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A B S T R A C T

Many instances of constraint satisfaction problems can be solved effi-
ciently if they are representable as a tree respectively generalized hyper-
tree decomposition of small width. Unfortunately, the task of finding
a decomposition of minimum width is NP-complete itself. Therefore,
many heuristic and metaheuristic methods have been developed for
this problem.

One metaheuristic which has not been applied yet is ant colony opti-
mization (ACO). In this thesis we investigate five different variants of
these ACO algorithms for the generation of tree and generalized hyper-
tree decompositions. Furthermore, we extend these implementations
with two local search methods and we compare two heuristics that
guide the ACO algorithms. Moreover, we experiment with two different
pheromone update strategies and we present a library called libaco that
can be used to solve other combinatorial optimization problems as well.
In order to demonstrate this we present an ACO implementation for
the travelling salesman problem based on this library.

Our computational results for selected instances of the DIMACS
graph coloring library and the CSP hypergraph library show that the
ACO metaheuristic gives results comparable to those of other decom-
position methods such as branch and bound and tabu search for many
problem instances. One of the proposed algorithms was even able
to improve the best known upper bound for one problem instance.
Nonetheless, as the problem complexity increases other methods out-
perform our algorithms.
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Z U S A M M E N FA S S U N G

Viele Instanzen von Costraint Satisfaction Problemen sind effizient lös-
bar wenn sie als Tree oder als Generalized Hypertree Decomposition
kleiner Breite dargestellt werden können. Das Auffinden der Decompo-
sition geringster Breite ist jedoch selbst NP-complete und kann daher
nur mit Heuristiken und Metaheuristiken in annehmbarer Zeit gelöst
werden.

Ant Colony Optimization (ACO) ist eine metaheuristische Meth-
ode die bisher noch nicht auf dieses Problem angewandt wurde. In
dieser Diplomarbeit untersuchen wir fünf verschiedene Varianten von
ACO Algorithmen für die Generierung von Tree und Hypertree De-
compositions. Außerdem erweitern wir diese Implementierungen mit
zwei lokalen Suchmethoden und vergleichen zwei Heuristiken, die
den ACO Algorithmus lenken. Weiters experimentieren wir mit zwei
unterschiedlichen Pheromone Update Strategien und stellen unsere
C++ Bibliothek libaco vor mit deren Hilfe auch andere kombinatorische
Optimierungsproblemen mit den in dieser Diplomarbeit beschriebenen
ACO Algorithmen gelöst werden können. Um das zu demonstrieren
beschreiben wir eine libaco-Implementierung für das Travelling Sales-
man Problem.

Unsere Testergebnisse für ausgewählte Beispiele der DIMACS Graph
Coloring Library und der CSP Hypergraph Library zeigen, dass die
ACO Metaheuristik für viele Probleminstanzen Ergebnisse liefert welche
mit Ergebnissen anderer Verfahren wie beispielsweise Tabu Search und
Branch & Bound vergleichbar sind. Einer der vorstellten Algorithmen
konnte sogar die bisher besten bekannten Ergebnisse für eine Prob-
leminstanz verbessern. Dessen ungeachtet liefern die ACO Algorithmen
insbesondere für komplexere Probleminstanzen schlechtere Ergebnisse
als andere bekannte Methoden.
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1
I N T R O D U C T I O N

1.1 the problem

During the last couple of decades we have used computers to help
us solve a variety of problems. While many of these problems can be
solved in a reasonable amount of time, other problems are intractable
excluding the most trivial of instances. For instance, sorting a list of
numbers can be accomplished very quickly by a computer independent
of the list’s size.1 On the other hand it is very computationally expensive
to determine the shortest round-trip given a number of cities.2 This
problem, commonly known as the Traveling Salesman Problem (TSP),
is proven to be NP-hard meaning that the time required to solve it
increases very quickly with the problem size. This is not the case with
problems belonging to the complexity class P that also contains the
list-sorting problem mentioned beforehand.

NP-hard problems are often approached by approximation algo-
rithms that give solutions that are probably suboptimal but can be
computed in a reasonable amount of time. One such approximation for
the TSP is to create a round-trip that visits the nearest not yet visited
city next. This method might create a decent solution but optimality is
neither guaranteed nor very likely in general.

A subset of these NP-hard problems, those that can be formulated
as constraint satisfaction problems, can be solved efficiently by rep-
resenting them as so called Tree- or Hypertree Decompositions. Each
decomposition has a characteristic called width and each problem can
be transformed to many different valid decompositions. The smaller
a decomposition’s width the faster the solution to the problem can
be computed. Unfortunately, the problem of finding the decomposi-

1 Of course sorting a billion numbers takes longer than sorting ten. The point is that the
difference is negligible in general.

2 The round-trip must visit each city exactly once returning to the same city it started
from.

1
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Figure 1. Comparison of the time complexities of a dynamic programming
algorithm for the TSP (O(n22n)) [28] and the QuickSort algorithm
for the list-sorting problem (O(n logn)) [29].

tion having the minimum width of all valid decompositions is itself
NP-hard [3] [27]. This is why approximation methods are necessary
in order to find a decomposition having a preferably small width that
then can help in solving the original problem efficiently.

An approximation method that has not been applied to the problem
of finding decompositions of small width is Ant Colony Optimization
(ACO). ACO has been applied successfully to many other NP-hard
problems as the Traveling Salesman Problem [18], Network Routing [7]
and the Car Sequencing Problem [21]. The main goal of this thesis was
to examine different strategies of applying ACO for the generation of
Tree- and Hypertree Decompositions and to evaluate their performance.

1.1.1 Constraint Satisfaction Problems

Informally speaking, a constraint satisfaction problem (CSP) consists
of a set of variables each having a set of possible values that is also
known as the variable’s domain. Additionally, a number of constraints
eliminate certain combinations of variables. For instance, a constraint
might enforce that variable x and variable y must not have the same
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Figure 2. Instance of the Graph Coloring Problem.
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Figure 3. A valid 3-coloring of the graph in Figure 2.

value. Solving the CSP implies to find an assignment for each variable
that does not conflict with any of the given constraints.

A constraint satisfaction problem that is very popular in the literature
is the Graph Coloring Problem (GCP). It is the problem of coloring the
vertices of a given graph in such a way that no two vertices connected
by an edge share the same color.

Example 1.1. Figure 2 shows an instance of the GCP. The task is now
to find a valid coloring just using the colors red, green, and blue.

Formulating this and any other GCP as a constraint satisfaction
problem is quite straightforward:

• (Variables) The variables are given by the vertices of the graph: A,
B, C, and D.

• (Domains) Each variable can be assigned one of the colors red,
green, and blue. Thus, all variables share the same Domain.

• (Constraints) The constraints are given by the graph’s edges. An
edge represents the constraint that the connected vertices must
not share the same color. Hence, the following constraints exist:
A 6= B, A 6= C, B 6= C, and C 6= D.

One naive approach to this problem might be to try out all possible
combinations of variable assignments and see which ones are valid.
There are dn possible combinations in general where d is the number
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A,B,C

C,D

Figure 4. Tree Decomposition of Constraint Graph in Figure 2.

of available colors and n is the number of vertices. Accordingly, in
this case there are 34 (81) possible combinations which is probably an
acceptable number to check for validity. The drawback of this approach
is that this number increases exponentially with the number of vertices.
Given a graph with only twenty vertices we would already have to
check 320 (nearly 3.49 billion) possible variable assignments. Using a
technique called Tree Decomposition we can reduce these numbers
drastically.

1.1.2 Tree Decompositions

Informally speaking, a tree decomposition is a tree of subtrees of the
corresponding graph.3 Each vertex in the tree decomposition is labeled
with vertices that build a subtree in the corresponding graph. Besides,
a tree decomposition must satisfy these three conditions:

1. Every vertex of the corresponding graph must appear in at least
one vertex of the tree decomposition.

2. If two vertices are connected by an edge in the corresponding
graph, then there must be at least one vertex in the tree decompo-
sition that contains them both.

3. If a vertex of the corresponding graph appears in multiple vertices
of the tree decomposition, then these vertices must build a subtree
in the tree decomposition.

3 A more formal definition of tree decompositions can be found on Page 16 of this thesis.
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A B C C D

red green blue blue red

green red blue blue green

red blue green green red

blue red green green blue

green blue red red green

blue green red red blue

Table 1. Solutions to the subproblems

The tree decomposition illustrated in Figure 4 satisfies all of these
conditions for the constraint graph in Figure 2.

If we want to solve the graph coloring problem based on this tree
decomposition, we can start out by solving the subproblems given
by each vertex in the tree decomposition. Using our naive approach
of trying out all possible combinations of variable assignments we
generate 33 (27) different solution candidates for the vertex containing
A, B, and C. Because of the constraints A 6= B, A 6= C, and B 6= C only
six of them are valid. For the subproblem containing the vertices C and
D we generate 32 (9) solution candidates and rule out three of them
because of the constraint C 6= D.

We can now get all solutions to the whole problem by joining the
subproblem solutions. Therefore, we will take a look at the variables
both subproblems have in common. In this case, that is the variable C.
Each solution for the subproblem A,B,C is joined with the solutions for
the subproblem C,D sharing the same color for the vertex C. As can be
seen in Table 1, there are two such solutions to C,D for every solution
to A,B,C. Consequently, there are twelve solutions to the whole graph
coloring problem.

We had to generate 36 combinations of variable assignments in order
to determine these twelve solutions compared to the 81 combinations
we had to generate without the tree decomposition. This difference
increases very quickly with the size of the graph coloring problem and
constraint satisfaction problems in general.
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Figure 5. A crossword puzzle and its corresponding hypergraph.

The smaller the subproblems in the tree decomposition the more
efficient we can solve a particular problem. This is why we are interested
in finding tree decompositions of small width. This width is defined
as the size of the tree decomposition’s biggest subproblem minus one.
Consequently, the width of the tree decomposition in Figure 4 equals 2.

1.1.3 Hypertree Decompositions

The same principle of decomposition of graphs can be applied to
problems that can be respresented as hypergraphs. A hypergraph is a
generalization of a graph. While an edge is only defined as a connection
between exactly two vertices, a hyperedge can contain any number of
vertices.

A crossword puzzle can be represented as a hypergraph very in-
tuitively. The words to fill in can be considered the hypergraph’s
hyperedges, while the single character boxes correspond to the hy-
pergraph’s vertices. This analogy should become clear when looking at
the crossword puzzle and the hypergraph in Figure 5.

More detailed and formal explanations of hypergraphs and hypertree
decomposistions are given in Section 2.1 respectively in Section 2.4. For
the understanding of this introduction it is sufficient to know that the
same principle of decomposition of graphs presented in Section 1.1.2
can be applied to hypergraphs as well.
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1.1.4 Elimination Orderings

One way of creating a tree decomposition for a given constraint graph
is by applying the algorithm Vertex Elimination given in Algorithm 1.
The algorithm takes as input the constraint graph and some ordering
of the graph’s vertices. The width of the resulting tree decomposition
depends entirely on this elimination ordering.

Algorithm 1: Vertex Elimination [47] [48]
Input: an elimination ordering σ = (v1, . . . , vn)

Input: a (constraint) graph G = (V ,E)

Output: a tree decomposition 〈T ,χ〉 for G
Initially B = 0, A = 0

foreach vertex vi do
introduce an empty bucket Bvi , χ(Bvi) := 0

for i = 1 to n do
χ(Bvi) = {vi}∪N(vi)

Introduce and edge between all non adjacent vertices in N(vi)

Let vj be the next vertex in N(vi) following vi in σ
A = A∪ (Bvi ,Bvj)
Remove vi from G

return 〈(B,A),χ〉, where B = {Bv1 , . . . ,Bvn}

For example, an elimination ordering for the constraint graph in
Figure 2 might be 〈C,D,A,B〉. This elimination ordering results in a
tree decomposition having just one vertex containing all vertices of the
constraint graph because C, the first vertex in the elimination ordering,
is connected with all other vertices in the constraint graph. Hence,
the resulting tree decomposition has a width of three4. A smaller tree
decomposition of width two can be obtained by applying the vertex
elimination algorithm with the elimination ordering 〈D,B,A,C〉5. Both
of these tree decompositions are illustrated in Figure 6.

It is guaranteed that there is a so-called optimal elimination ordering
that yields the tree decomposition with the minimum width of all

4 Remember that a tree decomposition’s width is defined as the size of its biggest
subproblem minus one.

5 In this case every elimination ordering not starting with vertex C would result in a tree
decomposition of width two.
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Figure 6. Two different tree decompositions of the graph in Figure 2.

valid tree decompositions for the given constraint graph.6 This is why
elimination orderings are a very popular search space for the detection
of tree decompositions of small width. Unfortunately, there are n!
different elimination orderings where n is the number of vertices in the
constraint graph. For that reason not only exact methods but also many
approximation algorithms have been applied to the problem of finding
tree decompositions of small width. They are discussed in Section 3.1
of this thesis.

1.1.5 Ant Colony Optimization

Ant algorithms are a class of algorithms that use real-life ants as a role
model in order to solve computational problems. Real ants are capable
of finding the shortest path between their nest and a food source by
communicating with each other only through pheromones they deposit
on their way. The more pheromone there is in a certain direction the
more likely the ant will choose this direction. When an ant finds some
food it will return to the nest. Consequently, the first ant that finds
a food source will also return to the nest first and will also deposit
pheromone on the way back. After some time the system converges
to this short path and all ants will be very likely to follow this path
while few ants will explore other paths that might be even shorter. An
experiment called the Double Bridge Experiment that demonstrates this
behaviour is discussed in Section 4.1.1.

Ant algorithms imitate this behaviour with a certain number of
virtual ants constructing solutions on a so-called construction graph.

6 This minimum width is also called the constraint graph’s treewidth.
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Every edge in the construction graph is assigned an initial amount of
pheromone in the pheromone matrix. After the ants have constructed
the solutions each solution is evaluated. The better the solution the
more pheromone the corresponding ant may deposit on the edges it
traversed during the construction of the solution. This ensures that the
ants will be more likely to choose these edges in the next iteration of
the algorithm. Optionally, the constructed solutions can be improved by
a local search procedure. Algorithm 2 describes the high-level, general
structure of all ACO algorithms.

Algorithm 2: High Level ACO algorithm [16]

while termination condition not met do
construct solutions
apply local search (optional)
update pheromones

A reasonable termination condition might be a certain amount of
time, a fixed number of iterations or a fixed number of iterations
without improvement of the best solution found so far.

The different ACO variants differ only in the way solutions are
constructed and the pheromone matrix is updated. For instance, the
variant Rank-Based Ant System only allows the best ants of every iteration
to deposit pheromone while the variant Max-Min Ant System introduces
lower and upper bounds on the pheromone values.

The details on how solutions are constructed by the ants and how the
pheromone matrix is updated are discussed in Chapter 4 of this thesis.

1.2 goals of this thesis

The main goals of this thesis are:

• Application and evaluation of different existing variants of ACO
algorithms to the following problems:

– Finding tree decompositions of small width.

– Finding generalized hypertree decompositions of small width.
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• Experimental comparison of these variants of ACO algorithms
for tree and hypertree decompositions.

• Hybridization of the best ACO algorithm with existing local
search methods for this problem.

• Comparison of the results achieved by the best ACO algorithm
with results achieved by other state of the art decomposition
methods.

1.3 main results

The main results of this thesis are:

• We implement the following variants of ACO algorithms known
from the literature and apply them to the problem of finding
tree decompositions and generalized hypertree decompositions
of small width:

– Simple Ant System [14] [17]

– Elitist Ant System [14] [17]

– Rank-Based Ant System [6]

– Max-Min Ant System [52] [53]

– Ant Colony System [15]

Our computational results reveal that Ant Colony System and
Max-Min Ant System perform slightly better than the other vari-
ants. Further, we discovered that the pheromone trails play a
minor role in the search for a good solution. This is different from
the results that were reported for the ACO implementations for
the travelling salesman problem [16].

• We propose two different pheromone update strategies. One that
lets the ants deposit the same amount of pheromone on all edges
belonging to the constructed solution and another that tries to
differentiate between each of the edges based on their utility. The
executed experiments lead us to the conclusion that the latter
gives slightly better results.
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• We implement two stagnation measures that indicate the degree of
diversity of the solutions constructed by the ants. These measures
can be used as termination criteria or to reinitialize the algorithm
when no new areas of the search space are explored.

• We implement two constructive heuristics that can be incorpo-
rated alternatively into every ACO variant as a guiding function:

– Min-Degree

– Min-Fill

The computational results suggest that the ACO algorithms give
better results using min-fill as a guiding heuristic. Nonetheless,
due to the fact that the min-degree heuristic is more time-efficient
we used it for all other experiments.

• We studied the combination of ACO with two existing local search
methods:

– Hill Climbing

– Iterated Local Search [41]

In our experimental studies the combination of Ant Colony Sys-
tem with an iterated local search was able to find better solutions
than the combination of Ant Colony System with hill climbing
for almost all problem instances.

• We compare the results achieved by Ant Colony System for 62 DI-
MACS graph coloring instances with the results of other state of
the art heuristic and exact algorithms. The ACO algorithm gives
comparable or even better solutions for some instances than other
decomposition methods such as Tabu Search or Maximum Cardi-
nality Search. The hybrid algorithm that incorporates an iterated
local search into Ant Colony System was even able to improve
the best known upper bound for the problem instance homer.col.
Nevertheless, especially bigger problem instances cause the ACO
algorithm to generate tree decompositions of considerably greater
width than other approaches such as genetic algorithms.

• We extend our ACO decomposition methods with a set cover
algorithm and apply the Ant Colony System variant to 19 selected
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instances from the CSP Hypergraph Library [22]. The results are
comparable to the results of some other hypertree decomposition
methods but inferior for most of the instances compared to the
best upper bounds known from the literature.

• We present the command line program acotreewidth that was used
to obtain the computational results given in this thesis. Further,
we present a library called libaco that was used to implement the
acotreewidth program and that can be used to solve other combina-
torial optimization problems as well. In order to demonstrate this
we implement a command line program called acotsp based on
libaco that constructs tours for instances of the travelling salesman
problem.

1.4 further organization of this thesis

Chapter 2 defines the basic terminology used in this thesis and gives
an overview on some fields of knowledge relevant to Tree- and Hyper-
tree Decompositions. In Chapter 3 exact and heuristic methods that
have already been applied to the problem of generating tree- and hy-
pertree decompositions of small width are presented. Chapter 4 is all
about the Ant Colony Optimization metaheuristic, its roots in nature and
the differences between the variants. Furthermore, various real-world
problems are described that already have been solved using ACO. In
Chapter 5 we present our approach of applying ACO to the problem
of Tree- and Hypertree Decomposition. We present different strategies
of updating the pheromone matrix, measures to determine algorithm
stagnation and local search algorithms in order to improve the solu-
tions constructed by the ants. Chapter 6 documents all implementation
artefacts that were created in the course of this thesis. There is a focus
on the libaco library and how to write client code for it in order to solve
other combinatorial optimization problems. In Chapter 7 we give the
computational results we obtained by applying our implementation to
examples taken from popular benchmark libraries. Finally, Chapter 8

concludes and describes future work.



2
P R E L I M I N A R I E S

2.1 graphs and hypergraphs

Definition 2.1. (Undirected Graph [43]). An undirected graph is an
ordered pair G = (V ,E) with the following properties:

1. The first component, V , is a finite, non-empty set. The elements
of V are called the vertices of G.

2. The second component, E, is a finite set of sets. Each element of
E is a set that is comprised of exactly two (distinct) vertices. The
elements of E are called the edges of G.

Definition 2.2. (Neighbourhood). Let G = (V ,E) be an undirected
graph. The neighbourhood N(v) of a vertex v ∈ V is the set {w | {v,w} ∈
E}.

Definition 2.3. (Path). Let G = (V ,E) be an undirected graph. A se-
quence 〈{v1, v2}, {v2, v3}, {v3, v4}, . . . , {vk−1, vk}〉 is a path of G between
v1, vk ∈ V .

Definition 2.4. (Simplicial Vertex [33]). A simplicial vertex of G is a
vertex of which the neighbourhood induces a clique.

Definition 2.5. (Connected Graph). G is conntected iff for any vi, vj ∈ V
there exists a path between vi and vj.

Definition 2.6. (Acyclic Graph). G is acyclic iff there is no path in G
that starts and ends at the same vertex v ∈ V .

Definition 2.7. (Tree). A tree is a connected, undirected, acyclic graph.

Definition 2.8. (Hypergraph [42]). A hypergraph is a structure H =

(V ,H) that consists of vertices V = {v1, . . . , vn} and a set of subsets of
these vertices H = {h1, . . . ,hm},hi ⊆ V , called hyperedges. Without
loss of generality we assume that each vertex is contained in at least

13
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Figure 7. A hypergraph and its corresponding primal graph.

one hyperedge. Hyperedges differ from edges of regular graphs in
that they may be defined over more than two vertices. Note that every
regular graph may be regarded as a hypergraph whose hyperedges
connect two vertices.

Definition 2.9. (Primal Graph, Gaifman Graph [9]). Let H = (V ,H) be
a hypergraph. The Gaifman graph or primal graph of H, denoted G∗(H),
is a graph obtained from H as follows:

1. G∗(H) owns the same set of vertices as H.

2. Two vertices vi and vj are connected by an edge in G∗(H) iff vi
and vj appear together within a hyperedge of H.

2.2 constraint satisfaction problems

Definition 2.10. (Constraint Satisfaction Problem [55]). A Constraint
Satisfaction Problem CSP is a triple 〈X,D,C〉 where. . .

• X is a finite set of variables {x1, x2, . . . , xn}.

• D is a function which maps every variable in X to a set of objects
of arbitrary type: D : X → finite set of objects (of any type). We
shall take Dxi as the set of objects mapped from xi by D. We call
these objects possible values of xi and the set Dxi the domain of
xi.
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Figure 8. Constraint hypergraph of Formula 2.1.

• C is a finite (possibly empty) set of constraints on an arbitrary
subset of variables in X. In other words, C is a set of sets of
compound labels. Cx1,x2,...,xk restricts the set of compound labels
that x1, x2, . . . , and xk can take simultaneously.

In Section 1.1.1 we have used the Graph Coloring Problem as an
introductory example to constraint satisfaction. Now we want to take
a look at another constraint satisfaction problem called the Boolean
Satisfiability Problem.

Definition 2.11. (Boolean Satisfiability Problem). The Boolean Satisfia-
bility Problem (SAT) is the decision problem of answering the question
whether a given Boolean expression in conjunctive normal form (CNF)
is satisfiable. A Boolean expression is satisfiable iff each of its variables
can be assigned a logical value in such a way that the whole formula is
true.

Definition 2.12. (Conjunctive Normal Form). A Boolean expression
is said to be in conjunctive normal form (CNF) iff it consists only of
conjunctions of clauses, where a clause is a disjunction of literals.

Example 2.13. Given the following Boolean formula:

(A∨B) ∧ (¬A∨ ¬C) ∧ (¬B∨C) (2.1)

Figure 8 illustrates the constraint hypergraph for this problem in-
stance that can be forumlated as a constraint satisfaction problem as
follows:
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Variables: X = {A,B,C}

Domains: D = {DA,DB,DC}

∀Di ∈ D : Di = {t, f}

Constraints: C = {CA,B,CA,C,CB,C}

CA,B = 〈{A,B}, {(t, t), (t, f), (f, t)}〉

CA,C = 〈{A,C}, {(f, f), (f, t), (t, f)}〉

CB,C = 〈{B,C}, {(f, t), (f, f), (t, t)}〉

Solutions: A = t,B = f,C = f

A = f,B = t,C = t

2.3 tree decompositions

Definition 2.14. (Tree Decomposition [46]). LetG = (V ,E) be a graph. A
tree decomposition of G is a tuple (T ,χ), where T is a tree, s.t. T = (N,E),
and χ is a function, s.t. χ : N → 2V , which satisfies all the following
conditions:

1.
⋃
t∈N

χ(t) = V

2. for all {v,w} ∈ E there exists a t ∈ N that v ∈ χ(t) and w ∈ χ(t)

3. for all i, j, t ∈ N if t is on the path from i to j in T , then χ(i)∩χ(j) ⊆
χ(t)

Definition 2.15. (Width of a Tree Decomposition of a Graph [33]). The
width of a tree decomposition 〈χ, T〉, where T = (N,E), is max

t∈N
| χ(t) − 1 |.

Definition 2.16. (Treewidth of a Graph). The treewidth tw(G) of a graph
G is the minimum width over all feasible tree decompositions of G.

2.4 hypertree decompositions

Definition 2.17. (Hypertree for a Hypergraph [19]) A hypertree for a
hypergraph H = (V ,H) is a triple 〈T ,χ, λ〉, where T is a rooted tree
(N,E) and χ and λ are labelling function which associate with each
node n ∈ T a set of vertices χ(n) ⊆ V and a set of edges λ(n) ⊆ H.
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Definition 2.18. (Generalized Hypertree Decomposition [19]). A hy-
pertree 〈T ,χ, λ〉 for a hypergraph H = (V ,E) is a generalized hypertree
decomposition of H, if it satisfies the following conditions:

1. for each hyperedge e ∈ E there exists t ∈ N such that e ⊆ χ(t). (t
covers e)

2. for each vertex v ∈ V , the set {t ∈ N | v ∈ χ(t)} induces a
(connected) subtree of T .

3. for each t ∈ N, χ(t) ⊆ (
⋃

e∈λ(t)

e)

Definition 2.19. (Hypertree Decomposition [19]) A Hypertree Decom-
position is a Generalized Hypertree Decomposition that satisfies this
additional condition:

4. for each node n ∈ N,
⋃
λ(n) ∩ χ(Tn) ⊆ χ(n), where Tn denotes

the subtree of T rooted at n; that is, each vertex v that occurs in
some edge of the edge label and in the vertex label of n or some
node below, must already occur in the vertex label of n.

Definition 2.20. (Width of a Hypertree Decomposition [19]). The width
of a hypertree decomposition 〈T ,χ, λ〉 is given by max

t∈N
| λ(t) |, i.e., the

largest size of some edge label.

Definition 2.21. (Hypertree Width). The hypertree width hw(H) of a
hypergraph H is the minimum width over all its feasible hypertree
decompositions.

2.5 decomposition methods

There are several known algorithms for the construction of Tree and
Hypertree Decompositions. In this thesis we will focus on methods
that are based on elimination orderings.1 As already mentioned in Sec-
tion 1.1.4 an elimination ordering is a permutation of the constraint
graph’s vertices.

1 Nevertheless, Section 3.4.2 discusses a method called Hypergraph Partitioning that is
not based on elimination orderings.
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Definition 2.22. (Elimination Ordering [33]) Given a graph G = (V ,E),
an elimination ordering for G is an ordering σ = (v1, . . . , vn) of the
vertices in V .

Elimination Orderings can serve as a search space for the treewidth
of a graph because for every graph there is an ordering that produces a
tree decomposition having minimum width. Gogate and Dechter [24]
showed that instead of searching the space of all possible elimination
orderings it is even sufficient to search a subset of these orderings
named the treewidth elimination set.

Definition 2.23. (Treewidth Elimination Set [24]). Let P be the set of all
possible orderings σ = (v1, v2, . . . , vn) of vertices of G constructed in
the following manner. Select an arbitrary vertex and place it at position
1. For i = 2 to n, if there exists a vertex v such that v /∈ N(vi−1), make
it simplicial and remove it from G. Otherwise, select an arbitrary vertex
v and remove it from G. Place v at position i. P is called the treewidth
elimination set of G.

Both of the algorithms discussed next take as input an elimination
ordering and return a tree decomposition for the given constraint
graph. In order to obtain a hypertree decomposition both algorithms can
be extended by an algorithm solving the set cover problem described in
Section 2.6.

2.5.1 Vertex Elimination

The vertex elimination algorithm creates a tree decomposition by elim-
inating a sequence of vertices from the given constraint graph one
after the other.2 Eliminating a vertex v from the graph is achieved by
performing the following steps.

1. Create a node t in the tree decomposition where χ(t) = {v}∪N(v).

2. Node t will be connected to the node that is created when the
next vertex in N(v) is eliminated.

2 If a constraint hypergraph is given the algorithm operates on its corresponding primal
graph.
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3. Introduce an edge between all neighbouring vertices of v if there
does not already exist one.

4. Remove vertex v from the graph.

This is done until the tree decomposition satisfies all conditions given
in Definition 2.14. The complete algorithm can be found on Page 7 of
this thesis.

Example 2.24. Given the constraint graph in Figure 9 and the elimina-
tion ordering σ = (x4, x1, x3, x2, x5) we want to create a tree decompo-
sition by applying the vertex elimination algorithm.

The Figures 10 to 12 illustrate different states of the constraint graph
and the tree decomposition as the algorithm progresses. A grey vertex
implies that it is being eliminated while a dashed edge is being inserted
because of the elimination.3

(Figure 10) The first vertex in the elimination ordering is x4. Therefore,
a node of the tree decomposition is created containing x4 itself and its
neighbours x2 and x3. This node is going to be connected with the node
that will be created when x3 is eliminated because x3 is the first vertex
to be eliminated among the neighbours of x4. In the constraint graph
we connect the neighbours of x4 and remove x4 itself. Afterwards we
can proceed with the second vertex in the elimination ordering.

(Figure 11) Again, we create a node in the tree decomposition con-
taining the vertex to be eliminated and its neighbours. This node is
also going to be connected to the node that will be created when x3
is eliminated. This time it is not necessary to add any edges to the
constraint graph since the neighbours of x1 are already connected.

(Figure 12) Finally we eliminate vertex x3. As announced before, we
connect the node that is created in the tree decomposition with the other
two nodes that were created during the previous two iterations. Now,
as the tree decomposition satisfies all conditions given in Defintion 2.14,
there is no need to eliminate the remaining vertices x2 and x5. We
have generated a valid tree decomposition (having width two) for the
constraint graph in Figure 9.

3 Remember that all neighbouring vertices of the vertex to be eliminated are connected
before its elimination.
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Figure 9. Constraint Graph.
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χx4 = {x2, x3, x4}

Figure 10. Elimination of vertex x4.

x1
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x5

χx4 = {x2, x3, x4}

χx1 = {x1, x2, x3}

Figure 11. Elimination of vertex x1.
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x3

x2

x5

χx4 = {x2, x3, x4}

χx3 = {x2, x3, x5}

χx1 = {x1, x2, x3}

Figure 12. Elimination of vertex x3.

2.5.2 Bucket Elimination

In contrast to the vertex elimination algorithm the bucket elimination
algorithm takes a constraint hypergraph as input. At first it creates an
empty bucket Bxi for every vertex xi. Then it takes a look at every
hyperedge and fills the bucket of the vertex that is eliminated first
among all vertices in the hyperedge with all the vertices contained in
the hyperedge. After that we take a look at the bucket of the first vertex
in the elimination ordering and search for the vertex that is eliminated
next among all vertices in that bucket. The bucket of this vertex is filled
with the vertices of the other bucket excluding the vertex the bucket
“belongs” to and both buckets are connected by an edge. Then we go
on and do the same for all other vertices according to the elimination
ordering.

Example 2.25. Given the elimination ordering σ = (x2, x1, x3, x4) we
want to obtain a tree decomposition for the hypergraph in Figure 13

using the bucket elimination algorithm.
Among all vertices in edge h1 vertex x2 is the first one being elimi-

nated so we fill its bucket with all vertices contained in h1. Vertex x2
is also eliminated before x4 so we can also add all vertices within h2
to the bucket of x2. Finally we look at edge h3 and find out that x3 is
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Algorithm 3: Bucket Elimination [9] [39]
Input: a (constraint) hypergraph H = (V ,H)

Input: an elimination ordering σ = (v1, . . . , vn) of the vertices in V
Output: a tree decomposition 〈T ,χ〉 for H

Initially B = 0, E = 0

foreach vertex vi do
introduce an empty bucket Bvi , χ(Bvi) := 0

foreach hyperedge h ∈ H do
Let v ∈ h be the minimum vertex of h according to σ
χ(Bv) = χ(Bv)∪ vertices(h)

for i = 1 to n do
Let A = χ(Bvi) − {vi}

Let vj ∈ A be the next vertex in A following vi in σ
χ(Bvj) = χ(Bvj)∪A
E = E∪ (Bvi ,Bvj)

return 〈(B,E),χ〉, where B = {Bv1 , . . . ,Bvn}

eliminated before x4 and therefore add these two vertices to the bucket
of x3. Figure 13 illustrates the state of the buckets after these steps.

Vertex x2 is the first vertex in the elimination ordering so we examine
the content of bucket Bx2 excluding x2. Among the vertices {x1, x3, x4}
vertex x1 is next in the elimination ordering. That is why we introduce
an edge between bucket Bx2 and bucket Bx1 which additionally is filled
with the vertices x1, x3 and x4. These steps are repeated for all vertices
in the elimination ordering which results in the tree decomposition
pictured in Figure 14.

2.6 set cover problem

Both, vertex elimination and bucket elimination, return a tree decompo-
sition for a given hypergraph and must be extended in order to obtain
a (generalized) hypertree decomposition.

A tree decomposition of a hypergraph can be transformed into a
generalized hypertree decomposition by assigning appropriate λ labels
to the tree decomposition’s nodes. Therefore a set of hyperedges must
be found for each node in the tree decomposition that covers all of the
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Figure 13. Bucket Elimination. Step 1.

Bx1

Bx2

Bx3

Bx4

x1

x2

x3 x4

x1 x2 x3

x3 x4

x4

x1 x3 x4

x4

h1

h2

h3

Figure 14. Bucket Elimination. Step 2.
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vertices contained in χ. That is the equivalent of solving the set cover
problem for each node of the tree decomposition.

Definition 2.26. (Set Cover Problem [20]). Given a collection F of sub-
sets of S = {1, . . . ,n}, set cover is the problem of selecting as few subsets
of F as possible such that their union covers S.

In the case of our special problem F is the collection of hyperedges
of the constraint hypergraph and S is the set of vertices contained in
the χ collection of a certain node in the tree decomposition.

One greedy algorithm to solve the set cover problem is to choose the
subset that contains the largest number of uncovered elements at each
stage. Ties are broken randomly.

Example 2.27. Given the tree decomposition in Figure 14 we can now
apply this greedy algorithm in order to obtain a generalized hypertree
decomposition.

The node Bx1 contains the vertices x1, x3 and x4. The hyperedge h3
covers the vertices x3 and x4 and is therefore the hyperedge covering
the most vertices among all hyperedges. That is the reason why we
add h3 to the λ collection of Bx1 . With x1 there is still one vertex left
in the χ collection of Bx1 that is not covered by h3 so we need to add
another hyperedge to λ. This is going to be h1 since it is the only edge
covering x1. Now all vertices in χ are covered by hyperedges in λ. Thus,
we can proceed by applying the same algorithm to the other nodes of
the tree decomposition. Finally we obtain the hypertree decomposition
illustrated in Figure 15.

2.7 solving csps from tree decompositions

Acyclic Solving [9] is an algorithm that can be used to solve a con-
straint satisfaction problem efficiently based on its tree decomposition.
It achieves that by generating solutions for each node in the tree de-
composition in a bottom-up fashion. At first the algorithm generates
solutions for the leaf nodes which are then joined with the solutions
of their ancestors in the tree. When the root node is reached and if
its solution set is not empty, the solutions for the whole constraint
satisfaction problem can be obtained by a top-bottom procedure. If the
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Figure 15. Hypertree Decomposition

root node’s solution set is empty then it is guaranteed that there does
not exist any solution.



3
S TAT E O F T H E A RT

Many different algorithms have already been applied to the NP-hard
problem of deciding whether a given (hyper)graph has a (hyper)tree
decomposition with a maximum width of k. This chapter gives an
overview of some of these approaches and categorizes them into heuris-
tic, exact and metaheuristic methods. Heuristic and metaheuristic meth-
ods give good results in a reasonable amount of time while exact
methods determine the (hyper)treewidth of the given (hyper)graph
with the drawback of higher computational costs.

3.1 upper bound heuristics

The following three heuristics are very simple polynomial time algo-
rithms. Decompositions of small width can be obtained very quickly
with all of them. Nevertheless, the methods discussed in Section 3.3
and Section 3.4 yield better results by incorporating these heuristics for
example for the generation of initial solutions that are then improved
by a local search.

3.1.1 Min-Degree

The min-degree heuristic eliminates the vertex having minimum degree
at first. From the graph that results from this elimination the vertex
having minimum degree is eliminated next. This is repeated until every
vertex has been eliminated. If multiple vertices share an equal degree
then one of these vertices is chosen at random.

3.1.2 Min-Fill

The min-fill heuristic eliminates the vertex next that will cause the least
amount of edges to be added to the graph. Ties are broken randomly.

26
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3.1.3 Maximum Cardinality Search (MCS)

Maximum Cardinality Search, proposed by Tarjan and Yannakakis [54],
chooses the first vertex in the elimination ordering randomly. After that,
the vertex that is connected to the most vertices already selected by
MCS (once again, ties are broken randomly) is added to the elimination
ordering. Notice that MCS in contrast to min-degree and min-fill does
not eliminate any vertices from the graph during the construction of
the elimination ordering.

3.2 lower bound heuristics

The following heuristics return a number x that is guaranteed to be
a lower bound for the given graph’s treewidth t meaning that x 6 t.
These heuristics are used by the exact methods discussed in Section 3.3
in order to narrow the search space. For a number of other existing
lower bound heuristics take a look at [5].

3.2.1 Minor-Min-Width

Minor-Min-Width is a heuristic that was proposed by Gogate and
Dechter [24]. It searches for the minimum degree vertex v contained
in the graph and the minimum degree vertex among its neighbours
w ∈ N(v). The degree of v is remembered as lb1 if the degree of v
is greater than lb before we contract the edge between v and w. An
edge is contracted by merging the vertices connected by the edge and
therefore removing the edge itself. This is repeated until no vertices
remain in the graph. Finally, lb is returned as the lower bound for the
graph’s treewidth.

1 lb is initialized to zero.
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3.2.2 γR

Ramachandramurthi [44] introduced the lower bound heuristic γR that
looks at every pair of non-adjacent vertices (vi, vj) in the graph G and
determines the maximum of their degrees (δi, δj):

γR(G) =

 n− 1 if G is a complete graph,

min(vi,vj)/∈E{max{δi, δj}} otherwise
(3.1)

Ramachandramurthi proved that the minimum of all numbers de-
termined this way represents a lower bound for the treewidth of the
graph.

3.3 exact methods

Exact (also known as complete) algorithms are proven to deliver optimal
solutions theoretically. In practice they often run out of memory or
take an unacceptable amount of time to solve the problem instance
they are confronted with due to the enormous size of the search space.
In many cases the reason for the high memory consumption is that
the algorithm needs to keep track of the (partial) solutions generated
during the search. Most exact methods try to address these issues by
identifying areas of the search space that cannot contain a solution that
is better than the best solution found so far. This section discusses by
means of A* and other branch and bound algorithms present in the
literature how this is achieved for the problem of finding (hyper)tree
decompositions of small width.

3.3.1 Branch and Bound Algorithms

Branch and Bound is a general method that can be used to solve opti-
mization problems exactly while narrowing the search space with the
help of various pruning techniques. Land and Doig [37] first proposed
the method for linear programming in 1960.

The branching part of the algorithm divides the set of all feasible
solutions S into two or more smaller subsets S1, S2,. . . whose union
covers S. This branching is performed recursively on all those subsets
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resulting in a tree structure similar to the structure of the search tree in
Figure 16.

During the search certain branches of the tree a pruned due to the
bounding part of the algorithm. Starting at the root of the tree a lower
and an upper bound is calculated for each vertex in the tree and the
minimum of all upper bounds is stored in a dedicated global variable
m. If the search gets to a vertex whose lower bound is greater than the
global minimum upper bound m then all solutions in this branch of
the search tree can be discarded. A branch can also be pruned if the
algorithm reaches a vertex having a lower bound equal to its upper
bound because it then has already found the optimal solution within
its branch. When the algorithm is done all vertices either have been
pruned or their lower bound equals their upper bound meaning that it
contains an optimal solution.

QuickBB

Gogate and Dechter presented a branch and bound algorithm called
QuickBB in [24]. QuickBB introduced a new lower bound heuristic
called minor-min-width (see Section 3.2.1) and the treewidth elimina-
tion set (see Definition 2.23 on Page 18). Min-fill was used as an upper
bound heuristic for the bounding part of the algorithm. Additionally
QuickBB uses several pruning techniques such as the simplicial vertex
rule and the almost simplicial vertex rule due to Koster et al. [36].

QuickBB was applied to randomly generated graphs as well as on
DIMACS benchmarks and bayesian networks. Gogate and Dechter re-
ported that QuickBB was “consistently better than complete algorithms
like QuickTree [49] in terms of cpu time” which was the best existing
complete algorithm prior to QuickBB.

BB-tw

Bachoore and Bodlaender proposed their own branch and bound al-
gorithm called BB-tw [4] in 2006. Although QuickBB and BB-tw were
worked on independently both algorithms share some ideas especially
in regard to search space pruning. For example, BB-tw makes also use
of the simplical vertex rule and the strongly almost simplicial rule.2 On

2 In [4] these rules are referred to as Pruning Rule 5.
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the other hand while QuickBB searches the treewidth elimination set
BB-tw searches all possible elimination orderings. What is special about
the search tree is that the vertices are arranged in each level of the tree
due to their sequence in the elimination ordering for finding the best
upper bound. This way the branch and bound algorithm visits less
vertices since it probably will find a decent upper bound right at the
start and therefore will be able to prune more branches whose lower
bound is greater than this upper bound.

Bachoore and Bodlaender experimented with various heuristics and
combinations of pruning rules. They concluded that the ordering of
the pruning rules has a significant impact on the running time of the
algorithm. Further, they reported that BB-tw is efficient for graphs
having either a very small or very large treewidth3.

3.3.2 A* Algorithms

An A* algorithm is a special kind of branch and bound algorithm.
One such algorithm for the computation of a graph’s treewidth called
A*-tw was proposed by Schafhauser in [48]. The algorithm is of course
also applicable to the primal graph of a given hypergraph and can be
extended by the set cover algorithm described in Section 2.7 in order to
obtain a hypergraph decomposition.

In general, A* algorithms are graph search algorithms that find the
least-cost path from a given initial vertex to one of possibly multiple
goal vertices. This is accomplished by maintaining a priority queue of
vertices. The priority f(x) of a vertex x is calculated according to the
following equation:

f(x) = g(x) + h(x)

Where

g(x) is the cost of the path from the initial vertex to x,

h(x) is a heuristic (estimated) value of the cost of reaching a goal vertex
from x. This heuristic must be admissible what means that it must
not overestimate the cost of reaching a goal vertex and

3 Very large meaning that the treewidth is close to the number of vertices contained in
the graph.
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Figure 16. Search Tree for a graph containing three vertices.

f(x) is the sum of g(x) and h(x).

In the beginning only the initial vertex s is put into the priority
queue whereas g(s) = 0 (since it is the starting point) and h(s) is some
admissible heuristic value.4

At each iteration of the A*-algorithm the vertex having the lowest
f(x)-value is removed from the priority queue. This vertex is added
to the so-called closed set and all its neighbours not present in the
closed set are evaluated meaning that they are added to the priority
queue after their g(x), h(x) and f(x) values are calculated. This process
is repeated until a goal vertex is reached. When this happens it is
guaranteed that the algorithm has found the least-cost path.

The A*-tw algorithm applies these principles on trees similar to the
one illustrated in Figure 16. Starting out at the root node all possible
elimination orderings can be constructed by traversing the edges down
to the leaves of the tree. A*-tw additionally does apply some pruning
and reduction rules that narrow the search space but are not mentioned
here for the purpose of simplification. These details can be looked up
in Chapter 5.1 of [48].

4 For example, h(s) could be the air-line distance between s and the goal if the problem
is about finding the geographically shortest way between two places through a network
of streets. This heuristic would be guaranteed not to overestimate the real cost.
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At first the algorithm computes an upper and a lower bound on the
treewidth of the graph. Search states having a value f(x) that exceeds
the computed upper bound will be ignored because it is impossible
to find the treewidth of the graph in that area of the search tree. The
maximum number returned by the minor-min-width and the minor-γR
heuristics is used as the heuristic value h(x). The value g(x) is set to
the width of the decomposition that is constructed using the partial
elimination ordering represented by the search state. In contrast to the
general case where f(x) is the sum of g(x) and h(x), f(x) is set to the
maximum of g(x) and h(x) by A*-tw.

A*-tw was applied on selected DIMACS graphs and could determine
the treewidth of the graph miles1000 which could not be fixed before.
Additionally it was able to significantly improve the lower bound for
the graph DSJC125.5. On the other hand A*-tw could not return the
treewidth for myciel5 and queen7_7 whereas QuickBB and BB-tw could.

3.4 metaheuristic methods

Metaheuristics are a very general class of algorithms that are applicable
to a wide variety of problems. Such an algorithm tries to continually
find and improve feasible solutions to a given (often combinatorial)
optimization problem with the guidance of an underlying problem-
specific heuristic – hence the name. Usually a metaheuristic runs in
iterations and in each iteration one or more solutions are generated
using the knowledge about the search space acquired during the previ-
ous iterations.5 A termination condition for a metaheuristic algorithm
can be everything from a time limit to a number of iterations without
improvement of the best solution found.

3.4.1 Genetic Algorithms

Genetic Algorithms were introduced by John H. Holland in 1975. The
idea behind them is to imitate the biological principle of evolution
by selection, recombination and mutation of a set of initial candidate
solutions — the population — which is either created randomly or heuris-

5 Metaheuristics that generate multiple solutions per iteration are called population-based.
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Figure 17. Position-based crossover operator (left: parents, right: offsprings).

tically. The quality of these solutions is evaluated in every iteration by
a so-called fitness function. Better solutions are more likely to advance
to the next iteration and are also more likely to be recombined with
other solutions to produce offsprings. Additionally some of the solutions
are slightly altered (mutated) in order to cause the search to explore
other areas of the search space. For this all to work out the solution
properties have to be encoded as genes which, when put together, form
a chromosome.

Musliu and Schafhauser developed the genetic algorithms GA-tw
and GA-ghw, based on a genetic method for the decomposition of
bayesian networks proposed by Larrañaga et al. [38], for the creation
of tree respectively generalized hypertree decompositions of small
width in [42]. Both algorithms take a hypergraph and several control
parameters (population size, mutation rate, crossover rate,. . . ) as input.
The initial population is generated randomly whereas each individual
in the population is an elimination ordering. Those individuals are
evaluated by the fitness function which is the width of the resulting
tree decomposition for GA-tw whereas GA-ghw computes the width
of the resulting generalized hypertree decomposition6.

The individuals going to be kept for the next iteration are selected
using tournament selection. This selection technique randomly chooses a
certain number of individuals and the best one among them (the one
having the smallest width) is selected. This is repeated until enough
individuals have been selected for the next iteration.

Musliu and Schafhauser implemented many different crossover op-
erators that differ in the way two individuals are recombined and
compared them. Position-based crossover (POS) illustrated in Figure 17

turned out to “achieve the best average width”. POS chooses a set of

6 GA-ghw uses the greedy set cover heuristic discussed in Section 2.6 to obtain a
generalised hypertree decomposition.
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Figure 18. Exchange mutation operator (example taken from [42]).

positions in the elimination orderings and exchanges those elements
between the parents. The vertices that are missing after this exchange
are reinserted in the order of the other parent.

One mutation operator that was implemented in [42] among many
others is the exchange mutation operator exemplified in Figure 18.
The operator simply exchanges to arbitrarily chosen vertices in the
elimination ordering.

GA-tw was able to improve the best upper bounds on the treewidth
known at the time for twelve graphs among the 62 graphs of the
DIMACS benchmark library.

GA-ghw could improve the known upper bounds on the hyper-
treewidth of eleven hypergraphs among the 25 hypergraphs from the
CSP Hypergraph Library from Ganzow et al. [22].

3.4.2 Hypergraph Partitioning

Unlike the other methods discussed in this chapter hypergraph par-
titioning does not search for a good elimination ordering. Instead, it
tries to subdivide the given hypergraph into small, loosely coupled
components.

Every time the hypergraph is partitioned as in Figure 19 a node is cre-
ated in the hypertree decomposition either containing the hyperedges
that were “cut” or the vertices that are covered by these hyperedges.
Accordingly, for the hypergraph in Figure 19 a node would be created
either having a λ-label containing the hyperedges h1 and h3 or having a
χ-label containing the vertices x1, x3, x4 and x6. This is repeated recur-
sively for all resulting subcomponents of the hypergraph. Afterwards
the χ respectively the λ labels are added to the nodes of the hypertree
decomposition depending on whether the vertices or the hyperedges
have been added during the partitioning. Finally, the nodes are con-
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Figure 19. A hypergraph being partitioned into two components.

nected in a way that results in a generalized hypertree decomposition.
A detailed description of this process can be found in [34].

Dermaku et al. have experimented with several hypergraph partition-
ing algorithms in [13] and [12] that differ in the way they partition the
hypergraph. They reported that the algorithm based on the HMETIS
library [30] (a popular hypergraph partitioning library) performed bet-
ter than the ones based on Tabu Search and the Fiduccia-Mattheyses
algorithm. Furthermore, it was reported that heuristics based on tree
decomposotions give slightly better results than algorithms based on
hypergraph partitioning. On the other hand hypergraph partitioning is
very effective and time-efficient for the generation of hypertree decom-
positions of large hypergraphs. This is why they were able to improve
the best known upper bounds of many large hypergraphs in the CSP
hypergraph library.

3.4.3 Tabu Search

Tabu Search is a local search technique that was proposed by Glover
[23] in 1989. A local search algorithm tries to improve an initial solution
(generated randomly or heuristically) by looking at neighbourhood
solutions. A solution’s neighbourhood is defined by some kind sys-
tematic modification of the solution. One such modification might be
the swapping of two solution elements. The best solution in the neigh-
bourhood is selected and its neighbourhood is evaluated next.7 What

7 This step is known as a move in the solution space.
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is special about tabu search is that it remembers a certain number of
previous moves and adds them to a so-called tabu-list. For example, if
an element has been swapped in the previous five moves, the element
must not be swapped again. This shall prevent the algorithm from
moving in circles in the solution space.

Clautiaux et al. presented a tabu search approach for the generation
of tree decompositions in [8]. They reported that their “results actually
improve on the previous best results for treewidth problems in 53%
of the cases” [8] applying their tabu search algorithm to the DIMACS
library. Some of their results could be further improved by Gogate and
Dechter later in 2004 [24].

Musliu proposed a tabu search algorithm for generalized hypertree
decompositions in [40]. Two types of neighbourhoods were imple-
mented. One swaps the vertex causing the largest clique during the
elimination process (ties broken randomly) with a random other ver-
tex in the elimination ordering while the other evaluates all solutions
obtained by swapping the vertex causing the largest clique with its
neighbours. When the algorithm moves to a different solution the
swapped vertices are made tabu for a certain number of iterations.

3.4.4 Simulated Annealing

Another local search method that been applied to the problem of
generating tree decompositions of small width is Simulated Annealing
which was introduced by Kirkpatrick et al. [31] in 1983. Kjærulff et al.
[32] applied this method to the decomposition of probabilistic networks.

3.4.5 Iterated Local Search

Any local search method can be iterated and therefore extended to an
iterated local search. The motivation behind this is the inherent high
probability that a local search gets stuck in a local optimum meaning
that due to its neighbourhood it is impossible for the algorithm to find
any better solutions even though they exist. To bypass this problem
an iterated local search algorithm perturbates (modifies) the solution
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returned by the local search8 in some way and restarts the local search
supplying it with this perturbated solution. This measure is based on
the hope that the perturbated solution has a neighbourhood that allows
the search to break out of the local optimum.

Musliu presented an iterated local search called IHA (Iterative Heuris-
tic Algorithm) for the generation of tree decompositions in [41]. Algo-
rithm 4 describes the application flow in pseudo-code notation where
the ConstructionPhase function corresponds the local search that is
being iterated. Several local search methods, pertubation mechanisms
and acceptance criteria have been evaluated. For a detailed explanation
of all of them please take a look at [41].

Algorithm 4: Iterative heuristic algorithm - IHA [41]
Generate initial solution S1

BestSolution = S1

while Termination Criterion is not fulfilled do
S2 = ConstructionPhase(S1)

if Solution S2 fulfills the acceptance criterion then
S1 = S2

else
S1 = BestSolution

Apply perturbation in solution S1

if S2 has better (or equal) width than BestSolution then
BestSolution = S2

return BestSolution

It was reported that IHA improved the best known upper bounds
of 14 graphs in the DIMACS library. Further, it was reported that the
time-performance of IHA depends highly on the local search method
being applied. Using a local search method called LS1 it was possible to
decrease the time needed to generate tree decompositions significantly

8 To be precise, the perturbation is not necessarily always applied to the solution returned
by the local search. An acceptance criterion can be defined. If this is not fulfilled the
best solution found so far is perturbated and passed on the local search in the next
iteration. One acceptance criterion could be that the solution returned by the local
search is at least as good as the best solution found so far.
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for some instances. This was ascribed to the fact that LS1 considers
only one neighbourhood solution per iteration.



4
A N T C O L O N Y O P T I M I Z AT I O N

Ant Colony Optimization (ACO) is a population-based metaheuristic
introduced by Marco Dorigo [14] in 1992. As the name suggests the
technique was inspired by the behaviour of “real” ants. Ant colonies
are able to find the shortest path between their nest and a food source
just by depositing and reacting to pheromones while they are exploring
their environment. The basic principles driving this system can also be
applied to many combinatorial optimization problems. In this chapter
we will try to explain what these principles are in general and how
they can be applied to the travelling salesman problem — an example-
application used for the evaluation of many variants of ACO algorithms.
Finally, other problems ACO has been applied to are discussed briefly.

This chapter is mainly based on the structure and contents of the
book “Ant Colony Optimization” [16] by Marco Dorigo and Thomas
Stützle.

4.1 from real to artificial ants

4.1.1 The Double Bridge Experiment

Deneubourg et al. [11] have investigated the foraging behaviour of the
Argentine ant species Iridomyrmex humilis in controlled experiments.
They connected the nest of an ant colony and a food source with a
double bridge and ran various experiments with a varying ratio of
the length of the two branches. With branches of equal length a vast
majority of the ants preferred one of the branches after some time.
Numerous repetitions of the exact same experiment showed that the
ants chose one branch or the other in about the same number of trials.
Using a different experimental setup with one branch being twice as
long as the other one, all ants chose the shorter branch after some time
in almost all trials.

39



4.1 from real to artificial ants 40

Nest Food

Figure 20. Double bridge experiment. Ants start exploration.

Nest Food

Figure 21. Ants on shorter branch reach food source.

Nest Food

Figure 22. Ants more likely to return on shorter branch.
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As can be seen in Figure 20, the ants choose one of the branches
randomly in the beginning of the experiment since pheromone has been
deposited on neither of them yet. Of course, the ants that have chosen
the shorter branch reach the food source before the ants on the longer
branch (Figure 21) and are therefore also able to deposit pheromone
onto the crossing in front of the food source first. As a consequence,
these ants will also be more likely to take the short branch when they
return to the nest (Figure 22) and will also be the first ants to deposit
pheromone onto the crossing in front of the nest enforcing the bias
towards the short branch. This autocatalytic effect also influences the
behaviour of the ants in the experiment consisting of two branches of
equal length. The difference is that in this case the system converges to
one of the branches because one of the branches is used by more ants
incidentally in the beginning of the experiment.

4.1.2 Artificial Ants

The foraging behaviour of real ants can serve as a role model for the
implementation of artificial ants that solve many different kinds of
optimization problems. The exploration space used by real ants can
be modelled as a graph where the artificial ants move from one vertex
to another searching for a solution. Instead of constantly depositing
pheromone an ant evaluates its solution after construction and deposits
pheromone proportionally to its quality. During construction the ants
consider not only the amount of pheromone present on the incident
edges but also problem-specific heuristic information to decide where
to move next.

Construction Graph

For the travelling salesman problem the construction graph consists
of all given cities where each city is connected by an edge with all the
others.1 The ants start their tour at some random city since the starting
point of a round-trip does not affect its overall length.

1 Remember that the travelling salesman problem (TSP) is about finding the shortest
round-trip given a number of cities where each city is only visited once.
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Figure 23. ACO Construction Graph for an instance of the TSP.

Figure 23
2 illustrates the construction graph for an instance of the

TSP that deals with determining the shortest round-trip for the cities
Vienna, Rome, Paris and Berlin.

Heuristic Information

At each solution construction step the ant has to decide to which neigh-
bouring vertex to move.3 This decision is made probabilistically based
on the pheromone values and some heuristic information that espe-
cially helps finding a good solution in the beginning of the algorithm
when all pheromone values are equal. The higher the heuristic value
the more likely the ant will be to move to the corresponding vertex.

2 This image is a derivative of [1] licensed under the Creative Commons Attribution
ShareAlike 2.5 License (http://creativecommons.org/licenses/by-sa/2.5/). There-
fore this image is also covered by this license.

3 In the case of the TSP the ant may only move to a neighbouring vertex it has not visited
yet.

http://creativecommons.org/licenses/by-sa/2.5/


4.1 from real to artificial ants 43

This is why the reciprocal value of the airline distance is chosen as the
heuristic for the TSP.

ηvr = ηrv = 1/764

ηvb = ηbv = 1/524

ηvp = ηpv = 1/1038

ηrb = ηbr = 1/1182

ηrp = ηpr = 1/1108

ηpb = ηbp = 1/880

Pheromone Matrix

The pheromones associated with the edges of the construction graph
are represented as a matrix.

T =


τvv τvr τvp τvb

τrv τrr τrp τrb

τpv τpr τpp τpb

τbv τbr τbp τbb


The variables in the matrix are initialized to some reasonable value.

If this value is too low the search is biased too early towards a probably
suboptimal part of the solution space. On the other hand if the initial
pheromone value is too high it takes a couple of iterations until the
pheromone updates have an impact on the behaviour of the ants. Dorigo
and Stützle [16] reported that a good initial pheromone value is the
amount of pheromone deposited by the colony per iteration on average.

Pheromone Update

After an ant has constructed its solution it deposits an adequate amount
of pheromone onto the edges it traversed. For the travelling salesman
problem this could be the reciprocal value of the length of the round-trip
L.

τij = τij +
1

length(L)
, ∀(i, j) ∈ L

Additionally a certain amount of pheromone evaporates after each
iteration. The intended purpose of this is that the algorithm “forgets”
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older solutions after some time and explores new areas of the search
space. How much pheromone evaporates after each iteration can be
adjusted with the evaporation rate parameter ρ.

τij = (1− ρ)τij (4.1)

4.2 ant system

Ant System (AS) [14] [17] was one of the first ant algorithms. It is
inferior to all other variants of ACO variants discussed in this chapter.
Nevertheless, it proved the concept of ant colony optimization and
builds the foundation of all other ant algorithms.

4.2.1 Pheromone Trail Initialization

For the TSP the pheromone trails are initialized according to Equa-
tion 4.2 where m is the number of ants and Cnn is the length of the
round-trip obtained by applying the nearest-neighbour heuristic. This
heuristic randomly selects a city and then creates a round-trip by always
moving to the nearest city.

τij = τ0 =
m

Cnn
, ∀(i, j) (4.2)

Example 4.1. The ant in Figure 23 would construct the tour (Paris,
Berlin, Vienna, Rome, Paris)4 using the nearest-neighbour heuristic.
This would lead to the following initial pheromone value τ0 under the
assumption that the ant colony consists of ten ants (m = 10).

Cnn = 880+ 524+ 764+ 1108 = 3276

τ0 =
10

3276

4.2.2 Solution Construction

An ant k located at vertex i moves to a neighbouring vertex j with
probability pkij that is computed according to Equation 4.3 whereas α

4 Coincidentally this is also the least-cost tour. In general it is very unlikely that the
nearest-neighbour heuristic constructs an optimal solution.
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and β are parameters passed to the ant system algorithm that weight
the influence of the pheromone trail τij and the heuristic information
ηij.

pkij =

[
τij
]α [

ηij
]β∑

l∈Nki

[τil]
α [ηil]

β
, if j ∈ Nki (4.3)

Example 4.2. An ant starts its tour in Paris and now has to decide where
to move next. Extending Example 4.1 we assume that all pheromone
trails have been initialized to 10/3276. Further, we will determine that
α = 1 and β = 1. Using this data and the heuristic information we can
compute the transition probabilities. Let’s start out with the denomina-
tor d of Equation 4.3.

d = 10/3276 · 1/880+ 10/3276 · 1/1038+ 10/3276 · 1/1108

= 0.000009164

Next we can compute the probabilities of moving to Berlin ppb, to
Vienna ppv and to Rome ppr.

ppb =
10/3276 · 1/880

d

= 0.378519584

ppv =
10/3276 · 1/1038

d

= 0.320902923

ppr =
10/3276 · 1/1108

d

= 0.300629273

Since all pheromone values are equal the probabilities are only diver-
sified by the heuristic information in the beginning. This changes after
the first iteration when the ants will have deposited pheromone for the
first time.
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4.2.3 Pheromone Update

After all ants in the colony have constructed their solutions they modify
the pheromone matrix according to Equation 4.4.

τij ← τij +

m∑
k=1

∆τkij, ∀(i, j) ∈ T (4.4)

In the case of the travelling salesman problem an ant adds the recip-
rocal value of the tour length Ck to the pheromone trail of all edges it
traversed in its tour Tk.

∆τkij =

 1/Ck, if arc (i, j) belongs to Tk;

0, otherwise;

Additionally pheromone evaporates on all edges of the construction
graph according to Equation 4.5 where p is the evaporation rate.

τij ← (1− ρ)τij, ∀(i, j) ∈ T (4.5)

4.3 other ant colony optimization variants

4.3.1 Elitist Ant System

Elitist Ant System (EAS) was introduced by Dorigo [14] and Dorigo et
al. [17]. It extends the pheromone update mechanism of Ant System
with a so-called elitist ant which is the ant that has found the best
solution so far. This ant is allowed to deposit additional pheromone
(weighted with a parameter e) on the edges of the best-so-far solution.
The idea behind this is to enforce a stronger bias towards those edges.

τij ← τij +

m∑
k=1

∆τkij + e∆τ
bs
ij , ∀(i, j) ∈ T (4.6)

∆τbsij =

 1/Cbs, if arc (i, j) belongs to Tbs;

0, otherwise;

Dorigo [14] and Dorigo et al. [17] reported that an appropriate value
for e allows EAS to find better solutions in fewer iterations than AS.
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4.3.2 Rank-Based Ant System

Rank-Based Ant System is another extension of Ant System and was
introduced by Bullnheimer et al. [6]. As in Elitist Ant System the ant
with the best-so-far solution may update the pheromone trails. This
additional pheromone is multiplied by a parameter w. Additionally, the
iteration-best w− 1 ants deposit pheromone in every iteration. Their
update is multiplied by w− r where r is their rank among all ants (e.g.
the update of the ant having the second best solution is multiplied by
w− 2). Equation 4.7 sums this up.

τij ← τij +

w−1∑
r=1

(w− r)∆τrij +w∆τ
bs
ij ∀(i, j) ∈ T (4.7)

The computational results presented by Bullnheimer et al. [6] suggest
that Rank-Based Ant System performs slightly better than EAS and
significantly better than Ant System.

4.3.3 Max-Min Ant System

Stützle and Hoos [52] [53] proposed a variant of Ant System called
Max-Min Ant System that introduces not only one but a couple of
new ideas. Unlike the other variants discussed so far Max-Min Ant
System allows only the iteration-best or the best-so-far ant to update
the pheromone trails. For example, an implementation could allow the
iteration-best ant to deposit pheromone in the even iterations while the
best-so-far ant deposits pheromone in the odd iterations. The ratio of
these updates determines whether the algorithm tends to be explorative
or more focused on the search space around the best solution found so
far.

τij ← τij +∆τ
best
ij ∀(i, j) ∈ T (4.8)

Furthermore the Max-Min variant of AS introduces limits [τmin, τmax]

on the values of the pheromone trails. This shall avoid algorithm stag-
nation which otherwise could appear due to pheromone being accu-
mulated on certain trails. The pheromone trails are initialized to the
maximum limit τmax. This causes the algorithm to be more explorative
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in the beginning (what is usually desirable) until enough pheromone
evaporates and the algorithm concentrates on a certain search area.

Another measure against stagnation proposed by Max-Min Ant Sys-
tem is pheromone trail reinitialization. If the algorithm was not able to
improve the best known solution for a given number of iterations the
pheromone trails are reinitialized in order to enforce exploration of the
search space.

4.3.4 Ant Colony System

Ant Colony System (ACS), introduced by Dorigo and Gambardella [15],
stands out from the other variants based on Ant System. It differs in
the way solutions are constructed and pheromone trails are updated.
ACS even introduces a new kind of pheromone update that removes
pheromone during the construction phase of the algorithm.

An Ant in ACS decides where to move next using a so-called pseudo-
random proportional rule.

j =

 arg maxl∈Nki {τil[ηil]
β}, if q 6 q0;

Equation 4.3, otherwise;
(4.9)

If a randomly generated number in the interval [0, 1] q is less or
equal than q0, a parameter passed to ACS, the ant moves to the vertex
which is the “best” one according to the pheromone trail and the
heuristic information. Otherwise a probabilistic decision is made as in
Ant System.

Another important aspect of ACS is that only the best-so-far ant
is allowed to deposit pheromone after each iteration. Additionally
only the edges that are part of the best-so-far tour Tbs are evaporated.
Thus, both pheromone deposition and pheromone evaporation can be
summarized by Equation 4.10.

τij ← (1− ρ)τij + ρ∆τ
bs
ij , ∀(i, j) ∈ Tbs (4.10)

These measures reduce the complexity of the pheromone update
from O(n2) to O(n) [15] compared to Ant System.

In addition to this global pheromone update ACS introduces a local
pheromone update. Immediately after an ant has moved from one vertex
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to another it reduces the pheromone located on the edge connecting
these two vertices in order to make this edge less desirable for the
following ants. This measure favors exploration of other areas of the
search space and in practice avoids stagnation.

τij ← (1− ξ)τij + ξτ0 (4.11)

Equation 4.11 shows how ACS implements the local pheromone
update where ξ is a parameter in the interval (0, 1). Dorigo and Gam-
bardella [15] reported that experiments led to the conclusion that 0.1
is a good value for ξ when ACS is applied to the travelling salesman
problem.

4.4 problems aco has been applied to

4.4.1 Travelling Salesman Problem

The travelling salesman problem has served as a benchmark appli-
cation for nearly all ant colony optimization algorithms. As already
mentioned beforehand the travelling salesman problem is the problem
of finding the least-cost round-trip given a number of cities. Formally
and more generally speaking, it is the problem of finding the least-cost
hamiltonian tour in a given graph.

Dorigo and Stützle [16] compared the performance of all ACO vari-
ants discussed in this thesis on instances of the travelling salesman
problem. They reported that all extensions of Ant System were able
to find much better solutions than Ant System itself. Further, it was
reported that Ant Colony System (ACS) and Max-Min Ant System
were the best performing ACO variants, whereas ACS, being the more
aggressive variant, found the best solutions for very short computation
times.

4.4.2 Car Sequencing Problem

Car manufacturing usually takes place in three successive shops. In the
first two shops the body is constructed and painted while the third shop
is responsible for assembling all the different components. Each car has
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its own configuration that is specified by its options (e.g. air condition,
sound system). Some of these options are more labour-intensive than
others and therefore it is desirable to find a permutation of the cars
to be manufactured that smooths the workload at the workstations.
Additionally upper and lower bounds on the number of same-coloured
cars that are allowed to be arranged consecutively might be imposed.
If this number was too low the painting nozzles in the paint shop
would have to be purged more often leading to a wastage of solvent
and working time. The motivation behind the upper bound is the
assumption that the staff responsible for purging the painting nozzles
would get imprecise due to the lack of variation.

For example, constraints for the car sequencing problem can be
formulated as follows. . .

• Out of q successive cars at most p of them may require option o.

• At least l successive cars must require the same colour.

• At most m successive cars may require the same colour.

The goal of the car sequencing problem is now to find a permutation
of the cars to be manufactured that minimizes the number of constraint
violations.

Solnon presents a constraint solver called Ant-P-Solver in [51] de-
signed to solve a general class of combinatorial problems (permutation
constraint satisfaction problems). This constraint solver was successfully
applied to the car sequencing problem.

Gottlieb et al. introduce an improved version of Ant-P-Solver in [26]
that is more dedicated to the car sequencing problem. Their ACO vari-
ant incorporates new greedy heuristics and ideas from Max-Min Ant
System (e.g. upper and lower bounds on pheromone trails) discussed
in Section 4.3.3.

While [51] and [26] only consider capacity constraints related to
the options in the assembly shop, Gagné et al. [21] present an ACO
metaheuristic for solving a multi-objective formulation of the problem,
i.e. considering other constraints such as those imposed by the paint
shop.
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4.4.3 Network Routing Problem

When a data packet is sent on a computer network such as the internet
from one node to another the nodes in between have to forward the
packet to a neighbouring node of their choice. They base their decision
on local information that is maintained by a routing protocol. A routing
protocol defines different methods that can be used to exchange such
information about the structure of the network between its nodes. Due
to the fact that the topology of a computer network is usually highly
dynamic5 ACO seems to be a very reasonable choice for this kind of
application.

Di Caro and Dorigo present a multi-agent system for network routing
based on ACO called AntNet in [7]. In this system so-called Forward
Ants are sent regularly to arbitrary destination nodes. On their way
they maintain a stack containing the IDs of the network nodes they
traversed and keep track of the time they needed to reach each of
them. When the ant arrives at the destination node it generates a
Backward Ant that takes over the stack and returns to the source node
updating the routing information in each node on its way. Di Caro and
Dorigo compared two different variants of AntNet to other well known
routing algorithms using a realistic simulator of best-effort datagram
networks and reported that “both instances of AntNet show superior
performance” [7].

4.4.4 Other Problems

• The Total Weighted Tardiness Problem [10] is the problem of effi-
ciently scheduling n jobs that run (without interruption) on a
single machine with respect to various time constraints.

• The Vehicle Routing Problem [45] deals with the coordination of a
fleet of vehicles that have to deliver goods to a certain number of
customers from a central depot such that the total travel time is
minimized.

5 Meaning that nodes are frequently added to the network as well as removed from it.
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• The goal of the University Course Timetabling Problem [50] is to
assign a set of lectures to given time slots and rooms such that a
set of hard and soft constraints6 are satisfied.

ACO has been applied to a wide variety of other combinatorial
problems. For further information and references on the problems
above and numerous other problems take a look at the fifth chapter of
[16].

6 A feasible solution must satisfy all hard constraints. Soft constraints determine the
quality of a feasible solution.
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A C O A P P R O A C H F O R T R E E A N D H Y P E RT R E E
D E C O M P O S I T I O N S

In this chapter we will describe our approach of applying the Ant
Colony Optimization metaheuristic to the problem of finding tree and
generalized hypertree decompositions of small width. We have imple-
mented all of the ACO variants described in Section 4.2 and Section 4.3
with minor modifications that we will point out in this chapter. Fur-
thermore, we combined these variants with different guiding heuristics,
local search methods and pheromone update strategies that we will dis-
cuss after giving an explanation of the basic structure of the algorithm.

5.1 a high-level overview on the ant colony

The ant colony consists of a fixed number of ants. In every iteration
each of these ants constructs an elimination ordering by climbing
the construction tree. An ant decides which branch to choose next
probabilistically based on the pheromone trails and a guiding heuristic.
We have implemented the heuristics min-degree and min-fill that can
be used as a guiding heuristic alternatively.

After all ants have constructed an elimination ordering an optional
local search either tries to improve only the iteration-best or all of the
constructed solutions. Two different local search methods (described in
Section 5.4) were implemented that also can be used alternatively.

Finally, the ants deposit pheromone proportional to the quality of
their solutions onto the edges of the construction graph they traversed.
Which ants are allowed to deposit pheromone depends on the particular
ACO variant. Moreover, we implemented two different pheromone
update strategies that are described in detail in Section 5.3: one that
assigns an equal amount of pheromone to all edges belonging to the
same solution and another that tries to evaluate each edge individually.
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x1 x3x2

Figure 24. Constraint graph G.

These steps are repeated until one of the following termination
criteria is satisfied:

• A given number of iterations have been performed.

• A given number of iterations have passed without improvement
of the best solution found so far.

• A given time limit is exceeded.

• The chosen stagnation measure (see Section 5.5) falls below a
given value.

Algorithm 5 summarizes this high-level view of the algorithm:

Algorithm 5: High-Level ACO Approach

while termination criterion not satisfied do
Solution Construction
Local Search (optional)
Pheromone Update

Next we are going to discuss each of these steps in detail. We will
start out with the solution construction phase followed by descriptions
of the algorithms for the pheromone update and the local search.

5.2 solution construction

Figure 24 shows a very simple constraint graph that will serve as an
example throughout this chapter.

The goal of our algorithm is now to determine the treewidth of this
graph or at least to find a good upper bound for it. Therefore, the ants
construct elimination orderings by climbing the so-called construction
tree.
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x1 x3x2

x3x2 x3x1 x2x1

x2x3 x1x3 x1x2

s

Figure 25. ACO Construction Tree

5.2.1 Construction Tree

The construction tree can be obtained from the constraint graph as
follows:

1. Create a root node s that will be the starting point of every ant in
the colony.

2. For every vertex of the constraint graph append a child node to
the root node s.

3. To every leaf node append a child node for every vertex of the
constraint graph that is neither represented by the leaf node itself
nor by an ancestor of this node.

4. Repeat step 3 until there are no nodes left to append.

Figure 25 illustrates the construction tree obtained by applying this
algorithm to the constraint graph in Figure 24.

All possible elimination orderings for the constraint graph can now
be represented as a path from the root node s to one of the leaf nodes
in the construction tree. Therefore each of the ants finds such a path
and at each node on its way the ant decides where to move next
probabilistically based on the pheromone trails and a heuristic value
both associated with the outgoing edges.
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5.2.2 Pheromone Trails

A pheromone trail constitutes the desirability to eliminate a certain
vertex x after another vertex y· The more pheromone is located on a
trail the more likely the corresponding vertex will be chosen by the
ant. An obvious way to clearly represent the pheromone trails of our
construction tree is the matrix as shown below:

T =


τx1x1 τx1x2 τx1x3

τx2x1 τx2x2 τx2x3

τx3x1 τx3x2 τx3x3

τsx1 τsx2 τsx3


Each row contains the amounts of pheromone located on the trails

connecting a certain node with all the other nodes. For example, the first
row contains the pheromone levels related to the node x1 describing the
desirability of eliminating x2 (τx1x2) respectively x3 (τx1x3) immediately
after x1.1 The last row is dedicated to the root node s that is the starting
point for every ant. This is also the reason why there is no fourth
column since an ant must not move backwards and thus it is impossible
for an ant to return to the root node.

All pheromone trails are initialized to the same value in the beginning
of the algorithm that is computed according to the following equation:

τij =
m

Wη
∀τij ∈ T

Wη is the width of the decomposition obtained using the guiding
heuristic (min-degree or min-fill) while m is the size of the ant colony.

Example 5.1. Let us assume we are using the min-degree heuristic and
the ant colony consists of ten ants. Applying the min-degree heuristic
would result in a tree decomposition having a width of 1.2 Thus the
pheromone trails are initialized to:

τij =
10

1
= 10 ∀τij ∈ T

1 The pheromone trails τx1x1 , τx2x2 and τx3x3 are just given for the sake of complete-
ness and are never considered in the solution construction process since it is impossible
to eliminate the same vertex more than once.

2 In practice we would now abstain from executing the rest of the algorithm since we
have proven that the constraint graph is acyclic.
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x1 x3

Figure 26. Elimination graph E(G, 〈x2〉).

5.2.3 Heuristic Information

As already mentioned, the ants make their decision which vertex to
eliminate next not solely based on the pheromone matrix but also con-
sider a guiding heuristic. We have implemented two different heuristics.
In order to compute both of these heuristic values we need to maintain
a separate graph in addition to the construction tree. We will call this
graph the elimination graph because this graph is obtained from the orig-
inal constraint graph by successively eliminating the vertices traversed
by the ant in the construction tree. Further, we will denote this graph
as E(G,σ) where G is the original constraint graph and σ is a partial
elimination ordering.

Example 5.2. Let us assume an ant has made its first move from the
root node s to the node x2. Consequently the elimination graph, which
is equal to the original constraint graph in the beginning, is updated by
eliminating the vertex x2 resulting in the graph E(G, 〈x2〉) illustrated in
Figure 26.

Min-Degree

The value for the min-degree heuristic is computed according to this
equation:

ηij =
1

d(j,E(G,σ)) + 1

The expression d(j,E(G,σ) represents the degree of vertex j in the
elimination graph E(G,σ).
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Example 5.3. Using the min-degree heuristic the following values
would be computed when the ant is located at the root node s of
the construction tree:

ηsx1 =
1

d(x1,E(G, 〈〉) + 1
=

1

1+ 1
=
1

2

ηsx2 =
1

d(x2,E(G, 〈〉) + 1
=

1

2+ 1
=
1

3

ηsx3 =
1

d(x3,E(G, 〈〉) + 1
=

1

1+ 1
=
1

2

Min-Fill

The value for the min-fill heuristic is computed according to this equa-
tion:

ηij =
1

f(j,E(G,σ)) + 1

The expression f(j,E(G,σ) represents the number of edges that would
be added to the elimination graph due to the elimination of vertex j.

Example 5.4. Using the min-fill heuristic the following values would be
computed when the ant is located at the root node s of the construction
tree:

ηsx1 =
1

f(x1,E(G, 〈〉) + 1
=

1

0+ 1
= 1

ηsx2 =
1

f(x2,E(G, 〈〉) + 1
=

1

1+ 1
=
1

2

ηsx3 =
1

f(x3,E(G, 〈〉) + 1
=

1

0+ 1
= 1

5.2.4 Probabilistic Vertex Elimination

We will now take a more detailed look on how exactly the ants move
from node to node on the construction tree. All of the ACO variants
with the exception of Ant Colony System use Equation 5.1 alone to
compute the probability pij of moving from a node i to another node j
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where α and β are parameters that can be passed to the algorithm in
order to weight the pheromone trails and the heuristic values.

pij =

[
τij
]α [

ηij
]β∑

l∈E(G,σ)

[τil]
α [ηil]

β
, if j ∈ E(G,σ) (5.1)

This probability is computed for each vertex left in the elimination
graph. According to these probabilities the ant decides which vertex to
eliminate next.

Example 5.5. Under the assumptions that min-fill is used as the guiding
heuristic, α = 1, β = 1, m = 10 and that the ant is located at the root
node s of our example construction tree, we compute the probabilities
that the ant moves to the nodes x1, x2 respectively x3.

First of all we compute the denominator of Equation 5.1:∑
l∈E(G,〈〉)

[τsl]
1 [ηsl]

1 = (10 · 1) + (10 · 1/2) + (10 · 1) = 25

After that we just need to insert appropriate term for each candidate
node into the fraction:

psx1 =
10

25
=
2

5

psx2 =
5

25
=
1

5

psx3 =
10

25
=
2

5

Hence, the probability that the ant moves from the root node s to x2
is one fifth while the probability that it moves to x1 or x2 is for each
two fifth.

As described in Section 4.3.4, Ant Colony System introduces an
additional parameter q0 that constitutes the probability that the ant
moves to the “best” node instead of making a probabilistic decision:

j =

 arg maxl∈E(G,σ){[τil]
α[ηil]

β}, if q 6 q0;

Equation 5.1, otherwise;
(5.2)

If a randomly generated number q in the interval of [0, 1] is less or
equal q0 then the ant moves to the node that otherwise would have the
highest probability to be chosen. Ties are broken randomly.
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Example 5.6. Given the same conditions as in Example 5.5, we apply
Ant Colony System and set q0 = 0.3. We generate a random number in
the interval of [0, 1] which happens to be 0.24. Since 0.24 is less than 0.3
we make a random choice between x1 and x2 because both share the
highest probability of being chosen according to Equation 5.1.

Ant Colony System also introduces a so-called local pheromone
update. After an ant has constructed its solution it removes pheromone
from the trails belonging to its solution according to the following
equation whereas ξ is a variant-specific parameter and τ0 is initial
amount of pheromone:

τij ← (1− ξ)τij + ξτ0

The motivation for this is to diversify the search so that subsequent
ants will more likely choose other branches of the construction tree.

5.3 pheromone update

After each of the ants has constructed an elimination ordering (that
optionally has been improved by a local search thereafter) the val-
ues in the pheromone matrix are updated reflecting the quality of
the constructed solutions which will enable the subsequent ants in
the following iteration to make decisions in a more informed manner.
Moreover, pheromone is removed from the pheromone trails so poor so-
lutions can be forgotten that might have been the best known solutions
in earlier iterations of the algorithm.

5.3.1 Pheromone Deposition

Given an elimination ordering σk that was constructed by an ant k
we need to determine for each subsequent elimination (i, j) in σk

the amount of pheromone that will be deposited on the correspond-
ing pheromone trail τij. We implemented an edge-independent and
an edge-specific pheromone update strategy. The first adds the same
amount of pheromone to all trails belonging to σk while the latter adds
more or less pheromone to individual trails depending on the quality
of a certain elimination.
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Edge-Independent Pheromone Deposition

The edge-independent pheromone update strategy adds the reciprocal
value of the tree decomposition’s width to all pheromone trails that are
part of σk:

∆τkij =

 1
W(σk)

, if (i, j) belongs to σk;

0, otherwise;

Example 5.7. Let us assume that an ant k has constructed the elimina-
tion ordering σk = 〈x2, x1, x3〉 for our example constraint graph G in
Figure 24. The resulting tree decomposition has width two. Hence, the
following pheromone trails will receive this pheromone addition:

∆τksx2 = ∆τkx2x1 = ∆τkx1x3 =
1

2

Edge-Specific Pheromone Deposition

In contrast to the edge-independent update strategy the edge-specific
update strategy deposits different amounts of pheromone onto the
trails belonging to the same elimination ordering:

∆τkij =

 1
d(j,E(G,σkj))/|E(G,σkj)|

· 1
W(σk)

, if (i, j) belongs to σk;

0, otherwise;

This amount depends on the ratio between the degree of the vertex
j when it was eliminated d(j,E(G,σkj))3 and the number of vertices
left in the elimination graph |E(G,σkj)| at that time. The lower the
degree and the greater the number of vertices not eliminated yet the
more pheromone will be deposited. The idea behind this is to favor
eliminations that produce tree decomposition nodes of small width
early in the elimination process because those eliminations usually
influence the quality of the overall solution most.

Example 5.8. As in Example 5.7, the elimination ordering σk = 〈x2, x1, x3〉
is given which produces a tree decomposition of width two. For the
computation of the values for ∆τkij we need to consider the state of

3 σkj is the partial elimination ordering that is obtained from σk by omitting j and all
vertices that are eliminated after j.
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the elimination graph when j was eliminated. At first x2 is eliminated
which has a degree of two in the constraint graph consisting of three
vertices. If we now insert the values for d(x2,E(G, 〈〉), |E(G, 〈〉)| and
W(σk) into our equation we obtain the following result:

∆τsx2 =
1

2/3
· 1
2

=
3

2
· 1
2

=
3

4

Due to the elimination of x2, an edge is introduced between the
vertices x1 and x3 in the elimination graph. Next, x1 is eliminated
which has a degree of one in E(G, 〈x2〉) that now only consists of two
vertices. Using these values we can compute the amount of pheromone
to be added to τx2x1 and after that ∆τx1x3 can be determined similarly:

∆τx2x1 =
1

1/2
· 1
2

=
2

1
· 1
2

= 1

∆τx1x3 =
1

1/1
· 1
2

=
1

1
· 1
2

=
1

2

Differences between ACO variants

As already discussed in Section 4.2.3 and Section 4.3, which ants are
allowed to deposit pheromone and how this pheromone is weighted
varies between the different ACO variants. For the sake of completeness
we also summarize these differences in the following.

In Simple Ant System all ants are allowed to deposit pheromone.
None of these depositions are weighted.

τij ← τij +

m∑
k=1

∆τkij

All ants deposit pheromone in Elitist Ant System as well. Addi-
tionally the ant bs that has found the best known solution out of all
iterations is also allowed to deposit pheromone. Moreover, this amount
of pheromone is weighted with the variant-specific parameter e.

τij ← τij +

m∑
k=1

∆τkij + e∆τ
bs
ij

In Rank-Based Ant System only w ants deposit pheromone whereas
w is a variant-specific parameter. Among those ants are the w− 1 best
ants of the iteration and the ant that has found the best known solution.
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All of these depositions are weighted according to their rank among all
of these ants whereas the pheromone of the ant having the best known
solution is weighted with the factor w.

τij ← τij +

w−1∑
r=1

(w− r)∆τrij +w∆τ
bs
ij

Max-Min Ant System allows either the iteration-best ant or the ant
that has found the best known solution to deposit pheromone. Which of
these two ants deposits pheromone in a certain iteration is determined
based on a frequency f that is given as a variant-specific parameter.
For instance, if f = 3 the ant with the best known solution is allowed
to deposit pheromone in every third iteration. In all other iterations
the iteration-best ant updates the pheromone trails. Furthermore, Max-
Min Ant System imposes upper on lower bounds on the values of the
pheromone trails τij. The upper bound is set to the initial pheromone
value that is computed as described in Section 5.2.2 while the lower
bound is set to a fraction of the upper bound whereas the denominator
is given as the variant-specific parameter a.

In Ant Colony System only the ant having the best known solution
is allowed to deposit pheromone:

τij ← τij +∆τ
bs
ij

5.3.2 Pheromone Evaporation

After the pheromone has been added to the trails a certain amount
of pheromone is removed. This amount is determined based on the
pheromone evaporation rate ρ:

τij = (1− ρ)τij ∀τij ∈ T

While all the other ACO variants remove pheromone from every
pheromone trail Ant Colony System only removes pheromone from the
trails belonging to the best known elimination ordering σbs:

τij = (1− ρ)τij ∀(i, j) ∈ σbs

Note that our implementation of Ant Colony System differs a little
bit from the one that is discussed in Section 4.3.4 which combines
pheromone decomposition and evaporation into one equation.
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5.4 local search

All ACO variants can optionally be extended with one of two local
search methods. Both of these algorithms try to improve the quality of
the solutions that were constructed by the ant colony by changing the
positions of certain vertices in the elimination orderings.

The local search methods are alternatively applied to the elimination
ordering of the iteration-best ant or to all solutions constructed in
the corresponding iteration depending on the configuration of the
algorithm.

5.4.1 Hill Climbing

A local search that is based on the concept of hill climbing defines a
function that returns a set of solutions when given another solution.
This set of solutions is called the solution’s neighbourhood. If this
neighbourhood contains a solution that is better than the initial solution
the neighbourhood of this better solution is evaluated. This is repeated
until a neighbourhood is generated that does not contain any better
solution. This would mean that a local optimum has been found.

Our hill climbing local search (documented as Algorithm 6) deter-
mines the vertices that had the greatest degrees in the elimination graph
when being eliminated according to the given elimination ordering.
If this is more than one vertex, one of these is chosen randomly. The
neighbourhood is now defined as the set of elimination orderings that
can be generated by swapping this vertex with any other vertex in
the elimination ordering. This neighbourhood is searched and when a
better elimination ordering is found the neighbourhood of this ordering
is evaluated.

5.4.2 Iterated Local Search

The other local search method is an iterated local search similar to the
algorithm proposed by Musliu [41] which is also briefly described in
Section 3.4.5 on Page 36 of this thesis.
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Algorithm 6: Hill Climbing for Tree Decompositions.
Input: an elimination ordering σ = (v1, . . . , vn)

σbest = σ
σcurrent = σ
repeat

Let vj be one of the vertices causing the largest clique in σcurrent

i = 1

better-solution = false
while i 6 n∧ ¬better-solution do

σneighbour = σcurrent

swap vi and vj in σneighbour

if W(σneighbour) < W(σcurrent) then
better-solution = true
σcurrent = σneighbour

σbest = σcurrent

i = i+ 1;

until ¬better-solution
return σbest

Local Search

The local search being iterated corresponds to the function Construc-
tionPhase that is called in Algorithm 4 on Page 37. It takes as input
an elimination ordering and randomly selects a vertex out of the ver-
tices causing the largest cliques when eliminated. This vertex is then
swapped with another randomly chosen vertex in the elimination order-
ing. This is repeated until the best known elimination ordering has not
been improved this way for a given number of subsequent iterations.

Acceptance Criterion

If the elimination ordering returned by the local search yields a de-
composition having smaller width than the width of the best known
decomposition plus three, then this elimination ordering is used in
the perturbation mechanism that is discussed next. Otherwise the best
known elimination ordering is going to be perturbated.
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Perturbation

We have implemented two perturbation mechanisms called MaxCliquePer
and RandPert that gave the best results in [41] when both were com-
bined.

• MaxCliquePer determines the vertices in the elimination ordering
causing the largest cliques when being eliminated and inserts
each one of them into a randomly chosen new position.

• RandPert selects two vertices at random and moves each one of
them into a new random position in the ordering. This differs
from the perturbation proposed by Musliu which adjusts the
number of vertices being moved depending on the feedback of
the search process.

The algorithm described in [41] switches between these two mech-
anisms when the iterated local search runs for 100 iterations without
improvement. In contrast, our implementation chooses one of these
perturbation methods randomly in each iteration.

Termination Criterion

If the iterated local search is unable to find a new best solution for a
given number of subsequent iterations, the algorithm stops and returns
the best known elimination ordering.

5.5 stagnation measures

If the distribution of the pheromone on the trails becomes too unbal-
anced due to the pheromone depositions, the ants will generate very
similar solutions causing the search to stagnate. In order to enable the
algorithm to detect such situations we have implemented two stagna-
tion measures proposed by Dorigo and Stützle [16] that indicate how
explorative the search behaviour of the ants is. The ACO algorithms
can be configured to terminate if the chosen stagnation measure falls
below a certain value.
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5.5.1 Variation Coefficient

The variation coefficient is defined as the quotient between the standard
deviation of the widths of the constructed decompositions and their
average width. The drawback of this measure is that it ignores the
structure of the elimination orderings. Theoretically, it is possible that
the ants construct very different elimination orderings that happen to
yield decompositions of equal width. The advantage of this measure is
that is can be implemented very efficiently.

5.5.2 λ Branching Factor

The λ branching factor [16] is more meaningful than the variation
coefficient because it evaluates the pheromone matrix that is more
significant concerning search stagnation. It takes a look at every vertex
i and determines its λ branching factor that is defined as the number
of vertices j that fulfill the following equation for i:

τij > τ
i
min + λ(τimax − τimin)

We decided to set λ to 0.05 for our implementation as was done by
Dorigo and Stützle [16] for the evaluation of the stagnation behaviour
of their ACO algorithms for the TSP.4

The λ branching factor is defined as the average of all branching
factors. Consequently, it represents the average number of vertices that
have a relatively high probability of being chosen by an ant during the
construction of an elimination ordering.

4 The value for λ could range over the interval [0, 1] whereas higher values cause the
measure to be more sensitive concerning the detection of stagnation.
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I M P L E M E N TAT I O N

In this chapter we will describe the most important aspects of our
implementation of the algorithms that were presented in Chapter 5.
Further, we present a C++ library for the Ant Colony Optimization
metaheuristic called libaco that was implemented in the course of this
thesis.

All of the following implementation artefacts resulted from this
thesis and their current source code is available under the GNU Lesser
General Public License1 at http://code.google.com/p/libaco/:

• The acotreewidth program is the command line application imple-
menting the problem specific algorithms for tree and hypertree
decompositions. This is the application that was used to obtain
the computational results reported in Chapter 7. A description of
the command line interface of the acotreewidth program is given
as Appendix A.1.

• The entire logic specific to the ACO metaheuristic was encapsu-
lated in a library we decided to name libaco. This library is also
used by the acotreewidth application.

• Another library called liblocalsearch contains the basic logic of the
local search methods described in Section 5.4.

• In order to demonstrate the flexibility of the libaco library, we have
implemented the acotsp application that applies the functionality
of the library to the travelling salesman problem.

• The project acotemplate serves as a template for developers who
wish to implement a command line client similar to acotreewidth
and acotsp for another combinatorial optimization problem.

1 http://www.gnu.org/licenses/lgpl.html
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The exact versions of these components that were used for the com-
putational experiments described in Chapter 7 can be downloaded from
http://libaco.googlecode.com/files/libaco-thesis.tar.gz.

6.1 implementation details

We used the C++ programming language and its standard library for
all of our practical work. The command line applications additionally
make use of the Templatized C++ Command Line Parser Library2 for the
implementation of their command line interface.

The source code was compiled with the C++ compiler that is part of
the GNU Compiler Collection (version 4.1.3). The software was compiled
and tested on the 64 bit server edition of Ubuntu3

7.10 and the 32 bit
desktop edition of Ubuntu 8.10.

6.1.1 Vertex Elimination Algorithm

The implementation of the vertex elimination algorithm is very performance-
critical. In the following we will describe the data structures and the
operations dealing with them during the elimination process.

Data Structures

The data structures given below are used to represent and keep track
of the structure of the elimination graph:

• An n×n (n representing the number of vertices in the constraint
graph) adjacency matrix T consisting of boolean values. If a vertex
xi is connected to another vertex xj, then T [i][j] = T [j][i] = true.

• Another n × n matrix A consisting of integer values whereas
the ith row corresponds to the adjacency list of the vertex xi.
An adjacency list contains the neighbours of a certain vertex xi.
Additionally to this matrix we need to maintain the following
arrays:

2 http://tclap.sourceforge.net/

3 http://www.ubuntu.com

http://libaco.googlecode.com/files/libaco-thesis.tar.gz
http://tclap.sourceforge.net/
http://www.ubuntu.com
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– An array of integers L that holds the initial length of the
adjacency list for each vertex of the elimination graph.

– An array of integers D that maintains the length of the
adjacency list for each vertex of the elimination graph during
the elimination process.

– An array of boolean values E that keeps track of which
vertices have been eliminated. For instance, if E[i] is true,
then the vertex xi has already been eliminated.

Algorithm

The vertex elimination algorithm is executed every time an ant con-
structs a solution and if β > 0. We do not need to maintain an elimi-
nation graph if beta equals 0 since the heuristic information does not
influence the movement of the ants. In this case we return the same
heuristic value for each feasible vertex. However, if the maintenance of
an elimination graph is necessary and the current ant moves to another
vertex xi in the construction tree the following changes have to be
applied to the graph:

1. An edge has to be inserted for every pair of neighbours of xi
that are not already connected. The neighbours of xi are obtained
by looking at every vertex xj from A[i][0] to A[i][D[i]] and by
collecting those vertices that have not been eliminated yet (i.e.
E[j] is false). Then an edge is introduced for every pair (xk, xl) of
non-adjacent (i.e. T [k][l] is false) neighbours of xi. This is achieved
by performing the following operations:

• Setting T [k][l] and T [l][k] to true.

• Appending xk to A[l] and xl to A[k].

• Increasing D[k] and D[l] by one.

2. Afterwards E[i] is set to true since xi has just been eliminated.

The vertex elimination algorithm is also executed every time a com-
plete elimination ordering is evaluated. In this case the algorithm above
is optimized as proposed by Golumbic [25]. Instead of adding edges
for all neighbours of xi that are not connected yet, we only introduce
edges for the neighbour of xi that is going to be eliminated next. This
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optimization is also applied during the evaluation of the solutions gen-
erated by the local search procedure. The reason why this optimization
is not applicable while the ants are constructing solutions is that the
neighbour that is eliminated next cannot be determined since the ants
are moving probabilistically.

Another minor optimization we have implemented implicates that
the vertex elimination algorithm terminates when the number of ver-
tices left in the elimination graph is less than the width of the tree
decomposition that was generated by the eliminations so far.

After the vertex elimination algorithm terminates the original con-
straint graph is restored from the existing data structures as follows:

1. For each vertex xi set E[i] to false.

2. For each vertex xi set D[i] to L[i].

3. Set all values in the adjacency matrix T to false.

4. For each vertex xi set T [i][j] to true if xj is an element of the
adjacency list A[i][0] to A[i][L[i]].

6.2 the libaco library

The libaco library implements the following variants of Ant Colony
Optimization algorithms that are described in Chapter 4:

• Simple Ant System (class SimpleAntColony)

• Elitist Ant System (class ElitistAntColony)

• Rank-Based Ant System (class RankBasedAntColony)

• Max-Min Ant System (class MaxMinAntColony)

• Ant Colony System (class ACSAntColony)

The library takes care of all problem-independent details of these
algorithms. That is to say, the client application does not need to worry
about the probabilistic construction of solutions, manipulating the
pheromone matrix or remembering the best solution among many
other things. What the client application is required to define are such
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<<interface>>

OptimizationProblem

TspProblemDecompProblem

AntColony

SimpleAntSystem

Figure 27. Simplified libaco class diagram.

things as the structure of the construction graph and a function that
measures the quality of a constructed solution.

6.2.1 Interface

Figure 27 shows a class diagram that illustrates the basic structure of
the interface that connects the client code and the library. The client
code needs to implement the OptimizationProblem interface that defines
a number of callbacks that are called by the library.4 An instance of the
resulting class (e.g. TspProblem) is passed to an instance of a class that
extends the abstract class called AntColony.5 Listing 1 demonstrates this
using an instance of the class TspProblem that is passed to the constructor
of SimpleAntColony.6 The second argument to this constructor is an
instance of the AntColonyConfiguration class. This class contains public
member variables representing the ACO parameters that all variants
have in common. The constructor of AntColonyConfiguration sets these
parameters to default values. In Listing 1 we override this default value
for α on line three.

Once the ant colony has been instantiated we can run iterations of
the algorithm by calling the run-method as on line six and seven in
Listing 1. On line eight and line nine we retrieve the best solution that

4 In the following we will often refer to classes implementing this interface as client
classes.

5 In order to save some space only the class SimpleAntSystem is given in the class diagram.
Actually all other implementations of ACO variants inherit from AntColony too.

6 In this example, we assume that create_tsp_problem takes care of creating an instance of
TspProblem (reading the file containing the coordinates of the cities, etc.).
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1 void main ( ) {
2 AntColonyConfiguration conf ig ;
3 conf ig . alpha = 3 . 0 ;
4 TspProblem problem = create_tsp_problem ( ) ;
5 SimpleAntColony colony ( tsp , conf ig ) ;
6 colony . run ( ) ; // run one iteration

7 colony . run ( ) ; // run a second iteration

8 std : : vector <unsigned int > tour = colony . g e t _ b e s t _ t o u r ( ) ;
9 double length = colony . g e t _ b e s t _ t o u r _ l e n g t h ( ) ;

10 } �
Listing 1. Running Simple Ant System.

was found among all iterations and its “length”.7 As can be noticed in
this example, the vertices of the construction graph are represented as
unsigned integers. Consequently, the representation of an ant’s tour is
a vector of unsigned integers.

6.2.2 Configuration

An ant colony is configured with an instance of the corresponding
configuration class (i.e. an ElitistAntColony expects an ElitistAntColony-
Configuration). Table 2 lists the available parameters of every configu-
ration class and their default values. Note that each variant-specific
configuration class inherits all parameters from AntColonyConfiguration
and defines its additional variant-specific parameters.

6.2.3 Libaco Implementation for the TSP

We will now take a closer look at the libaco implementation for the
travelling salesman problem. Listing 2 contains the OptimizationProblem
interface that the library client class TspProblem needs to implement.

The TspProblem class additionally contains three different member
variables:

7 The smaller the length the better the solution.
8 The type of the local_search parameter is AntColonyConfiguration::LocalSearchType, an

enumeration containing values for LS_NONE, LS_ITERATION_BEST and LS_ALL.
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class parameter name default

AntColonyConfiguration alpha 2.0

beta 5.0

number_of_ants 20

evaporation_rate 0.1

initial_pheromone 1.0

local_search8 LS_ITERATION_BEST

ElitistAntColonyConfiguration elitist_weight 2.0

RankBasedAntColonyConfiguration elitist_ants 1

MaxMinAntColonyConfiguration best_so_far_frequency 3

a 5

ACSAntColonyConfiguration xi 0.1

q0 0.5

Table 2. Libaco configuration parameters.

1 c l a s s OptimizationProblem {
2 publ ic :
3 v i r t u a l ~OptimizationProblem ( ) { }
4 v i r t u a l unsigned i n t get_max_tour_size ( ) = 0 ;
5 v i r t u a l unsigned i n t number_of_vert ices ( ) = 0 ;
6 v i r t u a l std : : map<unsigned int , double >

g e t _ f e a s i b l e _ s t a r t _ v e r t i c e s ( ) = 0 ;
7 v i r t u a l std : : map<unsigned int , double >

g e t _ f e a s i b l e _ n e i g h b o u r s ( unsigned i n t ver tex ) = 0 ;
8 v i r t u a l double eval_ tour ( const std : : vector <unsigned int > &

tour ) = 0 ;
9 v i r t u a l double pheromone_update ( unsigned i n t vertex , double

tour_ length ) = 0 ;
10 v i r t u a l void added_vertex_to_tour ( unsigned i n t ver tex ) = 0 ;
11 v i r t u a l bool is_ tour_complete ( const std : : vector <unsigned

int > &tour ) = 0 ;
12 v i r t u a l std : : vector <unsigned int > apply_ loca l_search ( const

std : : vector <unsigned int > &tour ) { re turn tour ; }
13 v i r t u a l void cleanup ( ) = 0 ;
14 } ; �

Listing 2. The OptimizationProblem interface.
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1 std : : map<unsigned int , double > g e t _ f e a s i b l e _ s t a r t _ v e r t i c e s ( ) {
2 std : : map<unsigned int , double > v e r t i c e s ;
3 s t a r t _ v e r t e x _ = U t i l : : random_number ( dis tances_ −>rows ( ) ) ;
4 v e r t i c e s [ s t a r t _ v e r t e x _ ] = 1 . 0 ;
5 re turn v e r t i c e s ;
6 } �

Listing 3. Declaring the ant’s starting point.

• A quadratic matrix of unsigned integers distances_ containing
the distances between the cities. For instance, (*distances_)[2][5]
gives the distance between city 2 and 5. Thus, the number of rows
respectively the number of columns of the matrix corresponds to
the number of cities the problem instance consists of.

• A map visited_vertices_ that contains a boolean value for each city
indicating whether this city has been visited yet.

• The start_vertex_ representing the starting point of the tour. This
is also where the tour has to end.

Before an ant starts its tour on the construction graph a starting point
has to be determined. Therefore the library will call the method of our
TspProblem class given in Listing 3. This method is supposed to return a
map. Each key of this map corresponds to a feasible starting point for
the ant. The value assigned to each of these keys is the heuristic value η
associated with this vertex. The greater this value the more promising
is the choice of this vertex for the ant.

For the travelling salesman problem the first city of the tour is irrele-
vant regarding the quality of the overall solution. This is why we just
choose a random starting point and set its heuristic value arbitrarily to
1.09. Further, we remember the starting point of our tour in the member
variable start_vertex_ because our tour has to end at the same city.

After the ant has moved to a new vertex in the construction graph
the library notifies the client code of its decision by calling the method
given in Listing 4.

9 We could set this value to any other positive value since we return the randomly
chosen city as the only feasible starting point.
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1 void added_vertex_to_tour ( unsigned i n t ver tex ) {
2 v i s i t e d _ v e r t i c e s _ [ ver tex ] = true ;
3 } �

Listing 4. Ant has moved on the construction graph.

1 std : : map<unsigned int , double > g e t _ f e a s i b l e _ n e i g h b o u r s ( unsigned
i n t ver tex ) {

2 std : : map<unsigned int , double > v e r t i c e s ;
3 f o r ( unsigned i n t i =0 ; i <dis tances_ −>c o l s ( ) ; i ++) {
4 i f ( ! v i s i t e d _ v e r t i c e s _ [ i ] ) {
5 unsigned i n t d i s t a n c e = ( * d i s t a n c e s _ ) [ ver tex ] [ i ] ;
6 v e r t i c e s [ i ] = 1 . 0 / ( d i s t a n c e ) ;
7 }
8 }
9

10 i f ( v e r t i c e s . s i z e ( ) == 0 ) {
11 v e r t i c e s [ s t a r t _ v e r t e x _ ] = 1 . 0 ;
12 }
13 re turn v e r t i c e s ;
14 } �

Listing 5. Declaring feasible neighbours.

Due to the fact that a valid tour for the travelling salesman problem
must not visit the same city twice (with the exception of the starting city)
we need to remember the cities the ant has already visited. Therefore
we update the map that maintains a boolean value for each vertex
indicating whether this vertex has been already visited.

When an ant wants to move from one vertex to another the library
calls the method illustrated in Listing 5 in order to obtain a map
containing the feasible neighbours of the ant’s current vertex and their
corresponding heuristic values.

For the travelling salesman problem all vertices are feasible that have
not been visited yet. The heuristic value that is assigned to each feasible
vertex is the reciprocal value of the distance between this vertex and
the ant’s current vertex (line 5 and line 6). If there are no vertices left
that have not been visited yet the ant has to return to its starting point
(lines 10 to 12).
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1 bool is_ tour_complete ( const std : : vector <unsigned int > &tour ) {
2 re turn tour . s i z e ( ) == ( dis tances_ −>rows ( ) + 1 ) ;
3 } �

Listing 6. Deciding whether the given solution is complete.

1 double eval_ tour ( const std : : vector <unsigned int > &tour ) {
2 double length = 0 . 0 ;
3 f o r ( unsigned i n t i =1 ; i <tour . s i z e ( ) ; i ++) {
4 length += ( * d i s t a n c e s _ ) [ tour [ i −1 ] ] [ tour [ i ] ] ;
5 }
6 re turn length ;
7 } �

Listing 7. Evaluating a solution.

The client code also needs to specify whether a given solution is
complete. Therefore the library calls the method in Listing 6 every time
an ant has added a vertex to its tour. If the method returns the value
true the ant is finished with the construction of its solution.

A solution for the travelling salesman problem is complete if all cities
have been visited once and the ant has returned to its starting point.
Therefore a given tour is complete if its size equals the number of cities
plus one.10

When the ant has constructed a complete solution the library will call
the method given as Listing 7 for the evaluation of the solution. Libaco
acts on the assumption that it is dealing with a minimization problem.
Hence, libaco expects that the client code returns smaller values for
better solutions.

The quality of a given solution for the travelling salesman problem is
defined as the sum of the distances that are covered by the tour.

The library also demands to know how much pheromone to deposit
on the individual pheromone trails belonging to a certain solution.

10 The starting point is the first and last city of the tour while all other cities have been
visited once.
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1 double pheromone_update ( unsigned i n t v , double tour_ length ) {
2 re turn 1 . 0 / tour_ length ;
3 } �

Listing 8. Deciding how much pheromone to deposit.

1 void cleanup ( ) {
2 v i s i t e d _ v e r t i c e s _ . c l e a r ( ) ;
3 } �

Listing 9. Clean-up actions after a solution has been constructed.

Therefore it calls the method in Listing 8 supplying it with a vertex v
that is part of the overall solution11 and the length of this solution.

We add the same amount of pheromone to all trails belonging to the
same solution. This amount of pheromone is defined as the reciprocal
value of the tour’s length so the ants will deposit more pheromone for
shorter tours.

Once the ant is finished with the construction of its tour the library
calls the cleanup-methods of our OptimizationProblem. This is where the
state of the library client can be reset so that the next ant is able to
construct its solution.

The cleanup method of the TspProblem class needs to clear the map of
visited vertices (Listing 9) since the subsequent ant has not visited any
vertices yet.

6.2.4 Template Project

The acotemplate project is a good starting point to experiment with
libaco. It already contains the code for a command line application that
is similar to the acotsp and acotreewidth programs. In order to apply this
code to another combinatorial optimization problem the following two
things have to be done:

11 This vertex is passed to the method so the client code can deposit different amounts
of pheromone for trails belonging to the same solution depending on the quality of
certain decisions made by the ants.
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• The Problem class has to be implemented. Its definition and the
stubs of its methods reside in the files include/acotemplate/template.h
and src/template.cpp.

• An instance of this class has to be created and initialized in the
main method that is defined in the file src/acotemplate.cpp. Where
exactly this has to happen is marked by a multi-line comment.

When this has been accomplished the program can be compiled by
issuing the make command in the root directory of the project:

~/libaco/acotemplate/trunk$ make

This will also cause the compilation of the libaco and liblocalsearch
projects that have to reside on the same directory level as the acotemplate
project. In this example the makefile will assume that these projects are
located at ˜ /libaco/libaco respectively ˜ /libaco/liblocalsearch.

If the compilation is successful a binary called acotemplate will reside
in the bin/ directory of the project. In order to get an overview of the
different command line options execute the binary with the help flag:

~/libaco/acotemplate/trunk$ ./bin/acotemplate --help



7
C O M P U TAT I O N A L R E S U LT S

Within this chapter we document our experiments with different ACO
algorithm configurations in Section 7.1. Based on the results of these
experiments we determine the best ACO algorithms and apply these
to instances of the Second DIMACS Graph Coloring Challenge [2] and
instances of the CSP Hypergraph Library [22]. These final results are
presented in Section 7.2.

7.1 experiments

In order to evaluate and compare the performance of the different ACO
algorithms discussed in Chapter 5, a series of experiments was planned
whereas each of these experiments was designed with a certain research
goal in mind:

1. Identification of good values for variant-independent parameters.

2. Comparison of the guiding heuristics min-fill and min-degree.

3. Evaluation and optimization of each ACO variant.

4. Comparison of all ACO variants. Identification of best performing
variant.

5. Comparison of edge-specific and edge-independent pheromone
update strategies using the best performing ACO variant.

6. Comparison of local search methods using the best performing
ACO variant.

All of these experiments were performed for the ten instances of
the DIMACS Graph Coloring Challenge listed in Table 3. Column |V |

contains the number of vertices graph wheres column |E| presents the
number of edges belonging to the constraint graph. In the following,
we will refer to this set of instances as the experimental set.

80



7.1 experiments 81

Instance |V | |E|

DSJC125.1 125 736

games120 120 638

le450_5a 450 5714

le450_5b 450 5734

miles500 128 1170

myciel6 95 755

myciel7 191 2360

queen12_12 144 2596

queen8_8 64 728

school1 385 19095

Table 3. Experimental Set

Since good elimination orderings for tree decompositions usually also
give good results for generalized hypertree decompositions no special
experiments were performed for any hypergraph instances. Instead of
that we simply extended the best ACO algorithm for tree decomposition
with the greedy set cover algorithm described in Section 2.6 in order to
obtain the results for generalized hypertree decompostion presented in
Section 7.2.2.

7.1.1 Tuning the Variant-Independent Parameters

All ACO variants with the exception of Simple Ant System have their
own variant-specific parameters. Therefore we decided to experiment
with the variant-independent parameters before optimizing the addi-
tional parameters of each ACO variant.

No experiments were executed to investigate different values for the
following two parameters:

τ0 As described in Section 5.2.2 we initialize the pheromone trails to
m/Wη because according to [16] it is a good heuristic to initialize
the pheromone trails to a value that is slightly higher than the
expected amount of pheromone deposited by the ants in one iter-
ation. If τ0 was too low the first (probably suboptimal) solutions
generated by the ants would bias the search of the ants in the
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second iteration too much. Otherwise if τ0 was too high it would
take numerous iterations until enough pheromone evaporates
and the pheromone trails would make a difference in the search
behaviour of the ants.

ρ The pheromone evaporation rate ρ is the fraction of pheromone
that is removed after each iteration from the pheromone trails.
If this rate is too high the algorithm will not be able to focus
on a certain search space. On the contrary, if this rate is too low
the algorithm might not be able to “forget” suboptimal solutions
causing stagnation of the search. We decided to set ρ to 0.1 for
our experiments because that also worked well for the travelling
salesman problem according to [16].

For all other variant-independent parameters we compared the per-
formance of a set of different values in a series of experiments.

Tuning α and β

We found empirically that the results of all variants seem to be highly
dependent on the ratio between the parameters α and β where much
greater values for β seem to favor the generation of tree decompositions
of small width. Therefore we decided to experiment with different
combinations of values for α and β:

[(α,β), . . . ] = [(1, 10), (2, 20), (3, 30), (5, 40), (2, 50)]

Each variant used the min-degree guiding heuristic and performed
five runs per combination on each of the ten instances part of the
experimental set with a time limit of 200 seconds. The time limit is
checked after each iteration of the algorithm. If it is not exceeded
another iteration is completely executed regardless of whether the time
limit is exceeded during execution.

All other parameters that we were going to investigate later have
been set to values that were obtained through trial and error:

• Variant-independent parameters: m = 10

• Elitist Ant System: e = 3
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Figure 28. Comparison of combinations for α and β.

• Rank-Based Ant System: w = 3

• Max-Min Ant System: a = 5, f = 3

• Ant Colony System: q0 = 0.3, ξ = 0.1

The bar chart in Figure 28 illustrates for how many experiments a
certain (α,β)-combination yielded the best average width over five runs.
If multiple combinations yielded equal average widths, the combination
that found its best solution on average in the least amount of time is
considered to be the best one. The combination of α = 2 and β = 50

outperformed the other combinations in 27 of 50 experiments.
Table 4 contains the same data as Figure 28 but it is broken down

to the individual ACO variants. We find that the (α,β)-combination
(2,50) also yielded the best average width for most problem instances
for every ACO variant.

Due to the fact that our results show that for the majority of prob-
lem instances the combination of α = 2 and β = 50 gave the best
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Variant/(α,β) (1,10) (2,20) (3,30) (5,40) (2,50)

Simple Ant System 4 0 0 0 6

Elitist Ant System 3 0 1 0 6

Rank-Based Ant System 1 1 1 1 6

Max-Min Ant System 0 0 3 3 4

Ant Colony System 0 3 0 2 5

Table 4. Number of best solutions per variant

Instance
Minimum Width Average Width

min-degree min-fill min-degree min-fill

DSJC125.1 64 63 64 63.2

games120 37 35 37.2 36.6

le450_5a 312 296 313.4 301

le450_5b 312 305 315.1 306.4

miles500 25 23 25 23

myciel6 35 35 35 35

myciel7 68 66 68.8 66

queen12_12 111 109 112.6 109.8

queen8_8 47 47 47 47

school1 231 225 234 225

Table 5. Comparison of guiding heuristics.

results, we decided to keep these parameter settings for the subsequent
experiments.

Comparison of Guiding Heuristics

We compared the min-degree and min-fill heuristics by applying each
ACO variant to every problem instance in the experimental set with
either of them. Due to the results of our prior experiments α was set to
2 and β to 50 while all other parameters have been retained unchanged.
Again, five runs were performed per algorithm configuration with a
time limit of 200 seconds.

Table 5 contains the best minimum widths and the best average
widths of the tree decompositions generated by the ACO algorithms
using the min-degree and the min-fill heuristic.
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Variant/m 5 10 20 50 100

Simple Ant System 0 1 1 3 5

Elitist Ant System 0 1 0 3 6

Rank-Based Ant System 1 0 2 4 3

Max-Min Ant System 1 1 4 3 1

Ant Colony System 3 2 2 1 2

Table 6. Comparison of ant colony sizes.

The results clearly indicate that the min-fill heuristic gives better re-
sults. Nonetheless, the min-degree heuristic is much more time-efficient.
For instance, the ACO algorithms were only able to complete one iter-
ation within 200 seconds for the problem instance le450_5a using the
min-fill heuristic while 144 iterations could be performed using the
min-degree heuristic. This is why we decided to use the min-degree
heuristic for all remaining experiments since we would otherwise be
unable to investigate the impact of the pheromone trails on the search
behaviour of the ants due to the small number of iterations.

Tuning the Number of Ants

The number of ants influences the quality of the pheromone update.
The more ants construct solutions per iteration the more useful the
pheromone matrix will be for the ants in the following iterations. For
example, if only one ant constructs a solution per iteration this solution
probably will be suboptimal. Nevertheless, only the edges associated
with this solution will receive additional pheromone. On the contrary,
if a hundred ants construct solutions per iteration this solution will
receive less pheromone than other better solutions.

We experimented with ant colonies consisting of 5, 10, 20, 50 and 100

ants. Each ACO variant performed five runs for each instance of the
experimental set using ant colonies of these different sizes.

Table 6 shows for how many instances each variant yielded the best
average width over five runs using a certain number of ants.

The results suggest that especially Simple Ant System and Elitist Ant
System seem to prefer bigger ant colonies. This is quite coherent since
those are the only ACO variants that allow all of their ants to deposit
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pheromone and therefore might require more ants in order to obtain a
useful pheromone matrix.

For our subsequent experiments we decided based on these results
to use ant colonies consisting of 100 ants for Simple and Elitist Ant
System, 50 ants for Rank-Based Ant System, 20 ants for Max-Min Ant
System and five ants for Ant Colony System.

7.1.2 Tuning the Variant-Specific Parameters

Elitist Ant System

Elitist Ant System adds pheromone to the trails belonging to the best
known solution in every iteration. This pheromone update is multiplied
by an elitist weight e. We have applied Elitist Ant System to every
instance of the experimental set with different elitist weights of 2, 4, 6

and 10. Five runs were performed for each value. For four instances
Elitist Ant System gave the best average width over these five runs
using an elitist weight of 10. Elitist Ant System with e = 6 respectively
e = 4 delivered the best average width for three instances in each case
while the algorithm with e set to 2 never returned the best average
width.

Rank-Based Ant System

Rank-Based Ant System allows a certain number of ants w to deposit
pheromone in every iteration. We have compared the average widths
over five runs achieved by the algorithm for each instance of the experi-
mental set when setting w to 3, 5, 7 and 10. As can be seen in Figure 29,
we have obtained the best results for the majority of problem instances
when w was set to 10.

Max-Min Ant System

For Max-Min Ant System we experimented with the following different
combinations of the parameters a and f:

[(a, f), . . . ] = [(10, 2), (3, 5), (10, 5), (3, 2)]

The combination (10, 2) results in a more focused search while the
combination (3, 5) should cause the algorithm to be more explorative.
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Figure 29. Comparison of different values for parameter w of Rank-Based
Ant System. The best average width over 10 runs was obtained for
seven problem instances with w = 10.

The other two combinations represent trade-offs between these two
approaches.

Max-Min Ant System performed best on four instances of the ex-
perimental set using the explorative (3, 5) parameter combination. The
combinations (10, 2) and (10, 5) each caused Min-Max Ant System to
yield the best average width over five runs for three problem instances.

Ant Colony System

Ant Colony System defines two additional variant-specific parameters
q0 and ξ. Again, we experimented with different combinations of
parameter values:

[(q0, ξ), . . . ] = [(0.1, 0.3), (0.5, 0.05), (0.1, 0.05), (0.5, 0.3)]

The results of our experiments clearly suggest that (0.5, 0.3) causes
Ant Colony System to give the best results among all of these combina-
tions. For eight out of the ten instances of the experimental set (0.5, 0.3)
outperformed all other combinations. The best performing combination
for the other two problem instances was (0.1, 0.05).
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Instance
Minimum Width Average Width

SAS EAS RAS MAS ACS SAS EAS RAS MAS ACS

DSJC125.1 65 65 65 64 63 65.6 65.4 65.4 64 63.8

games120 37 38 38 37 37 38.8 38.8 38.6 37.4 37

le450_5a 311 312 303 308 309 313.6 314 310.2 312.8 311.4

le450_5b 313 314 311 307 312 313.6 315.8 314.8 313.2 313.4

miles500 25 25 25 25 25 25.4 25.2 25.8 25 25.2

myciel6 35 35 35 35 35 35 35 35 35 35

myciel7 68 68 69 68 69 68.8 68.8 69 68.8 69

queen12_12 114 113 112 112 111 114.6 114 114.4 113.2 112

queen8_8 48 48 48 47 47 48 48 48.2 47 47

school1 237 231 232 228 232 238 235.2 235.4 233.4 233.2

Table 7. Comparison of minimum and average widths achieved by all ACO
variants over 10 runs. Given in bold are those values that represent
single-best solutions among all variants.

7.1.3 Comparison of ACO Variants

After we had found good parameter settings for each ACO variant we
were now ready to compare them. Therefore, five runs were performed
by each variant for every instance of the experimental set with α = 2,
β = 50, ρ = 0.1 and a time-limit of 500 seconds. Min-degree was used
as the guiding heuristic. Additionally, the following parameter settings
were applied based on the results of the prior experiments:

• Simple Ant System: m = 100

• Elitist Ant System: m = 100, e = 10

• Rank-Based Ant System: m = 50, w = 10

• Max-Min Ant System: m = 20, a = 3, f = 5

• Ant Colony System: m = 5, q0 = 0.5, ξ = 0.3

Table 7 lists the minimum and the average width achieved by each
ACO variant for each problem instance. According to these results Max-
Min Ant System and Ant Colony System performed slightly better than
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the other variants. Only once, for the problem instance le450_5a, Rank-
Based Ant System was able to achieve better results than Max-Min Ant
System and Ant Colony System. For all other problem instances one
of these two variants delivered the best minimum and average width.
Since Ant Colony System more often gave the single best solution
among all variants, we decided to focus our remaining investigations
on this ACO variant.

Convergence Behaviour

We noticed while analyzing these results that all variants found their
best results or results nearly as good already in the first couple of
iterations. This implies that the pheromone trails play a minor role in
the search for the best result since the algorithms stagnate very early.
We suppose that this is also the reason why the ACO variants MAS and
ACS give slightly better results. MAS stays explorative because of the
lower and upper bounds imposed on the pheromone trails while ACS
performs a local pheromone update that removes pheromone from the
trails belonging to solutions which were already constructed.

The charts in Figure 30 document the progress of the ACO variants
ACS and RAS for a run on the problem instance DSJC125.1. RAS stag-
nates right after the first iteration while ACS stays more explorative and
finds its best solution after approximately 100 seconds. ACS performed
18384, RAS 1748 iterations within their 500 seconds of running time.
This difference is due to the different numbers of ants used by each vari-
ant (m = 5 for ACS, m = 50 for RAS). Just a subset of all iteration-best
solutions is illustrated in Figure 30 for presentability reasons.

7.1.4 Comparison of Pheromone Update Strategies

In Section 5.3.1 we present two different pheromone update strategies.
In order to compare them we have applied Ant Colony System with
either of them using the same parameter settings as in the experiment
described in the previous section. Again, 10 runs were performed for
each problem instance with a time-limit of 500 seconds.

Table 8 gives the minimum, maximum and average widths achieved
by Ant Colony System with the edge-independent (EI) and the edge-
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Figure 30. Convergence behaviour of the algorithms ACS and RAS for the
problem instance DSJC125.1. Both find their best solution within the
first 100 seconds. However, while ACS keeps exploring the search
space, RAS stagnates and keeps generating tree decompositions of
width 66.
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Instance |V|/|E| EI-min ES-min EI-max ES-max EI-avg ES-avg

DSJC125.1 125 / 736 63 63 64 64 63.8 63.8

games120 120 / 638 37 37 37 37 37 37

le450_5a 450 / 5714 311 309 313 312 312.4 310.4

le450_5b 450 / 5734 314 313 315 315 314.4 314.2

miles500 128 / 1170 25 25 26 25 25.2 25

myciel6 95 / 755 35 35 35 35 35 35

myciel7 191 / 2360 69 69 69 69 69 69

queen12_12 144 / 2596 111 111 113 113 112.2 112.6

queen8_8 64 / 728 47 46 47 47 47 46.8

school1 385 / 19095 233 228 235 234 233.6 231.6

Table 8. Comparison of minimum, maximum and average widths over five
runs achieved by the edge-independent (EI) and edge-specific (ES)
pheromone update strategies. The edge-specific pheromone update
strategy gave slightly better results on some problem instances.

specific (ES) pheromone update strategy. The edge-specific pheromone
update strategy seems to give slightly better results than the edge-
independent strategy. Therefore, we decided to apply the edge-specific
pheromone update strategy for all subsequent experiments.

7.1.5 Combining ACO with a Local Search Method

Our final experiments dealt with the combination of Ant Colony System
with the iterated local search and the hill climbing algorithm described
in Section 5.4. We have applied Ant Colony System to all instances of
the experimental set combining the algorithm with each of the following
local search methods:

ILS: The iterated local search whereas the local search being iterated
terminates after 5 iterations without improvement of the input
solution while the iterative algorithm terminates after 20 iterations
without improvement of the best known solution. We obtained
this configuration after investigating three different combinations
of these parameters: (20, 5), (10, 10) and (5, 20). The experiments
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Instance |V|/|E|
ACS+ILS ACS+HC

min max avg min max avg

DSJC125.1 125 / 736 63 64 63.8 63 64 63.8

games120 120 / 638 37 37 37 37 37 37

le450_5a 450 / 5714 306 308 306.8 305 308 306.6

le450_5b 450 / 5734 306 312 309.4 308 310 308.8

miles500 128 / 1170 25 25 25 25 26 25.2

myciel6 95 / 755 35 35 35 35 35 35

myciel7 191 / 2360 67 68 67.2 69 69 69

queen12_12 144 / 2596 109 110 109.8 111 112 111.6

queen8_8 64 / 728 46 46 46 47 47 47

school1 385 / 19095 229 232 230.2 231 233 232

Table 9. Minimum, maximum and average widths achieved over five runs by
Ant Colony System in combination with the Iterated Local Search
(ACS+ILS) and by Ant Colony System in combination with the Hill
Climbing algorithm (ACS+HC).

showed that the combination (5, 20) was the best of all three for 6

out of all 10 problem instances.

HC: The hill climbing algorithm as described in Section 5.4.

Each combination of Ant Colony System and local search performed
five runs. Table 9 lists the results of each of these hybrid algorithms.

Ant Colony System in combination with the iterated local search
clearly outperformed the hybrid algorithm consisting of Ant Colony
System and the hill climbing local search. ACS+HC was only able
to give better results than ACS+ILS for two out of the ten problem
instances.

7.2 results

Based on the results of our experiments we decided to obtain the final
results of this thesis with the Ant Colony System ACO variant and the
following parameter settings: α = 2, β = 50, ρ = 0.1, m = 5, q0 = 0.5,
ξ = 0.3. Further, we chose min-degree as the guiding heuristic and
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used the edge-specific pheromone update strategy. We will refer to this
algorithm in the following with the abbreviation ACS.

Additionally, we present in this section the results delivered by the
ACS algorithm when it is combined with the iterated local search ILS.
We will refer to this extended algorithm with the abbreviation ACS+ILS
in the following.

For generalized hypertree decomposition, we extended the ACS
algorithm with a greedy set cover algorithm and applied the resulting
algorithm ACS+SC to 19 instances of the CSP hypergraph library.

All results reported in this thesis have been obtained on a machine
equipped with 48GB of memory and two Intel(R) Xeon(R) CPUs (E5345)
having a clock rate of 2.33GHz.

7.2.1 ACO for Tree Decompositions

Results of ACS and ACS+ILS

In Table 10 and Table 11 we present the minimum, maximum and
average widths obtained in 10 runs with ACS and ACS+ILS for 62

DIMACS graph coloring instances. Each run was performed with a
time-limit of 1000 seconds. The second column gives the number of
vertices and the number of edges a certain problem instance consists of.

For 25 problem instances ACS+ILS gave a better minimum width
than ACS on its own. ACS was never able to outperform ACS+ILS with
the exception of the problem instances inithx.i.2 and inithx.i.3 for which
ACS achieved a better average width than ACS+ILS.

Comparison with other decomposition methods

Table 12 on Page 98 and Table 13 on Page 99 additionally contain the
best upper bounds on treewidth obtained with other decomposition
methods from the literature:

• The column KBH contains the best results from a set of algorithms
proposed by Koster, Bodlaender and Hoesel in [35]. The results
reported were obtained with a Pentium 3 800MHz processor.
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Instance |V|/|E|
ACS ACS+ILS

min max avg min max avg

anna 138 / 986 12 12 12 12 12 12

david 87 / 812 13 13 13 13 13 13

huck 74 / 602 10 10 10 10 10 10

homer 561 / 3258 31 31 31 30 31 30.1

jean 80 / 508 9 9 9 9 9 9

games120 120 / 638 37 37 37 37 37 37

queen5_5 25 / 160 18 18 18 18 18 18

queen6_6 36 / 290 25 25 25 25 25 25

queen7_7 49 / 476 35 35 35 35 35 35

queen8_8 64 / 728 47 47 47 46 46 46

queen9_9 81 / 1056 60 60 60 59 59 59

queen10_10 100 / 1470 75 76 75.5 73 74 73.8

queen11_11 121 / 1980 92 93 92.6 89 91 90.4

queen12_12 144 / 2596 110 113 111.7 109 110 109.5

queen13_13 169 / 3328 132 134 133.1 128 130 129.4

queen14_14 196 / 4186 154 157 156 150 153 152.1

queen15_15 225 / 5180 178 182 181 174 177 175.9

queen16_16 256 / 6320 206 211 208.5 201 204 202.5

fpsol2.i.1 269 / 11654 66 66 66 66 66 66

fpsol2.i.2 363 / 8691 31 31 31 31 31 31

fpsol2.i.3 363 / 8688 31 31 31 31 31 31

inithx.i.1 519 / 18707 56 56 56 56 56 56

inithx.i.2 558 / 13979 31 32 31.6 31 32 31.8

inithx.i.3 559 / 13969 31 33 31.5 31 33 32

miles1000 128 / 3216 52 53 52.9 50 50 50

miles1500 128 / 5198 77 77 77 77 77 77

miles250 125 / 387 9 9 9 9 9 9

miles500 128 / 1170 25 26 25.1 25 25 25

miles750 128 / 2113 38 38 38 38 38 38

mulsol.i.1 138 / 3925 50 50 50 50 50 50

mulsol.i.2 173 / 3885 32 32 32 32 32 32

mulsol.i.3 174 / 3916 32 32 32 32 32 32

mulsol.i.4 175 / 3946 32 32 32 32 32 32

mulsol.i.5 176 / 3973 31 31 31 31 31 31

myciel3 11 / 20 5 5 5 5 5 5

myciel4 23 / 71 10 10 10 10 10 10

myciel5 47 / 236 19 19 19 19 19 19

myciel6 95 / 755 35 35 35 35 35 35

myciel7 191 / 2360 69 69 69 66 68 67.1

Table 10. Results of ACS and ACS+ILS for Tree Decompositions.
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Instance |V|/|E|
ACS ACS+ILS

min max avg min max avg

school1 385 / 19095 231 234 232.5 228 232 229.8

school1_nsh 352 / 14612 189 190 189.1 185 190 188.3

zeroin.i.1 126 / 4100 50 50 50 50 50 50

zeroin.i.2 157 / 3541 33 33 33 33 33 33

zeroin.i.3 157 / 3540 33 33 33 33 33 33

le450_5a 450 / 5714 309 313 311.1 304 308 305.6

le450_5b 450 / 5734 308 316 311.7 308 311 309.3

le450_5c 450 / 9803 315 318 316.9 309 318 313.9

le450_5d 450 / 9757 301 309 304 290 303 298.4

le450_15a 450 / 8168 294 297 295.3 288 293 291.2

le450_15b 450 / 8169 295 298 296.6 292 294 293.1

le450_15c 450 / 16680 372 374 373.2 368 372 370.4

le450_15d 450 / 16750 373 375 374.3 371 373 372.3

le450_25a 450 / 8260 251 254 253.4 249 252 250.6

le450_25b 450 / 8263 254 257 256 245 257 253.4

le450_25c 450 / 17343 355 358 356.4 346 352 350.2

le450_25d 450 / 17425 359 362 360.8 355 358 356.8

dsjc125.1 125 / 736 63 64 63.9 63 64 63.3

dsjc125.5 125 / 3891 108 109 108.7 108 109 108.2

dsjc125.9 125 / 6961 119 119 119 119 119 119

dsjc250.1 250 / 3218 174 176 175.6 174 176 175.3

dsjc250.5 250 / 15668 231 231 231 231 231 231

dsjc250.9 250 / 27897 243 243 243 243 243 243

Table 11. Results of ACS and ACS+ILS for Tree Decompositions.
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• TabuS contains the results reported for the Tabu Search algorithm
proposed in [8] which were obtained with a Pentium 3 1 GHz
processor.

• BB is the branch and bound algorithm presented by Gogate and
Dechter in [24]. The experiments for this algorithm were per-
formed on a Pentium 4 2.4 GHz processor using 2 GB of memory.

• The column GA contains the best results obtained with the genetic
algorithm proposed by Musliu and Schafhauser in [42]. They used
an Intel(R) Xeon(TM) 3.2 GHz processor and 4 GB of memory for
their experiments.

• IHA stands for the iterative heuristic algorithm presented by
Musliu in [41]. These results were obtained with a Pentium 4

processor 3 GHz and 1 GB of RAM.

These results indicate that the ACO algorithms were able to give
results comparable to those of the other decomposition methods for
many problem instances. ACS+ILS was even able to find an improved
upper bound of 30 for the problem instance homer.col. By applying the
ACS+ILS algorithm with the min-fill heuristic we could further improve
the upper bound for this instance to 29. Nonetheless, especially for
more complex problem instances both ACO algorithms gave results
inferior to those of most other algorithms.

Figure 31 on Page 97 visualizes for how many problem instances ACS
respectively ACS+ILS gave a better, equal or worse minimum width
compared with each of the other decomposition methods. As can be
seen, both algorithms outperformed KBH on more instances than vice
versa but only ACS+ILS also managed to outperform BB.

Time-performance

Table 14 on Page 101 and Table 15 on Page 102 list the time-performance
given in seconds for the algorithms TabuS, GA, IHA, ACS and ACS+ILS.
The values in the column TabuS represent the overall running time of
the algorithm whereas the number of iterations is limited to 20000 and
the algorithm terminates after 10000 iterations without improvement.
The column GA gives the running time that was necessary to obtain
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Figure 31. Comparison of ACO algorithms for the generation of tree decom-
positions with other decomposition methods.
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Instance |V|/|E| KBH TabuS BB GA IHA ACS ACS+ILS

anna 138 / 986 12 12 12 12 12 12 12

david 87 / 812 13 13 13 13 13 13 13

huck 74 / 602 10 10 10 10 10 10 10

homer 561 / 3258 31 31 31 31 31 31 30

jean 80 / 508 9 9 9 9 9 9 9

games120 120 / 638 37 33 - 32 32 37 37

queen5_5 25 / 160 18 18 18 18 18 18 18

queen6_6 36 / 290 26 25 25 26 25 25 25

queen7_7 49 / 476 35 35 35 35 35 35 35

queen8_8 64 / 728 46 46 46 45 45 47 46

queen9_9 81 / 1056 59 58 59 58 58 60 59

queen10_10 100 / 1470 73 72 72 72 72 75 73

queen11_11 121 / 1980 89 88 89 87 87 92 89

queen12_12 144 / 2596 106 104 110 104 103 110 109

queen13_13 169 / 3328 125 122 125 121 121 132 128

queen14_14 196 / 4186 145 141 143 141 140 154 150

queen15_15 225 / 5180 167 163 167 162 162 178 174

queen16_16 256 / 6320 191 186 205 186 186 206 201

fpsol2.i.1 269 / 11654 66 66 66 66 66 66 66

fpsol2.i.2 363 / 8691 31 31 31 32 31 31 31

fpsol2.i.3 363 / 8688 31 31 31 31 31 31 31

inithx.i.1 519 / 18707 56 56 56 56 56 56 56

inithx.i.2 558 / 13979 35 35 31 35 35 31 31

inithx.i.3 559 / 13969 35 35 31 35 35 31 31

miles1000 128 / 3216 49 49 49 50 49 52 50

miles1500 128 / 5198 77 77 77 77 77 77 77

miles250 125 / 387 9 9 9 10 9 9 9

miles500 128 / 1170 22 22 22 24 22 25 25

miles750 128 / 2113 37 36 37 37 36 38 38

mulsol.i.1 138 / 3925 50 50 50 50 50 50 50

mulsol.i.2 173 / 3885 32 32 32 32 32 32 32

mulsol.i.3 174 / 3916 32 32 32 32 32 32 32

mulsol.i.4 175 / 3946 32 32 32 32 32 32 32

mulsol.i.5 176 / 3973 31 31 31 31 31 31 31

myciel3 11 / 20 5 5 5 5 5 5 5

myciel4 23 / 71 11 10 10 10 10 10 10

myciel5 47 / 236 20 19 19 19 19 19 19

myciel6 95 / 755 35 35 35 35 35 35 35

myciel7 191 / 2360 74 66 54 66 66 69 66

Table 12. Comparison with other tree decomposition methods.
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Instance |V|/|E| KBH TabuS BB GA IHA ACS ACS+ILS

school1 385 / 19095 244 188 - 185 178 231 228

school1_nsh 352 / 14612 192 162 - 157 152 189 185

zeroin.i.1 126 / 4100 50 50 - 50 50 50 50

zeroin.i.2 157 / 3541 33 32 - 32 32 33 33

zeroin.i.3 157 / 3540 33 32 - 32 32 33 33

le450_5a 450 / 5714 310 256 307 243 244 309 304

le450_5b 450 / 5734 313 254 309 248 246 308 308

le450_5c 450 / 9803 340 272 315 265 266 315 309

le450_5d 450 / 9757 326 278 303 265 265 301 290

le450_15a 450 / 8168 296 272 - 265 262 294 288

le450_15b 450 / 8169 296 270 289 265 258 295 292

le450_15c 450 / 16680 376 359 372 351 350 372 368

le450_15d 450 / 16750 375 360 371 353 355 373 371

le450_25a 450 / 8260 255 234 255 225 216 251 249

le450_25b 450 / 8263 251 233 251 227 219 254 245

le450_25c 450 / 17343 355 327 349 320 322 355 346

le450_25d 450 / 17425 356 336 349 327 328 359 355

dsjc125.1 125 / 736 67 65 64 61 60 63 63

dsjc125.5 125 / 3891 110 109 109 109 108 108 108

dsjc125.9 125 / 6961 119 119 119 119 119 119 119

dsjc250.1 250 / 3218 179 173 176 169 167 174 174

dsjc250.5 250 / 15668 233 232 231 230 229 231 231

dsjc250.9 250 / 27897 243 243 243 243 243 243 243

Table 13. Comparison with other tree decomposition methods.
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the best result whereas the numbers listed in the column IHA represent
the average running time that was necessary to obtain the best result
of a certain run. In the columns t-min and t-avg we give the running
time of our ACO algorithms that passed until the minimum width was
found respectively the running time that passed on average until the
best result of a certain run was found.

Based on the results in Table 14 and Table 15 we see that the time
performance of our ACO algorithms is good.

7.2.2 ACO for Generalized Hypertree Decompositions

In Table 16 on Page 103 we present the minimum, maximum and
average widths obtained in 10 runs with ACS+SC for 19 instances of
the CSP Hypergraph Library. Each run was performed with a time-limit
of 1000 seconds. The second column of the table gives the number of
vertices and the number of hyperedges a certain hypergraph contains.
The columns t-min and t-avg give the running time (in seconds) that
was necessary to obtain the minimum width respectively the average
running time that was necessary to obtain the best result of a certain
run.

Table 17 gives a comparison of our results with those of other meth-
ods for hypertree decompositions. GA-ghw is a genetic algorithm
proposed in [42]. The BE algorithm described in [13] creates tree decom-
positions according to the heuristics maximum cardinality, min-degree,
and min-fill and afterwards applies two set cover heuristics in order to
obtain hypertree decompositions. The decomposition having minimum
width is then returned by the algorithm. All other methods from [13]
are heuristic algorithms based on hypergraph partitioning. The results
from [42] were obtained with an Intel(R) Xeon(TM) 3.20 GHz processor
having 4 GB RAM. An Intel Xeon (dual) 2.20 GHz processor having 2

GB of memory was used for the experimental results reported in [13].
ACS+SC outperformed the hypergraph partitioning algorithm based

on Tabu Search TS on all except of three problem instances. The al-
gorithms BE, GA-ghw, and HM were able to clearly outperform our
algorithm. The algorithm FM seems to give results comparable to those
of ACS+SC for many problem instances. The chart in Figure 32 on
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Instance TabuS GA IHA
ACS ACS+ILS

t-min t-avg t-min t-avg

anna 2776.93 213 0.1 0.02 0.03 0.03 0.04

david 796.81 154 0.1 0.01 0.01 0.01 0.02

huck 488.76 120 0.1 0.01 0.01 0.01 0.01

homer 157716.56 1118 127 57.32 176.45 99.02 284.7

jean 513.76 120 0 0 0.01 0.01 0.02

games120 2372.71 462 145.8 0 0 0.67 59.09

queen5_5 100.36 33 0.1 1.45 330.36 0 0

queen6_6 225.55 51 0.1 29.47 230.72 0.01 3.49

queen7_7 322.4 92 0.1 0.62 20.72 0.08 1.1

queen8_8 617.57 167 28.8 4.55 77.95 3.01 24.23

queen9_9 1527.13 230 5.2 127.62 303.22 6.36 57.45

queen10_10 3532.78 339 28.3 100.84 264.49 449.59 288.06

queen11_11 5395.74 497 29.6 84.75 238.96 508.03 326.31

queen12_12 10345.14 633 106.7 528.98 379.04 113.59 319.71

queen13_13 16769.58 906 3266.12 93.78 272.51 431.46 240.95

queen14_14 29479.91 1181 5282.2 414.21 354.45 851.22 473.45

queen15_15 47856.25 1544 3029.51 951.32 411.4 347.41 526.45

queen16_16 73373.12 2093 7764.57 605.99 462.37 493.97 449.53

fpsol2.i.1 63050.58 1982 4.8 0.42 0.55 0.49 0.66

fpsol2.i.2 78770.05 1445 8.4 0.33 0.37 0.4 0.46

fpsol2.i.3 79132.7 1462 8.7 0.29 0.33 0.35 0.4

inithx.i.1 101007.52 3378 10.2 1.28 1.68 1.46 1.5

inithx.i.2 121353.69 2317 11.7 75.99 171.61 81.48 108.39

inithx.i.3 119080.85 2261 10.6 128.54 458.93 745.31 284.82

miles1000 5696.73 559 54.2 190.86 19.11 5.19 39.32

miles1500 6290.44 457 0.7 0.03 0.15 0.11 0.24

miles250 1898.29 242 2.9 0.02 0.02 0.02 0.03

miles500 4659.31 442 81 4.2 252.68 0.42 29.19

miles750 3585.68 536 112.2 0.06 0.44 0.17 0.57

mulsol.i.1 3226.77 671 0.1 0.06 0.08 0.08 0.1

mulsol.i.2 12310.37 584 0.8 0.05 0.06 0.08 0.08

mulsol.i.3 9201.45 579 0.5 0.05 0.06 0.07 0.08

mulsol.i.4 8040.28 578 0.9 0.05 0.06 0.08 0.08

mulsol.i.5 13014.81 584 1.1 0.05 0.06 0.08 0.09

myciel3 72.5 14 0.1 0 0 0 0

myciel4 84.31 34 0.1 0.03 0.2 0 0

myciel5 211.73 80 0.1 0 0.01 0 0.01

myciel6 1992.42 232 0.4 0.01 0.03 0.02 0.02

myciel7 19924.58 757 18.2 0.06 4.55 333.24 371.29

Table 14. Time performance of ACS and ACS+ILS for Tree Decomposition.
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Instance TabuS GA IHA
ACS ACS+ILS

t-min t-avg t-min t-avg

school1 137966.73 4684 5157.13 774.38 509.12 106.56 377.63

school1_nsh 180300.1 4239 5468.9 127.62 303.22 771.42 480.92

zeroin.i.1 2595.92 641 0.1 0.07 0.08 0.09 0.1

zeroin.i.2 4825.51 594 43 0.07 0.07 0.09 0.09

zeroin.i.3 8898.8 585 22 0.06 0.07 0.09 0.09

le450_5a 130096.77 6433 7110.3 481.17 462.39 664.03 521.8

le450_5b 187405.33 6732 5989.9 580.92 428.66 140.3 361.61

le450_5c 182102.37 5917 4934.8 410.08 479.84 634.97 400.52

le450_5d 182275.69 5402 4033.8 198.01 276.51 730.51 460.02

le450_15a 117042.59 6876 6191 159.01 237.44 940.83 232.66

le450_15b 197527.14 6423 6385.7 305.8 382.18 364.68 398.77

le450_15c 143451.73 4997 4368.9 45.4 450.63 50.68 392.54

le450_15d 117990.3 4864 3441.8 127.73 320.13 32.51 286.26

le450_25a 143963.41 6025 7377.9 982.12 671.7 824.89 571.85

le450_25b 184165.21 6045 6905.8 452.96 236.8 927.89 443.17

le450_25c 151719.58 6189 5345.9 25.25 343.46 531.27 571.19

le450_25d 189175.4 6712 4118.9 410.32 447.03 437.24 446.18

dsjc125.1 1532.93 501 334.95 521.34 83.67 137.75 293.33

dsjc125.5 2509.97 261 66.0 179.72 173.54 29.68 382.06

dsjc125.9 1623.44 110 0.1 0.03 0.13 0.05 0.09

dsjc250.1 28606.12 1878 4162.4 766.75 381.73 163.68 263.95

dsjc250.5 14743.35 648 753.5 6.36 81.3 2.73 26.58

dsjc250.9 30167.7 238 0.5 0.2 1.52 0.34 1.13

Table 15. Time performance of ACS and ACS+ILS for Tree Decomposition.
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Instance |V|/|H|
ACS+SC

min max avg t-min t-avg

adder_75 526 / 376 4 4 4 0.41 0.42

adder_99 694 / 496 4 4 4 0.72 0.73

b06 50 / 48 5 6 5.5 230.56 240.89

b08 179 / 170 11 11 11 0.27 11.6

b09 169 / 168 12 12 12 0.35 8.65

b10 200 / 189 17 17 17 0.72 27.05

bridge_50 452 / 452 5 5 5 0.3 0.31

c499 243 / 202 21 22 21.5 55.32 173.31

c880 443 / 383 22 23 22.8 718.52 201.65

clique_20 190 / 20 18 21 20.3 419.41 317.22

grid2d_20 200 / 200 16 17 16.7 23.6 141.37

grid3d_8 256 / 256 41 46 44 732.52 472.65

grid4d_4 128 / 128 28 30 28.8 225.95 327.31

grid5d_3 122 / 121 29 31 30.6 132.02 274.12

nasa 579 / 680 37 39 38.6 878.72 236.19

NewSystem1 142 / 84 4 4 4 0.25 6.33

NewSystem2 345 / 200 6 6 6 0.18 2.15

s444 205 / 202 6 6 6 6.77 51.98

s510 236 / 217 27 29 28.2 239.52 123.39

Table 16. ACS+SC for Generalized Hypertree Decompositions

Page 104 illustrates how often ACS+SC gave a lower, equal, and greater
minimum width over 10 runs than each of the other methods for the
generation of hypertree decompositions.
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Instance |V|/|H| BE GA-ghw TS FM HM ACS+SC

adder_75 376 / 526 2 3 5 2 2 4

adder_99 496 / 694 2 3 5 2 2 4

b06 48 / 50 5 4 5 5 5 5

b08 170 / 179 10 9 20 14 12 11

b09 168 / 169 10 7 20 13 12 12

b10 189 / 200 14 11 33 17 16 17

bridge_50 452 / 452 3 6 10 29 4 5

c499 202 / 243 13 11 27 18 17 21

c880 383 / 443 19 17 41 31 25 22

clique_20 20 / 190 10 11 11 20 10 18

grid2d_20 200 / 200 12 10 18 15 12 16

grid3d_8 256 / 256 25 21 44 25 20 41

grid4d_4 128 / 128 17 15 40 17 18 28

grid5d_3 121 / 122 18 16 49 18 19 29

nasa 680 / 579 21 19 98 56 32 37

NewSystem1 84 / 142 3 3 6 4 3 4

NewSystem2 200 / 345 4 4 6 9 4 6

s444 202 / 205 6 5 25 8 8 6

s510 217 / 236 23 17 41 23 27 27

Table 17. Comparison of ACS+SC with other decomposition methods.
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Figure 32. Comparison of ACS+SC with other decomposition methods.
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C O N C L U S I O N S

In this thesis we have applied the ant colony optimization metaheuristic
to the problem of finding tree and generalized hypertree decomposition
of small width. For this purpose, we have adopted five different variants
of ant algorithms from the literature [16] and adjusted them for the
generation of tree and generalized hypertree decompositions.

Based on these algorithms we experimented with the guiding heuris-
tics min-degree and min-fill and examined two different pheromone
update strategies. Further, we proposed hybrid approaches that in-
corporate local search methods into the ant algorithms. One of these
methods is an iterated local search similar to the algorithm proposed
in [41] while the other one is a local search based on hill climbing.

Our experiments suggested that the ACO variants Max-Min Ant
System and Ant Colony System give the best results for tree decompo-
sitions. We also found out that min-fill is superior to min-degree as a
guiding heuristic. However, min-fill is much more computationally ex-
pensive for more complex problem instances. Moreover, we found that
the iterated local search outperforms the hill climbing approach when
combined with Ant Colony System. We also drew the conclusion that
the usefulness of the pheromone trails is limited for our problem do-
main since the solutions constructed in the first couple of iterations are
usually not improved significantly in later iterations. Hence, the ACO
algorithms can be thought of probabilistic variations of the min-degree
respectively min-fill construction heuristics.

In Chapter 6 we introduced a library for the ACO metaheuristic
called libaco. We demonstrated how to use this library to solve arbitrary
combinatorial optimization problems on the basis of an implementation
for the travelling salesman problem.

In Chapter 7 we have applied Ant Colony System with and without
the iterated local search to 62 benchmark graphs. The hybrid algorithm
turned out to give better results than Ant Colony System on its own. It
could improve the best known upper bound of the problem instance
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homer.col from 31 to 29. For 28 instances the algorithm was able to
return a width equal to the best known upper bound. Nevertheless,
especially for more complex problem instances both algorithms gave
worse results than other methods. Finally, we extended Ant Colony
System with a greedy set cover heuristic and applied this algorithm
to 19 benchmark hypergraphs. This algorithm outperformed one of
the other methods it was compared to, but did not find any optimal
solutions.

8.1 future work

Subject of future research is the investigation of self-adaptive parameter
settings. The algorithm could make use of the stagnation measures in
order to adjust parameters such as the evaporation rate ρ autonomously.

Another viable extension worth of further investigation is the appli-
cation of ant colonies consisting of a number of ants proportional to the
number of vertices in the constraint graph. That possibly could help
to improve the quality of the pheromone updates and therefore could
also improve the convergence behaviour of the algorithm.

For generalized hypertree decomposition the set cover heuristic could
be applied as a guiding heuristic instead of min-fill respectively min-
degree. This heuristic favors the elimination of vertices that cause
cliques that can be covered by fewer hyperedges.

Certain aspects of the algorithms presented in this thesis could be
analyzed in more detail via additional experiments. For instance, the
ACO algorithms could be evaluated without the incorporation of a
guiding heuristic. In this case only a local search would be used to
guide the algorithm which probably would improve the efficiency of
the algorithm since the optimization of the vertex elimination algorithm
described by Golumbic [25] could also be applied during solution
construction.

Another task for future research is the development and investigation
of other pheromone update strategies that improve the convergence
behaviour of the algorithms.



A
A P P E N D I X

a.1 interface of the acotreewidth application

In order to apply the application to the problem of finding tree decom-
positions of small width you have to specify at least the ACO variant
to use and the path to the file that describes the constraint graph in
DIMACS standard format:

$ ./acotreewidth --simple -f path/to/graph

If the application is intended to be used for the generation of gereral-
ized hypertree decompositions, you have to specify the hypergraph flag
and the input file must describe the input hypergraph in the format
that is described at http://www.dbai.tuwien.ac.at/proj/hypertree/
downloads.html:

$ ./acotreewidth --maxmin --hypergraph -f path/to/hypergraph

All non-mandatory parameters that are omitted will be set to a
default value. You can get an overview of all command line options by
executing acotreewidth with the help flag:

$ ./acotreewidth --help

USAGE:

./acotreewidth {--simple|--elitist <double>|--rank <positive

integer>|--maxmin|--acs} [--iteratedls_ls_it

<positive integer>] [--iteratedls_it <positive

integer>] [--iteratedls] [--hillclimbing] [--ls]

[--it_best_ls] [--no_ls] [--acs_xi <double>]

[--acs_q0 <double>] [--maxmin_a <double>]

[--maxmin_frequency <double>] [-t <double>]

[--pheromone_update_es] [-l <double>]

[--stag_lambda] [--stag_variance] [-o]

[--hypergraph] -f <filepath> [-j <0|1>] [-g <0|1>]

[-p <double>] [-r <double>] [-b <double>] [-a

<double>] [-n <positive integer>] [-i <positive

integer>] [-m <integer>] [--] [--version] [-h]
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Where:

--simple

(OR required) use Simple Ant System

-- OR --

--elitist <double>

(OR required) use Elitist Ant System with given weight

-- OR --

--rank <positive integer>

(OR required) use Rank-Based Ant System and let the top n ants

deposit pheromone

-- OR --

--maxmin

(OR required) use Max-Min Ant System

-- OR --

--acs

(OR required) use Ant Colony System

--iteratedls_ls_it <positive integer>

terminate the local search in the iterated local search after n

iterations without improvement

--iteratedls_it <positive integer>

terminate iterated local search after n iterations without improvement

--iteratedls

use the iterated local search

--hillclimbing

use hill climbing

--ls

apply the local search to all solutions

--it_best_ls

apply the local search only to the iteration best solution

--no_ls

do not apply a local search

--acs_xi <double>

xi parameter for Ant Colony System

--acs_q0 <double>

q0 parameter for Ant Colony System

--maxmin_a <double>

parameter a in Max-Min Ant System
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--maxmin_frequency <double>

frequency of pheromone updates of best-so-far ant in Max-Min Ant

System

-t <double>, --time <double>

terminate after n seconds (after last iteration is finished)

--pheromone_update_es

use edge specific pheromone update

-l <double>, --stag_limit <double>

terminate if the stagnation measure falls below this value

--stag_lambda

print lambda branching factor stagnation

--stag_variance

print variation coefficient stagnation

-o, --printord

print best elimination ordering in iteration

--hypergraph

input file is a hypergraph

-f <filepath>, --file <filepath>

(required) path to the graph file

-j <0|1>, --heuristic <0|1>

0: min_degree 1: min_fill

-g <0|1>, --graph <0|1>

0: AdjacencyMatrix 1: AdjacencyList

-p <double>, --pheromone <double>

initial pheromone value

-r <double>, --rho <double>

pheromone trail evaporation rate

-b <double>, --beta <double>

beta (influence of heuristic information)

-a <double>, --alpha <double>

alpha (influence of pheromone trails)

-n <positive integer>, --no_improve <positive integer>

number of iterations without improvement as termination condition

-i <positive integer>, --iterations <positive integer>

number of iterations
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-m <integer>, --ants <integer>

number of ants

--, --ignore_rest

Ignores the rest of the labeled arguments following this flag.

--version

Displays version information and exits.

-h, --help

Displays usage information and exits.
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