Temporal Graph Neural Networks and Their Expressiveness

Przemysław (Przemek) Wałęga¹, joint work with Michael Rawson² www.walega.pl | p.walega@qmul.ac.uk

¹ Queen Mary University of London, University of Oxford,

² University of Southampton, TU Wien

Workshop on Foundations of Databases and AI, 30 January 2025

Message-Passing Temporal Graph Neural Networks (MP-TGNNs)

1. Take as an input a *temporal graph*:

- 2. Perform a fixed number of *message-passing iterations* modifying node embeddings.
- 3. Use *final node embeddings* to classify nodes/graph, predict missing edges, e.g. in:
 - recommender systems,
 - traffic forecasting,
 - finance networks,

. . .

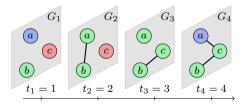
modelling the spread of diseases,

What are the main types of MP-TGNNs?

- What are the *limits of their expressive power*?
- How do they compare in terms of expressive power?
- ► How does the difference in expressiveness *affect practical performance*?

Addressed in paper: W. and Rawson, *Expressive Power of Temporal Message Passing*, AAAI 2025

MP-TGNNs


Temporal Graph

Temporal graph is a finite sequence $TG = (G_1, t_1), \ldots, (G_n, t_n)$ of undirected node-coloured graphs stamped with real-valued t_i .

Assumptions:

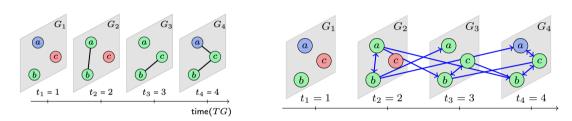
$$\blacktriangleright t_1 < \cdots < t_n,$$

 \blacktriangleright each G_i has the same set of vertices.

MP-TGNNs compute *embedding* $\mathbf{h}_{v}^{(\ell)}(t)$ of v at time t in layer ℓ .

Depending on the computation we distinguish:

Global MP-TGNNs
 Also called temporal embedding TGNNs [Longa et al. 2023] and used in such models as TGAT [Xu et al. 2020] or NAT [Luo and Li 2022].

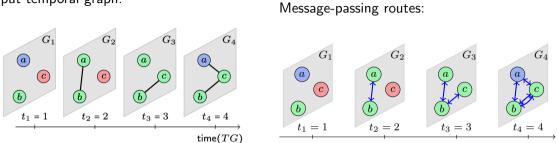

Local MP-TGNNs

Used for example in TGN [Rossi et al. 2020] and TDGNN [Qu et al. 2020].

Global MP-TGNNs

Input temporal graph:

Message-passing routes:


$$\mathbf{h}_{v}^{(\ell)}(t) = \mathsf{COM}^{(\ell)}\Big(\mathbf{h}_{v}^{(\ell-1)}(t), \mathsf{AGG}^{(\ell)}\Big(\{\!\!\{(\mathbf{h}_{u}^{(\ell-1)}(t'), g(t-t')) \mid (u,t') \in \mathcal{N}(v,t)\}\!\!\}\Big)\Big)$$

• $\mathcal{N}(v,t)$ is the temporal neighbourhood of (v,t):

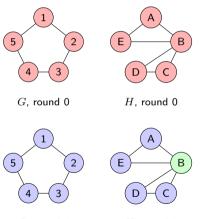
$$\mathcal{N}(v,t) = \Big\{(u,t') \mid \text{at } t' \leq t \text{ there is an edge } \{u,v\} \Big\}$$

Local MP-TGNNs

Input temporal graph:

$$\mathbf{h}_{v}^{(\ell)}(t) = \mathsf{COM}^{(\ell)}\Big(\mathbf{h}_{v}^{(\ell-1)}(t), \mathsf{AGG}^{(\ell)}\Big(\{\!\!\{(\mathbf{h}_{u}^{(\ell-1)}(t), g(t-t')) \mid (u,t') \in \mathcal{N}(v,t)\}\!\!\}\Big)\Big)$$

• $\mathcal{N}(v,t)$ is the temporal neighbourhood of (v,t):


$$\mathcal{N}(v,t) = \Big\{(u,t') \mid \text{at } t' \leq t \text{ there is an edge } \{u,v\} \Big\}$$

▶ Which message-passing mechanism is *more expressive*?

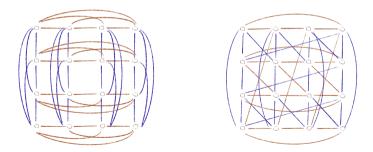
Weisfeiler-Leman Test

Weisfeiler-Leman Test

Weisfeiler-Leman test (WL) [Weisfeiler and Leman, 1968] is a heuristic for checking isomorphism of (static) graphs.

WL computes node colourings wl⁽⁰⁾, wl⁽¹⁾,... as follows: wl^(\ell)(v) = HASH $\left($ wl^(\ell-1)(v), {{(wl^(\ell-1)(u) | u \in \mathcal{N}(v))}}\right),

where N(v) is the neighbourhood of v.


 ${\cal G}, \mbox{ round } 1$

Weisfeiler-Leman Test

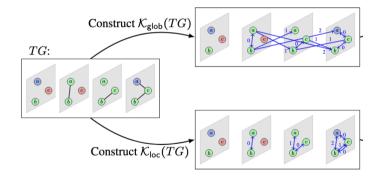
- WL distinguishes graphs \Rightarrow these graphs are not isomorphic.
- But the opposite implication does not hold.

For example 4-4 Rook's and Shirkande graphs are not isomorphic, but WL cannot distinguish them:

The following are equivalent:

- ► Two graphs are *distinguishable by WL*,
- Some message-passing GNN accepts only one of these graphs,
- Some formula of C_2 is true in only one of these graphs.

Pablo and others, have recently considered GNNs and WL on *knowledge graphs* (multi-graphs with directed labelled edges) rwl where:


• with separate neighbourhood \mathcal{N}_r for each relation r.

The following are equivalent: [Huang et al. 2023]

- Two knowledge graphs are distinguishable by rwl,
- Some message-passing GNN accepts only one of these knowledge graphs,

WL for MP-TGNNs

Convert a TG into Knowledge Graphs

Theorem.

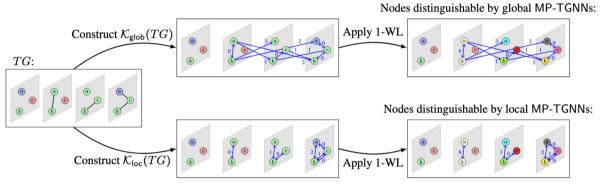
$$\mathsf{rwl}^{(\ell)}(v,t) = \mathsf{rwl}^{(\ell)}(u,t') \text{ in } \mathcal{K}_{\mathsf{glob}}(TG) \quad \Rightarrow \quad \mathbf{h}_v^{(\ell)}(t) = \mathbf{h}_u^{(\ell)}(t') \text{ in any global TGNN}.$$

Theorem.

For each TG and $\ell \in \mathbb{N}$, there exists a global MP-TGNN \mathcal{A} such that:

 $\operatorname{\mathsf{rwl}}^{(\ell)}(v,t) = \operatorname{\mathsf{rwl}}^{(\ell)}(u,t') \text{ in } \mathcal{K}_{\operatorname{glob}}(TG) \quad \Leftarrow \quad \mathbf{h}_v^{(\ell)}(t) = \mathbf{h}_u^{(\ell)}(t') \text{ in } \mathcal{A}.$

Theorem.


$$\mathsf{rwl}^{(\ell)}(v,t) = \mathsf{rwl}^{(\ell)}(u,t') \text{ in } \mathcal{K}_{\mathsf{loc}}(TG) \quad \Rightarrow \quad \mathbf{h}_v^{(\ell)}(t) = \mathbf{h}_u^{(\ell)}(t') \text{ in any local TGNN}.$$

Theorem.

For each TG and $\ell \in \mathbb{N}$, there exists a local MP-TGNN \mathcal{A} such that:

 $\operatorname{\mathsf{rwl}}^{(\ell)}(v,t) = \operatorname{\mathsf{rwl}}^{(\ell)}(u,t') \text{ in } \mathcal{K}_{\operatorname{loc}}(TG) \quad \Leftarrow \quad \mathbf{h}_v^{(\ell)}(t) = \mathbf{h}_u^{(\ell)}(t') \text{ in } \mathcal{A}.$

WL for MP-TGNNs

Temporal Isomorphisms

Pointwise Isomorphism

- ► GNNs can distinguish some *non-isomorphic graphs*,
- ▶ MP-TGNNs can distinguish some *non-isomorphic temporal graphs*.

What is a good notion of *isomorphism between temporal graphs*?

Pointwise Isomorphism

- ► GNNs can distinguish some *non-isomorphic graphs*,
- MP-TGNNs can distinguish some non-isomorphic temporal graphs.

What is a good notion of *isomorphism between temporal graphs*?

Definition.

$$(G_1, t_1), \ldots, (G_n, t_n)$$
 and $(G'_1, t'_1), \ldots, (G'_m, t'_m)$ are *pointwise isomorphic* if:
 $t_i = t'_i$, and

• G_i and G'_i are isomorphic,

for all $i \in \{1, \ldots, n\}$.

Is it a good definition?

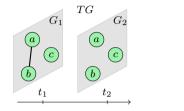
Pointwise Isomorphism

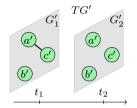
- ► GNNs can distinguish some *non-isomorphic graphs*,
- MP-TGNNs can distinguish some non-isomorphic temporal graphs.

What is a good notion of *isomorphism between temporal graphs*?

Definition.

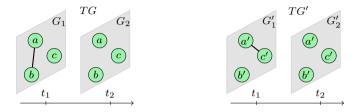
$$(G_1, t_1), \ldots, (G_n, t_n)$$
 and $(G'_1, t'_1), \ldots, (G'_m, t'_m)$ are *pointwise isomorphic* if:
 $t_i = t'_i$, and


• G_i and G'_i are isomorphic,

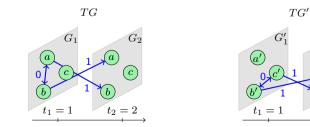

for all $i \in \{1, \ldots, n\}$.

Is it a good definition? NO!

MP-TGNNs (global and local) distinguish pointwise isomorphic temporal graphs!


Consider *pointwise isomorphic* (a, t_2) and (a', t_2) :

MP-TGNNs (global and local) distinguish pointwise isomorphic temporal graphs!


Consider *pointwise isomorphic* (a, t_2) and (a', t_2) :

 $\mathsf{rwl}^{(1)}(a,t_2) \neq \mathsf{rwl}^{(1)}(a',t_2)$ in $\mathcal{K}_{\mathsf{glob}}(TG)$, so global MP-TGNNs distinguish them:

 G'_{3}

 $t_2 = 2$

Definition.

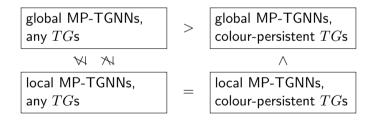
 $(G_1, t_1), \ldots, (G_n, t_n)$ and $(G'_1, t'_1), \ldots, (G'_m, t'_m)$ are *timewise isomorphic* if: $t_{i+1} - t_i = t'_{i+1} - t'_i$, and

• there exists f which is an isomorphism between G_i and G'_i ,

for every $i \in \{1, \ldots, n\}$.

Definition.

 $(G_1, t_1), \ldots, (G_n, t_n)$ and $(G'_1, t'_1), \ldots, (G'_m, t'_m)$ are *timewise isomorphic* if: $t_{i+1} - t_i = t'_{i+1} - t'_i$, and


▶ there exists f which is an isomorphism between G_i and G'_i ,

for every $i \in \{1, \ldots, n\}$.

Theorem. If (v,t) and (u,t') are timewise isomorphic, then $\mathbf{h}_v^{(\ell)}(t) = \mathbf{h}_u^{(\ell)}(t')$ in any MP-TGNN (global or local) and any $\ell \in \mathbb{N}$.

Relative Expressiveness of MP-TGNNs

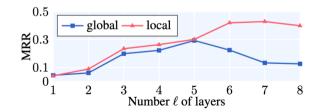
We can show the following *expressiveness results:*

Experiments

Goal: Check how expressiveness results impact performance.

Setup:

- Directly implemented MP-TGNNs (global and local) with PyTorch,
- ▶ Tested on link prediction tasks from *TGB 2.0:*
 - tgbl-wiki, tgbl-review, tgbl-coin,


	tgbl-wiki	tgbl-review	tgbl-coin
nodes	9,227	352,637	638,486
edges	157,474	4,873,540	22,809,486

Results

Mean reciprocal rank (MRR) aligns with our expressiveness results:

	tgbl-wiki	tgbl-review	tgbl-coin
global	0.223	0.321	0.628
local	0.264	0.359	0.635

MRR on tgbl-wiki with *increasing number of layers*:

Expressive power of MP-TGNNs can be analysed by applying WL to corresponding knowledge graphs,

- Expressive power of global and local MP-TGNNs is incomparable,
- On colour-persistent temporal graphs local MP-TGNNs are strictly more expressive,
- Experiments show higher performance of local MP-TGNNs.

Future work:

▶ If/what correspondence can we establish between TGNNs and *temporal logics*?

Thank you for your attention! Przemysław (Przemek) Wałęga | www.walega.pl | p.walega@qmul.ac.uk

Always happy to discuss more!