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- A bit of history: from RPQs in the 1980s to SQL/PGQ in 2023 and GQL in 
2024 

- Why GQL development is SQL development backwards? 
- How can we study GQL? What’s missing? 
- Models of PGQ and GQL 
- Early expressivity results: starting FMT from scratch  
- What’s done in real life and why it’s horrible 
- Existential questions: are graph DBMSs there to stay?

What it’s about



Property Graphs in Industry



They Must Be Queried
Systems have their own languages
- Cypher of Neo4j (and Amazon Neptune, SAP HANA, Memgraph, etc.) 
- PGQL of Oracle 
- GSQL of Tigergraph  etc … 

"If only there were a standard"

Developed by ISO: 2019-2024

- GQL  — Graph Query Language 
- Developed in the same committee as SQL 
- First query language to become an ISO standard in 35 years   

International Organization for Standardization 
Organisation Internationale de Normalisation 

Международная Организация по Стандартизации 

Hence ίσος

- SQL/PGQ: of property graph querying in SQL 
- Developed  2018-2023 
- Part 16 of the SQL Standard

GQL is not the only language!



- Pattern matching is identical 
- Turns graphs into tables

GQL vs SQL/PGQ

- In GQL:  
- works on a property graph 
- still produces a table 
- then additional operators modify this table 
- these can include additional pattern 

matching

- In SQL/PGQ: 
- works on a graph given as a relational view 
- results in a table defined in FROM 
- then continue with a SQL query⇝



Ancient graph databases: Network model 
CODASYL/NDL: 1959—1987

Modern graph querying 
Neo4j/Cypher 2011 

SQL/PGQ 2023 
GQL 2024 —-

1959 1987 1990

Timeline on Graph Query Languages

Graph Query Languages Research
1987: RPQs 
1990: CRPQs 
followed by many others

2RPQs
2CRPQs

UCRPQs

2UCRPQs
ECRPQs

RPDQs

Semantic Web 
SPARQL 2004—-

2011 20242004

The first requisite of immortality is death



owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked: true

Account

date:         3/1/2020
amount: 10M

Transfer

owner:         Jay
isBlocked: false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

name:  Ankh-Morpork
City, Country

Account
isIn

isIn

properties types / labels

Data Model: Property Graphs

A data model based on graphs where both nodes and edges (relationships) can have 
- properties (attributes) 
- types (labels)

values
properties



GQL by examples 

Always expect to be disappointed and then you won’t



The Core: 
Graph Pattern Matching

⇝

graph relation



Selecting Nodes
owner:         Aretha
isBlocked: false

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

owner:         Scott
isBlocked: false

Account

owner:         Aretha
isBlocked: false

Account

owner:          Jay
isBlocked:  false

Account

owner:         Mike
isBlocked:  true

Account

MATCH (x:Account)
WHERE x.isBlocked = 'false'

x
N1
N3
N4



Selecting Nodes
owner:         Aretha
isBlocked: false

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

owner:         Scott
isBlocked: false

Account

owner:         Aretha
isBlocked: false

Account

owner:          Jay
isBlocked:  false

Account

 all nodes⇝

owner:         Mike
isBlocked:  true
owner:         Mike
isBlocked:  true

Account

MATCH (x)

x
N1
N2
N3
N4

owner:         Scott
isBlocked: false

Account

owner:         Aretha
isBlocked: false

Account

owner:          Jay
isBlocked:  false

Account



Selecting Edges
owner:         Aretha
isBlocked: false

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

owner:         Mike
isBlocked:  true

Account
date:         7/1/2020
amount: 5M

Transfer

MATCH [e:Transfer]
WHERE e.amount < 10M

e
E42



Combining Nodes & Edges into Paths
owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

Combining nodes and edges:
MATCH (x)-[e:Transfer]->(y)
  WHERE x.isBlocked = 'false' 
    AND y.isBlocked = 'true'
    AND e.amount <= 5M

x e y
N4 E42 N2

date:         7/1/2020
amount: 5M

Transfer

owner:         Mike
isBlocked:  true

Account
owner:         Scott
isBlocked: false

Account



owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

Combining nodes and edges:
MATCH (x)-[e:Transfer]->(y)
  WHERE x.isBlocked = 'false' 
    AND y.isBlocked = 'true'

x e y
N4 E42 N2
N1 E12 N2

x e y
N4 E42 N2

Combining Nodes & Edges into Paths

date:         7/1/2020
amount: 5M

Transfer

owner:         Mike
isBlocked:  true

Account
owner:         Scott
isBlocked: false

Account

owner:         Aretha
isBlocked: false

Account

date:         3/1/2020
amount: 10M

Transfer



owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

Longer paths are defined via ASCII-art :
MATCH (x)-[:Transfer]->(y)<-[:Transfer]-(z)
WHERE y.isBlocked = 'true'

x y z
N4 N2 N1
N1 N2 N4
N1 N2 N1
N4 N2 N4

x y z
N4 N2 N1

Multiple edge options: ~, - , ->, <- 

Combining Nodes & Edges into Paths

owner:         Mike
isBlocked:  true

Account
owner:         Scott
isBlocked: false

Account

owner:         Aretha
isBlocked: false

Account

date:         7/1/2020
amount: 5M

Transfer

date:         3/1/2020
amount: 10M

Transfer



Graph XPath

RPQs

Graph Traversal
owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

Specifying graph traversal:
MATCH  
(x:Account)-[t:Transfer]->{2,4}(y:Account)  
WHERE x.isBlocked = 'false' 
  AND y.isBlocked = 'true'

date:         6/1/2020
amount: 10M

Transfer

owner:         Mike
isBlocked:  true

Account
owner:         Scott
isBlocked: false

Account

owner:          Jay
isBlocked:  false

Account

date:         7/1/2020
amount: 5M

Transfer



Graph Traversal
owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

Specifying graph traversal:
MATCH  
(x:Account)-[t:Transfer]->{2,4}(y:Account)  
WHERE x.isBlocked = 'false' 
  AND y.isBlocked = 'true'

group variable

x t y
N3 E34, E42 N2
x t y

N3 E34, E42 N2
N2 E23, E34, E42 N2
N1 E12, E23, E34, E42 N2
N4 E42, E23, E34, E42 N2

Group variables bind to lists of entities

date:         6/1/2020
amount: 10M

Transfer

owner:         Mike
isBlocked:  true

Account
owner:         Scott
isBlocked: false

Account

owner:          Jay
isBlocked:  false

date:         7/1/2020
amount: 5M

Transfer

Account



Graph Traversal
owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

Specifying graph traversal:
MATCH  
(x:Account)-[t:Transfer]->{2,4}(y:Account)  
WHERE x.isBlocked = 'false' 
  AND y.isBlocked = 'true'

Repetitions can be {n,m}
{n,} 
{,m} 
* 
+

Path conditions can be added:
-[t:Transfer WHERE t.amount > 7M]->{2,4}



Path Variables

MATCH 
p = (x WHERE x.owner = 'Scott')

      -[:Transfer]->*
        (y WHERE y.owner = 'Mike')

owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

But how can we return all such p ? 
(There are infinitely many...)

 GQL uses SIMPLE, TRAIL, SHORTEST  
  to ensure that only finitely many paths match
⇝



Path Variables

MATCH SIMPLE 
p = (x WHERE x.owner = 'Scott')

      -[:Transfer]->*
        (y WHERE y.owner = 'Mike')

owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

MATCH TRAIL 
p = (x WHERE x.owner = 'Scott')

      -[:Transfer]->*
        (y WHERE y.owner = 'Mike')

Also possible: SHORTEST, ACYCLIC



Disjunction
As expected, there is OR |  
MATCH (x)-[:Transfer]->(y) WHERE y.isBlocked = 'true' |
      (x)-[:Transfer]->(y) WHERE x.owner = 'Mike'

"Transfers to a blocked account and transfers initiated by Mike"



Joins in Patterns
owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

MATCH   (x) -[:Transfer]->  (y),
   TRAIL (y) -[:Transfer]->+ (x),
    (x:Account)-[:isIn]->(c1:City),
    (y:Account)-[:isIn]->(c2:City)
WHERE c1.name = c2.name 
  AND y.isBlocked = 'true'

name:  Rinse Cycle Town

City

isIn

isIn



Joins in Patterns
owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

MATCH    (x) -[:Transfer]->  (y),
   TRAIL (y) -[:Transfer]->+ (x),
    (x:Account)-[:isIn]->(c1:City),
    (y:Account)-[:isIn]->(c2:City)
WHERE c1.name = c2.name 
  AND y.isBlocked = 'true'

name:  Rinse Cycle Town

City

isIn

isIn

owner:         Mike
isBlocked:  true

Account

owner:         Aretha
isBlocked: false

Account



Joins in Patterns
owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

MATCH    (x) -[:Transfer]->  (y),
   TRAIL (y) -[:Transfer]->+ (x),
    (x:Account)-[:isIn]->(c1:City),
    (y:Account)-[:isIn]->(c2:City)
WHERE c1.name = c2.name 
  AND y.isBlocked = 'true'

name:  Rinse Cycle Town

City

isIn

isIn

owner:         Mike
isBlocked:  true

Account

owner:         Aretha
isBlocked: false

Account



Joins in Patterns
owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

MATCH    (x) -[:Transfer]->  (y),
   TRAIL (y) -[:Transfer]->+ (x),
    (x:Account)-[:isIn]->(c1:City),
    (y:Account)-[:isIn]->(c2:City)
WHERE c1.name = c2.name 
  AND y.isBlocked = 'true'

name:  Rinse Cycle Town

City

isIn

isIn

owner:         Mike
isBlocked:  true

Account

owner:         Aretha
isBlocked: false

Account

name:  Rinse Cycle Town

City



Manipulating Tables



owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

Return: a generalized projection

MATCH (x)-[:Transfer]->(y)<-[:Transfer]-(z)
WHERE  y.isBlocked = 'true'
RETURN x.owner AS src1, 
       y.owner AS tgt,
       z.owner AS src2      

src1 tgt src2
Scott Mike Aretha

Aretha Mike Scott
Aretha Mike Aretha
Scott Mike Scott

x y z
N4 N2 N1
N1 N2 N4
N1 N2 N1
N4 N2 N4

⇝



owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

Let

MATCH (x)-[:Transfer]->(y)<-[:Transfer]-(z)
WHERE  y.isBlocked = 'true'
LET    w = x.owner

w
Scott

Aretha
Aretha
Scott

date:         3/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

x y z
N4 N2 N1
N1 N2 N4
N1 N2 N1
N4 N2 N4

owner:         Mike
isBlocked:  true

Account
owner:         Scott
isBlocked: false

Account

owner:         Aretha
isBlocked: false

Account



owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

Filter

MATCH (x)-[:Transfer]->(y)<-[:Transfer]-(z)
WHERE  y.isBlocked = 'true'
FILTER NOT (x = y)

x y z
N4 N2 N1
N1 N2 N4

⇝x y z
N4 N2 N1
N1 N2 N4
N1 N2 N1
N4 N2 N4



owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

MATCH (x)-[:Transfer]->(y)<-[:Transfer]-(z)
WHERE  y.isBlocked = 'true'

Multiple Match-Statements

MATCH (w)<-[:isIn]-(z)

N5 ...

isIn

...N6 isIn

x y z w
N4 N2 N1 N5
N4 N2 N1 N6
N1 N2 N1 N5
N1 N2 N1 N6

Final result:

z w
N1 N5
N1 N6

⋈
x y z

N4 N2 N1
N1 N2 N4
N1 N2 N1
N4 N2 N4

owner:         Mike
isBlocked:  true

Account
owner:         Scott
isBlocked: false

Account

owner:         Aretha
isBlocked: false

Account



owner:         Aretha
isBlocked: false

owner:         Mike
isBlocked:  true

date:         3/1/2020
amount: 10M

Transfer

owner:          Jay
isBlocked:  false

owner:         Scott
isBlocked: false

date:         6/1/2020
amount: 10M

Transfer

date:         2/1/2020
amount: 10M

Transfer

date:         7/1/2020
amount: 5M

Transfer

date:         4/1/2020
amount: 10M

Transfer

Account

Account

Account

Account

N1

N2

N3

N4

E12

E23E34

E41

E42

For  in x y
MATCH  
(u:Account)-[y:Transfer]->{2,4}(v:Account)  
WHERE u.isBlocked = 'false' 
  AND v.isBlocked = 'true'

u y v
N3 E34, E42 N2
N2 E23, E34, E42 N2
N1 E12, E23, E34, E42 N2
N4 E42, E23, E34, E42 N2

u y v x
N3 E34, E42 N2 E34
N3 E34, E42 N2 E42

FOR x IN y

4 + 4 + 3 = 11 additional rows

first row



Set Operations
Union, Intersection, Difference
If  and  are GQL queries, then so are  
-  UNION  
-  INTERSECT  
-  EXCEPT  

Since both  and  produce tables, these operations work 
as one would expect in relational DBs

Q1 Q2

Q1 Q2

Q1 Q2

Q1 Q2
Q1 Q2



How to do research on 
GQL and PGQ?



16.10 <path pattern expression>

Function

Specify a pattern to match a single path in a property graph.

Format
<path pattern expression> ::=

<path term>
| <path multiset alternation>
| <path pattern union>

<path multiset alternation> ::=
<path term> <multiset alternation operator> <path term>
    [ { <multiset alternation operator> <path term> }... ]

<path pattern union> ::=
<path term> <vertical bar> <path term> [ { <vertical bar> <path term> }... ]

<path term> ::=
<path factor>

| <path concatenation>

<path concatenation> ::=
<path term> <path factor>

<path factor> ::=
<path primary>

| <quantified path primary>
| <questioned path primary>

<quantified path primary> ::=
<path primary> <graph pattern quantifier>

<questioned path primary> ::=
<path primary> <question mark>

NOTE 131— Unlike most regular expression languages, <question mark> is not equivalent to the quantifier {0,1}: the
quantifier {0,1} exposes variables as group, whereas <questionmark> does not change the singleton variables that it exposes
to group. However, <question mark> does expose any singleton variables as conditional singletons.

<path primary> ::=
<element pattern>

| <parenthesized path pattern expression>
| <simplified path pattern expression>

<element pattern> ::=
<node pattern>

| <edge pattern>

<node pattern> ::=
<left paren> <element pattern filler> <right paren>

<element pattern filler> ::=
[ <element variable declaration> ]
[ <is label expression> ]
[ <element pattern predicate> ]

« WG3:W24-022 »

<element variable declaration> ::=

221

IWD 39075:202y(E)
16.10 <path pattern expression>

GQL looks like 500+ pages of this:

[ TEMP ] <element variable>

<is label expression> ::=
<is or colon> <label expression>

<is or colon> ::=
IS

| <colon>

<element pattern predicate> ::=
<element pattern where clause>

| <element property specification>

<element pattern where clause> ::=
WHERE <search condition>

<element property specification> ::=
<left brace> <property key value pair list> <right brace>

<property key value pair list> ::=
<property key value pair> [ { <comma> <property key value pair> }... ]

<property key value pair> ::=
<property name> <colon> <value expression>

<edge pattern> ::=
<full edge pattern>

| <abbreviated edge pattern>

<full edge pattern> ::=
<full edge pointing left>

| <full edge undirected>
| <full edge pointing right>
| <full edge left or undirected>
| <full edge undirected or right>
| <full edge left or right>
| <full edge any direction>

<full edge pointing left> ::=
<left arrow bracket> <element pattern filler> <right bracket minus>

<full edge undirected> ::=
<tilde left bracket> <element pattern filler> <right bracket tilde>

<full edge pointing right> ::=
<minus left bracket> <element pattern filler> <bracket right arrow>

<full edge left or undirected> ::=
<left arrow tilde bracket> <element pattern filler> <right bracket tilde>

<full edge undirected or right> ::=
<tilde left bracket> <element pattern filler> <bracket tilde right arrow>

<full edge left or right> ::=
<left arrow bracket> <element pattern filler> <bracket right arrow>

<full edge any direction> ::=
<minus left bracket> <element pattern filler> <right bracket minus>

** Editor’s Note (number 73) **

In the BNF for <full edge any direction>, the delimiter tokens <~[ ]~> have been suggested as a synonym for -[ ]- as part of
Feature GA07, “Undirected edge patterns”. The synonym for the <abbreviated edge pattern> - (<minus sign>) would then be
<~>, the synonym for <simplified defaulting any direction> would use the delimiter tokens <~/ /~> and the synonym for
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<simplified override any direction> would use the tokens <~ and > surrounding a label as originally proposed in WG3:MMX-
060. These synonyms might be considered to make the table of edge patterns more harmonious and internally consistent. See
Language Opportunity GQL-212 .

<abbreviated edge pattern> ::=
<left arrow>

| <tilde>
| <right arrow>
| <left arrow tilde>
| <tilde right arrow>
| <left minus right>
| <minus sign>

« WG3:W24-038 deleted one Editor's Note »

<parenthesized path pattern expression> ::=
<left paren>
    [ <subpath variable declaration> ]
    [ <path mode prefix> ]

<path pattern expression>
    [ <parenthesized path pattern where clause> ]
<right paren>

<subpath variable declaration> ::=
<subpath variable> <equals operator>

<parenthesized path pattern where clause> ::=
WHERE <search condition>

Syntax Rules

1) LetRIGHTMINUSbe the following collectionof <token>s: <right bracketminus>, <left arrow>, <slash
minus>, and <minus sign>.

NOTE 132— These are the tokens ]-, <-, /-, and -, which expose a minus sign on the right.

2) LetLEFTMINUSbe the following collectionof <token>s: <minus left bracket>, <right arrow>, <minus
slash>, and <minus sign>.

NOTE 133—These are the tokens -[, ->, -/, and -, which expose aminus sign on the left. <minus sign> itself is in both
RIGHTMINUS and LEFTMINUS.

3) A <pathpattern expression> shall not juxtapose a <token> fromRIGHTMINUS followedby a<token>
from LEFTMINUSwithout a <separator> between them.

NOTE 134— Otherwise, the concatenation of the two tokens would include the sequence of two <minus sign>s,
which is a <simple comment introducer>.

4) A <path pattern expression> that contains at the same depth of graph pattern matching a variable
quantifier, a <questioned path primary>, a <path multiset alternation>, or a <path pattern union>
is a possibly variable length path pattern.

5) A <path pattern expression> that is not a possibly variable length path pattern is a fixed length path
pattern.

6) Theminimum path length of certain BNF non-terminals defined in this Subclause is defined
recursively as follows:

a) The minimum path length of a <node pattern> is 0 (zero).

b) The minimum path length of an <edge pattern> is 1 (one).
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c) Theminimum path length of a <path concatenation> is the sum of theminimum path lengths
of its operands.

d) The minimum path length of a <path pattern union> or <path multiset alternation> is the
minimum of the minimum path length of its operands.

e) Theminimumpath length of a <quantified path primary> is the product of theminimumpath
length of the simply contained <path primary> and the value of the <lower bound>.

f) The minimum path length of a <questioned path primary> is 0 (zero).

g) Theminimumpath length of a <parenthesized path pattern expression> is theminimumpath
length of the simply contained <path pattern expression>.

h) IfBNT1 andBNT2 are twoBNFnon-terminals such thatBNT1 ::=BNT2 and theminimumpath
length of BNT2 is defined, then the minimum path length of BNT1 is also defined and is the
same as the minimum path length of BNT2.

7) The <path primary> immediately contained in a <quantified path primary> or <questioned path
primary> shall have minimum path length that is greater than 0 (zero).

8) The<pathprimary> simply contained in a <quantifiedpath primary> shall not contain a <quantified
path primary> at the same depth of graph pattern matching.

** Editor’s Note (number 74) **

It may be possible to permit nested quantifiers. WG3:W01-014 contained a discussion of a way to support aggregates
at different depths of aggregation if there are nested quantifiers. See Language Opportunity GQL-036 .

9) Let PMA be a <path multiset alternation>.

a) A <path term> simply contained in PMA is amultiset alternation operand of PMA.

b) LetNOPMAbe thenumber ofmultiset alternation operands ofPMA. LetOPMA1, ...,OPMANOPMA
be an enumeration of the operands of PMA.

c) Any <subpath variable>s declared by <subpath variable declaration>s simply contained in
the multiset alternation operands of PMA shall be mutually distinct.

d) Let SOPMA1, ..., SOPMANOPMA be implementation-dependent (UV008) <identifier>s that are
mutually distinct and distinct from every <element variable>, <subpath variable> and <path
variable> contained in GP.

e) For every i, 1 (one) ≤ i ≤ NOPMA.

Case:

i) IfOPMAi is a <parenthesized path pattern expression> that simply contains a <subpath
variable declaration>, then let OPMAXi be OPMAi.

ii) Otherwise, let OPMAXi be the <parenthesized path pattern expression>

(SOPMAi = OPMAi)

f) PMA is equivalent to:

OPMAX1 | ... | OPMAXNOPMA

10) A <path term> PPUOP simply contained in a <path pattern union> PSD is a path pattern union
operand of PSD.
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Path pattern union is not defined using left recursion. WG3:SXM-052 believed that it should be possible to support left
recursion but declined to do so for expediency. It is a Language Opportunity to support left recursion. See Language
Opportunity GQL-025 .

PPUOP shall not contain a reference to an element variable that is not declared in PPUOP or outside
of PSD.

11) An <element pattern> EP that contains an <element pattern where clause> EPWC is transformed
as follows:

a) Let EPF be the <element pattern filler> simply contained in EP.

b) Let PREFIX be the <delimiter token> contained in EP before EPF and let SUFFIX be the
<delimiter token> contained in EP after EPF.

c) LetEV be the <element variable> simply contained inEPF. Let ILE be the <is label expression>
contained in EPF, if any; otherwise, let ILE be the zero-length string.

d) EP is replaced by

( PREFIX EV ILE SUFFIX EPWC )

12) An <element pattern> that does not contain an <element variable declaration>, an <is label
expression>, or an <element pattern predicate> is said to be empty.

13) Each <path pattern expression> is transformed in the following steps:

a) If the <path primary> immediately contained in a <quantified path primary> or <questioned
path primary> is an <edge pattern> EP, then EP is replaced by

( EP )

NOTE 135— For example,

->*

becomes:

(->) {0,}

which in later transformations becomes:

(() -> ()) {0,}

b) If two successive <element pattern>s contained in a <path concatenation> at the same depth
of graph pattern matching are <edge pattern>s, then an implicit empty <node pattern> is
inserted between them.

c) If an edge pattern EP contained in a <path term> PST at the same depth of graph pattern
matching is not preceded by a <node pattern> contained in PST at the same depth of graph
pattern matching, then an implicit empty <node pattern> VP is inserted in PST immediately
prior to EP.

d) If an edge pattern EP contained in a <path term> PST at the same depth of graph pattern
matching is not followed by a <node pattern> contained in PST at the same depth of graph
pattern matching, than an implicit empty <node pattern> VP is inserted in PST immediately
after EP.

NOTE 136— As a result of the preceding transformations, a fixed length path pattern has an odd number of
<element pattern>s, beginning and ending with <node pattern>s, and alternating between <node pattern>s
and <edge pattern>s.

225

IWD 39075:202y(E)
16.10 <path pattern expression>

h) IfBNF1 andBNF2 are twoBNFnon-terminals such thatBNF1 ::=BNF2 and theminimumnode
count of BNF2 is defined, then the minimum node count of BNF1 is also defined and is the
same as the minimum node count of BNF2.

15) The <path pattern expression> simply contained in a <path pattern> shall have a minimum node
count that is greater than 0 (zero).

NOTE 137— The minimum node count is computed after the syntactic transform that adds implicit node patterns.
Thus a single <edge pattern> is a permitted <path pattern> because it implies two <node pattern>s.

« WG3:W24-022 »

16) An<element variable>EV contained in an<element variable declaration>GPVD is said to bedeclared
by GPVD, and by the <element pattern> EP that simply contains GPVD. The <element variable> is
the name of an element variable, which is also declared by GPVD and EP. If GPVD simply contains
TEMP, then EV is a temporary element variable. EV is a primary variable.

NOTE 138— Element bindings to temporary element variables are removed prior to set-theoretic deduplication of
matches. SeeGR10) of Subclause16.8, “<graphpattern>” andGR14) of Subclause21.2, “Machinery for graphpattern
matching”.

17) Prior to the application of syntactic transformations, conforming GQL-language shall not contain
an <element variable declaration> that immediately contains TEMP.

18) An element variable that is declared by a <node pattern> is a node variable. An element variable
that is declared by an <edge pattern> is an edge variable.

« WG3:W24-022 »

19) The scope of an <element variable> EV that is declared by an <element pattern> EP is defined as
follows. If EV is a temporary element variable, then the scope of EV is the innermost <path term>
containingEP; otherwise, the scope ofEV is the innermost <graphpattern binding table> containing
EP.

20) A <subpath variable> SV contained in a <subpath variable declaration> SVD is said to be declared
by SVD, and by the <parenthesized path pattern expression> PPPE that simply contains SVD. SV is
the name of a subpath variable, which is also declared by SVD and PPPE.

21) If EP is an <element pattern> that contains an <element patternwhere clause> EPWC, then EP shall
simply contain an <element variable declaration> GPVD.

22) If EV is an element variable or subpath variable, and BNT is an instance of a BNF non-terminal, then
the terminology “BNT exposesEV” is defined as follows. The full terminology is one of the following:
“BNT exposesEV as an unconditional singleton variable”, “BNT exposesEV as a conditional singleton
variable”, “BNT exposes EV as an effectively bounded group variable” or “BNT exposes EV as an
effectively unbounded group variable”. The terms “unconditional singleton variable”, “conditional
singleton variable”, “effectively boundedgroupvariable”, and “effectively unboundedgroupvariable”
are called the degree of exposure.

a) An <element pattern>EP that declares an element variableEV exposesEV as an unconditional
singleton.

b) A <parenthesized path pattern expression> PPPE that simply contains a <subpath variable
declaration> that declares EV exposes EV as an unconditional singleton variable. PPPE shall
not contain another <parenthesized path pattern expression> that declares EV.

c) If a <path concatenation> PPC declares EV then let PT be the <path term> and let PF be the
<path factor> simply contained in PPC.

Case:

i) If EV is exposed as an unconditional singleton by both PT and PF, then EV is exposed
as an unconditional singleton by PPC. EV shall not be a subpath variable.
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h) IfBNF1 andBNF2 are twoBNFnon-terminals such thatBNF1 ::=BNF2 and theminimumnode
count of BNF2 is defined, then the minimum node count of BNF1 is also defined and is the
same as the minimum node count of BNF2.

15) The <path pattern expression> simply contained in a <path pattern> shall have a minimum node
count that is greater than 0 (zero).

NOTE 137— The minimum node count is computed after the syntactic transform that adds implicit node patterns.
Thus a single <edge pattern> is a permitted <path pattern> because it implies two <node pattern>s.

« WG3:W24-022 »

16) An<element variable>EV contained in an<element variable declaration>GPVD is said to bedeclared
by GPVD, and by the <element pattern> EP that simply contains GPVD. The <element variable> is
the name of an element variable, which is also declared by GPVD and EP. If GPVD simply contains
TEMP, then EV is a temporary element variable. EV is a primary variable.

NOTE 138— Element bindings to temporary element variables are removed prior to set-theoretic deduplication of
matches. SeeGR10) of Subclause16.8, “<graphpattern>” andGR14) of Subclause21.2, “Machinery for graphpattern
matching”.

17) Prior to the application of syntactic transformations, conforming GQL-language shall not contain
an <element variable declaration> that immediately contains TEMP.

18) An element variable that is declared by a <node pattern> is a node variable. An element variable
that is declared by an <edge pattern> is an edge variable.

« WG3:W24-022 »

19) The scope of an <element variable> EV that is declared by an <element pattern> EP is defined as
follows. If EV is a temporary element variable, then the scope of EV is the innermost <path term>
containingEP; otherwise, the scope ofEV is the innermost <graphpattern binding table> containing
EP.

20) A <subpath variable> SV contained in a <subpath variable declaration> SVD is said to be declared
by SVD, and by the <parenthesized path pattern expression> PPPE that simply contains SVD. SV is
the name of a subpath variable, which is also declared by SVD and PPPE.

21) If EP is an <element pattern> that contains an <element patternwhere clause> EPWC, then EP shall
simply contain an <element variable declaration> GPVD.

22) If EV is an element variable or subpath variable, and BNT is an instance of a BNF non-terminal, then
the terminology “BNT exposesEV” is defined as follows. The full terminology is one of the following:
“BNT exposesEV as an unconditional singleton variable”, “BNT exposesEV as a conditional singleton
variable”, “BNT exposes EV as an effectively bounded group variable” or “BNT exposes EV as an
effectively unbounded group variable”. The terms “unconditional singleton variable”, “conditional
singleton variable”, “effectively boundedgroupvariable”, and “effectively unboundedgroupvariable”
are called the degree of exposure.

a) An <element pattern>EP that declares an element variableEV exposesEV as an unconditional
singleton.

b) A <parenthesized path pattern expression> PPPE that simply contains a <subpath variable
declaration> that declares EV exposes EV as an unconditional singleton variable. PPPE shall
not contain another <parenthesized path pattern expression> that declares EV.

c) If a <path concatenation> PPC declares EV then let PT be the <path term> and let PF be the
<path factor> simply contained in PPC.

Case:

i) If EV is exposed as an unconditional singleton by both PT and PF, then EV is exposed
as an unconditional singleton by PPC. EV shall not be a subpath variable.
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singleton variables, group variables, or subpath variables are forbidden.

ii) Otherwise, EV shall only be exposed by one of PT or PF. In this case EV is exposed by
PPC in the same degree that it is exposed by PT or PF.

d) If a <path pattern union> or <path multiset alternation> PA declares EV, then

Case:

i) If every operand of PA exposes EV as an unconditional singleton variable, then PA
exposes EV as an unconditional singleton variable.

ii) If at least one operand of PA exposes EV as an effectively unbounded group variable,
then PA exposes EV as an effectively unbounded group variable.

iii) If at least one operand of PA exposes EV as an effectively bounded group variable, then
PA exposes EV as an effectively bounded group variable.

iv) Otherwise, PA exposes EV as a conditional singleton variable.

e) If a <quantified path primary> QPP declares EV, then let PP be the <path primary> simply
contained in QPP.

Case:

i) If QPP contains a <graph pattern quantifier> that is a <fixed quantifier> or a <general
quantifier> that contains an <upper bound> andPPdoes not exposeEV as an effectively
unbounded group variable, then QPP exposes EV as an effectively bounded group
variable.

ii) If QPP is contained at the same depth of graph pattern matching in a restrictive <par-
enthesized path pattern expression>, then QPP exposes EV as an effectively bounded
group variable.

NOTE 140— The preceding definition is applied after the syntactic transformation to insure that
every <path mode prefix> is at the head of a <parenthesized path pattern expression>.

iii) Otherwise, QPP exposes EV as an effectively unbounded group variable.

f) If a <questioned path primary> QUPP declares EV, then let PP be the <path primary> simply
contained in QUPP.

Case:

i) If PP exposes EV as a group variable, then QUPP exposes EV as a group variable with
the same degree of exposure.

ii) Otherwise, QUPP exposes EV as a conditional singleton variable.

g) A<parenthesizedpathpattern expression>exposes the samevariables as the simply contained
<path pattern expression>, in the same degree of exposure.

NOTE141—Arestrictive<pathmode>declaredbya<parenthesizedpathpatternexpression>makesvariables
effectively bounded, but it does so even for proper subexpressions within the scope of the <path mode> and
has already been handled by the rules for <quantified path primary>.

h) If a <path pattern> PP declares EV, then let PPE be the simply contained <path pattern
expression>.

Case:

i) IfPPE exposesEV as anunconditional singleton, a conditional singleton, or an effectively
bounded group variable, then PP exposes EVwith the same degree of exposure.
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ii) Otherwise, PP exposes EV as an effectively bounded group variable.
NOTE 142— That is, even if PPE exposes EV as an effectively unbounded group variable, PP still
exposesEV as effectively bounded, because in this casePP is required to be a selective <path pattern>.

i) If BNT1 and BNT2 are two BNF non-terminals such that BNT1 ::= BNT2 and BNT2 exposes EV,
then BNT1 exposes EV to the same degree of exposure as BNT2.

** Editor’s Note (number 76) **

WG3:W04-009R1 defined “effectively bounded group variable” but did not use the definition. The definitionwill
be used when we define predicates on aggregates, at which time we will want a Syntax Rules stating that if a
group variable GV is referenced in a WHERE clause, then it shall be effectively bounded and the reference shall
be contained in an aggregated argument of an <aggregate function>. See Possible Problem GQL-050 .

23) If BNT is a BNF non-terminal that exposes a graph pattern variable GPVwith a degree of exposure
DEGREE, then BNT is also said to expose the name of GPVwith degree of exposure DEGREE.

24) A <parenthesized path pattern where clause> PPPWC simply contained in a <parenthesized path
pattern expression> PPPE shall not reference a path variable.

** Editor’s Note (number 77) **

WG3:W04-009R1 recognized that a graph query may have a sequence of MATCH clauses, with the bindings of one
MATCH clauseMC1 visible in all subsequent MATCH clauses in the same invocation of <graph table>, and that it should
be permissible to reference such variables in any <parenthesized path pattern where clause> simply contained in a
subsequent MATCH clauseMC2. The relevance of this LO to GQL needs to be investigated. See Language Opportunity
GQL-051 .

General Rules

None.
NOTE143—The evaluation of a <path pattern expression> is performedby theGeneral Rules of Subclause 21.3, “Evaluation
of a <path pattern expression>”.

Conformance Rules

1) Without Feature G030, “Path Multiset Alternation”, conforming GQL language shall not contain a
<path multiset alternation>.

2) Without Feature G031, “Path Multiset Alternation: variable length path operands”, in conforming
GQL language, an operand of a <path multiset alternation> shall be a fixed length path pattern.

3) Without Feature G032, “Path Pattern Union”, conforming GQL language shall not contain a <path
pattern union>.

4) Without Feature G033, “Path Pattern Union: variable length path operands”, in conforming GQL
language, an operand of a <path pattern union> shall be a fixed length path pattern.

5) Without FeatureG035, “QuantifiedPaths”, conformingGQL language shall not contain a<quantified
path primary> that does not immediately contain a <path primary> that is an <edge pattern>.

6) Without FeatureG036, “QuantifiedEdges”, conformingGQL language shall not contain a <quantified
path primary> that immediately contains a <path primary> that is an <edge pattern>.

7) WithoutFeatureG037, “QuestionedPaths”, conformingGQL language shall not contain a<questioned
path primary>.
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8) Without Feature G038, “Parenthesized path pattern expression”, conforming GQL language shall
not contain a <parenthesized path pattern expression>.

9) Without Feature G041, “Non-local element pattern predicates”, in conforming GQL language, the
<element pattern where clause> of an <element pattern> EP shall only reference the <element
variable> declared in EP.

10) Without Feature G043, “Complete Full Edge Patterns”, conforming GQL language shall not contain
a <full edge pattern> that is not a <full edge any direction>, a <full edge pointing left>, or a <full
edge pointing right>.

11) Without Feature G044, “Basic Abbreviated Edge Patterns”, conforming GQL language shall not
contain an <abbreviated edge pattern> that is a <minus sign>, <left arrow>, or <right arrow>.

12) Without Feature G045, “Complete Abbreviated Edge Patterns”, conforming GQL language shall not
contain an <abbreviated edge pattern> that is not a <minus sign>, <left arrow>, or <right arrow>.

13) Without Feature G046, “Relaxed topological consistency: Adjacent vertex patterns”, in conforming
GQL language, between any two <node pattern>s contained in a <path pattern expression> there
shall be at least one <edge pattern>, <left paren>, or <right paren>.

14) Without Feature G047, “Relaxed topological consistency: Concise edge patterns”, in conforming
GQL language, any <edgepattern> shall be immediately preceded and followedby a <nodepattern>.

15) Without Feature G048, “Parenthesized Path Pattern: Subpath variable declaration”, conforming
GQL language shall not contain a <parenthesized path pattern expression> that simply contains a
<subpath variable declaration>.

16) Without Feature G049, “Parenthesized Path Pattern: Path mode prefix”, conforming GQL language
shall not contain a <parenthesized path pattern expression> that immediately contains a <path
mode prefix>.

17) Without FeatureG050, “ParenthesizedPath Pattern:Where clause”, conformingGQL language shall
not contain a <parenthesized path pattern where clause>.

18) Without Feature G051, “Parenthesized Path Pattern: Non-local predicates”, in conforming GQL
language, a <parenthesized path pattern where clause> simply contained in a <parenthesized path
pattern expression> PPPE shall not reference an <element variable> that is not declared in PPPE.
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Let’s try to formalize. 

Attempt 1: Pattern matching (PODS’23) 



Pattern calculus in a nutshell
ν := (x : ℓ)Node pattern

θ := x . a = c ∣ x . a = y . b ∣ θ ∨ θ ∣ θ ∧ θ ∣ ¬θConditions

Queries Q := σ π ∣ p = σ π ∣ Q, Q

π := ν ∣ α ∣ π π ∣ π + π ∣ πn..m ∣ π⟨θ⟩Patterns 0 ≤ n ≤ m ≤ ∞

α := ⟶ ∣ ⟵ ∣ ----Edge pattern x : ℓ x : ℓ x : ℓ
-labeled edge directed left/right/any-directed, assign to a variable  ℓ

node             edge    concatenation           union                 repetition      selection with condition 
                                                      n-to-m times  

ensure finitely  
many paths

name  
matched  

path

join

match an -labeled node, assign to a variable ℓ

key-value comparisons                            Boolean combinations 

Both  and  are optionalx ℓ



It needs a type system
GPC: A Pa!ern Calculus for Property Graphs PODS ’23, June 18–23, 2023, Sea!le, WA, USA

(𝐿) → 𝐿 : Node (𝐿 : 𝑀) → 𝐿 : Node 𝐿↑=↓ → 𝐿 : Edge 𝐿 :𝑀↑==↓ → 𝐿 : Edge

𝐿 ω var(𝑁)
𝐿 = 𝑂 𝑁 → 𝐿 : Path

𝑁 → 𝑃 : 𝑄
𝑁𝑁..𝑂 → 𝑃 : Group(𝑄)

𝑁 → 𝑃 : 𝑄
𝑂𝑁 → 𝑃 : 𝑄

𝑁 → 𝑃 : 𝑄 𝑃 ε 𝐿
𝐿 = 𝑂𝑁 → 𝑃 : 𝑄

𝑁 → 𝐿 : 𝑄 𝑄 ↔ {Node, Edge}
𝑁 → 𝐿 .𝑅 = 𝑆 : Bool

𝑁 → 𝐿 : 𝑄 𝑁 → 𝑇 : 𝑄 ↗ 𝑄, 𝑄 ↗ ↔ {Node, Edge}
𝑁 → 𝐿 .𝑅 = 𝑇 .𝑈 : Bool

𝑁 → 𝑉 : Bool 𝑁 → 𝑉 ↗ : Bool
𝑁 → 𝑉 ↘ 𝑉 ↗ : Bool

𝑁 → 𝑉 : Bool 𝑁 → 𝑉 ↗ : Bool
𝑁 → 𝑉 ≃ 𝑉 ↗ : Bool

𝑁 → 𝑉 : Bool
𝑁 → ¬𝑉 : Bool

𝑁 → 𝑉 : Bool 𝑁 → 𝑃 : 𝑄
𝑁 ⇐𝑃 ⇒ → 𝑃 : 𝑄

𝑁1 → 𝑃 : 𝑄 𝑁2 → 𝑃 : 𝑄
𝑁1 + 𝑁2 → 𝑃 : 𝑄

𝑁1 → 𝑃 : 𝑄 𝑁2 → 𝑃 : Maybe(𝑄)
𝑁1 + 𝑁2 → 𝑃 : Maybe(𝑄)

𝑁1 → 𝑃 : Maybe(𝑄) 𝑁2 → 𝑃 : 𝑄
𝑁1 + 𝑁2 → 𝑃 : Maybe(𝑄)

𝑁1 → 𝑃 : 𝑄 𝑃 ω var(𝑁2)
𝑁1 + 𝑁2 → 𝑃 : 𝑄?

𝑁2 → 𝑃 : 𝑄 𝑃 ω var(𝑁1)
𝑁1 + 𝑁2 → 𝑃 : 𝑄?

𝑁1 → 𝑃 : 𝑄 𝑁2 → 𝑃 : 𝑄 𝑄 ↔ {Node, Edge}
𝑁1 𝑁2 → 𝑃 : 𝑄

𝑁1 → 𝑃 : 𝑄 𝑃 ω var(𝑁2)
𝑁1 𝑁2 → 𝑃 : 𝑄

𝑁2 → 𝑃 : 𝑄 𝑃 ω var(𝑁1)
𝑁1 𝑁2 → 𝑃 : 𝑄

𝑊1 → 𝑃 : 𝑄 𝑊2 → 𝑃 : 𝑄 𝑄 ↔ {Node, Edge}
𝑊1,𝑊2 → 𝑃 : 𝑄

𝑊1 → 𝑃 : 𝑄 𝑃 ω var(𝑊2)
𝑊1,𝑊2 → 𝑃 : 𝑄

𝑊2 → 𝑃 : 𝑄 𝑃 ω var(𝑊1)
𝑊1,𝑊2 → 𝑃 : 𝑄

Figure 2: Typing rules for the GPC type system.

under Boolean connectives; and correctly typed conditions do not
a!ect the typing of variables in a pattern.

The following two lines deal with the optional typeMaybe(𝑄).
It is assigned to a variable 𝑃 in a disjunction 𝑁1 + 𝑁2 if in one of the
patterns 𝑃 is of type 𝑄 and in the other 𝑃 is either not present or of
type Maybe(𝑄).

Derivation rules for concatenation 𝑁1𝑁2 and join 𝑊1,𝑊2 are sim-
ilar: a variable is allowed to appear in both expressions only if it is
typed as a node or an edge in both, or it inherits its type from one
when it does not appear in the other.

De!nition 1. An expression is well-typed if for every variable
used in it, its type can be derived according to the typing rules.

A well-typed expression assigns a unique type to every variable
appearing in it, and only to such variables.

P!"#"$%&%"’ 2. For every well-typed expression 𝑋 , variable 𝐿 , and
types 𝑄, 𝑄 ↗,

• 𝑋 → 𝐿 : 𝑄 implies 𝐿 ↔ var(𝑋);
• 𝑋 → 𝐿 : 𝑄 and 𝑋 → 𝐿 : 𝑄 ↗ imply that 𝑄 = 𝑄 ↗.

P!""(. The "rst item holds because a variable appears in the
conclusion of an inference rule only if it appears in one of its prem-
ises, or explicitly in the expression. The second item holds because
all inference rules have mutually exclusive premises. ↭

De!nition 3. Let ω denote a binary operator from GPC (Fig. 1).
We say that ω is associative (resp.commutative) with respect to the
type system if the condition (1) (resp. (2)) below holds for all expres-
sions 𝑋1, 𝑋2, 𝑋3, types 𝑄 , and variables 𝐿 :

(𝑋1 ω 𝑋2) ω 𝑋3 → 𝐿 : 𝑄 ↑↓ 𝑋1 ω (𝑋2 ω 𝑋3) → 𝐿 : 𝑄 , (1)
𝑋1 ω 𝑋2 → 𝐿 : 𝑄 ↑↓ 𝑋2 ω 𝑋1 → 𝐿 : 𝑄 . (2)

P!"#"$%&%"’ 4.
• Union, concatenation and join are associative and commutative
with respect to the type system.

• There is no expression 𝑋 , variable 𝐿 , and type 𝑄 such that 𝑋 → 𝐿 :
Maybe(Maybe(𝑄)).

A schema 𝑌 is a partial function from variablesX to typesT , with
a "nite domain. With each well-typed expression 𝑋 we can naturally
associate a schema sch(𝑋), induced by the types derived from 𝑋 . It
is de"ned formally below; it is well-de"ned by Proposition 2.

De!nition 5. Given a well-typed expression 𝑋 , the schema of 𝑋 ,
written sch(𝑋), is the schema that maps each variable 𝐿 ↔ var(𝑋) to
the unique type 𝑄 such that 𝑋 → 𝐿 : 𝑄 . A variable 𝐿 in var(𝑋) is called

• a singleton variable if sch(𝑋) (𝐿) ↔ {Node, Edge};
• a conditional variable if sch(𝑋) (𝐿) = Maybe(𝑄) for some 𝑄 ;
• a group variable if sch(𝑋) (𝐿) = Group(𝑄) for some 𝑄 ;
• a path variable if sch(𝑋) (𝐿) = Path.

It is easily checked that the function sch is compositional, in the
following sense.

P!"#"$%&%"’ 6. For each binary operator ω of GPC, there exists
a function that depends only on ω, takes as arguments sch(𝑋1) and
sch(𝑋2), and computes sch(𝑋1 ω 𝑋2). Likewise for unary operators.

5 SEMANTICS
We begin by de"ning values, which is what can be returned by a
query. Since GPC returns references to graph elements, not the data
they bear, elements of Const are not values.

De!nition 7. Given a type 𝑄 ↔ T , the setV𝑄 of values of type 𝑄
is de"ned inductively as follows



- Could prove a few things but not much 
- A bit too heavy for definition 1 
- Only covers pattern matching  

- Next step: add relational operators

Problems 
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J-[]->KG =
)

(path(src(e), e, tgt(e)), ())
-- e œ EG

d

*

J-[x]->KG =
)

(path(src(e), e, tgt(e)), (x ‘æ e))
-- e œ EG

d

*

J-[:¸]->KG =
Ó

(path(src(e), e, tgt(e)), ())
--- e œ EG

d , ¸ œ lab
G(e)

Ô

Other cases of the forward edge patterns are treated by moving the label and conditions
outside of the edge pattern, just as for node patterns. Backward edge patterns and undirected
edge patterns are treated similarly, with the base cases given below.

J<-[]-KG =
)

(path(tgt(e), e, src(e)), ())
-- e œ EG

d

*

J~[]~KG =
;

(path(u1, e, u2), ()), (path(u2, e, u1), ())
----

e œ EG
u

{u1, u2} = endpoints
G(e)

<

Semantics of Concatenation, Union, and Conditioning

Jfi1 fi2KG

Y
]

[ (p1 · p2, µ1 on µ2)

------

(pi, µi) œ JfiiKG for i = 1, 2
p1 and p2 concatenate
µ1 ≥ µ2

Z
^

\

Note that since fi1 fi2 is assumed to be well-formed, all variables shared by fi1 and fi2 are
singleton variables (Condition 2 in Section 3). In other words, implicit joins over group and
optional variables are disallowed; the same remark will also apply for the semantics of joins.
I Remark 9. Consider the pattern

(x) (-[:Transfer]->()-[:Transfer]->(x)]){1,}

This pattern is disallowed in GQL because the leftmost x is a singleton variable, whereas the
rightmost x is a group variable. In GQL philosophy, the leftmost x will be bound to a node
and the rightmost x will be bound to a list of nodes, which is a type mismatch.

Jfi1 | fi2KG = { (p, µ fi µÕ) | (p, µ) œ Jfi1KG fi Jfi2KG }
where µÕ maps every variable in var(fi1 |fi2)\Dom(µ) to null. (Recall that var maps a pattern
to the set of variables appearing in it.)

Jfi WHERE ◊KG = { (p, µ) œ JfiKG | J◊Kµ
G = true }

Semantics of Repetition

Jfi{n, m}KG =
m€

i=n

JfiKi
G

Jfi{n, }KG =
Œ€

i=n

JfiKi
G

Above, for a pattern fi and a natural number i Ø 0, we use JfiKi
G to denote the i-th power of

JfiKG, which we define as

JfiK0
G = { (path(u), µ) | u is a node in G }

where µ binds each variable in Dom(sch(fi)) to list(), that is, the empty-list value; and

’i > 0 JfiKi
G =

;
(p1 · . . . · pi, µÕ)

----
(p1, µ1), . . . , (pn, µi) œ JfiKG

p1, . . . , pi concatenate

<

where µÕ binds each variable in Dom(sch(fi)) to list
!
µ1(x), . . . , µi(x)

"
. Recall that sch is

defined in Section 3.
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I Remark 10. Since fi{n, } is assumed to be well-formed, it holds ÎfiÎmin Ø 1. A simple
induction then yields that each pi in the definition above has positive length. A second
induction then yields that, given a path p, there are finitely many assignments µ such
that (p, µ) œ Jfi{n, m}KG. This fact is crucial to have a finite output in the end.

For instance, consider a graph with a single node u and no edges, and the pattern (a){0,}

which is not well-formed (the minimal path length of () is 0). For every i, the set J(a)Ki
G

contains (path(u), µi) where µi = (a ‘æ list(u, . . . , u¸ ˚˙ ˝
i times

)); hence the union in the definition of

Jfi{n, }KG above would not only yield an infinite number of elements, but all of them would
be associated to the same path. As a result a graph pattern such as ALL SHORTEST (a){0,}

would have infinitely many results.

4.3 Semantics of Graph Patterns
We now define the semantics of graph patterns. We first fully define atomic graph patterns
and then define their joins.

Jx = fiKG =
)

(p, µ fi {x ‘æ p}) | (p, µ) œ JfiKG

*

In the following we denote by fĩ a graph pattern that never uses the “,” operator, hence it is
of the form µ x= fi, where µ is a path mode, x is a variable, fi is a path pattern, and “x=“ is
optional.

JTRAIL fiKG = { (p, µ) œ JfiKG | no edge occurs more than once in p }
JACYCLIC fiKG = { (p, µ) œ JfiKG | no node occurs more than once in p }

JSHORTEST fĩKG =

Y
]

[ (p, µ) œ JfĩKG

------
len(p) = min

Y
]

[ len(pÕ)

------

(pÕ, µÕ) œ JfĩKG

src(pÕ) = src(p)
tgt(pÕ) = tgt(p)

Z
^

\

Z
^

\

JALL fĩKG = JfĩKG

JANY fĩKG =
€

(s,t)œX

{any({ (p, µ) | (p, µ) œ JfĩKG , endpoints(p) = (s, t) }}

where X = {
!
src(p), tgt(p)

"
| (p, µ) œ JfĩKG } and any is a procedure that arbitrarily returns

one element from a set; any need not be deterministic.

J�1, �2KG = { (p̄1 ◊ p̄2, µ1 on µ2) | (p̄i, µi) œ J�iKG for i = 1, 2 and µ1 ≥ µ2 }

Here, p̄1 = (p1
1, p2

1, . . . , pk
1) and p̄2 = (p1

2, p2
2, . . . , pl

2) are tuples of paths, and p̄1 ◊ p̄2 stands
for (p1

1, p2
1, . . . , pk

1 , p1
2, p2

2, . . . , pl
2). Just as it is the case of concatenation, since �1, �2 is

well-formed, implicit joins can occur over singleton variables only.

4.4 Semantics of Conditions and Expressions
The semantics J‰Kµ

G of an expression ‰ is an element in V that is computed with respect to
a binding µ and a graph G. Intuitively, variables in ‰ are evaluated with µ and we use G to
access the properties of an element. It is formally defined as follows.

JcKµ
G = c for c œ Const

JxKµ
G = µ(x) for x œ Dom(µ)

Jx.aKµ
G =

I
prop

G(µ(x), a) if (µ(x), a) œ Dom(prop
G)

null else if µ(x) œ (N fi Ed fi Eu)
for x œ Dom(µ), a œ K

ICDT 2023
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I Remark 11. Recall that di�erent graphs may share nodes and edges. Hence the condition
(µ(x), a) œ Dom(prop

G), above, does imply that µ(x) is a node or an edge in G, but does
not imply that it was matched in G.
The semantics J◊Kµ

G of a condition ◊ is an element in {true, false, null} that is evaluated with
respect to a binding µ and a graph G, and is defined as follows:

J‰1 = ‰2Kµ
G =

Y
__]

__[

null if J‰1Kµ
G = null or J‰2Kµ

G = null

true if J‰1Kµ
G = J‰2Kµ

G ”= null

false otherwise

J‰1 < ‰2Kµ
G =

Y
__]

__[

null if J‰1Kµ
G = null or J‰2Kµ

G = null

true else if J‰1Kµ
G < J‰2Kµ

G

false otherwise

J‰ IS NULLKµ
G =

I
true if J‰Kµ

G = null

false otherwise

J‰:¸Kµ
G =

I
true if J‰Kµ

G œ NG fi EG
u fi EG

d and ¸ œ lab
G(J‰Kµ

G)
false else if J‰Kµ

G œ N fi Ed fi Eu

J◊1 AND ◊2Kµ
G = J◊1Kµ

G · J◊2Kµ
G

(ú)

J◊1 OR ◊2Kµ
G = J◊1Kµ

G ‚ J◊2Kµ
G

(ú)

JNOT ◊Kµ
G = ¬ J◊Kµ

G
(ú)

(ú) Operators ·, ‚, and ¬ are defined as in SQL three-valued logic, e.g. null ‚ true = true

while null · true = null.

JEXISTS { Q }Kµ
G =

I
true if JQKG ({µ}) is not empty
false otherwise

4.5 Semantics of Queries
Clauses and queries are interpreted as functions that operate on tables. These tables are our
abstraction of GQL’s working tables.

I Definition 12. A table T is a set of bindings that have the same domains, referred to
as Dom(T ).

Note that tables do not have schemas: two di�erent bindings in a table might associate a
variable to values of incompatible types.

Semantics of Clauses

The semantics JCKG of a clause C is a function that maps tables into tables, and is parametrized
by a graph G. Patterns, conditions and expression in a clause are evaluated with respect to
that G.

JMATCH �KG (T ) =
€

µœT

)
µ on µÕ | (p, µÕ) œ J�KG , µ ≥ µÕ*

Note that if � uses a variable that already occurs in Dom(T ), a join is performed. Unlike in
the case of path patterns and graph patterns, this join can involve variables bound to lists
or paths. While this is not problematic mathematically, it might be disallowed in future
iterations of GQL.

N. Francis et al. 1:15

If x /œ Dom(T ), then

JLET x = ‰KG (T ) =
€

µœT

{µ on (x ‘æ J‰Kµ
G)}

JFILTER ◊KG (T ) =
€

µœT

)
µ | J◊Kµ

G = true
*

.

If x /œ Dom(T ) and, for every µ œ T , µ(y) is a list or null,3 then

JFOR x IN yKG (T ) =
€

µœT

)
µ on (x ‘æ v) | v œ µ(y)

*
.

Semantics of Linear Queries

JUSE GÕ
LKG (T ) = JLKGÕ (T )

JC LKG (T ) = JLKG

!
JCKG (T )

"

JRETURN ‰1 AS x1, . . . , ‰¸ AS x¸KG (T ) =
€

µœT

Ó
(x1 ‘æ J‰1Kµ

G , . . . , x¸ ‘æ J‰¸KG
µ )

Ô

Semantics of Queries

The output of a query Q is defined as

Output(Q) = JQKG ({()}) ,

where {()} is the unit table that consists of the empty binding, and G is the default graph
in D. We define the semantics of queries recursively as follows.

JUSE GÕ {Q1 THEN Q2 · · · THEN Qk}KG (T ) = JQkKGÕ ¶ · · · ¶ JQ1KGÕ (T )

If Dom (JQ1KG (T )) = Dom (JQ2KG (T )), then we let

JQ1 INTERSECT Q2KG (T ) = JQ1KG (T ) fl JQ2KG (T )
JQ1 UNION Q2KG (T ) = JQ1KG (T ) fi JQ2KG (T )

JQ1 EXCEPT Q2KG (T ) = JQ1KG (T ) \ JQ2KG (T )

5 A Few Known Discrepancies with the GQL Standard

In pursuing the goal of introducing the key features of GQL to the research community, we
inevitably had to make decisions that resulted in discrepancies between our presentation and
the 500+ pages of the forthcoming Standard. In this section, we discuss a non-exhaustive
list of di�erences between the actual GQL Standard and our digest. To start with, in all our
formal development we assumed that queries are given by their syntax trees, which result
from parsing them. Hence we completely omitted such parsing-related aspects as parentheses,
operator precedence etc. Also we note that many GQL features, even those described here,
are optional, and not every implementation is obliged to have them all.

3 Note that null is treated just as list()

ICDT 2023



- Development of SQL: 
- basic theory: relational calculus, algebra 
- clean foundations: relations are sets of tuples 

- finite model theory: cannot define counting, recursion 
- add aggregates (right away, 1986), recursion (1999) 
- and lots of other baggage: bags, nulls, etc 

- Development of GQL and PGQ 
- start with SQL basis: bags, nulls, aggregate 
- define a language as a compromise between 3 companies 
- Now need to think: 

- what are their relational algebra/calculus 
- what is not expressible? and why? 
- and how they address it? 

Pause and think



What are relational algebra and 
calculus of GQL and PGQ?  

What can we prove about them?



Patterns
No non-1NF relations, No nulls, No bags, No typing rules, just free variables

π := (x) ∣ ⟶x ∣ ⟵x ∣ ππ ∣ π + π ∣ π⟨θ⟩ ∣ πn..m

θ := x . k = y . p ∣ x . k < y . p ∣ ℓ(x) ∣ θ ∨ θ ∣ ¬θ

 
 

 
 

FV((x)) = FV( →x )= FV( ←x )= {x}
FV(π1π2) = FV(π1) ∪ FV(π2)
FV(π1 + π2) = FV(π1)  if  FV(π1) = FV(π2)
FV(π⟨θ⟩) = FV(π) if FV(θ) ⊆ FV(π)
FV(πn..m) = ∅

Output: a subset  of  
Pattern with output: 

Ω FV(π)
πΩ



Semantics: one simple definition,  
just what you expect 

!(𝐿)"𝐿 := {(path(𝑀), {𝐿 →↑ 𝑀}) | 𝑀 ↓ N}#
𝑀↑

$
𝐿

:= {(path(𝑀1, 𝑁,𝑀2), {𝐿 →↑ 𝑁}) | 𝑁 ↓ E, src(𝑁) = 𝑀1, tgt(𝑁) = 𝑀2}#
𝑀↔

$
𝐿

:= {(path(𝑀2, 𝑁,𝑀1), {𝐿 →↑ 𝑁}) | 𝑁 ↓ E, src(𝑁) = 𝑀1, tgt(𝑁) = 𝑀2}
!𝑂1 +𝑂2"𝐿 := !𝑂1"𝐿 ↗ !𝑂2"𝐿

!𝑂1𝑂2"𝐿 :=
{
(𝑃1 · 𝑃2, 𝑄1 𝐿𝑀 𝑄2)

"" (𝑃1, 𝑄1) ↓ !𝑂1"𝐿 , (𝑃2, 𝑄2) ↓ !𝑂2"𝐿 , 𝑄1 ↘ 𝑄2, 𝑃1 ≃ 𝑃2
}

!𝑂 ⇐𝑅⇒"𝐿 :=
{
(𝑃, 𝑄) ↓ !𝑆"𝐿 | 𝑄 |= 𝑅

}
!𝑂𝑁..𝑂"𝐿 :=

𝑂⋃
𝑃=𝑁

!𝑂"𝑃𝐿 where

!𝑂"0𝐿 :=
{
(path(𝑀), 𝑄⇑)

"" 𝑀 ↓ N
}

!𝑂"𝑁𝐿 :=
{
(𝑃1 · · · 𝑃𝑁, 𝑄⇑) | ⇓𝑄1, . . . , 𝑄𝑁 : (𝑃𝑃 , 𝑄𝑃 ) ↓ !𝑂"𝐿 and 𝑃𝑃 ≃ 𝑃𝑃+1 for all 𝑇 < 𝑀

}
, 𝑀 > 0

!𝑂ω"𝐿 :=
{
𝑄ω | ⇓𝑃 : (𝑃, 𝑄) ↓ !𝑂"𝐿

}

Figure 2: Semantics of patterns and patterns with output

Relational Algebra (RA). We use a standard presentation of RA.
Given a schema S which is a !nite subset of S, the expressions Q
of RA(S) and selection conditions 𝑅 are de!ned as

Q,Q⇔ := 𝑈 | 𝑆𝑄𝑄𝑄 (Q) | 𝑉𝑅 (Q) | Q 𝐿𝑀 Q⇔ | Q ↗ Q⇔ | Q ↖ Q⇔

𝑅 := 𝑊 = 𝑊⇔ | ¬𝑅 | 𝑅 ↙ 𝑅 | 𝑅 ∝ 𝑅

where 𝑈 ranges over relations in S. The sets of attributes of expres-
sions a!r(Q) are de!ned by extending a!r(𝑈), namely a!r(𝑆𝑄𝑄𝑄 (Q))
is𝑊𝑊𝑊, while both of a!r(𝑉𝑅 (Q)) and a!r(Q ′ Q⇔) are a!r(𝑋), for ′
being union and di"erence; a!r(Q 𝐿𝑀 Q⇔) = a!r(Q) ↗ a!r(Q⇔) and
a!r(𝑌𝑄↑𝑄⇔ (Q)) = (a!r(Q) \ {𝑊}) ↗ {𝑊⇔}.

The expressions of RA must satisfy the usual well-de!nedness
rules: 𝑆𝑄𝑄𝑄 (Q) is well-de!ned if𝑊𝑊𝑊 ∞ a!r(Q); set operations are only
de!ned if a!r(Q) = a!r(Q⇔), and for renaming from 𝑊 to 𝑊⇔ we
must have 𝑊 ↓ a!r(Q) and 𝑊⇔ ω a!r(Q).

The result of evaluation of Q on a databaseD is a relation !Q"D
over a!r(Q) de!ned as:

!𝑈"D := D(𝑈)
!𝑆𝑄𝑄𝑄 (Q)"D := {𝑄 ↭𝑄𝑄𝑄 | 𝑄 ↓ Q}
!𝑉𝑅 (Q)"D := {𝑄 | 𝑄 ↓ Q and 𝑄 |= 𝑅 }

!𝑌𝑄↑𝑄⇔ (Q)"D := {𝑌𝑄↑𝑄⇔ (𝑄) | 𝑄 ↓ Q}
!Q 𝐿𝑀 Q⇔"D := {𝑄 𝐿𝑀 𝑄⇔ | 𝑄 ↓ Q, 𝑄⇔ ↓ Q⇔}
!Q ′ Q⇔"D := !Q"D ′ !Q⇔"D for ′ ↓ {↗, \}

with 𝑄 |= 𝑅 having the standard semantics 𝑄 |= 𝑊 = 𝑊⇔ i" 𝑊,𝑊⇔ ↓
dom(𝑄) and 𝑄 (𝑊) = 𝑄 (𝑊⇔), extended to Boolean connectives∝,↙,¬.

Core PGQ. Assume that for each variable 𝐿 ↓ Vars and each
key 𝑍 ↓ K , both 𝐿 and 𝐿 .𝑍 belong to the set of attributes A. For
each pattern𝑂 and each output speci!cation ω, we have a relation
symbol 𝑈𝑆 ,ω whose set of attributes are the elements of ω. Let Pat
contain all such relation symbols.

De!nition 4.1 (Core PGQ). Core PGQ is de!ned as RA(Pat), i.e.,
the set of relational algebra expressions over the schema Pat.

To de!ne the semantics of Core PGQ queries, assume without
loss of generality that Values ∞ U. This ensures that results of
pattern matching are relations of the schema Pat, because for every

path pattern with output 𝑂ω and a property graph 𝑎 , the table
!𝑂ω"𝐿 is an instance of relation 𝑈𝑆 ,ω from Pat. Then the semantics
of Core PGQ is simply the extension of the semantics of RA de!ned
above where for base relations we have

%
𝑈𝑆 ,ω

&
𝐿

:= !𝑂ω"𝐿 .

5 GQL: THEORETICAL ABSTRACTIONS
We next provide a formal model of GQL. Recall that it shares pat-
terns with PGQ. What is di"erent is the way GQL processes results
of pattern matching: not in a bottom-up way with RA operators like
PGQ, but rather in sequential, or pipelined way where the output
of each operation in a sequence serves as the input for the next
operation. Using terminology adopted by Cypher [22], GQL calls
this linear composition. Unlike RA, it lacks proper formalization,
and thus next we provide a formal description of a di"erent #avor
of RA, obtained by linear composition.

5.1 LCRA: Linear Composition RA
This language captures the sequential (linear) application of rela-
tional operators as seen in Cypher, GQL, and also PRQL. Its expres-
sions over a schema S, denoted by LCRA(S), are de!ned as:

Linear Clause: L, L⇔ := 𝑏 | 𝑆𝑄𝑄𝑄 | 𝑉𝑅 | 𝑌𝑄↑𝑄⇔ | L L⇔ | {Q}
Query: Q,Q⇔ := L | Q ∈ Q⇔ | Q ↗ Q⇔ | Q \ Q⇔

where 𝑏 ranges over S, while𝑊𝑊𝑊 ∞ A, and𝑊,𝑊⇔ ↓ A, and 𝑅 is de!ned
as for RA. Unlike for RA, the output schema of LCRA clauses and
queries can be determined only dynamically.

The semantics ! "D of LCRA clauses L and queriesQ is amapping
from relations into relations (known as driving tables for Cypher
and GQL). It is de!ned as follows:

!𝑏"D (R) := R 𝐿𝑀 D(𝑏)
!𝑆𝑄𝑄𝑄"D (R) := {𝑄 ↭𝑄𝑄𝑄∈a!r(R) | 𝑄 ↓ R}
!𝑉𝑅 "D (R) := {𝑄 | 𝑄 ↓ R, 𝑄 |= 𝑅 }

!𝑌𝑄↑𝑄⇔"D (R) := {𝑌𝑄↑𝑄⇔ (𝑄) | 𝑄 ↓ R, 𝑊⇔ ω dom(𝑄)}
!LL⇔"D (R) := !L⇔"D (!L"D (R))
!{Q}"D (R) := R 𝐿𝑀 !Q"D (R)

!Q ′ Q⇔"D (R) := !Q"D (R) ′ !Q⇔"D (R), for ′ ↓ {↗,∈,↖}
6

Every output is a first-normal form relation



PGQ model 

 

Relational algebra over all pattern outputs 

RA(all πΩ)



- Relational operators applied in a pipelined fashion  
- Usually called linear composition 
- A sequence of clauses: each takes a relation and returns a relation 

- while looking at the database 
- It is used heavily (Cypher, GQL, PRQL, to some extent Google’s piped 

SQL) but we — the theory community — neglected it

What about GQL



Pipelined relational algebra (PRA)

C := db relation ∣ πA ∣ σθ ∣ C C ∣ {Q}

Q := C ∣ Q ∪ Q ∣ Q ∩ Q ∣ Q − Q

clauses

queries

Semantics

[∣ S |](R) = R ⋈ S

[∣ πA ∣](R) = πA(R)

[∣ C1 C2 ∣](R) = [∣ C2 ∣]([∣ C1 ∣](R))
[∣ {Q} ∣](R) = R ⋈ [∣ Q ∣](R)



- No, just formulated what’s going on in these 
pipelined languages 

- An easy observation: RA = PRA  
- But it gives us the formal definition of GQL

Did we invent anything new?



GQL model 

P  

Pipelined relational algebra over all pattern 
outputs 

Observation: PGQ = GQL (expressiveness) 

RA(all πΩ)



Let’s prove a few things



- Cypher restriction: Kleene star only applies to labels  
- Easy to model:   instead of arbitrary repetitions  
- Cypher = PRA over such patterns  
- Theorem: Cypher cannot express  

- (Gheerbrant, L, Peterfreund, Rogova)

( ⟶x ⟨a(x)⟩)n..m

(aa)*

Folklore: Cypher doesn’t do all RPQs



- It seems GQL and PGQ have expressivity holes 
- Easy: find paths in which a property value in nodes increases along the path 
- Hard: find paths in which a property value in edges increases along the path 
- Committee solution: add more aesthetically pleasing syntax

The holy grail of ISO/IEC JTC1 SC32 WG3 

MATCH  (:Start)-[:a]->*(:Finish) 
FOR  EACH  SEGMENT (-[x]-> -[y]->) 
REQUIRE  (x.k < y.k)

Dangerous! A very similarly looking 

MATCH  (:Start)-[:a]->*(:Finish) 
FOR  EACH  SEGMENT ((x)->+(y)) 
REQUIRE (x.k != y.k)

is NP-hard in data complexity



- We are back in our convenient database theory world 
- we have a model and can prove a thing or two 

- as in “basic SQL can’t do recursion” 
- Theorem: GQL cannot do the “increasing value in edges query” 

- and many more …. (GLPR’24) 
- caveat: modulo one condition, no back-edges 
- mix of FMT and some formal languages, our stuff 

Did GQL have to extend the language?



- REACHABILITY is complete for NLOGSPACE under FO-reductions 
- GQL defines reachability: (:Start) ->* (:Finish) 
- GQL expresses all FO = relational algebra 
- and yet: 
- Theorem: There are DLOGSPACE queries not expressible in GQL

GQL defies intuition



How does GQL do the “increasing value in edges” query?  
It’s a real language after all

MATCH p = (:Start) ->* (:Finish) 
EXCEPT 
MATCH p = (:Start) ->*  
            ( ->[x]->()->[y]-> WHERE x.k >= y.k) 
               ->* (:Finish) 

all paths

bad paths

difference



Does it have a chance to work? No way!
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(b) ? = 0.2
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(c) ? = 0.3
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(e) ? = 0.5

Figure 3: Timeouts and median running time of Neo4j for &E
"

CASE WHEN acc=−1 THEN −1
WHEN v.val>=acc THEN v.val
ELSE −1 END) AS inc
WHERE NOT inc = −1
RETURN p

We then tested its median running time in Neo4j1, as well as
the percentage of queries that time out (the timeout is set at 300
seconds). When more than 50% of queries time out, the median is
shown as 1ms. Otherwise the running time is computed as the
median over 10 di�erent graphs, with 1 run per graph (and an
additional run 0 to generate the appropriate indices).

The graphs on which tested the query are the random graphs
⌧ (=, ?) [11] on = nodes where an edge exists between two nodes
with probability ? . We considered values ? between 0.1 and 0.5, with
the step 0.1. As for data values in edges, they are also randomly
generated, between 0 and 100. The reason we used this simple
model of synthetic property graphs is that it very convincingly
demonstrates that the above implementation of &E

" has no chance
to work in practice. Even with the smallest probability of 0.1, with a
mere 24 nodes timeout was observed in more than 50% of all cases,
and with just 30 nodes in all cases. As the probability ? increases
(meaning that there are more edges in the graph, and thus the
number of paths increases), the cuto� for everything-times-out
dropped to fewer than 10 nodes!

We add two notes here. Queries &N
< and &E

< can be similarly
expressed, with the bottleneck query matching all paths being
identical to the above, hence resulting in a very similar behavior.
But behavior is not observed with&N

" as it can be expressed directly
with Cypher and GQL pattern matching, without having to �nd an
exponential number of paths.

Other systems. Even though it appears that bypassing expressiv-
ity bounds by generating exponentially many queries should not

1The testing program is written in Go and communicates with Neo4j (v5.18.1) via the
Neo4j Go driver. All tests were executed on a machine with the following con�guration:
16 Intel i7-10700 @ 2.90GHz CPUs, 16GB RAM, Ubuntu 22.04.3 LTS

have a chance to work (as our Neo4j tests con�rm), we wanted to
completely exclude the possibility that this behavior could be due to
one speci�c implementation. Thus, to con�rm the above results, we
ran the same tests on two other systems: Memgraph, a graph-only
database that uses Cypher as its query language, and DuckDB, a
relational database that implements SQL/PGQ as an extension [39].

The results con�rm that the problem is the way the query is
written rather than a particular implementation. In fact, the limits
of Neo4j and Memgraph are almost identical as shown in Fig. 4
which reports numbers of nodes at which 50% and 100% of runs
timeout. However, it must be noted that for the con�gurations that
do not timeout, the performance of Memgraph appears to be much
more e�cient than that of Neo4j, with almost all test cases taking
less than 1 ms. This might be explained by the fact that the timing
procedures are di�erent for the two systems as Memgraph does not
make query execution time available to the driver.

The performance of DuckDB was tested using the SQL/PGQ
query below; it �rst �nds the shortest paths in the graph using the
PGQ pattern matching syntax (the inner query), then checks, in
SQL, that the edge weights appear in sorted order (the outer query).
WITH q1 AS (SELECT *, unnest(path_edges) AS edge_id

FROM GRAPH_TABLE (testgraph
MATCH
p = ANY SHORTEST (n1:N)−[e:E]−>{2,}(n2:N)
COLUMNS (edges(p) AS path_edges) ),

LATERAL (SELECT edges.weight,
edges.rowid FROM edges) )

SELECT path_edges, array_agg(weight) AS weights
FROM q1 WHERE edge_id=rowid
GROUP BY path_edges
HAVING ARRAY_AGG(weight) =

ARRAY_SORT(ARRAY_AGG(weight));

While the results for DuckDB appear to be better than for native
graph systems (it can handle 164 nodes with the lowest proba-
bility ? = 0.1 before running out of memory), there is a simple
explanation for it: the di�erence in path semantics. The only path
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Best on sparse graphs: up to 30 nodes then 100% timeouts; dense graphs: 8 nodes



Cypher has been with us for over a decade  

It must solve real life problems  

What does it do? 



Cypher gives us lists
•nodes(p) — list of nodes of path p 
•relationships(p) — list of edges of path p 
•and reduce (or fold) over them 

“Increasing positive values in edges” query

MATCH p=(:Start) ->* (:Finish) 
WITH [r in relationships(p) | r.k] AS values, p 
WITH ( reduce(res=0, v in values |  
                             CASE v > res 
                             WHEN true THEN v ELSE 0 
                             END ) AS result, p 
WHERE result != 0 
RETURN p



Are lists always innocent?

MATCH (n) 
WITH collect(n.name) AS allNodes 
MATCH path=(:Start)-[*]-() 
WITH path, allNodes, [y IN nodes(path) | y.name] AS nodesInPath 
WHERE all(node in allNodes WHERE node IN nodesInPath) 
AND size(allNodes)=size(nodesInPath) 
RETURN path LIMIT 1

MATCH p = allShortestPaths((:Start)-[:Edge*]->(:Finish)) 
WITH [r IN relationships(p) | r.value] AS values, p 
UNWIND values as valSet 
WITH sum(valSet) AS sum, p 
WHERE sum = $T 
RETURN p

Hamiltonian Path

Subset-Sum



…. and they don’t work (GLR’24)
Dangers of List Processing in !erying Property Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
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Figure 4: Results of the performance tests on Neo4j for the Hamiltonian path problem

Ttract are in NL (and thus PT!"#) and queries not in Ttract are NP-
complete. In fact, relatively few real-life regular patterns fall outside
Ttract which explains the good behavior of the trail semantics in
practice [10]. A rare pattern that does occur in practice and has
a theoretical NP-complete bound is 𝐿→𝑀𝐿→, i.e., a path of edges
labeled by 𝐿 with the exception of a single edge labeled 𝑀 that
occurs anywhere on the path. The existence of such a path between
given start and end nodes is of course easily checked in Cypher:
MATCH p = (:Start)-[:A*]->()-[:B]->(:End)-[:A*]->()
RETURN p
LIMIT 1

Thus, as the !rst test to see whether the culprit of the bad be-
havior of the Hamiltonian path query is lists or trails, we test the
performance of this query looking for 𝐿→𝑀𝐿→ trails.

For the sparsest graphs with 𝑁 = 0.1, where for Hamiltonian
paths we witnessed the 100% timeout rate at 20 nodes, here we
observed a very good performance with queries taking ↑1ms with
out of memory errors appearing on graphs three times larger than
those witnessing timeouts for Hamiltonian path.With the increased
density (𝑁 = 0.3), where Hamiltonian path could not be handled on
graphs with 10 or more nodes, we see again that the 𝐿→𝑀𝐿→ query
performs well on graphs up to three times the size, with similar
↑1ms running times and out of memory errors from 32 nodes.
Finally, for dense graphs (𝑁 = 0.8), we have a similar picture: out of
memory errors on 24 nodes (6 times larger than the largest graph
handled for the Hamiltonian path query), with 50% of timeouts on
21 nodes. Note that for all the runs that did not result in a timeout or
out of memory errors, the execution time was ↑1ms. This very large
gap between the performance of two theoretically NP-complete
queries, one using lists and trails and the other using trails alone,
points to lists as the key reason for poor performance.

To further con!rm that lists, rather than trails, are the real cause
of extremely poor behavior, we test the subset sum query from
Section 5. Recall that this query also encodes an NP-complete prob-
lem but does so with shortest paths rather than trails, and of course
!nding shortest paths is tractable.

The results of the performance tests of the subset sum query
on Neo4j are shown in Figure 5, (a). Recall that in our encoding of
this problem as a line graph with parallel edges, the graph is !xed
(there is no random generation), so we only report the number of
nodes on the x-axis. The y-axis shows the median running time
with the same 5min timeout, and the right bar indicates the per-
centage of timeouts. This time we do 20 iterations for each length.

Although the performance is good for very small graphs, staying
under 2000ms for up to 20 nodes, the exponential nature of the
problem becomes very quickly apparent, eventually reaching the
100% timeout rate on 27 nodes.

Since for this query the only source of complexity is the use
of lists to encode the NP-hard problem subset sum, together with
other results of this section it clearly points to complete inability
of the state-of-the-art graph database engine to handle anything
other than the tiniest of inputs.

7 How realistic are these queries? A user study
While the queries studied here cannot be handled by graph database
engines on realistic size graphs, one can legitimately ask how likely
are they to be written by programmers. They are rather short and
simple in appearance, but they combine several key elements –
pattern matching, the use of lists, and reduce in !ltering conditions
– that perhaps would not all be known to or used with ease by a
moderately advanced programmer. Or perhaps when programmers
write such queries, they will quickly recognize how problematic
they are?

Our goal now is to address these questions. We argue that (1)
programmers are taught to write such queries, (2) they write them
with relative ease; and (3) they do not anticipate the complexity of
such queries.

For the !rst point, we have ample evidence that this style of writ-
ing queries (using lists, reduce, and conditions based on them) is
advocated by various sources programmers refer to, such as books
and multiple blogpost directed to programmers rather than aca-
demics. We list here a few examples. The main textbook reference
on Neo4j and Cypher programming [37] provides examples based
on typical customer problems; one of them is !nding a shortest
delivery route (page 139). As the way to handle such queries, [37]
suggests using lists and reduce both in !lters and outputs. Likewise,
[40] advocates using reduce and lists (speci!cally with Boolean
conditions as we do) in WHERE. Amazon Neptune documentation
[6] explains how to mimic ALL, NONE, and ANY, all essential in our
list queries and su"cient to produce intractable ones. At this point
Neptune supports core Cypher; these features were deemed im-
portant to Amazon to include them in their documentation for
programmers. Another example is [9] which is devoted to teaching
programmers how to use reduce; a similar point is made in [34]
which explains the ubiquitous WITH clause to Cypher programmers,
using reduce over lists as an example. Queries in these references
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Figure 5: Results of the performance tests for the subset sum problem

are similar in structure to the ones we use; in fact some of them are
quite a bit more complex than ours.

While for point (1) it is easy to provide resources that directly
support it, for points (2) and (3) this could only realistically be
done with a user study, to demonstrate that mainstream developers
would be at ease with such features. To test our hypothesis, we
surveyed 45 MSc students who had followed a course on graph
databases and Cypher, and successfully passed an exam. We gave
them six questions, with the !rst two, asking for typical Cypher
MATCH queries, used to evaluate their knowledge of the subject, and
the remaining four delving into lists and reduce. The average grade
for the !rst two questions was 6/10, with many students doing very
well, thus showing their suitability for subsequent questions.

The third question asked them to explain the Hamiltonian path
query we studied here: speci!cally we asked them what it returns,
and how it works. Correct answer was given by 78%, with incorrect
ones occurring mainly among those respondents who did not do
well on basic MATCH queries already.

The next questionwas quite revealing: we asked them to estimate
on how many nodes we will start seeing timeouts. Recall that our
experiements show the cuto" for timeout is well below 100 nodes.
As options we gave them intervals between 10𝐿 and 10𝐿+1 for 𝐿
between 1 and 5 (with the correct answer being 𝐿 = 1). The average
answer in our study is 3.49, i.e., the respondents overestimate the
responsiveness of graph DBMSs on such queries by several orders
of magnitude. Speci!cally, only 7% gave correct answer, while 𝐿 = 2
was chosen by 12%, 𝐿 = 3 by 27%, 𝐿 = 4 by 32%, and 𝐿 = 5 by
22%. Interestingly enough, the three respondents who gave the
correct answer were the very best students in class, i.e., truly expert
users, as opposed to others, who were by and large very competent
programmers.

In question 5 we asked how natural the Hamiltonian path query
was looking to them and if they would feel at ease with writing sim-
ilar ones in a corporate environment. The vast majority of students
found the query perfectly clear (some pointing out that being very
similar to the map and fold operations of programming languages
made this query easy to write and understand). Some suggested
that the query may require too many paths to explore, and therefore
it would be safer to rely on well tested library functions for running
it on larger graphs, although the previous question indicates they
did not correctly estimate where the dangerous zone is. Finally, in
question 6 we asked them to write the subset sum query. A perfectly
correct answer was given by 55% of respondents, while 18% gave
answers that would be correct after some minor debugging, and

only 27% could not solve the problem, again correlating with how
well they have done on basic Cypher queries.

The results of our survey suggest that while true expert pro-
grammers (a small minority) would realize that there might be
performance issues in queries using lists, the majority would not
be aware of the problem, while being perfectly capable of under-
standing and writing problematic queries.

8 Can SQL help?
A case for the use of relational database engines over specialized
graph engines has been made in the context of analytic and con-
current transactional workloads [16, 33, 35]. On the other hand,
the idea that graph databases outperform relational databases for
navigational queries is widespread, even though reservations have
been expressed in the case of complex queries [3, 25]. Following
pointers, as described in [43], can indeed be done in constant time,
thereby avoiding costly joins, which suggests an advantage for
native graph structures.

Since no crystal clear picture emerges from existing studies as to
the advantages of a relational representation or a native graph en-
gine, we look at the problematic queries from the previous sections
and see how SQL DBMSs would handle them. We ran the same set
of tests as for Neo4j on Postgres and DuckDB, to analyze perfor-
mance on DBMSs oriented towards OLTP and OLAP workloads.
All the queries from the previous sections can be expressed in SQL
with recursive common table expressions.

There are multiple ways to encode property graphs in relational
structures. We settle for a simple encoding to minimize the number
of joins and facilitate writing queries. For the 𝑀→𝑁𝑀→ query, which
is intended to show how well the trail semantics is enforced, we
encode edges as ternary relations with string type attributes for
source, target, and label. To store paths, we use the built-in array
type: a path with edges (𝑂0, 𝑃0), . . . , (𝑂𝑀 , 𝑃𝑀 ), where 𝑂𝑁s and 𝑃𝑁s are
sources and targets of edges, is encoded as an array [𝑂0 .𝑃0, . . . , 𝑂𝑀 .𝑃𝑀 ],
where 𝑂𝑁 .𝑃𝑁 is the concatenation of two strings. The recursive part
of the query then constructs 𝑀-labeled paths, by augmenting their
length and arrays representing the paths, while ensuring the trail
condition in the WHERE clause by checking that newly added edges
do not appear among those already on the path. Since the number of
trails is !nite, this recursion terminates. Finally, we concatenate an
𝑀-labeled trail, a 𝑁-edge, and another𝑀-labeled trail while checking
that the two trails do not overlap. The encoding also uses relations
SNode and ENodewith a single attribute node for instantiating start
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… except on tiniest graphs 



Why? Didn’t we design one of these?

that make sense until they don’t?



GQL and PGQ design:  
bird’s eye view of a single transaction

Relational 
Processing

relational

output

graph

outputinput

Pattern 
Matchinginput

What is missing? COMPOSITIONALITY



- Standards go ahead: SQL 2028 with updated PGQ  
- GQL 2029 
- Is GQL there to stay? How many remember CODASYL, NDL?  

- we had standardized graph query languages in the late 1980s! 
- Big debate (see next talk) - and they lost to relational 
- Relational languages are compositional: 

- give me reachability and relational algebra and you have all of 
NLOGSPACE 

- Is the future graph or relational? 

The future



1.8% in 2023 
1.5% Today





Thanks! 

And we are ready to hear about the 
bright relational future


