relational Al

Programming in the Large
with Data

o T— . Acami N
 Molham Aref Mary McGrath | —

Allison Rogers

A, Cristina Sirangelo Liat Peterfreund

| Leonid Libkin Victor Marsault
/ Nathaniel Nystrom \ Filip Murlak

David Zhao Wim Martens Paolo Guagliardo

George Kastrinis Abdul Zreika /D omagoj Vrgoc P
e u Special thanks:

s T Martin Bravenboer

Foundations of Databases and Al
TU Vienna

(Image: IBM, fair

usc

o o relationalAl
Databases: The Origin Story t

A DATA BASE SUBLANGUAGE FOUNDED ON
THE RELATIONAL CALCULUS

by

E. F. Codd
IBM Research Laboratory
San Jose, California

We use the term data sublanguage (rather than lanquage) because we are

not concerned with general processing (or the capability of computing
all computable functions). Instead, we wish to focus on only those

language components which support storage and retrieval of formatted
data from large shared data bases.

Databases: The Origin Story

Why do we have a sublanguage for databases?

[t was a brilliant idea in the early 1970s:
- Querying databases is a nice domain-specific use case

- FO as a natural vardstick
- | Declarative programming why tackle the entire problem at once?
Holy grail of programming languages

This was W 1]- e the famous SIGFIDET 1974 debate between
1 g

L eVe ,
. 8 r b : — S
e d - eﬁCiC‘nl‘ 0

“Noyg} >
Cugh,

Ted Codd Charles Bachman

where the question was if a declarative language was even going to work for databases

—

. ||
relationalAl

In the beginning, things were clean
- First-order logic
- Set semantics

- No nulls
Large-scale applications use a query
On top of first-order logic, we have language and a host language
- bag semantics D S
- nulls This causes the impedance mismatch:
- arrays - different runtimes
- windowing functions - different programming paradigms
- XMUL-related specs - no automatic optimization
- graph pattern matching - no automatic parallelization

.. - Nno automatic ...

SQL standard today: 4000 pages!
This growth exists because SQL is a sublanguage

(not powerful enough to do libraries)

relational Al

This is Where We

Want to Improve

We want to revisit the sublanguage paradigm

relational Al

Rel:

Programming in the Large
with Data

relational Al

Rel: Relational Programming

How do you grow a programming language?

You build a small core of powertul operations

This core should be powertul enough
to build libraries

Why?

You cannot build everything that everyone wants

SQL doesn’t have this:
this is why it keeps getting extended

Guy Steele, OOPSLA ‘98

“Growing a Language”

relational Al

A Crash Course on Rel

“Everything is a relation”

relationalAl

Warming Up Alright!

Cat’s

Basic .
Pa) Amas

Fancyness meter

relational Al

Rel Basics ~ &c

- person(x) the mother/ father of x is)%
- mother(x,Vv) }EEE?b

- father(x,v)
- alive(Xx) def parent(x,y) : mother(x,y) or father(x,y)

o —

- Datalog rules
- FO in the bodies

Ql/antiﬁersz def grandparent(x,Vy)
exists ((z) | parent(x,z) and parent(z,y))

def orphan(x)
person(x) and forall ((p) \ parent(x,p) i1mplies not alive(p))

relational Al

Infinite Relations &\

- add(x,yv,z), multiply(x,y,2), modulo(x,y,2), ..

def positive int(x) : Int(x) and x > 0

def absolute(x,y) : (x >= 0 and y = X) or (x < 0 and y = -X)

def T(x,v,2) : R(xX) and S(y) and add(x,vy,2z)

In SQL.:
SELECT R.a + S.b from R, S

Safety of Rel is non-trivial [Guagliardo et al. ICDT"25]

Rel BaSiCS relationalzl

Core Operators and Features

Relations: finite and infinite

First-Order Logic
- and, or, not
- forall, exists

Recursion

- Datalog-style

S

relational Al

Rel Recursion

def ancestor(x,y) : parent(x,Vy)

def ancestor(x,y) : exists ((z) | parent(x,z) and ancestor(z,y))

(Also: non-linear recursion)

relationalAl

Warming up

Fancyness meter

How do we go to Programming in the Large?

‘ |
relationalAl

‘Two Extra Features

to enable Relational Programming

Tuple Variables Higher-Order

relational Al

Tuple Variables

How do we write generally applicable code?

A /A
pro dU—Ct —

1 2 1 2 1 2 06 7
3 4 6 7 3 4 1 2
3 5 3 4 6 7
3 5 1 2
3 5 b 7

def Product(a,b,c,d) : U(a,b) and V(c,d)

But what if V is ternary?

def Product(a,b,c,d,e) : U(a,b) and V(c,d,e)

This is both tedious and not generally applicable. Solution:

def Product(X..,y..) : U(X..) and V(y..)

Tuple Variables relationalAl

By the way, tuple variables don’t need to bind to entire tuples

def DotJoin(X..,y..) : exists((v) | U(x..,v) and V(v,y..))

relational Al

Higher-Order Relations & A

cat’s pajamas

We would like something like to return the product of U and V

and to return the product of A and B

using relations as parameters

This is done with higher-order variables:

def Product({A},{B},X..,v¥..) ¢ A(X..) and B(y..)

Now how do we go to BZSRITARURAN » +~ We need some sugar

(will appear soon)

relational Al

“Everything is a Relation”

def Product({A},{B},X..,V..) :
A(x..) and B(y..)

{0} {4 0 - Users are not exposed to higher-order relations

(0}) 0 O - the output is always first-order
- Relations in Rel don’t need a uniform arity

A second-order relation with
- infinitely many rows
- infinitely many columns

Rel BaSiCS relationalzl

Core Operators and Features

Relations: finite and infinite

First-Order Logic
- and, or, not

Small core

- forall, exists
Powerful ??
Recursion

- Daralog-style

Tuple Variables
Higher Order

EEmemamaasa e

That’s essentially it!

relational Al

Let’s Do Some Examples

relational Al

Partial Application (g

parent(“alice”,”cindy”) ~ trie
alice cindy N ”
i parent[“alice”] W*{(ﬂndy !
john debby
john bob parent[“john”] ~ {“debby”, “bob”}

« the Cartesian product of U and v
{2} 3 0 ~ maps any V on the product of Uand v

o) o 0 0 Product[U][V] « the Cartesian product of U and v

{(0,0),(0,1)} {(1,2)} O 1 1 2 def ProductU({V},x..) : Product(U,V,Xx..)

relational Al
Shortest Path ronee

def APSP({V},{E},x,v,0) : V(xX) and V(y) and X = vy
def APSP({V},{E},x,¥,k)

exists ((z in V) | E(x,z) and APSP[V,E](z,y,k-1)) and
and not exists ((1 in Int) | 1 < k and APSP[V,E](X,y,1))

This becomes more succinct with
- abstraction
- aggregates

relational Al

Abstraction (sugn

{(x,y) : mother(x,y) or father(x,vy)}

~ defines an anonymous relation

You can give it a name if you want:

def parent

{(x,y) : mother(x,y) or father(x,vy)}

relational Al

Aggregation and Reduce
The Standard Library has

It has tuples (F, R, v) such that v is obtained by
“aggregating” the values in the last column of R
using the function F

Now we can define aggregation!

sum[{A}] : reduce[add,A]
count[{A}] : reduce[add, (A,1l)]
min[{A}] : reduce[minimum,A]
max[{A}] : reduce[maximum, A]
def avg[{A}] : sum[A] / count[A]

relational Al
Shortest Path rones

def APSP({V},{E},x,y,0) : V(X) and V(y) and X = vy
def APSP({V},{E},x,y¥,k)

exists ((z in V) | E(x,z) and APSP[V,E](z,y,k-1)) and
and not exists ((1 in Int) | 1 < k and APSP[V,E](X,y,1))

With abstraction and aggregates:

def APSP({V},{E},x,v,0) : V(X)) and V(y) and X = vy

def APSP({V},{E},x,y¥,k)
k = min[{l : exists ((z in V) | E(x,2z) and APSP[V,E](z,y,1-1))}]

e —————

aggregate abstraction

relational Al

Defining Relational Algebra

Again, let’s have some sugar to improve readability

We already know:

def grandparent(x,Vy)

exlists ((2) \ parent(x,z) and parent(z,y))

“y is a grandparent of x if ...”

We can also write:

def grandparent[x]

{y : exists ((z) | parent(x,z) and parent(z,y))}

b

“the set of grandparents of x is ...

relational Al

Defining Relational Algebra

def Product[{A},{B}] :
{(X..,;,¥...) ¢ A(X..) and B(y..)}

et (10, () -

{(X..,¥...) ¢ A(X..) and B(y..)}

def Minus|[{A},{B}] :
{(xX..) : A(X..) and not B(Xx..)}

def Union[{A},{B}] :
{(X..) + A(X..) or B(X..)}

(Select and project we can already do with abstraction)

Pag€ Rank relationalAl

Step 1: Matrix multiplication

def MatrixMult[{A},{B},1,3] : { sum[[k] : A[1,k]*B[k,]J]] }

Step 2: Prelims

def dimension[{M}] : max[(k) : M(k, ,)]
def wvector[d,i,j] = 1/d, range(l,d,1,i), jJ =1

Step 3: PageRank

def PageRank[{G},0,1,3] : vector[dimension[G]]
def PageRank[{G},k,1,3] : k>0, MatrixMult[G,PageRank[G,k-1]1,1,7]

{PageRank[M,10]} w10 iterations of PageRank on matrix M

. relationalAl

Rel is Already Handling Large Applications

- RAl s actively using Rel with about a dozen customers
- Hundreds are inline

- Rel models the semantics of the whole domain
- It is replacing arbitrary Java / C# code

- Codebase becomes 20 - 50x smaller
- E.g. 800k lines of C# -~ 15k lines of Rel
- 205k lines of C++ w 9k lines of Rel

- Performance goes up

- E.g. 1 month w a few hours of processing time

What I Skipped

Inserts / deletes

Standard library
Type system

Code structuring features

Integrity constraints

Bonus Motivation
(for Theoreticians)

Database Research Landscape

Bag Semantics

But w/hy do we have bag semantics?

PODS 1993
Prompt:
Optimization of Real Conjunctive QQueries Why do databases use bag semantics

Surajit Chaudhuri Moshe Y. Vardi instead of set semantics?
Abstract ChatGPT gave me 11 reasons:
The optimization problem for conjunctive queries - 8x: bad modehng / SChema d€SlgIl
has been studied extensively. Unfortunately, this - 2x: efﬁciency (Inserts, union, pr()jecti()n)
research almost invariably assumes set-theoretic : : :
semantics (i.e., duplicates are eliminated). In - Ix: hlStOI’lC (ﬁ[‘ ST SQL database had lt)
contrast, SQL queries have bag-theoretic seman- —
tics (i.e., in general duplicates are not elimi- Summary;
nated). In this paper we study the optimiza- : 1 l l : h h
tion problems for conjunctive queries under bag- y Bag s€mantics align morc Closcly with thce

theorfetlc semantics. We show that optlmlzatlon nature Of real WOI'ld data > false
techniques from the set-theoretic setting do not

carry over to the bag-theoretic setting. - Bag semantics enable efhicient union and
projection - true, but it kills optimization
- SQL does it - circular argument

e ——

How Rel Closes This Gap

'The design of Rel goes back to first principles
- Relations are fully normalized (6NF) « actually, Graph Normal Form

- Set semantics!

- No nulls! «~ Hoare: “My billion dollar mistake”

Great for research:
- this model is much more elegant than the alternative
- we like to study clean and elegant models!

The Big Challenge:

- make this efficient!

Set semantics allows for more optimization than bag semantics!

%estions ?

