
TEMPLE - A Domain Specific Language for

Modeling and Solving Staff Scheduling Problems

Johannes Gärtner
Ximes GmbH

Hollandstraße 12/12

A-1020 Vienna, Austria

gaertner@ximes.com

Nysret Musliu
Vienna University of Technology

Favoritenstraße 9-11

A-1040 Vienna, Austria

musliu@dbai.tuwien.ac.at

Werner Schafhauser
Ximes GmbH

Hollandstraße 12/12

A-1020 Vienna, Austria

schafhauser@ximes.com

Wolfgang Slany
Graz University of Technology

Inffeldgasse 16B/II

A-8010 Graz, Austria

wsi@ist.tugraz.at

Abstract—We present TEMPLE, a domain specific language
for modeling and solving staff scheduling problems. TEMPLE
provides a set of intuitive abstractions and notations allowing
to formulate the constraints of a particular problem in a very
compact and natural way. After modeling a staff scheduling
problem in TEMPLE, three generic local search algorithms
can immediately be applied to the corresponding optimization
problem. We show how real-life staff scheduling problems can
be both effectively modeled as well as efficiently solved using
our approach. Finally, we report on a practical application of
TEMPLE in a commercial staff scheduling software.

I. INTRODUCTION

Staff scheduling problems represent very difficult tasks of

high practical relevance. In the field of staff scheduling we

usually have to design shift plans satisfying several, often

conflicting criteria, e.g., legal demands, labor rules and staffing

requirements. Obtaining optimal or close to optimal solutions

for staff scheduling problems improves the working conditions

for employees and helps companies to deploy their staff

efficiently and cost savingly.

For instance Figure 5 presents a typical staff scheduling

problem. As input we are given staffing requirements (dashed

line), specifying for each point in time a minimum number

of employees that should be working. The solution of that

problem consists of a shift plan (gray shaded horizontal bars)

and a break schedule (white blocks) satisfying both legal

demands and staffing requirements. Further examples of staff

scheduling problems can be found in [1], [2], [4], [12], [13].

Unfortunately, many staff scheduling problems are NP-hard

and, as a consequence, they cannot be solved to optimality

in polynomial time. Therefore, staff scheduling problems are

solved using mixed-integer-programming or sophisticated AI-

techniques, such as constraint programming, heuristics, meta-

heuristic methods, or branch and bound algorithms. No matter

which of these approaches we follow, the design of algorithms

for staff scheduling problems is an art in itself and we end up

with a solution that is strongly customized to a specific staff

scheduling problem. Customized solutions are usually very

difficult to adapt, extend and reuse for other staff scheduling

problems. A few minor changes within a problem’s specifica-

tion can result in many major modifications or a completely

new implementation of a customized algorithm.

To overcome these drawbacks we present the domain spe-

cific programming language TEMPLE. TEMPLE has been

developed to model and solve staff scheduling problems with

reduced effort. For that purpose the following design goals are

realized by TEMPLE:

Modularity: A TEMPLE problem consists of small, concise

building blocks reflecting common features of staff scheduling

problems. New building blocks are derived from already

existing ones. By this principle users are forced to formulate a

complex problem in small, concise and traceable steps. Con-

sequently, the resulting problem models are well-structured,

easy to understand, modify and maintain.

Adaptability and Extensibility: Problems modeled in

TEMPLE can be adapted easily. A few small changes in the

problem formulation result only in a few small changes in the

corresponding TEMPLE program.

Simplicity: TEMPLE requires only basic programming

skills from its users. Anybody familiar with a third generation

programming language should be able to understand and use

TEMPLE.

Automatic Optimization: Once a problem is modeled in

TEMPLE it can be optimized in an instant without requiring

additional coding from the user.

Efficiency: TEMPLE’s intrinsic computational overhead is

kept as little as possible. Thereby we ensure that problems

cannot only be modeled effectively but also solved efficiently

with TEMPLE.

To achieve automatic optimization we present a TEM-

PLE compiler which transforms the TEMPLE model of a

staff scheduling problem into three executable local search

algorithms: a simulated annealing algorithm, a hill-climbing

based approach, and an iterated local search algorithm. These

algorithms can be applied instantaneously and do not require

any further user input or modifications. To ensure efficiency

the obtained local search algorithms recompute and update

only those parts of a solution which are actually affected by

changes.

To demonstrate TEMPLE’s modularity and simplicity we

model and solve a complex real-life break scheduling problem

[3] in TEMPLE. The resulting TEMPLE program consists

of only 500 lines of code and is written in a very concise,

understandable and modular manner. We evaluate the iterated

978-1-61284-196-0//11/$26.00 ©2011 IEEE 58

Break

Shift

06:00 07:00 09:0008:00 10:00 11:00 12:00 13:00 14:00

01:00

Duration

Break

01:00

Duration

08:00

Duration

02:00

TotalBreakTime

25%

TotalBreakTimeInPercent

Violation degree = 0

MinimumBreakTime

Fig. 1. In TEMPLE properties and constraints are derived step by step from
already existing properties.

local search algorithm obtained with TEMPLE on ten publicly

available benchmark instances for our problem. Our computa-

tional results reveal that TEMPLE is able to compute solutions

of acceptable quality.

Finally, we successfully adapt and extend the previous

TEMPLE program in order to solve a multilayer staff schedul-

ing task. The obtained TEMPLE program represents the core

of a commercial staff scheduling tool which is already applied

successfully by decision makers in their day-to-day business.

II. THE MODELING LANGUAGE TEMPLE

A. Intervals and Links

A central building block of staff scheduling problems are

intervals. Shifts, breaks, meetings or absence times can be

considered as intervals. Moreover, different kinds of intervals

are linked with each other, e.g., a shift is linked with the

breaks scheduled in it and vice versa. For that reason TEMPLE

enables the declaration of different kinds of intervals and links

in the following manner:

Interval Shift; //Interval declarations.
Interval Break;
Shift <-> Break; //Declaration of a bi-directional link.

An interval is characterized by four basic properties,

Start, Duration, End, and a boolean basic property

Active, indicating whether an interval is part of a problem’s

solution or not.

B. Derived Elements

A characteristic of staff scheduling problems is that their

features and constraints can be derived step by step, one after

the other. For instance, in many real-life applications it is

common to require that a minimum percentage of break time,

e.g., 20%, must be scheduled in each shift. Figure 1 shows

how that constraint can be derived for a single shift in several

steps. First of all we compute the break time scheduled in

the shift by summing up the duration of its breaks. Then we

determine the break time percentage and finally we impose the

constraint, checking whether the shift’s break time percentage

exceeds 20%. In TEMPLE we realized the concept of derived

elements to model features and constraints of staff scheduling

problems exactly in that manner. On the basis of already

existing properties we derive additional properties and finally

we can impose constraints.

1) Derived Properties: In TEMPLE a derived property

reflecting a shift’s total break time (Figure 1) might be

formulated as follows:

Property Shift::TotalBreakTime(Shift.Break[] scheduledBreak)
{
TotalBreakTime =
sum(i in scheduledBreak.getRange())

(scheduledBreak[i].Duration);
}

This code snippet specifies that each shift has an additional

property called TotalBreakTime. That property is derived

from all breaks linked to a single shift Shift.Break[],

which can be accessed through the alias scheduledBreak.

The value of property TotalBreakTime is computed by

summing up the durations of each break scheduled within the

shift.
2) Derived Constraints: We distinguish between two kinds

of constraints: hard constraints and soft constraints. Hard

constraints specify the criteria which must be satisfied com-

pletely by any feasible solution. Except for the keyword

HardConstraint the violation degree of a hard constraint

is derived in the same manner as the value of a derived

property.

HardConstraint Shift::MinimumBreakTime(Shift thisShift)
{
if(thisShift.TotalBreakTimeInPercent < 20)
MinimumBreakTime = VIOLATED;

}

Soft constraints on the other hand model the objectives to be

reached by a good solution. The importance of a soft constraint

within an entire staff scheduling problem is expressed in terms

of integer weights.
3) Derived Curves: Curves are central building blocks of

staff scheduling problems, which can be used to model many

features of staff scheduling tasks such as staffing requirements

or available staff. Figure 2 presents how the time periods

during that an employee is actually working and not having a

break can be represented as a curve over time.

In TEMPLE we can derive curves from intervals or pre-

viously defined curves by using a predefined set of curve

operations. These operations increment or decrement a curve

over a certain period, they write or read a value at a specific

position, or they add and subtract other, already existing,

curves. For instance, the curve representing an employee’s

actual working time can be modeled in the following way:

Curve Shift::WorkingTime(Shift thisShift,
Shift.Break[] scheduledBreak)

{
//Increment curve from shift start until shift end.
WorkingTimePattern.Pulse(thisShift.Start,

thisShift.End,
thisShift.Active);

forall(i in scheduledBreak.getRange())
{
//Decrement curve along each break.
WorkingTimePattern.Pulse(scheduledBreak[i].Start,

scheduledBreak[i].End,
scheduledBreak[i].Active, -1);

}
}

59

06:00 07:00 09:0008:00 10:00 11:00 12:00 13:00 14:00

1

Shift +1 Break -1 Break -1

Fig. 2. A curve modeling the periods while an employee is actually working
and not having a break.

C. Initial Solution

After we have modeled the structure of a particular staff

scheduling problem by the help of intervals, links, derived

properties, curves and constraints, we have to specify an

initial solution for a particular staff scheduling problem. In

TEMPLE the initial solution is formulated in three different

ways. First of all, in each TEMPLE program we specify an

input XML-file. That XML-file contains a list of intervals and

stores the initial basic properties of each interval. Secondly,

we can force the instantiation of further intervals. Thirdly, we

may compute and assign initial values to the basic interval

properties Start, Duration and Active. The initial val-

ues are derived from already existing properties or curves of

linked intervals. Furthermore, we can also restrict the domains

of basic properties and we may introduce additional links

between intervals.

Initialize Shift::BreakSchedule(Shift thisShift,
Shift.Break[] breakToSchedule)

{
forall(i in breakToSchedule.getRange())
{
//1. Assign initial values to basic break properties.
breakToSchedule[i].Start = thisShift.Start;
breakToSchedule[i].Duration = 30 minutes;
breakToSchedule[i].Active = true;

//2. Restrict domains of a break’s start and duration.
forall(j in thisShift.Start .. thisShift.End)
breakToSchedule[i].Start.Domain.Add(j);

breakToScheduled[i].Duration.Domain.Add(30 minutes);

//3. Link the shift with each break scheduled within it.
breakToSchedule[i].AddLink(thisShift, "Shift");

}
}

D. Moves

Local search algorithms try to improve the quality of a

current solution by applying small changes. In terms of local

search techniques these changes are called moves. To define a

move in TEMPLE we compute and assign new values for the

basic interval properties and assign them to these properties.

For instance, the following code sample specifies a move

placing a break at a new position in its associated shift.

Move Shift::PutBreakAtNewPosition(Shift thisShift,
Shift.Break[] scheduledBreak)

{
range S = thisShift.Start .. thisShift.End;

select(i in scheduledBreak.getRange())
select(newPosition in S)
scheduledBreak[i].Start = newPosition;

}

TEMPLE

Compiler

Fig. 3. Solving staff scheduling problems in TEMPLE.

E. Further Language Details

For the sake of completeness we describe which additional

information we must specify to obtain a compilable TEMPLE

program: an input XML-file containing input intervals and

initial basic property values, a solution XML-file in which the

obtained solution of a problem shall be saved, the local search

algorithm which shall be applied to a particular problem, a

limit on the algorithm running time and the granularity of the

planning period.
input = "./input_data.xml";
solution = "./solution.xml";
algorithm = iterated local search;
algorithm running time = 1 minute;
time slot = 10 minutes;

III. THE TEMPLE COMPILER

We implemented a TEMPLE compiler to transform TEM-

PLE programs into executable local search algorithms that

solve the underlying staff scheduling problems. As input our

compiler is passed the problem model formulated in the

TEMPLE modeling language and an XML-file containing

input information of a particular problem instance. On the

basis of that input the TEMPLE compiler generates three

local search algorithms for the considered staff scheduling

tasks: a simulated annealing algorithm, a hill climbing strategy

and an iterated local search algorithm. The three local search

algorithms are written in the constraint-based optimization

language COMET [10]. To obtain a solution for the considered

staff scheduling problem the generated algorithms are executed

by the COMET optimization engine. Finally, the best solution

found during the execution of a local search algorithm is re-

turned as an XML-file. Figure 3 illustrates the entire approach

we followed to solve staff scheduling problems in TEMPLE.

A. Optimization Goal

In TEMPLE we use hard and soft constraints to define the

optimization goals of a considered staff scheduling problem.

If S denotes the set of all soft constraints and H the set of all

hard constraints defined in a particular TEMPLE program, the

local search algorithms generated by our TEMPLE compiler

try to solve the following optimization problem:

60

min
∑

s∈S

s.Weigℎt× s.V iolationDegree

s.t. ∀ℎ ∈ H : ℎ.V iolationDegree = 0

B. Initialization

Every local search algorithm must create an initial solution

at its beginning. Therefore, the three local search algorithms

generated by our TEMPLE compiler have to compute ini-

tial values for each derived property, curve and constraint.

Since derived elements depend on each other, they cannot

be initialized in any arbitrary order. If we reconsider the

derived elements presented in Figure 1 we see that first we

have to initialize property TotalBreakTime, then prop-

erty TotalBreakTimeInPercent and finally constraint

MinimumBreakTime.

To ensure that the initial solution is obtained correctly, the

TEMPLE compiler analyzes a given TEMPLE model and

determines the dependencies between properties, curves and

constraints. On the basis of that analysis the compiler builds

a dependency graph and determines a feasible initialization

ordering of all derived elements. The compiler encodes that

ordering in the resulting local search algorithms and in that

manner it is guaranteed that the initial solution is computed

correctly.

C. Efficient Local Search

Although there are significant differences among the local

search algorithms generated by the TEMPLE compiler they

basically apply the same three main steps in each iteration:

1) They compute a set of moves to obtain a local neigh-

bourhood of the current solution.

2) They evaluate the effect of each move on the current

solution. When evaluating a move they check whether

the move is feasible, i.e., it does not cause any hard

constraint violations, and they determine the difference

in the problem’s objective function resulting from the

move.

3) They select a feasible move and execute it to obtain a

new solution.

Most computational effort is spent on the evaluation and

execution of moves. To ensure that these two steps are carried

out efficiently, we apply the following strategies in the local

search algorithms created by the TEMPLE compiler:

Lazy Evaluation: If we observe that a move violates a hard

constraint we will not evaluate the move’s effect on other hard

and soft constraints.

Caching: We use a move cache to store the result of each

evaluation of a move on a property, curve or constraint. With

that move cache we can avoid that a move is evaluated several

times for the same derived element.

Efficient Move Evaluation and Execution: When evalu-

ating a move’s effect on a solution we only evaluate those

properties, curves and constraints that are affected by the

move. Similarly, when performing a move we update only

those solution elements which are actually changed by a move.

4

5

4 Problem::NoExcessProblem::NoShortage

Problem::ExcessOfStaffProblem::ShortageOfStaff

Problem::DeviationFromRequirements

Problem::AvailableStaff Problem::StaffingRequirements

Shift::WorkingTime

Problem::ExcessProblem::Shortage

12

5

4

5

4

5

7

Constraint

Property

Curve

Lines of code
4

Fig. 4. TEMPLE model of selected constraints of a real-life staff scheduling
problem [3].

Efficient Data Structures: To evaluate a move’s effect on

curves efficiently we developed and implemented a speed-up

strategy. This strategy ensures that only those curve positions

are evaluated which are affected by a move. By applying that

speed-up strategy we could reduce the computational costs

associated with curves significantly.

IV. PRACTICAL APPLICATION OF TEMPLE

A. Solving a Real-Life Staff Scheduling Problem

To demonstrate that staff scheduling problems can be mod-

eled elegantly in TEMPLE and to evaluate the performance

of the local search algorithms generated with TEMPLE we

consider a real-life break scheduling problem originating in the

area of supervision personnel [3]. As input we are given the

staffing requirements over an entire week, an already designed

shift plan and five constraints specifying how much break time

must be scheduled and how breaks must be placed in a legal

break schedule. Two further constraints require that shortage

and excess of staff should be reduced to a minimum degree.

1) The TEMPLE Model: We succeeded in modeling the

break scheduling problem in TEMPLE. In our model the five

criteria concerning the legality of the break pattern (constraints

C1 - C5 in [3]) are formulated as hard constraints, whereas

shortage and excess of staff (constraints C6 and C7 in [3])

are modeled as soft constraints. The initial solution for our

problem is obtained with the heuristic proposed in [3] in-

volving simple temporal problems (STPs) [5]. The applied

heuristic constructs an initial break pattern satisfying all hard

constraints. Finally, we specified two moves, the first one

places a break at a new position in its shift (see Section II-D),

the second move swaps two breaks of different duration.

In total we needed one man-week to develop a suitable

TEMPLE model for the considered break scheduling prob-

lem. The resulting TEMPLE program consists only of 500

lines of code and it is formulated in a very modular style.

Figure 4 visualizes how we modeled the two soft constraints

requiring that shortage and excess of staff shall be reduced to

a minimum degree within a good solution. For each employee

we introduce a curve representing the actual working time.

By summing up all these single curves we obtain a curve

modeling the available staff. In the next step we subtract the

staffing requirements from the available staff and so we obtain

the deviations from staffing requirements. Then we extract the

negative deviations to obtain a curve representing the shortage

of staff, determine the total amount shortage associated with

61

No. of shifts violating constraint Time Slots with

Min.

Break Lunch Work break Break Shortage Excess

Instance positions breaks periods times durations No. % No. %

2fc04a 0 0 0 0 0 99 4.9 664 32.9

2fc04a03 0 0 0 0 0 91 4.5 673 33.4

2fc04a04 0 0 0 0 0 78 3.9 754 37.4

3fc04a 0 0 0 0 0 97 4.8 445 22.1

3fc04a03 0 0 0 0 0 82 4.1 466 23.1

3fc04a04 0 0 0 0 0 68 3.4 560 27.8

3si2ji2 0 0 0 0 0 8 0.4 1082 53.7

4fc04a 0 0 0 0 0 87 4.3 450 22.3

4fc04a03 0 0 0 0 0 80 4.0 477 23.7

4fc04a04 0 0 0 0 0 64 3.2 562 27.9

TABLE I
FEATURES OF THE BEST SOLUTIONS OBTAINED WITH TEMPLE-ILS FOR

TEN BENCHMARK INSTANCES.

a solution, and finally we impose a constraint requiring that

shortage of employees should be avoided. The constraint

penalizing excess of employees is derived in a similar manner.

The circled numbers in Figure 4 indicate how many lines

of code are needed to formulate a particular property, curve

or constraint. Only a few lines of code, twelve at maximum,

are necessary to derive each single element. On average only

eleven lines of code are needed to model a single TEMPLE

element in the entire program.

2) Quality of Obtained Solutions: With our TEMPLE

compiler we created an iterated local search algorithm from

our TEMPLE model for the break scheduling problem

for supervisory personnel. This algorithm will be denoted

TEMPLE-ILS in the remainder of this section. To evaluate

TEMPLE-ILS we applied it to ten benchmark instances for

the considered break scheduling task which are available at

www.dbai.tuwien.ac.at/proj/SoftNet/Supervision/Benchmarks.

We executed algorithm TEMPLE-ILS on the same machine

under the same conditions as the algorithm presented in Beer

et al. [3], namely on a Genuine Intel T2400 laptop running at

1.8 GHz with 2 Gbytes of RAM, with a one hour time limit

on each single run.

Table I presents the features of the best solutions obtained

by TEMPLE-ILS in ten runs for each benchmark instance.

All hard constraints concerning the labor rules and legal

requirements are satisfied completely. Considering soft con-

straints, according to Beer et al. [3] in a good solution for the

considered instances shortage of staff is below a five percent

threshold. This criterion could be met for each of the ten

considered benchmark instances by the solutions obtained with

TEMPLE-ILS. Figure 5 presents a part of the best solutions

obtained for benchmark instance 2fc04a by TEMPLE-ILS. In

the considered period shortage of staff is avoided completely

and, as in all solutions obtained by TEMPLE-ILS, all con-

straints concerning the legality of the break pattern are satisfied

completely. Thus, we conclude that with our TEMPLE model

of the break scheduling problem for supervisory personnel

we are able to compute solutions of acceptable quality in

reasonable time.

B. Commercial Application of TEMPLE

TEMPLE has already been applied successfully in a com-

mercial staff scheduling tool. We built this tool in a research

project together with an industrial partner. The goal of the

project was to develop a working prototype used by decision

makers on-site to solve a multilayer staff scheduling problem.

In this staff scheduling problem we are given task require-

ments for an entire day, an already existing shift plan and

the qualifications of each employee. To obtain a solution we

must again compute a break schedule which is completely

consistent with a set of legal requirements. In addition, we

must also assign the required tasks to available employees in

accordance with their qualifications. Furthermore, a good task

assignment must satisfy several criteria. For instance, each task

must be performed by the same employee at least for thirty

minutes and employees should not be forced to change the

task they carry out.

Since the considered problem is very complex as a whole

we decided to decompose it into three separate phases each of

which is modeled and solved by a separate TEMPLE program:

I. Break Schedule Initialization. We compute a legal

break schedule which is consistent with all constraints

imposed on a break pattern, training units and intra-day

absences.

II. Break Schedule Optimization. We optimize the break

schedule according to staffing requirements, whereby

we ensure that the break schedule remains always legal

during and after this optimization phase.

III. Task Assignment and Optimization. For each time

slot we assign the required tasks to available employees

heuristically. Afterwards we further try to reduce the

violations of constraints imposed on the task assignment

to a minimum degree.

The TEMPLE program for the break scheduling problem in

Section IV-A could be easily extended and adapted to solve

the first and the second phase of the decomposed problem.

Therefore, we only needed to concentrate on developing an

accurate TEMPLE program for the third phase. By modeling

tasks as intervals linked with employees we also succeeded in

modeling phase three in a very natural way, and eventually

we obtained the desired prototype solving the entire staff

scheduling problem. With that prototype we delivered a proof

of concept that automated break scheduling and task assign-

ment was possible within a reasonable amount of time, i.e.,

approximately five minutes on a state of the art computer. The

prototype has been extended into a commercial application,

which is already used successfully by decision makers in their

day-to-day business.

V. RELATED MODELING LANGUAGES

In the last three decades several languages have been

developed for modeling combinatorial optimization problems

including OPL [9], ASPEN [8], COMET [10], ESRA [6],

ESSENCE [7] and Zinc [11].

ESRA, ESSENCE and Zinc were developed to specify or

model general combinatorial problems. One important dif-

ference is that, unlike TEMPLE, ESRA and ESSENCE do

not allow user-defined properties or constraints. Moreover, all

62

Fig. 5. Part of the best solution found for the real-life instance 2fc04a.

three languages do not offer any staff scheduling specific data

structures like intervals or curves.

ASPEN is an application framework for scheduling tasks

arising in the field of spacecraft operations. In ASPEN, a

problem model consists of activities to be performed and

constraints imposed on activities and other solution elements.

Although some aspects of ASPEN are akin to the TEMPLE

language, e.g., activities are similar to intervals, ASPEN is

strongly focused on the characteristics of space craft op-

erations and cannot be applied directly to staff scheduling

problems.

As for COMET, TEMPLE inherited some of its syntax and

data structures, e.g., sets, ranges and selectors, and COMET

is the target language of our TEMPLE compiler. However,

TEMPLE is focused of staff scheduling and offers abstractions

and notations, such as intervals, links and curves, reflecting

common features of staff scheduling tasks. Since we wanted

TEMPLE to be as simple as possible, no knowledge about

object orientation or any details on local search techniques is

required from a user.

OPL [9] was developed to combine the advantages of

mathematical programming and constraint programming and

has been realized within the software IBM ILOG CPLEX

Optimization Studio. Like TEMPLE, that software provides

further language elements to facilitate the development of

scheduling models such as intervals and cumulative functions

which are similar to curves. However, in OPL the user must

use a fixed set of temporal or specialized constraints which

cannot be extended further whereas in TEMPLE arbitrary

constraints can be defined. Moreover, in IBM ILOG OPL

we may only adjust some parameters of the underlying exact

search method but a user cannot provide additional information

regarding the search process as it is possible in TEMPLE by

specifying moves.

VI. CONCLUSION

In this article we presented TEMPLE, a constraint-based

language for modeling and solving staff scheduling problems.

We highlighted the key concepts and elements of the TEMPLE

modeling language, namely intervals, derived elements, ini-

tialization and move definitions, which enable the natural and

compact formulation of staff scheduling tasks. Moreover, we

implemented a TEMPLE compiler to map a TEMPLE model

to three executable local search algorithms. Thereby we solved

several technical challenges to guarantee that local search

algorithms are initialized correctly and executed efficiently.

Furthermore, we evaluated TEMPLE by modeling and solving

a complex real-life staff scheduling task. For the considered

problem TEMPLE was able to return competitive results

and solutions of acceptable quality. Finally we reported that

TEMPLE is already used successfully within a commercial

staff scheduling tool.

VII. ACKNOWLEDGMENTS

The research herein is partially conducted within the com-

petence network Softnet Austria (www.soft-net.at) and funded

by the Austrian Federal Ministry of Economics (Bundesmin-

isterium für Wirtschaft und Arbeit), the province of Styria, the

Steirische Wirtschaftsfrderungsgesellschaft mbH. (SFG), and

the city of Vienna’s Center for Innovation and Technology

(ZIT).

REFERENCES

[1] T. Aykin. Optimal shift scheduling with multiple break windows.
Managament Science, 42(4):591–602, 1996.

[2] S. E. Bechtold and L. W. Jacobs. Implicit modeling of flexible
break assignments in optimal shift scheduling. Management Science,
36(11):1339 –1351, 1990.

[3] A. Beer, J. Gärtner, N. Musliu, W. Schafhauser, and W. Slany. An
AI-based break-scheduling system for supervisory personnel. IEEE

Intelligent Systems, 25(2):60–73, 2010.
[4] J. Brusco and L. Jacobs. A simulated annealing approach to the cyclic

staff-scheduling problem. Naval Research Logistics, 40:69–84, 1993.
[5] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks.

Artificial Intelligence, 49(1-3):61–95, 1991.

63

[6] P. Flener, J. Pearson, and M. Ågren. Introducing ESRA, a relational
language for modelling combinatorial problems. In CP, page 971, 2003.

[7] A. M. Frisch, W. Harvey, C. Jefferson, B. M. Hernández, and I. Miguel.
ESSENCE: A constraint language for specifying combinatorial prob-
lems. Constraints, 13(3):268–306, 2008.

[8] A. Fukunaga, G. Rabideau, S. Chien, and A. Govindjee. ASPEN:
An application framework for automated planning and scheduling of
spacecraft control and operations. In Proceedings of the International

Symposium on Artificial Intelligence, Robotics and Automation in Space

(i-SAIRAS97), Tokyo, Japan, pages 181–187, 1997.
[9] P. V. Hentenryck. The OPL Optimization Language. The MIT-Press,

Cambridge, Mass., 1999.
[10] P. V. Hentenryck and L. Michel. Contraint-Based Local Search. The

MIT Press, Cambridge, Mass., 2005.
[11] K. Marriott, N. Nethercote, R. Rafeh, P. J. Stuckey, M. G. de la

Banda, and M. Wallace. The design of the Zinc modelling language.
Constraints, 13(3):229–267, 2008.

[12] N. Musliu, A. Schaerf, and W. Slany. Local search for shift design.
European Journal of Operational Research, 153(1):51–64, 2004.

[13] M. Rekik, J.-F. Cordeau, and F. Soumis. Implicit shift scheduling
with multiple breaks and work stretch duration restrictions. Journal

of Scheduling, 13(1):49–75, 2010.

64

