Avoiding Materialisation for Guarded
Aggregate Queries'

Matthias Lanzinger, Reinhard Pichler, and Alexander Selzer

TU Wien

Ttalk mainly based on: M. Lanzinger, P., A. Selzer:
Avoiding Materialisation for Guarded Aggregate Queries.
CoRR abs/2406.17076 (2024).

accepted for publication at VLDB 2025.

Acyclic Conjunctive Queries

The cost of joins.

= Processing (not necessarily large) join queries remains a challenge,
even for modern DBMSs: explosion of intermediate results

= However, the vast majority of queries from benchmarks and query
logs are acyclic (ACQs) or almost-acyclic.

= Yannakakis' algorithm allows us to answer ACQs without any
“useless” intermediate results.

Definition.

= An Acyclic Conjunctive Query (ACQ) is a CQ that has a join tree.
= A join tree is a rooted, labelled tree (T, r, \) with root r, such that
=)\ is a bijection that assigns to each node of T one of the relations in
{R:,...,Rn} and
=) satisfies the so-called connectedness condition, i.e., if some
attribute A occurs in both relations A(u) and A(u;) for two nodes u;
and uj, then A occurs in the relation A(u) for every node u along the
path between u; and u;. 1

Yannakakis’ algorithm

Theorem.

ACQs can be evaluated in time O((||D]| + [|Q(D)|) - ||Q||)
using Yannakakis' algorithm, i.e., linear w.r.t. the size of the input and
output data and w.r.t. the size of the query

Yannakakis’ algorithm.
involves 3 traversals of the join tree T which consist of
1. a bottom-up traversal of semi-joins

2. a top-down traversal of semi-joins

3. a traversal of full joins.

Running Example: Yannakakis’ Algorithm

SELECT s_suppkey, s_nationkey, s_acctbal
FROM part, partsupp, supplier,
nation, region

WHERE p_partkey = ps_partkey

AND s_suppkey = ps_suppkey

AND n_nationkey = s_nationkey

AND r_regionkey = n_regionkey

AND p_price >

(SELECT avg (p_price) FROM part)
AND r_name IN ('Europe', 'Asia')

supplier

/N

nation partsupp

region part

Bottom-up Traversal of Semi-Joins

supplier

N |S|A

n | s |20

n | s | 40

By -S—30-

m | s |10

m | s |30

Ae—-5—20-
X

E

1| P1

nation partsupplier
N R S P
m | n S;
m | r S| P2
e S I S1 | P3
m | n 2 | P1
n | r 2 | P3
n | 5B | P1
X X
region part
R P
n P
n P
n P
r P2
r P2
£ P3

Top-Down Traversal of Semi-Joins

supplier

N |S|A

n | s |20

n | s | 40

By -S—30-

m | s |10

m | s |30

Ae—-5—20-
X

%

1| P1

nation partsupplier
N R S P
m | n S;
m | r S| P2
e S I S1 | P3
m | n 2 | P1
n | r 2 | P3
n | 5B | P1
X X
region part
R P
n P
n P
n P
r P2
r P2
£ P3

Bottm-Up Traversal of Joins

supplier

N |S A

nm | s |20

n | s | 40

Ay -ss 130}
n | s | 10

n | s | 30

= 20—
- e = result
nation LR el e
N S A
N | R --- S|P
m | s | 20
m|n|--- S|P
PP I R S . —
1| 1| P2 f— m | s | 40
[P - s1 | p3
m|ln| - S| p| - n s 10
2 1
m |l S | p3
m |- S| p| - n s | 30
2
region part
R| ... P
@ || oo P1
B |[oo pL
B |[oo pL
|- P2
- P2
rg |- P3| - 6

Correctness of Yannakakis’ algorithm.

Let R, ..., R be the relations at the subtree T, rooted at node u.
Let R'(u) be the relation at node u after each traversal of the join tree.
Let (1), (2), (3) denote the 3 traversals of the join tree.
Then it holds:

= after (1), we have R'(u) = Taguy(Ry >4 ... > R;,),

= after (2), we have R'(u) = Tapuy(RL D4 ... >3 Ry),

= after (3), we have R'(u) = Taw(7,)(R1 >4 ... X Ry).

Advantage of Yannakakis’ algorithm.

= The semi-joins remove all dangling tuples.

= All intermediate results of the joins end up in the final result.

Aggregate Queries

Cost of the joins.

= The joins are cheap if they are via foreign keys from the parent node
to the child nodes.

= However, in general, despite the deletion of dangling tuples, the join
step may still be expensive.

Analytical queries.

= Analytical queries tend to combine several tables, but output only a
comparatively small aggregated final result.

= Usual strategy: computing the aggregates as post-processing (after
the evaluation of the joins query).

= Question. Can we do better?
That is: evaluate the query without computing the joins!

Joinless Evaluation of Queries

Roadmap.

= Boolean ACQs
= Zero Materialization Aggregate (OMA) Queries
= Guarded Aggregate Queries

= Piecewise Guarded Aggregate Queries

Example: Boolean ACQ

SELECT ... WHERE EXISTS

(SELECT * FROM

FROM part, partsupp, supplier,

nation, region

WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND n_nationkey = s_nationkey
AND r_regionkey = n_regionkey
AND p_price >

(SELECT avg (p_price) FROM part)

AND r_name IN ('Europe', 'Asia')
)

supplier

/N

nation partsupp

region part

10

Bottom-up Traversal of Semi-Joins

supplier

N |S|A

n | s |20

n | s | 40

By -S—30-

m | s |10

m | s |30

Ae—-5—20-
X

E

1| P1

nation partsupplier
N R S P
m | n S;
m | r S| P2
e S I S1 | P3
m | n 2 | P1
n | r 2 | P3
n | 5B | P1
X X
region part
R P
n P
n P
n P
r P2
r P2
£ P3

11

Aggregate Queries Considered Here

Acyclic Conjunctive Queries with aggregation, i.e.
Extended Relational Algebra-expressions of the following form:

Q=1lg, -8 A(a1),- ., Am(am)] (R >< -+ > Ry)

(or SQL SELECT-FROM-WHERE-GROUP BY queries), where:

= Ry--- R, is an ACQ
= Y[g1,--.,80 A1(a1),-..,Amn(am)] denotes the grouping operation
= gy,...,8¢ are attributes occurring in the relations Ry,..., Ry,

= Aj,...,An are (standard SQL) aggregate functions such as MIN,
MAX, COUNT, SUM, AVG, MEDIAN, etc.,

= aj,...,an, are expressions over attributes from Ry,..., R,.

12

Zero Materialization Aggregate (0OMA) Queries

Definition [Zero Materialization Aggregate (OMA) Queries]*

Aggregate Queries (g1, ..., 8¢, A1(a1), ..., Am(am)] (R < < Ry,),
with the following properties:

= Set-safety: an aggregate function is set-safe, if its value is invariant
under duplicate elimination. A query is set-safe, if all aggregates are.

= Guardedness: a query is guarded, if there exists a single relation R;
that contains all grouping attributes g1, ..., g¢ and all attributes
occurring in the aggregate expressions Aj(ay), ..., Am(am).

1G. Gottlob, M. Lanzinger, D. Longo, C. Okulmus, P., A. Selzer:
Structure-Guided Query Evaluation: Towards Bridging the Gap from Theory to
Practice. CoRR abs/2303.02723 (2023).

13

Example: OMA Query

SELECT MIN(s_acctbal), MAX(s_acctbal)
FROM part, partsupp, supplier,
nation, region
WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND n_nationkey = s_nationkey
AND r_regionkey = n_regionkey
AND p_price >
(SELECT avg (p_price) FROM part)
AND r_name IN ('Europe', 'Asia')
GROUP BY s_nationkey

supplier

/N

nation partsupp

region part

14

Bottom-Up Traversal of Semi-Joins

supplier

N |S|A

n | s |20

n | s | 40

By -S—30-

m | s |10

m | s |30

Ae—-5—20-
X

E

1| P1

nation partsupplier
N R S P
m | n S;
m | r S| P2
e S I S1 | P3
m | n 2 | P1
n | r 2 | P3
n | 5B | P1
X X
region part
R P
n P
n P
n P
r P2
r P2
£ P3

15

Guarded Aggregate Queries

Motivation and Definition.

= OMA queries are very restricted.

= Guarded Aggregate Queries: lift the set-safety condition.
That is: we only require guardedness.

= This means: we allow arbitrary (standard SQL) aggregate functions;
in particular, COUNT, SUM, etc.

Idea. Efficient frequency propagation?

Compute Freg(u) (i.e., original relation extended by a row count) at node
u with child nodes wuy, ..., ux in a bottom-up traversal of the join tree.

Frequ(u) = R(u) x {(1)}
Fregi(u) := v[Att(u), c, < SUM(c ! - ¢,,)](Freg;_1(u) > Freq(u;))
Freq(u) = p,« c(Freqi(u))

2P, S. Skritek: Tractable counting of the answers to conjunctive queries. J. Comput.
Syst. Sci. 79, 6 (2013).

16

Efficient Counting and Aggregation

= Frequencies can be propagated up the join tree efficiently
(essentially by an extension of the semi-joins)
= Using these frequencies, we can reconstruct the original aggregates
without actually evaluating the join query.
= Let ¢, denote the count-attribute at the root node of a join tree.
= We can rewrite all aggregate expressions, e.g. (in SQL notation):
= COUNT(*) — SUM(c,)
= COUNT(B) — SUM(IF(ISNULL(B),0,c/))
= SUM(B) — SUM(B- ¢)
= AVG(B) — SUM(B- ¢,)/COUNT(B)

17

Example: Guarded Aggregate Query

SELECT MEDIAN(s_acctbal)
FROM part, partsupp, supplier,
nation, region

WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND n_nationkey = s_nationkey
AND r_regionkey = n_regionkey
AND p_price >

(SELECT avg (p_price) FROM part)

AND r_name IN ('Europe', 'Asia')

GROUP BY s_nationkey

supplier

/N

nation partsupp

region part

18

Bottom-Up Traversal with Frequency Propagation

supplier
N|S A ---|c
n | s |20 --- |30
n | s |40 --- |20
Ar——S54—30—1———F
n | s | 10| --- | 36
n | s |30 - |24
Ag—1—So—20———F

7 A

nation partsupplier
N | R c S|P |- |c
| n 3 st | p 3
m | rn 2 s | p2 2
At si | p3 1
m | n 3 S| 3
n | rn 2 S| p3 1
mn |) s3 | P 3
Tegion part
R c P c
n 1 1 1
n 1 1 1
n 1 1 1
rn 1 P2 1
rn 1 P2 1
r 1 ps 1 19

Piecewise Guarded Aggregate Queries

Motivation.

= Requiring a single guard for the grouping attributes and all
attributes used in aggregate expressions is still very restrictive.

= Relax this condition for the most common aggregate functions,
namely MIN, MAX, COUNT, SUM, and AVG.

Definition [Piecewise Guarded Aggregate Query].

Aggregate Query v[g1,. .., 8¢, A1(a1),.-. 7A,,,(am)](l?l D - e e X R,,),
s.t. there exists a relation R;, that contains all grouping attributes and,
for every j € {1,..., m}, the following conditions hold:

= If A; € {MIN, MAX, SUM, COUNT, AVG}, then there exists some relation
R;, that contains all attributes occurring in Aj(a;).

= Otherwise, i.e., A; & {MIN, MAX, SUM, COUNT, AVG}, then R;, contains
all attributes occurring in Aj(a;).

20

Efficient Propagation of Aggregates

Idea. Choose the guard of the grouping attributes as root of the join tree
T and handle an aggregate expression Aj(a;) with A; € {MIN, MAX, SUM,
COUNT} that is not guarded by the root of T as follows:

= as guard, choose node w highest up in T with Att(a;) C Att(w).

= add attribute Agg; to every node u from w up to the root r;
intended meaning of the resulting relation at node u:
[Att(u), Agg; + Aj(2))] (e, (R(V)))
= initialize Agg; at node w: for MIN, MAX simply take the value of aj;
for SUM, COUNT also take the frequency of the tuple into account.
= propagate Aggj to every ancestor u of w:
= by connectedness of T: only one child v of u has attribute Agg;;
= propagate Agg; from all tuples t[v] in R(v) to all tuples t[u] in R(u)
which have identical values on the common attributes;
= for SUM, COUNT also take the frequencies of the join partners of t[u] in
the siblings of v into account.

21

Example: Piecewise Guarded Aggregate Query

SELECT MIN(region.X), SUM(part.Y)
FROM part, partsupp, supplier,
nation, region
WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND n_nationkey = s_nationkey
AND r_regionkey = n_regionkey
AND p_price >
(SELECT avg (p_price) FROM part)
AND r_name IN ('Europe', 'Asia')
GROUP BY s_nationkey

supplier

/N

nation partsupp

region part

22

Bottom-Up Traversal with Aggregate Propagation

supplier
N S|---|c|As | As
m | s |-~ |30] 10 625
n | s|---|20] 10 375
At % 1 B -
m | s |- |36 5 750
m | 5| |24 5 450
4 1 _ _
nation partsupplier
N | R c Agg S P|.-|c Agg
m | n 3 10 st|p1| 0|3 45
m | n 2 20 s | p2 2 50
Ar | 1 s | P 1] 30
m | n 3 10 S| p1 3 45
m | n 2 20 S | p3 1 30
m | n3 1 5 3| p1 3 45
region part
R| X c | Aggy P Y c | Agg,
n | 10 1| 10 1| 20 1] 20
n | 20 1 20 p1 | 15 1 15
n |15 1 15 p | 10 1 10
r | 20 1] 20 p2 | 30 1| 30
| 25 1| 25 p2 | 20 1] 20
|5 1 5 p3 | 30 1| 30

23

Coverage

Many applicable queries in 5 standard benchmarks:

= JOB (Join Order Benchmark)

= STATS / STATS-CEB

= TPC-H

» [SQ@B (Large-Scale Subgraph Query Benchmark)

= SNAP (Stanford Network Analysis Project) (web-Google &
com-DBLP)

Benchmark | # | ~-agg | acyc | pwg | g | OMA
JOB 113 113 113 | 113 | 19 19

STATS-CEB | 146 146 146 | 146 | 146 0

TPC-H 22 15 14 7 3 1

LSQB 9 4 2 2 2 0

0

0

SNAP 18 18 18 18 18
TPC-DS 99 64 63 30 15

24

Implementation and Evaluation

Implementation.

= in Spark SQL

= logical optimization: exchange the subtree in the query plan

= physical optimization: new physical operator “Aggloin”, that

combines join (relation at parent and child node) followed by

aggregate propagation into a semi-join-like operation.

= https://github.com/dbai-tuw/spark-eval

End-to-end results.

Query # joins (mean) Ref | GuAO GuAO* | GuAO*" Speedup
STATS-CEB e2e 3833 1558+7.3 | 97.9+6.1 64.8+7.9 24.04 x
JOB e2e 7.65 3217.84+106 - | 2189.46+76 1.47 x
TPC-H e2e sF200 1.57 3757.2 - 3491.06 1.08 x
TPC-H Ex.1 sF200 4 168.4 107.5 105.11 1.60 x
LSQB Q1 sF300 9 3096+232 | 677+23 68823 4.57 x
LSQB Q4 sF300 3 602437 593415 59249 1.02x
TPC-DS e2e srFi00 2.52 5154.5 - 5047.5 1.02 x

25

https://github.com/dbai-tuw/spark-eval

More Detailed Results: SNAP

web-Google com-DBLP
Query Spark GuAO GuAO™* Spark ‘ GuAO ‘ GuAO™*
path-03 || 27.97+15 | 6.90+0.6 | 6.08+0.65 6.32+1.1 | 2.35+05 | 1.59+0.12
path-04 || 449.14+26.9 | 7.58+0.6 | 6.89+0.30 50.97+9.8 | 2.24+0.4 | 1.76+0.16
path-05 0.0.m. 8.95+1.0 | 7.53+0.48 | 400.87+15.2 | 2.74+0.2 | 2.03+0.25
path-06 0.0.m. 9.37+1.0 | 8.80+0.25 0.0.m. 2.98+0.2 | 2.18+0.14
path-07 0.0.m. 11.32+0.9 | 9.76+1.21 0.0.m. 3.64+0.2 | 2.38+0.26
path-08 0.0.m. 11.30+2.1 | 10.05+1.49 0.0.m. 3.75+0.4 | 2.53+0.30
tree-01 || 539.11+22.4 | 7.73+1.0 | 6.53+1.11 25.96+45 | 1.95+0.1 | 1.47+0.28
tree-02 0.0.m. 12.4343.2 | 7.29+0.73 || 328.88+11.5 | 3.02+0.7 | 1.69+0.16
tree-03 0.0.m. 12.2145.6 | 8.16-+0.66 0.0.m. 3.17+0.2 | 1.99+0.16

26

Conclusion

Summary of Results.

= (Piecewise) Guarded Aggregate Queries
= Physical Operator AggJoin
= Implementation in Spark SQL

= Promising empirical results

Next steps.

= Extension to cyclic queries

= Extension to unguarded queries,
e.g., SUM (XxY) for attributes from different relations

27

