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Databases

Data (tables, trees, graphs) — relational structures/models
Queries (SQL, XPath, Cypher) — formulas with free variables
Metadata (schemas, integrity constraints) — theories

Goal Evaluate queries over data, guided by metadata.
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Problem (Query containment modulo schema)
Given queries P and (), and a schema S, decide if P Cs (); that is,

for every database D, if D =S and D |= P, then D |= ().



Knowledge representation

Facts (ABoxes) - ground atomic formulas (a CQ with no variables)
Ontologies (TBoxes, rules) - theories
Queries (SPARQL) - formulas with free variables

Goal Answer queries based on facts derived using ontologies.
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for every interpretation I, if I | =T and I = A, then I = ().



Two problems, or one?

Problem (Query containment modulo schema)
Given queries P and (), and a schema S, decide if P Cs (); that is,

for every database D, if D =S and D = P, then D |= ().

Problem (Query entailment)
Given facts A, an ontology T, and a query (), decide if T, A |= (); that is,

for every interpretation I, if [ =T and I = A, then I = ().

[Calvanese, De Giacomo, Lenzerini '98]
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Graphs

We work with labelled graphs, modelled as relational structures:

» unary predicates = node labels = concept names A, B, . ..
» binary predicates = egde labels = role names 7. s, . ..

That is,
» nodes have multiple labels;
» edges have single labels;
» parallel edges with different labels are allowed;
» in a subgraph, nodes may have fewer labels.



Queries

» Conjunctive queries (CQs), unions of CQs (UCQs)
Jz 3y A(x) Ar(z,y) ANA(y) VvV 3Bz Iy 3z r(z,y) Ar(y, z) Ar(z,z)
The core of relational query languages, such as SQL.
» Conjunctive regular path queries (CRPQs), unions of CRPQs (UCRPQs)
SwrH(@,2) v 33y Ale) A (7 Us)(e,9) A (p- B) (y,7)

Graph query languages have reachability/RPQs at the core (SPARQL, Neo4j's
Cypher, SQL/PGQ, GQL).



Schemas
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What kind of schemas for graph data?

RDF has SHACL and ShEx, for property graphs the picture is less clear.
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ABSTRACT

Graphs have emerged as an imponant foundation for a variety of
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RI3Fand property graghs. hoth the Semantic Web and the database
cammunity have independently develaped graph schemo fang o ges
SHACL. ShEx. and PG-Schema Fach language has its unique ap-
praach ta defining canstuainis and validating graph data, leaving
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Description logics
Basic description logic ALC has statements of the form
cCCD
where C'| D are complex concepts build according to the following grammar by
C.D:=L1L|T|A|CcuD|CnD|=C|3r.C|vrC.
For example, Person C 9 childOf. Person and Male 'l = childOf. Person C Son.

ALC in normal form:

AiMMAM---MA, C BiUByU---UB,,
AC Ir.B empty M=T
A C Vr.B empty LI = L



A zoo of description logics

Features can be added to ALC, giving logics like ALCHOZQ or SOOQ
(S is shorthand for ALCS).

O: use constants as singleton concepts {a} AC Ir{a}
L. use inverse roles ~ anywhere AC Ir—.B
JF: declare role r to be a partial function fun(r)
O: use counting quantifiers 3=, 3= ALC 355r.B
S: declare role r to be transitive tra(r)
H: declare role r to be contained in role s rCs

ALCOT can express EER, and a lot of SHACL and PG-Schema.



Finite vs unrestricted models

Problem (Query containment modulo schema)
Given queries P and (), and a schema S, decide if P Cs (); that is,

for every finite database D, if D =S and D |= P, then D = ().

Problem (Query entailment)
Given facts A, an ontology T, and a query (), decide if T, A |= (); that is,

for every possibly infinite interpretation I, if [ =T and I |= A, then I = (.



A paradox

Does 7 = {Person C JchildOf. Person} model reality well?



A paradox

Does 7 = {Person C JchildOf. Person} model reality well?

Suppose we know that at least one person exists: A = {Person(filip)}.



A paradox

Does 7 = {Person C JchildOf. Person} model reality well?
Suppose we know that at least one person exists: A = {Person(filip)}.

Then, over finite models we can conclude that somebody is their own ancestor...
T, A Ein 3z childOft (2, z)
Over unrestricted models we are safe:

T, A~ 3z childOft (x, )



Query entailment



Landscape of query entailment
Entailment of CQs is EXPTIME-complete for
» ALCH [Ortiz, Simkus, Eiter 2008], ALCHQ [Lutz 2008]

2EXPTIME-complete for
> ALCT [Lutz 2008], ALCO [Ngo, Ortiz, Simkus 2016]
» SH [Eiter, Lutz, Ortiz, Simkus '10], S [Ibdfez-Garcia, Jung, Michielini, M. '25],
» SHIQ" [Calvanese, Eiter, Ortiz 2007] [Glimm, Lutz, Horrocks, Sattler 2008]
» SHOQ" [Glimm, Horrocks, Sattler 2008]
» SOQ" [Gogacz, Gutiérrez-Basulto, Ibdfiez-Garcia, Jung, Murlak 2019]
decidable for
» ALCHOIOb [Glimm, Rudolph 2010]
undecidable for

» SHQ" [Horrocks, Sattler, Tobies 2000], SZQ" [Kazakov, Sattler, Zolin 2007]
» SHOZIQ" and SHOZF [Rudolph 2016]



Landscape of query entailment: finite controllability

Finite controllability: = = 4,
GF [Barany, Gottlob, Otto 2014] (covers ALCHOLD)
ALCOF [Gogacz, Ibdfiez-Garcia, Murlak 2018]



Landscape of query entailment: finite controllability

Finite controllability: = = 4,
GF [Barany, Gottlob, Otto 2014] (covers ALCHOLD)
ALCOF [Gogacz, Ibdfiez-Garcia, Murlak 2018]

No finite controllability: = # =

A»CCIF A(CL) aﬁ [ ] —\"q. a ®-c @
TCIr—-A u
TC3Ish—T

S A(a) o —Deoe—De—De--»
TLC dr—A A
tra(r)
Jzr(x,z)

What about ALCOQ and up to ALCHOQb?



Landscape of finite entailment: conjunctive queries

Finite entailment of CQs is 2EXPTIME-complete for
» GC? [Pratt-Hartmann 2009]
» GF [Bardny, Gottlob, Otto 2014]
» SOZ and SZF [Gogacz, Ibafiez-Garcia, Murlak 2018]
» SHOI'" [Danielski, Kierorski 2019]
» SOQ" [Gogacz, Gutiérrez-Basulto, Ibafiez-Garcia, Jung, Murlak 2019]

undecidable for
» SHQ" and SZQ" [Kazakov, Sattler, Zolin 2007]

» SHOZF [Rudolph 2016]
a challenge for

» ALCOLF



Landscape of finite entailment: UCRPQs and UC2RPQs

Finite entailment of UCRPQ is 2EXPTIME-complete for

» ALCT and ALCQ [Gutiérrez-Basulto, Gutowski, Ibafiez-Garcia, M. '22,'24]
» should extend to ALCOZ and ALCOQ

a challenge for
» ALCTO

Finite entailment of UC2RPQs (two-way UCRPQs) is undecidable for
> ALCOZF [Rudolph 2016]
a challenge for

» ALC



Query containment



Query containment without schema is well understood

UCQs: NP-complete [Chandra, Merlin

UC2RPQs: EXPSPACE-complete [Florescu, Levy, Suciu

[Calvanese, De Giacomo, Lenzerini, Vardi

Fragments complete for NP, co-NPNP PSPACE [Deutsch, Tannen '

[Figueira, Godbole, Krishna, Martens, Niewerth, Trautner

Dichotomy between EXPSPACE-hard and PSPACE-easy [Figueira ’



Query containment modulo schema is mostly open

Containment of UCQs modulo full dependencies [Beeri, Vardi '84]

Containment of UCQs w. reachability modulo full dependencies w. reachability
[Deutsch, Tannen '01]

Containment of UC2RPQs in acyclic UC2RPQs modulo Horn ALCZO
[Boneva, Groz, Hidders, Murlak, Staworko '23]

Strong results on query containment modulo schema/constraints over infinite graphs.

[Calvanese, De Giacomo, Lenzerini '98,’08] [Calvanese, Ortiz, Simkus '11]



Step 1: reduce containment to finite entailment

Theorem (Gutiérrez-Basulto, Gutowski, Ibafiez-Garcia, Murlak 2024)

Containment of UC2RPQs modulo one-way schemas
reduces to finite entailment.

» One-way schemas do not mix forward at-least and
backward at-most constraints (and vice versa).

» Solving one instance of containment requires
multiple instances of entailment.

» All instances of entailment involve single-node
input graphs.

Corollary (from the proof)

Containment of UC2RPQs modulo schemas
without at-least constraints is decidable in 2EXPTIME.
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Step 2: use finite entailment

Theorem (Gutiérrez-Basulto, Gutowski, Ibafiez-Garcia, Murlak 2024)
Query containment is 2EXPTIME-complete for i}

(a) UCRPQs and one-way schemas, C «
(b) simple UC2RPQs and forward schemas.

\ A

M
-l

» Forward schemas do not use backward at-least and at-most constraints.

» Simple UC2RPQs do not use concatenation in regular expressions.



Conclusion



Summary and take-away

» Query containment and finite entailment are closely related problems.

» Rich body of techniques and results in DLs that can be potentially reused,
because DLs are pretty good at capturing relevant schema information.

» Capturing more refined schemas requires fancier logics, new results are needed.
Looks challenging, but this is what we like, isn't it?

> Complexity is high in general, but there's space for tractable special cases.
The more we know about user’s needs, the better we can tailor the algorithms.

» Other ways to build a bridge: closed predicates and mixed models.



Sometimes infinity is an oversimplification




