
Academia
RelationalAI

Programming in the Large
with Data

Foundations of Databases and AI
TU Vienna

Wim Martens

Molham Aref

Paolo Guagliardo

George Kastrinis

Leonid Libkin Victor Marsault

Liat Peterfreund
Mary McGrath

Filip MurlakNathaniel Nystrom

Allison Rogers
Cristina Sirangelo

Domagoj Vrgoč

David Zhao

Abdul Zreika
Special thanks:

Martin Bravenboer

Databases: The Origin Story

(Image: IBM, fair use)

Databases: The Origin Story
Why do we have a sublanguage for databases?

It was a brilliant idea in the early 1970s:
- Querying databases is a nice domain-specific use case
- FO as a natural yardstick
- Declarative programming: why tackle the entire problem at once?

Holy grail of programming languages

This was still before the famous SIGFIDET 1974 debate between

Charles BachmanTed Codd
where the question was if a declarative language was even going to work for databases

Will it ever be efficient enough?

SQL today
On top of first-order logic, we have
- bag semantics
- nulls
- arrays
- windowing functions
- XML-related specs
- graph pattern matching
- …

This growth exists because SQL is a sublanguage
(not powerful enough to do libraries)

SQL standard today: 4000 pages!

In the beginning, things were clean
- First-order logic
- Set semantics
- No nulls

Large-scale applications use a query
language and a host language

This causes the impedance mismatch:
- different runtimes
- different programming paradigms
- no automatic optimization
- no automatic parallelization
- no automatic …

This is Where We
Want to Improve

We want to revisit the sublanguage paradigm

Programming in the Large
with Data

Rel:

Rel: Relational Programming

Guy Steele, OOPSLA ‘98
“Growing a Language”

How do you grow a programming language?
You build a small core of powerful operations

This core should be powerful enough
to build libraries

Why?
You cannot build everything that everyone wants

SQL doesn’t have this:
this is why it keeps getting extended

A Crash Course on Rel
“Everything is a relation”

Basic

Fancyness meter

Alright!Warming Up

Cat’s
Pajamas

Rel BasicsBase Relations
- person(x)
- mother(x,y)
- father(x,y)
- alive(x) def parent(x,y) : mother(x,y) or father(x,y)

Quantifiers:

the mother/father of x is y

}

def grandparent(x,y) :
 exists ((z) | parent(x,z) and parent(z,y))

def orphan(x) :
 person(x) and forall ((p) | parent(x,p) implies not alive(p))

Ingredients
- Datalog rules
- FO in the bodies

Infinite Relations

def positive_int(x) : Int(x) and x > 0

Infinite Relations
- Int(x), …
- >, =, >=, …
- add(x,y,z), multiply(x,y,z), modulo(x,y,z), …

def absolute(x,y) : (x >= 0 and y = x) or (x < 0 and y = -x)

Safety of Rel is non-trivial [Guagliardo et al. ICDT’25]

def T(x,y,z) : R(x) and S(y) and add(x,y,z)

In SQL:
SELECT R.a + S.b from R, S

Core Operators and Features

Rel Basics

Relations: finite and infinite

First-Order Logic
- and, or, not
- forall, exists

Recursion
- Datalog-style

Rel Recursion

def ancestor(x,y) : parent(x,y)
def ancestor(x,y) : exists ((z) | parent(x,z) and ancestor(z,y))

(Also: non-linear recursion)

Warming up

Fancyness meter

How do we go to Programming in the Large?

Two Extra Features

Tuple Variables Higher-Order

to enable Relational Programming

Tuple Variables
How do we write generally applicable code?

1 2
3 4
3 5

U
1 2
6 7

V
product

1 2 1 2
1 2 6 7
3 4 1 2
3 4 6 7
3 5 1 2
3 5 6 7

def Product(a,b,c,d) : U(a,b) and V(c,d)

But what if V is ternary?

def Product(a,b,c,d,e) : U(a,b) and V(c,d,e)

This is both tedious and not generally applicable. Solution:

def Product(x…,y…) : U(x…) and V(y…)

Tuple Variables

def DotJoin(x…,y…) : exists((v) | U(x…,v) and V(v,y…))

By the way, tuple variables don’t need to bind to entire tuples

Higher-Order Relations

def Product({A},{B},x…,y…) : A(x…) and B(y…)

cat’s pajamas

Product[U,V]We would like something like to return the product of U and V

This is done with higher-order variables:

Product[A,B]and to return the product of A and B

Product[U,V] ⇝Now how do we go to ? We need some sugar
(will appear soon)

using relations as parameters

“Everything is a Relation”

{} {}

{0} {} 0

{0} {0} 0 0

…

{(0,0),(0,1)} {(1,2)} 0 0 1 2

{(0,0),(0,1)} {(1,2)} 0 1 1 2

…

Product

A second-order relation with
- infinitely many rows
- infinitely many columns

def Product({A},{B},x…,y…) :
 A(x…) and B(y…)

Observations
- Users are not exposed to higher-order relations

- the output is always first-order
- Relations in Rel don’t need a uniform arity

Core Operators and Features

Rel Basics

Relations: finite and infinite

First-Order Logic
- and, or, not
- forall, exists

Recursion
- Datalog-style

Tuple Variables
Higher Order

That’s essentially it!

Small core

Powerful ??
✓

Let’s Do Some Examples

Partial Application

alice cindy
john debby
john bob

parent parent(“alice”,”cindy”)

parent[“alice”]

 true⇝

 “cindy”⇝ { }

parent[“john”] “debby”, “bob”⇝ { }

{} {}

{0} {} 0

{0} {0} 0 0

…

{(0,0),(0,1)} {(1,2)} 0 0 1 2

{(0,0),(0,1)} {(1,2)} 0 1 1 2

…

Product Product[U,V] the Cartesian product of U and V⇝

Product[U] maps any V on the product of U and V⇝

def ProductU({V},x…) : Product(U,V,x…)

Product[U][V] the Cartesian product of U and V⇝

(sugar)

It’s sugar:

Shortest Path

def APSP({V},{E},x,y,0) : V(x) and V(y) and x = y
def APSP({V},{E},x,y,k) :
 exists ((z in V) | E(x,z) and APSP[V,E](z,y,k-1)) and
 and not exists ((l in Int) | l < k and APSP[V,E](x,y,l))

This becomes more succinct with
- abstraction
- aggregates

Abstraction

{(x,y) : mother(x,y) or father(x,y)}

 defines an anonymous relation⇝

def parent
 {(x,y) : mother(x,y) or father(x,y)}

You can give it a name if you want:

(sugar)

Now we can define aggregation!

Aggregation and Reduce
The Standard Library has reduce

It has tuples such that is obtained by
“aggregating” the values in the last column of

using the function

(F, R, v) v
R

F

def sum[{A}] : reduce[add,A]
def count[{A}] : reduce[add,(A,1)]
def min[{A}] : reduce[minimum,A]
def max[{A}] : reduce[maximum,A]
def avg[{A}] : sum[A] / count[A]

Shortest Path
def APSP({V},{E},x,y,0) : V(x) and V(y) and x = y
def APSP({V},{E},x,y,k) :
 exists ((z in V) | E(x,z) and APSP[V,E](z,y,k-1)) and
 and not exists ((l in Int) | l < k and APSP[V,E](x,y,l))

With abstraction and aggregates:

def APSP({V},{E},x,y,0) : V(x) and V(y) and x = y
def APSP({V},{E},x,y,k) :
 k = min[{l : exists ((z in V) | E(x,z) and APSP[V,E](z,y,l-1))}]

abstractionaggregate

Defining Relational Algebra

def grandparent(x,y) :
 exists ((z) | parent(x,z) and parent(z,y))

“ is a grandparent of if …”y x

Again, let’s have some sugar to improve readability

We already know:

def grandparent[x] :
 {y : exists ((z) | parent(x,z) and parent(z,y))}

“the set of grandparents of is …”x

We can also write:

Defining Relational Algebra

def Union[{A},{B}] :
 {(x…) : A(x…) or B(x…)}

def Product[{A},{B}] :
 {(x…,y…) : A(x…) and B(y…)}

def Minus[{A},{B}] :
 {(x…) : A(x…) and not B(x…)}

def (,)[{A},{B}] :
 {(x…,y…) : A(x…) and B(y…)}

R,S⇝

(Select and project we can already do with abstraction)

PageRank

def MatrixMult[{A},{B},i,j] : { sum[[k] : A[i,k]*B[k,j]] }

Step 1: Matrix multiplication

def dimension[{M}] : max[(k) : M(k,_,_)]
def vector[d,i,j] : 1/d, range(1,d,1,i), j = 1

Step 2: Prelims

Step 3: PageRank

def PageRank[{G},0,i,j] : vector[dimension[G]]
def PageRank[{G},k,i,j] : k>0, MatrixMult[G,PageRank[G,k-1],i,j]

def output {PageRank[M,10]} 10 iterations of PageRank on matrix ⇝ M

Rel is Already Handling Large Applications

Rel in the Real World
- RAI is actively using Rel with about a dozen customers
- Hundreds are inline

- Rel models the semantics of the whole domain
- It is replacing arbitrary Java / C# code

- Codebase becomes 20 - 50x smaller
- E.g. 800k lines of C# 15k lines of Rel
- 205k lines of C++ 9k lines of Rel

- Performance goes up
- E.g. 1 month a few hours of processing time

⇝
⇝

⇝

It can be efficient enough!

What I Skipped

Standard library

Inserts / deletes

Type system

Code structuring features

…

Integrity constraints

Bonus Motivation
(for Theoreticians)

Database Research Landscape

Theory Systemsdivide
why?

Bag Semantics
PODS 1993

But why do we have bag semantics?

ChatGPT gave me 11 reasons:
- 8x: bad modeling / schema design
- 2x: efficiency (inserts, union, projection)
- 1x: historic (first SQL database had it)

Summary:
- Bag semantics align more closely with the

nature of real world data
- Bag semantics enable efficient union and

projection
- SQL does it

Prompt:
Why do databases use bag semantics
 instead of set semantics?

 false⇝

 true, but it kills optimization ⇝
 circular argument⇝

How Rel Closes This Gap
The design of Rel goes back to first principles
- Relations are fully normalized (6NF)
- Set semantics!
- No nulls!

The Big Challenge:
- make this efficient!

Great for research:
- this model is much more elegant than the alternative
- we like to study clean and elegant models!

 actually, Graph Normal Form⇝

Set semantics allows for more optimization than bag semantics!

 Hoare: “My billion dollar mistake”⇝

Questions?

