 13 ? ? 22 9 4 14 2
clique_30 (30 / 435) 15 ? ? 27 16 4 15 3
clique_35 (35 / 595) 18 ? ? 32 28 4 18 7
clique_40 (40 / 780) 20 ? ? 37 47 4 20 9
clique_45 (45 / 990) 23 ? ? 42 70 4 23 30
clique_50 (50 / 1225) 25 ? ? 47 110 4 25 47
clique_60 (60 / 1770) 30 ? ? 57 230 4 51 4
clique_70 (70 / 2415) 35 ? ? 67 430 4 68 1
clique_80 (80 / 3160) 40 ? ? 77 719 4 71 6
clique_90 (90 / 4005) 45 ? ? 87 1154 4 89 2
clique_99 (99 / 4851) 50 ? ? 96 1666 4 98 3

Table 4.5: Results of Dual Graph and HMETIS for clique examples

63

opt-k-decomp Korimort Dual Graph HM
Instance (Atom / Var) Min W T W T W T k W T
grid2d_5 (12 / 13) ? ? 3 1 2 3 0
grid2d_10 (50 / 50) 4 ? ? 8 20 4 6 3
grid2d_12 (72 / 72) ? ? 10 54 4 9 7
grid2d_15 (112 / 113) 6 ? ? 16 162 4 11 10
grid2d_16 (128 / 128) ? ? 19 216 4 11 12
grid2d_20 (200 / 200) 7 ? ? 24 166 23 15 18
grid2d_25 (312 / 313) 9 ? ? 28 459 23 16 38
grid2d_26 (338 / 338) ? ? 33 571 23 15 30
grid2d_28 (392 / 392) ? ? 37 870 23 16 24
grid2d_30 (450 / 450) 11 ? ? 38 1277 23 17 52
grid2d_35 (612 / 613) 12 ? ? 40 2995 23 20 68
grid2d_40 (800 / 800) 14 ? ? 58 6185 23 23 82
grid3d_4 (32 / 32) 5 ? ? 11 3 9 6 0
grid3d_5(62 / 63) [6,8] ? ? 18 72 4 11 2
grid3d_6 (108 / 108) [9,11] ? ? 38 54 14 16 7
grid3d_7 (171 / 172) [11,14] ? ? 46 190 14 18 16
grid4d_3 (40 / 41) ? ? 20 7 17 8 1
grid4d_4 (128 / 128) ? ? 54 83 32 20 8

Table 4.6: Results of Dual Graph and HMETIS for grid examples

opt-k-decomp Korimort Dual Graph HM
Instance (Atom / Var) Min W T W T W T k W T
NewSystem1 (84 / 142) 3 ? 3 31 3 35 2 3 4
NewSystem2 (200 / 345) 3 ? 4 88 4 260 2 4 10
NewSystem3 (278 / 474) ? 4 271 5 820 2 5 14
NewSystem4 (418 / 718) ? 4 741 6 1200 5 5 21
atv_part_sys (88 / 125) 3 ? 3 47 4 36 3 4 4
NASA (680 / 579) ? ? 63 4230 14 32 68

Table 4.7: Results of Dual Graph and HMETIS for NewSystem, ATV and NASA
examples

64

opt-k-decomp Korimort Dual Graph HM
Instance (Atom / Var) Min W T W T W T k W T
b01 (45 / 47) >4 ? ? 7 4 2 5 2
b02 (26 / 27) 3 3 2 ? 4 1 2 4 1
b03 (152 / 156) >3 ? ? 8 112 2 8 12
b06 (48 / 50) 4 ? ? 6 11 3 5 2
b07 (432 / 433) >3 ? ? 57 1696 3 31 49
b08 (170 / 179) >3 ? ? 21 250 3 12 18
b09 (168 / 169) >3 ? ? 21 900 3 12 19
b10 (189 / 200) >3 ? ? 27 357 3 16 21
b13 (324 / 352) >3 ? ? 26 1270 3 8 31
s27 (13 / 17) 2 ? ? 3 0 2 2 0
s208 (104 / 115) >3 ? ? 8 113 2 7 10
s298 (133 / 139) >3 ? ? 8 115 2 6 11
s344 (175 / 184) >3 ? ? 10 362 2 7 21
s349 (176 / 185) >3 ? ? 13 246 2 7 18
s382 (179 / 182) >3 ? ? 8 257 2 7 14
s386 (165 / 172) ? ? 21 219 7 11 15
s400 (183 / 186) >3 ? ? 8 286 2 7 17
s420 (420 / 231) >3 ? ? 15 812 2 10 22
s444 (202 / 205) >3 ? ? 8 374 4 8 20
s510 (217 / 236) >3 ? ? 41 404 3 27 21
s526 (214 / 217) >3 ? ? 14 437 3 11 23

Table 4.8: Results of Dual Graph and HMETIS for some ISCAS examples

65

4.2 Comparison of HMETIS algorithm with other algorithms
We give in this section the comparison of comparison of HMETIS algorithm with other
heuristic algorithms implemented by DBAI research group [2]. The tables 4.9 and 4.10
show only the part of results obtained by this group and the description of art of com-
parison. A complete results and tables can be found also at [2].
In this section are given the results for four heuristics approaches described in pre-

vious chapter. The results based on use of Fiduccia-Mattheyses algorithm (FM), tabu
search algorithm (TS) , HMETIS (HM) as well as Bucket Elimination (BE) are pre-
sented. For partitioning algorithms exists different treatments of special hyperedges.
The special hyperedges have either the same weight as other hyperedges, or they have
weight equal to 2, while other hyperedges have the weight equal to 1, or they have the
weight equal to the number of edges of the original hypergraph needed to cover all of
its vertices [2] .
Each algorithm was executed 5 times. The best found width is taken as result. The

average time of 5 runs was taken as runtime. Comparing these algorithms, we can con-
clude that the HMETIS and BE algorithms give the best results. The time perfomance
of HM is in general better than the perfomance of BE algorithm.[2]

66

FM TS BE HM
Instance (Atom / Var) Min W T W T W T W T
adder_15 (76 / 106) 2 2 0 4 0.2 2 0 2 3
adder_25 (126 / 176) 2 2 1 4 0.2 2 0 2 6
adder_50 (251 / 351) 2 2 6 4 1.2 2 0 2 12
adder_75 (376 / 526) 2 2 21 5 2 2 0 2 19
adder_99 (496 / 694) 2 2 53 5 3.2 2 1 2 25
bridge_15 (137 / 137) 2 8 1 8 0.8 3 0 3 6
bridge_25 (227 / 227) 2 13 1 6 1.4 3 0 3 11
bridge_50 (452 / 452) 2 29 5 10 3.2 3 1 4 22
bridge_75 (677 / 677) 2 44 10 10 5.4 3 1 3 35
bridge_99 (893 / 893) 2 64 18 10 6.8 3 2 4 45
NewSystem1 (84 / 142) 3 4 1 6 0.8 3 0 3 5
NewSystem2 (200 / 345) 3 9 2 6 2.2 4 0 4 13
NewSystem3 (278 / 474) 17 4 11 4 5 1 5 18
NewSystem4 (418 / 718) 22 8 12 6.8 5 2 5 29
atv_part_sys (88 / 125) 3 4 0 5 0.6 3 0 4 6
NASA (680 / 579) 56 20 98 33.6 22 25 32 84
grid2d_10 (50 / 50) 4 5 0 8 0.2 5 0 5 3
grid2d_15 (112 / 113) 6 10 1 12 1.2 8 0 10 10
grid2d_40 (800 / 800) 14 28 38 41 19.8 26 28 22 91
grid2d_70 (2450 / 2450) 24 65 347 65 119 48 474 41 239
grid2d_75 (2812 / 2813) 26 70 504 99 157.8 48 631 44 274
grid3d_10 (500 / 500) [21,27] 41 20 67 26.4 41 164 31 77
grid3d_14 (864 / 864) [41,49] 86 161 176 162.2 78 3600 69 196
grid4d_6 (648 / 648) 58 40 140 66.8 68 2153 47 106
grid4d_8 (2048 / 2048) 120 441 310 580.8 148 3600 107 393
grid5d_3 (121 / 122) 18 1 49 3.6 18 5 19 10
grid5d_4 (512 / 512) 49 25 137 56.2 62 2039 46 78
grid5d_5 (1562 / 1563) 118 280 362 474 137 3600 111 319

Table 4.9: Comparison of HMETIS algorithm with other algorithms

67

FM TS BE HM
Instance (Atom / Var) Min W T W T W T W T
clique_10 (10 / 45) 5 5 0 6 0.2 5 0 5 0
clique_30 (30 / 435) 15 30 0 16 16.2 8 4 15 3
clique_50 (50 / 1225) 25 50 1 28 144.6 25 3600 25 13
clique_90 (90 / 4005) 45 90 12 50 2045 45 3600 78 5
clique_99 (99 / 4851) 50 99 19 54 2844.8 50 3600 97 8
c432 (160 / 196) >3 15 3 24 3.6 9 1 12 19
c499 (202 / 243) >3 18 3 27 4.6 13 1 17 28
c2670 (1193 / 1350) 66 56 78 45.8 31 9 38 106
c5315 (2307 / 2485) 120 250 157 156.6 44 64 68 214
c7552 (3512 / 3718) 161 514 188 351 38 85 37 309
s27 (13 / 17) 2 2 0 3 0 2 0 2 0
s208 (104 / 115) >3 7 1 11 0.8 7 0 7 9
s832 (292 / 310) >3 22 8 71 9.8 12 3 20 39
s1488 (659 / 667) 45 46 148 36 23 18 39 77
s5378 (2958 / 2993) 178 308 169 271 85 141 89 246
b11 (757 / 764) 65 28 98 27.2 30 82 38 79
b12 (1065 / 1070) 38 55 83 38.6 27 19 34 102

Table 4.10: Comparison of HMETIS algorithm with other algorithms

68

5 Conclusions

As already mentioned in the beginning of this thesis, the solving of Constraint Satis-
faction Problems is in general NP � Complete, and thus intractable. Furthermore it is
known that the acyclic instances of CSPs are tractable. Therefore follows, if CSP-s have
instances with respective acyclic hypergraphs, than they can be solved ef�ciently. In or-
der to �nd such tractable CSP classes different decomposition methods are developed.
These methods try to generate acyclic hypergraphs from a given CSP. Hypertree De-
composition, developed by Gottlob, has been shown as the best method. The algorithm
opt-k-decomp, which computes the optimal hypertree decomposition for bounded width
at most k, will be quickly unusable because k appears in the exponent of the runtime
and in the exponent of the memory space.
In order to make hypertree decomposition usable for large problems, different heuris-

tic algorithms are developed. However, the heuristic methods give no guarantee that an
optimal solution can be found.
The purpose of this diploma thesis was to �nd such heuristic methods which so-

lutions deviate minimally from an optimal solution. We implemented two different
heuristics based on partitioning algorithms. In chapter 3 we presented both algorithms.
The �rst algorithm is based on dual graph. The method tries to �nd a signi�cant number
of �touch� points between cycles in a dual graph. Evaluating of these �touch� points
with respect to certain �tness criteria should lead to a �good� local partitioning of the
dual graph. The fact that algorithms takes in consideration a large number of separator
�candidates �, impacts the runtime in negative sense. Therefore we tested the algorithm
for problems which have at most 600 Edges/Nodes. The computational results show that
this algorithm was able to compute all given examples (see chapter 3). The best results
(optimal) were achieved with �Adder� and �Bridge� examples, while the worst results
were achieved with �Clique� examples. The novelty of this algorithm is the solving of
those problems which opt-k-decomp was not able to compute.
The second algorithm implemented in this diploma thesis is based on HMETIS par-

titioning approach [12]. This approach implements a variety of algorithms that are based
on Fidducia � Mattheyses algorithms. In order to �nd the best possible partitioning, we
used and modi�ed the HMETIS package library [9, 13]. The computational results show
that this algorithm yields a very good solution. In comparison with some other existing
heuristic algorithm, we conclude that HMETIS and Bucket Elimination heuristics give
the best results.
An improvement of two heuristics proposed in this thesis can be done in the future.

For instance, the removing of the unnecessary �touch � points during the �nding of the
separator in the algorithm based on dual graph, can improve the runtime . This can be
done if we pick a set of �bad touch� points. If this set remains in new partition, it will
be excluded from further decomposition routine.

69

Another possible improvement is the combining of the HMETIS partitioning algo-
rithm with heuristics based on vertex ordering.

70

References
[1] Arnaud Durand, Etienne Grandjean. �The complexity of acyclic conjunctive

queries revisited,� (November 2004). In FOCS'98: Proceedings of
the 39th Annual Symposium on Foundations of Computer
Science.

[2] Artan Dermaku, Tobias Ganzow, Georg Gottlob Ben McMahan Nysret Musliu
Marko Samer. �Heursitic Methods for Hypertree Decompositions,� (2005). DBAI-
TR-2005-53, Technische Universität Wien.

[3] David Cohen, Peter Jeavons and Manolis Koubarakis. �Tractable Disjunctive Con-
straints,�

[4] Georg Gottlob, Nikola Leone, Francesco Scarcello. �A comparision of structural
CSP decomposition methods,� (1999). In IJCAI'99: Procedings of the
Sixteenth International Joint Conference on Artificial
Intelligence.

[5] Georg Gottlob, Nikola Leone, Francesco Scarcello. �Hypertree decomposi-
tions and tractable queries,� (1999). In PODS'99: Procedings of the
Eighteenth ACM Symposium on Principles of Database
Systems.

[6] Georg Gottlob, Nikola Leone and Francesco Scarcello. �The Complexity of
Acyclic Conjunctive Queries,� (1998). In FOCS'98: Proceedings of
the 39th Annual Symposium on Foundations of Computer
Science.

[7] Georg Gottlob, Nikola Leone and Francesco Scarcello. �On tractable queries
and constraints,� (1999). In DEXA '99: Database and Expert Systems
Applications, 10th International Conference.

[8] Georg Gottlob, Nikola Leone and Francesco Scarcello. �Hypertree Decomposi-
tion: A Survey,� (2001). In MFCS 2001.

[9] George Karypis, Rajat Aggarwal, Vipin Kumar and Shashi Shekhar. �Multilevel
hypergraph partitioning: applications in vlsi domain,� (1999). IEEE Trans.Very
Large Scale Integr. Syst,7(1):69ñ79.

[10] G.Gottlob. �Computing Cores for Data Exchange: Hard Cases and Prac-
tical Solutions,� (2001). In IST 2001: INFOMIX: Knowledge-Based
Information Integration.

71

[11] Hutle, Martin. �Constraint Satisfaction Problems - Hybrid Decomposition
and Evaluating,� (Februar 2002). Institut für Informationssysteme TU Wien:
Diplomarbeit.

[12] Karypis, G. and V. Kumar. �hMETIS: A hypergraph partitioning package version
1.5.3,� (1998).

[13] Karypis, George and Vipin Kumar. �Multilevel k-way hypergraph partition-
ing,� (1999). In DAC '99:Proceedings of the 36th ACM/IEEE
conference on Design automation, pages 343ñ348, New
York, NY, USA.

[14] Korimort, Thomas. �Heuristic Hypertree Decomposition,� (2003). Vienna Uni-
versity of Technology.

[15] Marc Gyssens, Peter G.Jeavons, David A.Cohen. �Decomposing Constraint Sat-
isfaction Problems Using Database Techniques,� (March 1994). In Artificial
Intelligence.

[16] McMahan, Ben. �Bucket elimination and hypertree decompositions,� (2004). Im-
plementation report, Institut of Information Systems (DBAI),TU Vienna.

[17] M.Yannakakis. �Algorithms for Acyclic Database Schemes,� (1981). In
(VLDB'81): Proc. of Int. Conf. on Very Large Data Bases.

[18] Nysret Musliu, Marko Samer, Tobias Ganzow Georg Gottlob. �A CSP Hyper-
graph library. Technical report,� (2005). DBAI-TR-2005-50, Technische Univer-
sität Wien.

[19] Peter Jeavons, David Cohen and Marc Gyssens. �A Structural Decomposition for
Hypergraphs,� (1991). In : Mathematics Subject Classification.

[20] Peter Jeavons, David Cohen and Justin Pearson. �Constraints and Universal Alge-
bra,� (September 1998).

[21] Peter Jeavons, Martin Cooper. �Tractable Constraints On Ordered Domains,� (Ok-
tober 1995).

[22] PeterHarvey and Adyita Ghose. �Fast Hypertree Decompositions,�

[23] Ph.G.Koalitis and M.Y.Vardi. �Conjunctive-Query Containment and Constraint
Satisfaction,� (1998). In (PODS'98): Proc. of Symp. on Principles
of Database Systems.

72

[24] R.Dechter. �Constraint Networks,� (1992). In: Encyclopedia of
Artificial Intelligence, second edition.

[25] R.Dechter, J.Pearl. �Tree clustering for constraint networks,� (1989). In:
Artficial Intelligence.

[26] R.Fagin. �Degrees of Acyclicity for Hypergraphs and Related Database Schemes,�
(July 1983). In : Journal of the ACM.

[27] Samer, Marko. �Hypertree-decomposition via branch-decomposition,� (2005).
In:19th International Joint Conference on Artificial
Intelligence (IJCAI 2005),pages 1535-1536.

73

