
Bridging a gap between static analysis and
ontology-based reasoning

Filip Murlak
University of Warsaw

Workshop on Foundations of Databases and AI 2025 @ TU Wien

Databases

Data (tables, trees, graphs) – relational structures/models

Queries (SQL, XPath, Cypher) – formulas with free variables

Metadata (schemas, integrity constraints) – theories

Goal Evaluate queries over data, guided by metadata.

Problem (Query containment modulo schema)

Given queries P and Q, and a schema S, decide if P ⊆S Q; that is,

for every database D, if D |= S and D |= P , then D |= Q.

Databases

Data (tables, trees, graphs) – relational structures/models

Queries (SQL, XPath, Cypher) – formulas with free variables

Metadata (schemas, integrity constraints) – theories

Goal Evaluate queries over data, guided by metadata.

Problem (Query containment modulo schema)

Given queries P and Q, and a schema S, decide if P ⊆S Q; that is,

for every database D, if D |= S and D |= P , then D |= Q.

Knowledge representation

Facts (ABoxes) - ground atomic formulas (a CQ with no variables)

Ontologies (TBoxes, rules) - theories

Queries (SPARQL) - formulas with free variables

Goal Answer queries based on facts derived using ontologies.

Problem (Query entailment)

Given facts A, an ontology T , and a query Q, decide if T ,A |= Q; that is,

for every interpretation I, if I |= T and I |= A, then I |= Q.

Knowledge representation

Facts (ABoxes) - ground atomic formulas (a CQ with no variables)

Ontologies (TBoxes, rules) - theories

Queries (SPARQL) - formulas with free variables

Goal Answer queries based on facts derived using ontologies.

Problem (Query entailment)

Given facts A, an ontology T , and a query Q, decide if T ,A |= Q; that is,

for every interpretation I, if I |= T and I |= A, then I |= Q.

Two problems, or one?

Problem (Query containment modulo schema)

Given queries P and Q, and a schema S, decide if P ⊆S Q; that is,

for every database D, if D |= S and D |= P , then D |= Q.

Problem (Query entailment)

Given facts A, an ontology T , and a query Q, decide if T ,A |= Q; that is,

for every interpretation I, if I |= T and I |= A, then I |= Q.

D ≈ I P ≈ A S ≈ T

[Calvanese, De Giacomo, Lenzerini ’98]

Graphs

Customer

name: Vic
address: LA

Customer

name: Yaz
address: NYC

Card

number: 31415926535…
 since: Apr-02.

 owns.

 owns.

 since: Jun-03.

Card

number: 27182818284…

 owns.

 since: Dec-99.

 partner. Company

name: Y

 partner. Company

name: Z

 owns.

Customer

name: Al
address: WAW

Graphs

We work with labelled graphs, modelled as relational structures:

I unary predicates = node labels = concept names A,B, . . .

I binary predicates = egde labels = role names r, s, . . .

That is,

I nodes have multiple labels;

I edges have single labels;

I parallel edges with different labels are allowed;

I in a subgraph, nodes may have fewer labels.

Queries

I Conjunctive queries (CQs), unions of CQs (UCQs)

∃x ∃y A(x) ∧ r(x, y) ∧ Ā(y) ∨ ∃x ∃y ∃z r(x, y) ∧ r(y, z) ∧ r(z, x)

The core of relational query languages, such as SQL.

I Conjunctive regular path queries (CRPQs), unions of CRPQs (UCRPQs)

∃x r+(x, x) ∨ ∃x ∃y A(x) ∧ (r∗ ∪ s)(x, y) ∧ (p ·B)∗(y, x)

Graph query languages have reachability/RPQs at the core (SPARQL, Neo4j’s
Cypher, SQL/PGQ, GQL).

Schemas

 partner. 0..3CardCustomer

number name
address

 owns.

 since.

* Company

name

 owns.

*

*

1..* *

What kind of schemas for graph data?

RDF has SHACL and ShEx, for property graphs the picture is less clear.

ISO/IEC JTC1 SC32 WG3

Property Graph Schema
Working Group

Lia
iso
n

SQL
SQL/PGQ

GQL
Graph Query Language

PG-Schema
Schemas for Property Graphs
SIGMOD 2023

PG-Keys
Keys for Property Graphs
SIGMOD 2021

Ahmetaj, Boneva, Hidders, Hose,
Jakubowski, Labra Gayo, Martens,
Mogavero, Murlak, Okulmus, Polleres,
Savković, Šimkus, Tomaszuk,

Common Foundations for SHACL, ShEx,
and PG-Schema,

WWW 2025 (to appear).

Description logics

Basic description logic ALC has statements of the form

C v D

where C,D are complex concepts build according to the following grammar by

C,D ::= ⊥
∣∣ > ∣∣ A ∣∣ C tD

∣∣ C uD
∣∣ ¬C ∣∣ ∃r.C ∣∣ ∀r.C .

For example, Person v ∃ childOf.Person and Male u ∃ childOf.Person v Son.

ALC in normal form:

A1 u A2 u · · · u An v B1 tB2 t · · · tBm

A v ∃r.B empty u = >
A v ∀r.B empty t = ⊥

A zoo of description logics

Features can be added to ALC, giving logics like ALCHOIQ or SOQ
(S is shorthand for ALCS).

O: use constants as singleton concepts {a} A v ∃r.{a}
I: use inverse roles r− anywhere A v ∃r−.B
F : declare role r to be a partial function fun(r)

Q: use counting quantifiers ∃≤n, ∃≥n A v ∃≤5r.B
S: declare role r to be transitive tra(r)

H: declare role r to be contained in role s r v s

ALCQI can express EER, and a lot of SHACL and PG-Schema.

Finite vs unrestricted models

Problem (Query containment modulo schema)

Given queries P and Q, and a schema S, decide if P ⊆S Q; that is,

for every finite database D, if D |= S and D |= P , then D |= Q.

Problem (Query entailment)

Given facts A, an ontology T , and a query Q, decide if T ,A |= Q; that is,

for every possibly infinite interpretation I, if I |= T and I |= A, then I |= Q.

A paradox

Does T = {Person v ∃ childOf.Person} model reality well?

Suppose we know that at least one person exists: A = {Person(filip)}.

Then, over finite models we can conclude that somebody is their own ancestor...

T ,A |=fin ∃x childOf+(x, x)

Over unrestricted models we are safe:

T ,A 6|= ∃x childOf+(x, x)

A paradox

Does T = {Person v ∃ childOf.Person} model reality well?

Suppose we know that at least one person exists: A = {Person(filip)}.

Then, over finite models we can conclude that somebody is their own ancestor...

T ,A |=fin ∃x childOf+(x, x)

Over unrestricted models we are safe:

T ,A 6|= ∃x childOf+(x, x)

A paradox

Does T = {Person v ∃ childOf.Person} model reality well?

Suppose we know that at least one person exists: A = {Person(filip)}.

Then, over finite models we can conclude that somebody is their own ancestor...

T ,A |=fin ∃x childOf+(x, x)

Over unrestricted models we are safe:

T ,A 6|= ∃x childOf+(x, x)

Query entailment

Landscape of query entailment
Entailment of CQs is EXPTIME-complete for

I ALCH [Ortiz, Šimkus, Eiter 2008], ALCHQ [Lutz 2008]

2EXPTIME-complete for

I ALCI [Lutz 2008], ALCO [Ngo, Ortiz, Šimkus 2016]

I SH [Eiter, Lutz, Ortiz, Šimkus ’10], S [Ibáñez-Garćıa, Jung, Michielini, M. ’25],

I SHIQr [Calvanese, Eiter, Ortiz 2007] [Glimm, Lutz, Horrocks, Sattler 2008]

I SHOQr [Glimm, Horrocks, Sattler 2008]

I SOQu [Gogacz, Gutiérrez-Basulto, Ibáñez-Garćıa, Jung, Murlak 2019]

decidable for

I ALCHOIQb [Glimm, Rudolph 2010]

undecidable for

I SHQu [Horrocks, Sattler, Tobies 2000], SIQu [Kazakov, Sattler, Zolin 2007]

I SHOIQr and SHOIF [Rudolph 2016]

Landscape of query entailment: finite controllability

Finite controllability: |= = |=fin

GF [Bárány, Gottlob, Otto 2014] (covers ALCHOIb)

ALCOF [Gogacz, Ibáñez-Garćıa, Murlak 2018]

No finite controllability: |= 6= |=fin

ALCIF A(a)
> v ∃r.¬A
> v ∃≤1r−.>

S A(a)
> v ∃r.¬A
tra(r)
∃x r(x, x)

What about ALCOQ and up to ALCHOQb?

Landscape of query entailment: finite controllability

Finite controllability: |= = |=fin

GF [Bárány, Gottlob, Otto 2014] (covers ALCHOIb)

ALCOF [Gogacz, Ibáñez-Garćıa, Murlak 2018]

No finite controllability: |= 6= |=fin

ALCIF A(a)
> v ∃r.¬A
> v ∃≤1r−.>

S A(a)
> v ∃r.¬A
tra(r)
∃x r(x, x)

What about ALCOQ and up to ALCHOQb?

Landscape of finite entailment: conjunctive queries

Finite entailment of CQs is 2EXPTIME-complete for

I GC2 [Pratt-Hartmann 2009]

I GF [Bárány, Gottlob, Otto 2014]

I SOI and SIF [Gogacz, Ibáñez-Garćıa, Murlak 2018]

I SHOIu [Danielski, Kieroński 2019]

I SOQu [Gogacz, Gutiérrez-Basulto, Ibáñez-Garćıa, Jung, Murlak 2019]

undecidable for

I SHQu and SIQu [Kazakov, Sattler, Zolin 2007]

I SHOIF [Rudolph 2016]

a challenge for

I ALCOIF

Landscape of finite entailment: UCRPQs and UC2RPQs

Finite entailment of UCRPQ is 2EXPTIME-complete for

I ALCI and ALCQ [Gutiérrez-Basulto, Gutowski, Ibáñez-Garćıa, M. ’22,’24]
I should extend to ALCOI and ALCOQ

a challenge for

I ALCIQ

Finite entailment of UC2RPQs (two-way UCRPQs) is undecidable for

I ALCOIF [Rudolph 2016]

a challenge for

I ALC

Query containment

Query containment without schema is well understood

UCQs: NP-complete [Chandra, Merlin ’77]

UC2RPQs: EXPSPACE-complete [Florescu, Levy, Suciu ’98]

[Calvanese, De Giacomo, Lenzerini, Vardi ’00]

Fragments complete for NP, co-NPNP, PSPACE [Deutsch, Tannen ’02]

[Figueira, Godbole, Krishna, Martens, Niewerth, Trautner ’20]

Dichotomy between EXPSPACE-hard and PSPACE-easy [Figueira ’20]

Query containment modulo schema is mostly open

Containment of UCQs modulo full dependencies [Beeri, Vardi ’84]

Containment of UCQs w. reachability modulo full dependencies w. reachability

[Deutsch, Tannen ’01]

Containment of UC2RPQs in acyclic UC2RPQs modulo Horn ALCIQ
[Boneva, Groz, Hidders, Murlak, Staworko ’23]

Strong results on query containment modulo schema/constraints over infinite graphs.

[Calvanese, De Giacomo, Lenzerini ’98,’08] [Calvanese, Ortiz, Šimkus ’11]

Step 1: reduce containment to finite entailment

0..m0..n 0..m0..n

*k..n

k..m*

m..*n..*

Theorem (Gutiérrez-Basulto, Gutowski, Ibáñez-Garćıa, Murlak 2024)

Containment of UC2RPQs modulo one-way schemas
reduces to finite entailment.

I One-way schemas do not mix forward at-least and
backward at-most constraints (and vice versa).

I Solving one instance of containment requires
multiple instances of entailment.

I All instances of entailment involve single-node
input graphs.

Corollary (from the proof)

Containment of UC2RPQs modulo schemas
without at-least constraints is decidable in 2EXPTIME.

Step 2: use finite entailment0..m0..n 0..m0..n

*k..n

k..m*

m..*n..*

Theorem (Gutiérrez-Basulto, Gutowski, Ibáñez-Garćıa, Murlak 2024)

Query containment is 2EXPTIME-complete for

(a) UCRPQs and one-way schemas,

(b) simple UC2RPQs and forward schemas.

I Forward schemas do not use backward at-least and at-most constraints.

I Simple UC2RPQs do not use concatenation in regular expressions.

Conclusion

Summary and take-away

I Query containment and finite entailment are closely related problems.

I Rich body of techniques and results in DLs that can be potentially reused,
because DLs are pretty good at capturing relevant schema information.

I Capturing more refined schemas requires fancier logics, new results are needed.
Looks challenging, but this is what we like, isn’t it?

I Complexity is high in general, but there’s space for tractable special cases.
The more we know about user’s needs, the better we can tailor the algorithms.

I Other ways to build a bridge: closed predicates and mixed models.

Sometimes infinity is an oversimplification

