Things we recently learned
about new graph languages

(GQL and SQL/PGQ)

[L.eonid Libkin

Relational AT and Univ of Edinburgh

Pablo’s workshop, 29 January 2025

What it’s about

A bit of history: from RPQs in the 1980s to SQL/PGQ in 2023 and GQL in
2024

Why GQL development is SQL development backwards?

How can we study GQL? What's missing?

Models of PGQ and GQL

Early expressivity results: starting FM'T trom scratch

What'’s done in real life and why it’s horrible

Existential questions: are graph DBMSs there to stay?

Property Graphs in Industry

-Neodj

They Must Be Queried

Qveremc have their own lanonaoec

- Cypher of Neo4j (and Amazon Neptune, SAP HANA, Memgraph, etc.)
- PGQL of Oracle
- GSQL of Tigergraph etc ...

\S "If only there were a standard” —
Developed by ISO: 2019-2024

International Organization for Standardization - G QL — Gr aph QIFI' y Language
Organisation Internationale de Normalisation - D CVCIOP ed in the same committee as SQL

MexayHapoaHasa Opranusanus no CTaHAAPTU3ALIUU , .
T P P - First query language to become an [SO standard in 35 years

Hence tooc

GQL is not the only language!

- SQL/PGQ: of property graph querying in SQL
- Developed 2018-2023
- Part 16 of the SQL Standard

GQL vs SQL/PGQ

- Pattern matching is

- Turns graphs into tables

-@ -

- InSQL/PGQ:
- works on a graph given as a relational view
- results in a table defined in FROM
- then continue with a SQL query

- InGQL:

-

-

-

works on a property graph
still produces a table
then additional operators modity this table

these can include additional pattern
matching

Timeline on Graph erer anguages

(‘
(‘

R DF

Ancient graph databases: Network model Semantic Web
CODASYL/NDL: 1959—1987 SPARQL 2004—- |
1he first requisite of immortality is death Modern graph querying
Neo4j/Cypher 2011
Graph Query Languages Research SQL/PGQ 2023
1987: RPQs 2RPQs 2UCRPQs GQL 2024 —-
1990: CRPQs 2CRPQs ECRPQs
followed by many others UCRPQs RPDQs
1959 1987 1990 2004 2011 2024

Data Model: Property Graphs

Ll » properties
name: Ankh-Morpork i
+ date: I7 1/2020 ':>_$--owner: pretis g
: . , “.|.isBlocked: false e
' amount: 10M 1 o R U Memeeeaaga
----------------- ! : A :'date: 3/1/2020
1 y properties , amount: 10M !
values <--............ | x _____ ' :- -----
. R+ S et r
owner: Scott » date: 7/1/2020 owner: Mike
; R
isBlocked: false , amount: 5M ' isBlocked: true
\ e ' _
\ --------------- / __________ .

 date: 6/1/2020 : ‘ :

: _ : ' amount: 10M :

:.amount. 10M 1 owner: Jay | =000 P eemeccmccaaaaas '
isBlocked: false

A data model based on graphs where both nodes and edges (relationships) can have

- properties (attributes)
- types (labels)

———— - e

GQL by examples

Always expect to be disappointed and then you won't

The Core:
Graph Pattern Matching

&

graph relation

Selecting Nodes

’- -------

Transfer

--------- Transfer ' date: 3/1/2020 !

E amount: 10M :
[]

g12 \ MATCH (x:Account)
WHERE x.1sBlocked = 'false'

. date: 2/1/2020
' amount: 10M

E41

- = m .
¢

.......... Transfer

/4
date: 7/1/2020 !
]

— N3
. date: 6/1/2020 , ' date: 4/1/2020 ! N4
' amount: 10M : » amount: 10M :

1 1]

E34

Selecting Nodes

Account

'- -------

Transfer

--------- Transfer . date: 3/1/2020 !
E amount: 10M :

L : MATCH (x) « all nodes

.......... Transfer

: Account
' date: 7/1/2020
3

[——- Transfer o™ mmEmEmEm == TranSfer

. date: 6/1/2020 , ' date: 4/1/2020 "
' amount: 10M : + amount: 10M
A

E34

Selecting Edges

—
. date: 3/1/2020 !
E amount: 10M :

U MATCH [e:Transfer]
WHERE e.amount < 10M

date: 7/1/2020
amount: 5M 0

<IN - -iN - - - - - -

E42

. date: 2/1/2020
' amount: 10M

- = m .
¢

E41

#
‘

E42

_______ Transfer o™ mmEmEmEm == TranSfer
|

. date: 6/1/2020 , ' date: 4/1/2020 "
' amount: 10M ' » amount: 10M :
! 1 1

E23

E34

Combining Nodes & Edges into Paths

P Combining nodes and edges:
isBlocked: false
N1 MATCH (x)-[e:Transfer]->(y)
________ A WHERE x.isBlocked = 'false'
Edate: 2/1/2020 : amount: 10M AND vy. 1sBlocked = 'true'

' amount: 10M

AND e.amount <= 5M

N4 E42 N2

E12

:l date: 7/1/2020
amount: 5M

------- Transfer p—mmm ===
1

. date: 6/1/2020 , ' date: 4/1/2020 !
' amount: 10M ! » amount: 10M ,
1 1]

N e rtr e e e e e e, r e .- - ¢« D N m mmmmmmmas mememeomememem?®
E34 \ E23

owner: Jay
isBlocked: false

N3

Combining Nodes & Edges into Paths

Combining nodes and edges:

MATCH (xX)-[e:Transfer]->(vy)
WHERE x.1i1sBlocked = '"false'

Transfer

'—-—-—-—-—'

e Transfer } date: 3/1/2020 1 . ' '
 date: 2/1/2020 | lamount: 10M g AND vy. 1sBlocked = true
' amount: 10M - TR Wi

L E12

E41

'— - - - .-
Account

i date: 7/1/2020
amount: 5M ‘

N4 | E42 | N2

N1 E12 | N2

------- Transfer EEELEEER) Transfer

. date: 6/1/2020 , ' date: 4/1/2020 "
' amount: 10M : + amount: 10M

E23

E34

Combining Nodes & Edges into Paths

N1

Longer paths are defined via ASCII-art :

« MATCH (xX)-[:Transfer]->(y)<-[:Transfer]-(z)
(moeeeeMEN% WHERE y.isBlocked = 'true'

......... Transfer ' date: 3/1/2020

. date: 2/1/2020 + amount: 10M
' amount: 10M . 0 Tomemmemmesmeegesr

. E12

---------- Transfer

7/1/2020 ,

E42
BN i T—
. date: 6/1/2020 , ' date: 4/1/2020 !
' amount: 10M : + amount: 10M :
g3 0 o~ E23 : :
\ Multiple edge options: ~, -, =>, <-
owner: Jay
isBlocked: false
_

N3

Graph Traversal

Specitying graph traversal:

MATCH

--------- Transfer

. date: 3/1/2020 !

 date: 2/1/2020 + amount: 10M
' amount: 10M

! 5 E12

i date: 7/1/2020
amount: 5M]

Graph XPath

.......... Transfer RP QS

g date: 6/1/2020 ' date: 4/1/2020 !
I amount: 10M ! » amount: 10M :
| S ——— Nemeeeecepmammaaa .

E23

Graph Traversal

Specitying graph traversal:

MATCH | / group variable

SO / (x:Account)-[t:iTransfer]->{2,4} (y:Account)
--------- ' date: 3/1/2020 ° .
Edate: 2/1/2020 Eamount: 10M E WHERE x.1sBlocked = 'false'

' amount: 10M

E41
Account S M Account

i date: 7/1/2020

E12 AND y.1sBlocked = 'true'

t

s N3 E34, E42 N2

B2 N2 £03, E34, E42 N2

N 1 E12, E23, E34, E42 N2

. S ceeenes N4 E42, E23, E34, E42 = N2
I|date: 6/1/2020 ' date: 4/1/2020 !

I amount: 10M I + amount: 10M

N R A A A A A
E34 E23

Group variables bind to lists of entities

Graph Traversal

~

ST TR Specitying graph traversal:
isBlocked: false
‘///”}1 MATCH .
- : 1':1:-.""3/:'17'26'26'-"5 (x:Account)—[t:Transfer]—:’.{:{Z , 4}“:(:y:Account)
E‘date: 2‘-/-1-/-2-0-2-0":': iamo;mt: 10M WHERE x.isBlocked = 'false' |~
 amount: Jou : e AND y.isBlocked = 'true'

E41

I ""-----l-- e
owner: Scott + date: 7/1/2020 ,

| owner: Mike ..
isBlocked: false . amount: 5M ; isBlocked: true l RepetlthnS can be {n ’ m}

------------------ _

~

N4 E42 N2 {n,}
{,m}
— e, *
| date: 6/1/2020 | date: 4/1/2020 & +
* amount: 10M : + amount: 10M :
E34 \ """""" E23
Path conditions can be added:
owner: Jay
isBlocked: false —-[t:Transfer WHERE t.amount > 7TM]->{2,4}

N3

Path Variables

-
owner: Aretha

isBlocked: false

/‘Nl MATCH

ondlnn . prrrreren fiis% D = (X WHERE x.owner = 'Scott')
mmmmmaa-] i ' date: 3/1/2020 !

 date: 2/1/2020 ! | amount: 10M ; -[:Transfer]->*

 amount: Jou : e (y WHERE y.owner = 'Mike')
E41

owner: Scott date: 7/1/2020 1 fowner: mike But how can we return all such p ?
isBlocked: false ' amount: 5M : isBlocked: true . .
) e / L (There are infinitely many...)
N4 Ed2 -
date: -6-/-1-/-2-0-2-0- - :late - -4-/i-1-/-26-22)- . -
/o e | ~ GQL uses SIMPLE, TRAIL, SHORTEST
E34 \ E23 to ensure that only finitely many paths match

owner: Jay
isBlocked: false

N3

Path Variables

Account

X MATCH SIMPLE
""""" j Transfer p = (X WHERE x.owner = 'Scott')

date: 3/1\2020 |
| amount: 1oM\} -[:Transfer]->*

1o\ (y WHERE y.owner = 'Mike')

------' ----------

E41

MATCH TRAIL

1L1/202! 3 p = (X WHERE x.owner = 'Scott')
s R | —-[:Transfer]->*

(y WHERE y.owner = 'Mike')

'------

' amount: 18}

E e eeeeeeeee Ny - ===’ Nasmssssssgassasa=

Also possible: SHORTEST, ACYCLIC
E34

Account

N3

Disjunction

As expected, there is OR |

MATCH (xX)-[:Transfer]->(y) WHERE y.1i1sBlocked = 'true'
(x)-[:Transfer]->(y) WHERE x.owner = 'Mike’

"Transters to a blocked account and transters initiated by Mike"

Joins in Patterns

Account City

--------- Transfer

. date: 3/1/2020 !

 date: 2/1/2020 + amount: 10M
' amount: 10M

E41

mmmmmm=e—- Transfer

date: 7/1/2020 !

E42
MATCH (X) -[:Transfer]-> (y),
o MR gmeeeeeee e TRAIL -[:Transfer]->+ (X
» date: 6/1/2020 t date: 4/1/2020 ° (Y) [)] () !
‘-amountloM o ~am0““t10M ______ : (X:ACCOU.nt) = I isIn] —>(C]. :CltY) ’

E34 E23 (y:Account)-[:1sIn]->(c2:C1ity)

WHERE cl.name = c¢2.name
AND y.isBlocked = 'true'

Joins in Patterns

Account City

i . Transfer
mmmmm--- Transfer . date: 3/ 1§

. date: 2/1/2020 ' amount: 10M
' amount: 10M

E41

mmmmmm=e—- Transfer

date: 7/1/2020 !

Account

E42
MATCH (X) —-[:Transfer]-> (vy),

------- Transfer LR T ansSEer o

o 5!!5’ SIS v TRAIL (y) -[:Transfer]->+ (Xx),

‘-amountloM o ~am0““t10M ______ : (X :Account) = I 1sIn]=> (cl: CltY) ’

E34 E23 (y:Account)-[:1sIn]->(c2:City)

WHERE cl.name = c¢2.name
AND y.1isBlocked = 'true'

Joins in Patterns

Account City

P e y . Transfer
Transfer , date: 3/1%2020 !

» date: / 2/1/2020 ' amount: 10M }

' amourit: 10M tEmmmmmmmmmmm T
...... f pem e E12

E41

mmmmmm=e—- Transfer

Edate: 7/1/2020 "
' amount: 5M

Account

E42
\ [MATCH (X) —-[:Transfer]-> (V) ,
------ Transfer REEEEEE eSS T er °
idate: “/1/2020 date: 4/1/2020 | TRAIL (Y) - [:Transfer] —-=>+ (X) 4
2 R amount: 108 (x:Account)-[:1isIn]->(cl:City),
E34 ” E23 (y:Account)-[:1sIn]->(c2:City)

Account

WHERE cl.name = c¢2.name
AND y.isBlocked = 'true'

Joins in Patterns

Account City

TG T

P e y . Transfer
X Transfer . date: 3/1%2020 !
{ 2/1/2020 : E amount: 10M 1}

~------------ ---

E12

. date:

i amourit: 10M

‘

mmmmmm=e—- Transfer

Edate: 7/1/2020 "
' amount: 5M

Account

E42
\ [MATCH (X) —-[:Transfer]-> (V) ,
------ Transfer REEEEEE eSS T er °
idate: “/1/2020 date: 4/1/2020 | IRAIL (Y) - [:Transfer] —->+ (X) 4
St SO amount: 1047 (x:Account)-[:isIn]->(cl:City),
E34 ~ E23 (y:Account)-[:1sIn]->(c2:City)

Account

WHERE cl.name = c¢2.name
AND y.1isBlocked = 'true'

Manipulating Tables

Return: a generalized projection

-
owner: Aretha

isBlocked: false
_

N1 MATCH (x)-[:Transfer]->(y)<-[:Transfer]-(2z)
_________ <o Rlld WHERE y.isBlocked = 'true'
! date: 2/1/2020 : ' amount: 10M RETURN x.owner AS srcl,
, amount: 1on ' ez \ y.owner AS tgt,

E41l Z.owner AS src?2

- é

/4
owner: Scott + date: 7/1/2020 , »| OWner: Mike
isBlocked: false ' amount: 5M i isBlocked: true
L) Mehdccacccacaaaaae L

N4 | N2 | Nf Scott | Mike | Aretha
prrrer e~ N1 | N2 N4 w> Aretha | Mike = Scott
:::z;m: 612;/2020 :::z;m: 41214/2020 : N\~ N2 | N1 Aretha | Mike | Aretha
“E3a T \ """""" E23 N4 | N2 | N4 Scott = Mike = Scott

owner: Jay
isBlocked: false

N3

Let

Account

MATCH (x)-[:Transfer]->(y)<-[:Transfer]-(2z)

prr Transfer WHERE vy.1isBlocked = 'true'
ommm - Transfer . date: 3/1/2020 !
. date: 2/1/2020 amount: 10M LET w = X.owher

- = m .
I 4
1
1
1
1
1
1
1
1
1
1
1
1
A

amount: 10M
N e e e e ep e E12
E41l
N4 | N2 | N1 | Scott
S SEEEEEE R Account)
s date: 7/1/2020 1, N N2 | N4 Aretha
. t: 5M | ”)
e y N N2 | N1 |Aretha
E42
N4 | N2 | N4 @ Scott
—
. date: 6/1/2020 , ' date: 4/1/2020 "
' amount: 10M : + amount: 10M :

E34

Filter

MATCH (x)-[:Transfer]->(y)<-[:Transfer]-(2z)
--------- WHERE vy.isBlocked = 'true'

smmmmeaa Edate: 3/1/2020 !

 date: 2/1/2020 ! Eamount: 10M FILTER NOT (X = Y)
' amount: 10M o trmmmmmmmmmmmEaeseT

e ep—aaas E12

E41l

N4 | N2 | NT
T T EEEES
i date: 7/1/2020 | N\~ N2 | N4
' amount: 5M)
__________________ N N2 | N1
E42
N4 | N2 @ N4
BN i T
. date: 6/1/2020 , ' date: 4/1/2020 "
' amount: 10M : + amount: 10M

E23

E34

Multiple Match-Statements

N6

MATCH (x)-[:Transfer]->(y)<-[:Transfer]-(2z)

EREEEEL MiJS8% WHERE vy.isBlocked = 'true'
e Transfer . date: 3/1/2020 ! .
: date: 2/1/2020 ! | amount: 10M MATCH (w)<-[:1sIn]-(2) \
o : E12
E41 '
N4 | N2 N 1 X N NS
o mmEEEET Account) .
+ date: 7/1/2020 | N N2 | N4 N NG
NS N1 N2 N1
E42
N4 | N2 | N4
Y S—
E date: 6/1/2020 , ' date: 4/1/2020 ! Final result:

' amount: 10M : + amount: 10M
1

E23

E34

Forxiny

MATCH
(usAccount)-[y:Transfer]->{2,4} (v:Account)
WHERE u.isBlocked = 'false'
P Transter | AND v.isBlocked = 'true'
......... . date: 3/1/2020 !
} date: 2/1/2020 ! : amount: 10M FOR X IN vy
\ amount: 10M v TmmmemmmmmmmEsAeetT
e e e e e e memees E12
E41l
y
T N3 E34, E42 N2
+ date: 7/1/2020 | N2 E23, E34, E42 N2
' amount: 5M ﬁr St rOwW
.................. N 1 E12, E23, E34, E42 N2
E42
N4 E42, E23, E34, E42 N2
P Transfer S s Transfer
. date: 6/1/2020 , Edate: 4/1/2020 !
* amount: 10M : + amount: 10M : u y A
‘w31 L TR E23 N3 34, E42 N2 -34
N3 -34, E42 N2 —42

4+ 4 4 3 =11 additional rows

Set Operations

Union, Intersection, Difference
It O, and Q, are GQL queries, then so are
- Q, UNION O,

- (, EXCEPT O,
Since both Q, and Q, produce tables, these operations work

as one would expect in relational DBs

—

How to do research on

GQL and PGQ?

GQL looks like 500+ pages of this:

IWD 39075:202y(E)
16.10 <path pattern expression>

IWD 39075:202y(E) IWD 39075:202y(E) IWD 39075:202y(E) IWD 39075:202y(E)
16.10 <path pattern expression> 16.10 <path pattern expression> 16.10 <path pattern expression> 16.10 <path pattern expression> <+ Editor's Note (number 75)
. : L . . . Path pattern union is not defined using left recursion. WG3:SXM-052 believed that it should be possible to support left
TEMP] <element variable> < > : - ! : .
16.10 <path pattern expression> | { ! <simplified override any direction> would use the tokens <~ and > surrounding a label as originally proposed in WG3:MMX- Dl T?i mmlmulg path length of a <path concatenation> is the sum of the minimum path lengths recursion but declined to do so for expediency. It is a Language Opportunity to support left recursion. See Language
<is label expression> 060. These synonyms might be considered to make the table of edge patterns more harmonious and internally consistent. See ollts operands. Opportunity 3
Function <is or colon> <label expression> Language Opportunity | GQL-212 d) The minimum path length of a <path pattern union> or <path multiset alternation> is the
<is or colon> minimum of the minimum path length of its operands. PPUOP shall not contain a reference to an element variable that is not declared in PPUOP or outside
Speci ttern to match a single path i h % <abbreviated edge pattern> ::= of PSD.
pecify a pattern to match a single path in a property graph. | <eolon> <left arrow> e) Theminimum path length ofa <quantified path primary> is the product of the minimum path !
} :?lﬁ?ar N length of the simply contained <path primary> and the value of the <lower bound>. 11) An <element pattern> EP that contains an <element pattern where clause> EPWC is transformed
Format <element pattern predicate> ::= <9 row> as follows:
<element pattern where clause> } i]f:eis arro;lttllde>> f) The minimum path length of a <questioned path primary> is 0 (zero).
DS ilde right arrow . . .
<path pattern expression> ::= | <element property specification> | <left minus right> g) The minimum path length of a <parenthesized path pattern expression> is the minimum path a) Let EPFbe the <element pattern filler> simply contained in EP.
<path term> Lo <minus sign> length of the simply contained <path pattern expression>. . . :
| <path multiset alternation> Q;?;gt<§:;§:nc:::iilesuse> h (LGB ‘W24 UBBgd leted Editor's Not € Py pattp i b) Let PREFIX be the <delimiter token> contained in EP before EPF and let SUFFIX be the
| <path pattern union> | ¢ weds cleted one Bditor s Hote » h) IfBNT1and BNT2 are two BNF non-terminals such that BNT1 ::= BNT2 and the minimum path <delimiter token> contained in EP after EPF.
<path multiset alternation> := <element property specification> ::= <parenthesized path pattern expression> : length of BNTZ is defined, then the minimum path length of BNT1 is also defined and is the
p(path term> <multiset alternation operator> <path term> <left brace> <property key value pair list> <right brace> <left paren> same as the minimum path length of BNT2. c) LetEVbe the <elementvariable> simply contained in EPF. Let ILE be the <is label expression>
: [<subpath variable declaration>] " . . contained in EPF, if any; otherwise, let ILE be the zero-length string.
[{ <multiset alternation operator> <path term> }...] <property key value pair list> ::= [<path mode prefix>] 7) The <path primary> immediately contained in a <quantified path primary> or <questioned path v 8 &
<path pattern union> ::= <property key value pair> [{ <comma> <property key value pair> }...] <path pattern expression> primary> shall have minimum path length that is greater than 0 (zero). d) EPis replaced by
; ; . [<parenthesized path pattern where clause>]) _ o o)) "
<path term> <vertical bar> <path term> [{ <vertical bar> <path term> }...] <property key value pair> : <right paren> 8) The <path primary> simply contained in a <quantified path primary> shall not contain a <quantified (PREFIX BV ILE SUFFIX EPWC)
<path term> : <property name> <colon> <value expression> boath bl dect) path primary> at the same depth of graph pattern matching.
<path factor> L <subpath variable declaration> ::=
| <§ath concatenation> <edge pattern> ::= <subpath variable> <equals operator> +x Editor’s Note (number 74) ** 12) An <element pattern> that does not contain an <element variable declaration>, an <is label
<full edge pattern> expression>, or an <element patt dicate> is said to by t)
d p : pattern predicate> is said to be empty.
<path concatenation> | <abbreviated edge pattern> <parenthesized path pattern where clause> ::= It may be possible tufpermltnestedf quantifiers, WGS:WOl-I;Mconlameda discussion of a orl aggregates
i at different depths of aggregation if there are nested quantifiers. See Language Opportunity |GQL-03: 13) Each <path pattern expression> is transformed in the following steps:
<path term> <path factor> <full edge patterns ::= WHERE <search condition> path p: P g steps:
<full edge pointing left> . . . S o .)
<path factor> ::= : . . a) Ifthe <path primary> immediately contained in a <quantified path primary> or <questioned
<full edge undirected>
<path primary> g Syntax Rules 9) LetPMAbea <path multiset alternation>. path primary> is an <edge pattern> EP, then EP is replaced by

| <quantified path primary> <full edge pointing right>
a path p Y <full edge left or undirected> a) A <path term> simply contained in PMA is a multiset alternation operand of PMA.

| <questioned path primary> <full edge undirected or right> 1) LetRIGHTMINUS be the following collection of <token>s: <right bracket minus>, <left arrow>, <slash (EP)
<quantified path primary> ::= <full edge left or right> minus>, and <minus sign>. b) Let NOPMAbe the number of multiset alternation operands of PMA. Let OPMAy, .., OPMAnopma NOTE 135 — For example,
<path primary> <graph pattern quantifier> <full edge any direction> NOTE 132 — These are the tokens -, <-, /- and -, which expose a minus sign on the right. be an enumeration of the operands of PMA.
>
<questioned path primary> <full edge pointing left> ::= i X 2) LetLEFTMINUSbe the following collection of <token>s: <minus left bracket>, <right arrow>, <minus c) Any <subpath variable>s declared by <subpath variable declaration>s simply contained in
<path primary> <question mark> <left arrow bracket> <element pattern filler> <right bracket minus> slash>, and <minus sign>. the multiset alternation operands of PMA shall be mutually distinct. becomes:
NOTE 131 — Unlike most regular expression languages, <question mark> is not equivalent to the quantifier {0,1}: the <full edge undirected> : NOTE 133 — These are the tokens -[, ->, -/, and -, which expose a minus sign on the left. <minus sign> itself is in both d) LetSOPMAy, .., SOPMAyopp4 be implementation-dependent (UV008) <identifier>s that are (=>) {0/}
quantifier {0,1} exposes variables as group, whereas <question mark> does not change the singleton variables that it exposes <tilde left bracket> <element pattern filler> <right bracket tilde> RIGHTMINUS and LEFTMINUS. g L N . Lo .
to group. However, <question mark> does expose any singleton variables as conditional singletons. .) mutually distinct and distinct from every <element variable>, <subpath variable> and <path which in later transformations becomes:
<full edge pointing right> ::= 3) A<path pattern expression> shall not juxtapose a <token> from RIGHTMINUS followed by a <token> variable> contained in GP.
<path primary> ::= <minus left bracket> <element pattern filler> <bracket right arrow> from LEFTMINUS without a <separator> between them.) E 1 (one) < i < NOPMA (0 => 0) {0}
<element pattern> .) . . . e or every i, 1 (one) <i< .
| <parenthesized path pattern expression> <full edge left or undirected> ::=))) o 13t (’“}"‘N‘SE' ‘hetF"t"“d‘e"a“:“ of the two tokens would include the sequence of two <minus sign>s, b) Iftwo successive <element pattern>s contained in a <path concatenation> at the same depth
| <simplified path pattern expression> <left arrow tilde bracket> <element pattern filler> <right bracket tilde> which is a <simple comment introducer>. Case: of graph pattern matching are <edge pattern>s, then an implicit empty <node patterns is
<element pattern> <full edge undirected or right> 4) A <path pattern expression> that contains at the same depth of graph pattern matching a variable i) IFOPMA;isa <parenthesized path pattern expression> that simply contains a <subpath inserted between them.
<node pattern> <tilde left bracket> <element pattern filler> <bracket tilde right arrow> Flsu:n:;sf;e'[l;'[a <;r9§;;;(}2i;tza;l;t];lr;:;?r». a <path multiset alternation>, or a <path pattern union> variable declaration>, then let OPMAX; be OPMA;. &) Ifan edge pattern EP contained in a <path term> PST at the same depth of graph pattern
| <edge pattern> . is a possibly vari n. dge | r h
<full edge left or right> ::= ii i i i matching is not preceded by a <node pattern> contained in PST at the same depth of graph
. : : ii) Otherwise, let OPMAX; be the <parenthesized path pattern expression> g p y p)% grap
<node pattern> : <left arrow bracket> <element pattern filler> <bracket right arrow> 5) A<path pattern expression> that is not a possibly variable length path pattern is a fixed length path pattern matching, then an implicit empty <node pattern> VP is inserted in PST immediately

<left paren> <element pattern filler> <right paren> <full edge any directions : pattern. (SOPMA; = OPMA;) prior to EP.
<element pattern filler> ::= <minus left bracket> <element pattern filler> <right bracket minus> 6) The minimum path length of certain BNF non-terminals defined in this Subclause is defined . X . .
[<element variable declaration>] recursively as follows: f) PMAis equivalent to: d) Ifan ez_ige pattern EP contained in a <path term> PS_T at t_he same depth of graph pattern
[<is label expression>] *+ Editor’s Note (number 73) ** b b length of 4 | | matching is not followed by a <node pattern> contained in PST at the same depth of graph
i a The minimum path length of a <node pattern> is 0 (zero). OPMAXy | ... | OPMAXyopua i i ici < > isi i i i
[<element pattern predicate>] In the BNF for <full edge any direction, the delimiter tokens <~[]~> have been suggested as a synonym for -[- as part of) p g p: (zero) p;lttterEr;)matchmg, than an implicit empty <node pattern> VP is inserted in PST immediately
¢« WG3:W24-022 » Feature GA07, “Undirected edge patterns”. The synonym for the <abbreviated edge pattern> - (<minus sign>) would then be b) The minimum path length of an <edge pattern> is 1 (one). 10) A <path term> PPUOP simply contained in a <path pattern union> PSD is a path pattern union arter &P.
<element variable declaration> ::= <> the synonym for <simplified defaulting any direction>would use the delimiter tokens <~/ /~>and the synonym for operand of PSD. NOTE 136 — As a result of the preceding transformations, a fixed length path pattern has an odd number of
<element pattern>s, beginning and ending with <node pattern>s, and alternating between <node pattern>s
and <edge pattern>s.
221 222 223 224

IWD 39075:202y(E) 225

16.10 <path pattern expression>
IWD 39075:202y(E)
16.10 <path pattern expression>

ii) Otherwise, PP exposes EV as an effectively bounded group variable. IWD 39075:202y(E)
IWD 39075:202y(E) 16.10 <path pattern expression>
16.10 <path pattern expression> NOTE 139 — This case expresses an implicit join on EVwithin PPC. Implicit joins between conditional NOTE 142 — That is, even if PPE exposes EV as an effectively unbounded group variable, PP still
IWD 39075:202y(E) singleton variables, group variables, or subpath variables are forbidden. exposes EV as effectively bounded, because in this case PPis required to be a selective <path pattern>,
16.10 <path pattern expression> i - » . . . 8) Without Feature G038, “Parenthesized path pattern expression”, conforming GQL language shall
h) If BNF1and BNF2 are two BNF non-terminals such that BNF1 ::= BNF2 and the minimum node ii) Otherwise, EV shall only be exposed by one of PT or PF. In this case EV is exposed by i) If BNT1 and BNT2 are two BNF non-terminals such that BNT1 ::= BNT2 and BNT2 exposes EV, not contain a <parenthesized path pattern expression>.
h) IfBNF1and BNF2 are two BNF non-terminals such that BNF1 ::= BNF2 and the minimum node count of BNFZ is defined, then the minimum node count of BNF1 is also defined and is the PPCin the same degree that it is exposed by PT or PF. then BNT1 exposes EV to the same degree of exposure as BNTZ.
count of BNF2 is defined, then the minimum node count of BNF1 is also defined and is the same as the minimum node count of BNF2. . . . 9) Without Feature G041, “Non-local element pattern predicates”, in conforming GQL language, the
the mini od t of BNF2. d) Ifa <path pattern union> or <path multiset alternation> PA declares EV, then *= Editor’s Not ber 76) ** <element pattern where clause> of an <element pattern> EP shall only reference the <element
same as the minimum node count o . 15) The <path pattern expression> simply contained in a <path pattern> shall have a minimum node itor’s Note (number 76) variable> declared in EP.
15) The <path pattern expression> simply contained in a <path pattern> shall have a minimum node count that is greater than 0 (zero). Case: WG3:W04-009R1 defined “effectively bounded group variable” but did not use the definition. The definition will
count that is greater than 0 (zero). NOTE 137 — The minimum node count is computed after the syntactic transform that adds implicit node patterns. i) If every operand of PA exposes EV as an unconditional singleton variable, then PA Zfo‘f:3:::;%‘116‘?];}:fr‘:éF::S;ﬁ:iws%i?ﬁ;i:Eﬁ?ﬁ‘;ﬁ:fﬁ’:z&g&iﬁEfz’:j@z Eﬁ?fstatl?g thz:;f}?an 10 Wltfhi)lutdFeature GO43i]"C(.)mplete Ffu}l]l Egge Pattzvns”, vconformflnﬁ GC?L]angugge lShé“ not cofntle
NOTE 137 — The minimum node count is computed after the syntactic transform that adds implicit node patterns. ___ Thusasingle <edge pattern> is a permitted <path pattern> because it implies two <node pattern>s. exposes EV as an unconditional singleton variable. B contained in an aggregated argument of an <agregate fanctions. See Poseible Problem a <full edge pattern> that is not a <full edge any direction>, a <full edge pointing left>, or a <ful
Thus a single <edge pattern> is a permitted <path pattern> because it implies two <node pattern>s. « WG3:W24-022 » . > edge pointing right>.
«WG3:W24-022 » ii) If at least one operand of PA exposes EV as an effectively unbounded group variable, 11) Without Feature G044, “Basic Abbreviated Edge Patt " forming GQL1 hall not
16) An<elementvariable> EV contained in an <element variable declaration> GPVD is said to be declared then PA exposes EV as an effectively unbounded group variable. Ithout Feature » basic reviate ge Fatterns , conforming anguage shall nof
16) An<elementvariable> EV inedin an <el variable declaration> GPVD is said to be declared by GPVD, and by the <element pattern> EP that simply contains GPVD. The <element variable> is P Y group 23) IfBNTisaBNF nonl-termma! that exposes a graph pattern v?rlable GPV with a degree of exposure contain an <abbreviated edge pattern> that is a <minus sign>, <left arrow>, or <right arrow>.
by GPVD, and by the <element pattern> EP that simply contains GPVD. The <element variable> is the name of an element variable, which is also declared by GPVD and EP. If GPVD simply contains iii) Ifatleast one operand of PA exposes EV as an effectively bounded group variable, then DEGREE, then BNT is also said to expose the name of GPV with degree of exposure DEGREE. 12) Without Feature G045, “Complete Abbreviated Edge Patterns”, conforming GOL hall not
Erl}ze;:m: Of:*; Pt Vanablel' — a]Sbol deEc]l/ared AR lflpl HFGPVD simply contains TEMP, then EVis a temporary element variable. EV is a primary variable. PA exposes EVas an effectively bounded group variable. 24) A <parenthesized path pattern where clause> PPPWC simply contained in a <parenthesized path) colntaoiz aneial{yrbereviatéd e(iin;g ;a:tern:ixlaat ies notgaeq:ineursn:i?g;iniigf?lanrgrov& oarngriag%et ;r:ov?:
, then is a temporary element variable. EV is a primary variable. "y) .
P ' Y primary) o NOTE 138 — Element bindings to temporary element variables are removed prior to set-theoretic deduplication of iv) Otherwise, PA exposes EV as a conditional singleton variable. pattern expression> PPPE shall not reference a path variable.
222}51 132;5‘151"8?2;23‘3252"1geg‘Pfrf':ylflez‘;’;;f:sgﬁﬁ]Lef"s‘ﬁgfﬂﬂ:‘:z'{"zSe;,l;}L‘::’::'cfgfd‘r‘:l:ﬂ;’;": matches. See GR 10) of Subclause 16.8, “<graph pattern>"and GR 14) of Subclause 212, “Machinery for graph pattern ' 13) Without Feature G046, “Relaxed topological consistency: Adjacent vertex patterns”, in conforming
matches. .8, "<graph p: 3 'y for graph p: matching' e) Ifa <c!uagt_ified path primary> QPP declares EV, then let PP be the <path primary> simply ** Editor’s Note (number 77) ** Gth.]‘llEngu?ge, betweelllany two <n0d<le p;attenps conta‘in:d in a <path pattern expression> there
. - 17) Prior to the application of syntactic transformations, conforming GQL-language shall not contain contained in QPP. shall be at least one <edge pattern>, <left paren>, or <right paren>.
17). Prior to the application of syntactic transformations, conforming GQL-language shall not contain) Prior 1o the \Il]apriable declaryation> e ooy TEgM}g guag WG3:W04-009R1 recognized that a graph query may have a sequence of MATCH clauses, with the bindings of one) b Jaxed topol | " "
an <element variable declaration> that immediately contains TEMP.) Case: MATCH clause MC1 visible in all subsequent MATCH clauses in the same invocation of <graph table>, and that it should 14) Without Feature G047, “Relaxed topological consistency: Concise edge patterns”, in conforming
))))) : : ; . 3 be permissible to reference such variables in any <parenthesized path pattern where clause> simply contained in a GQL language, any <edge pattern> shall be immediately preceded and followed by a <node pattern>.
18) An element variable that is declared by a <node pattern> s anode variable. An element variable 18) An element vatiable that is deciared by a <node patteli» is anode variable. An element variable i) IfQPP contains a <graph pattern quantifier> that is a <fixed quantifier> or a <general subsequent MATCH clause MCZ. The relevance of this LO to GQL needs to be investigated. See Language Opportuni QLlanguage, any <edge p VP 4 P
hat is declared b 4 s an edge variabl that is declared by an <edge pattern> is an edge variable. 8raph p: q q 8 Q & guage Opportunity] .) . -)
thats declared by an <edge pattern> is an edge variable. «WG3:W24-022 » quantifier> that contains an <upper bound> and PP does not expose EV as an effectively b 15) Without Feature G048, “Parenthesized Path Pattern: Subpath variable declaration”, conforming
« WG3:W24-022 » : unbounded group variable, then QPP exposes EV as an effectively bounded group GQL language shall not contain a <parenthesized path pattern expression> that simply contains a
19) The scope of an <element variable> EV that is declared by an <element pattern> EP is defined as 19) The scope of an <element variable> EV that is declared by an <element pattern> EP is defined as variable. <subpath variable declaration>.
follows. If EEIQS a;emporarg eleme"tf‘?‘;'.ab:f' then the scope O;EV 1S the;pr:jgrmos;l<path term> fo“‘;ws',lf EEI;{S at\htemqoratrﬁ/ elementf\?‘;{atéte, Fhen the stcgpe O;Evii thegpn;rm;)s;;gath tterlml> i) If QPP is contained at the same depth of graph pattern matching in a restrictive <par- General Rules 16) Without Feature G049, “Parenthesized Path Pattern: Path mode prefix”, conforming GQL language
g;)mammg s otherwise, the scope of EVis the innermost <graph pattern binding table> containing Ic;l),n aining £F; otherwise, the scope of EV1s the Innermost <graph pattern binding table> containing enthesized path pattern expression>, then QPP exposes EV as an effectively bounded shall not contain a <parenthesized path pattern expression> that immediately contains a <path
20) A ' bpath variable> SV contained i bpath variable declaration> SVD is said to be declared 20) A l bpath ble> SV d bpath ble decl. SVD d to be declared group variable None. mode prefi
<subpath variable> SV contained in a <subpath variable declaration> is said to be declare <subpath variable> SV contained in a <subpath variable declaration> is said to be declare NOTE 140 — Thi ding definition i lied after thy tactic transf tion to i that . . . s “ : . ” :
by SVD, and by the <parenthesized path pattern expression> PPPE that simply contains SVD. SV is by SVD, and by the <parenthesized path pattern expression> PPPE that simply contains SVD. SV is every <path mode prafix is a the head of a <parenthesizod path pattern expressions, NOTE 143 — The evaluation of a <path pattern expression> is performed by the General Rules of Subclause 21.3, “Evaluation 17) WithoutFeature G050, “Parenthesized Path Pattern: Where clause”, conforming GQL language shall
Ty <p: p p path p p! . hesized path here cl
the name of a subpath variable, which is also declared by SVD and PPPE. the name of a subpath variable, which is also declared by SVD and PPPE. i) Otherwise, QPP v ectively unbounded b of a <path pattern expression>". not contain a <parenthesized path pattern where clause>.
. . iii erwise, exposes EV as an effectively unbounded group variable. . p . X g . " .
21) IfEPisan <element pattern> that contains an <element pattern where clause> EPWC, then EP shall 21) IfEPisan <element pattern> that contains an <element pattern where clause> EPWC, then EP shall 18) Without Feature G051, “Parenthesized Path Pattern: Non-local predicates”, in conforming GQL
simply contain an <element variable declaration> GPVD. simply contain an <element variable declaration> GPVD. f) If a <questioned path primary> QUPP declares EV, then let PP be the <path primary> simply Conformance Rules language, a <parenthesized path pattern where clause> simply contained in a <parenthesized path
22) 1£EVis an element variable or subpath variable, and BNTis an instance of a BNF non-terminal, then contained in QUPP. pattern expression> PPPE shall not reference an <element variable> that is not declared in PPPE.
the terminology "BNT exposes EV” s defined as follows. The full terminology is one of the following: 22) iﬁElt/'s an elleme'fl;}lva.;‘able or SEu]l;,p.at: Vfa"adble'fa'ﬁd BN_TFLS af" l'l“:tam.:e Olfa BNE “on'ft::";"l'fl' then Case: 1) Without Feature G030, “Path Multiset Alternation”, conforming GQL language shall not contain a
“BNT exposes EVas an unconditional singleton variable”, “BNT exposes EV as a conditional singleton "B?\l;:(mggeggEyVas anixrfc‘ls:gitionl;l sien";:toilsv:rigmse." "BP;V;exe;r:é:g"?agz,:cz:?iiionzl zino‘?gt‘:)gﬁ : <path multiset alternation>.
variable”, “BNT exposes EV as an effectively bounded group variable” or “BNT exposes EV as an bl 3 “BNT £V ffecti e 1y bounded o 'pbl " or “BNT EV & i) If PP exposes EV as a group variable, then QUPP exposes EV as a group variable with . W . . . - .
effectively unbounded group variable”. The terms “unconditional singleton variable’, “conditional V?fnat_ ef b EXPd‘JS:l?S asan ef bElH:"l;E}!lyt ounde Em‘g?t‘_'am} e (ljrt ?ﬂ;‘;ﬁ?ﬁ gﬁtfm I the same degree of exposure. 2) Without Feature G031, “Path Multiset Alternation: variable length path operands”, in conforming
singleton variable”, “effectively bounded group variable”, and “effectively unbounded group variable’ effectively unbounded group variable'. The terms “unconditional singleton variable’, “conditional GQL language, an operand of a <path multiset alternation> shall be a fixed length path pattern.
are called the degree of exposure. singleton variable”, “effectively bounded group variable’, and “effectively unbounded group variable’ ii) Otherwise, QUPP exposes EV as a conditional singleton variable. i . . i
. - are called the degree of exposure. 3) Without Feature G032, “Path Pattern Union”, conforming GQL language shall not contain a <path
a) An<element pattern> EP that declares an element variable EV exposes EV as an unconditional) hat decl) abl ditional g) A<parenthesized path pattern expression> exposes the same variables as the simply contained pattern union>.
singleton. a) .;\:] <12§::em pattern> EP that declares an element variable EV exposes EV as an unconditional <path pattern expression>, in the same degree of exposure.
b) A <parenthesized path pattern expression> PPPE that simply contains a <subpath variable gleton. NOTE 141 — A restrictive <path mode> declared by a path pattern expressions makes variables 4) Without Feature G033, “Path Pattern Union: variable length path operands”, in conforming GQL
declaration> that declares EV exposes EV as an unconditional singleton variable. PPPE shall b) A <parenthesized path pattern expression> PPPE that simply contains a <subpath variable effectively bounded, but it does so even for proper subexpressions within the scope of the <path mode> and language, an operand of a <path pattern union> shall be a fixed length path pattern.
not contain another <parenthesized path pattern expression> that declares EV. declaration> that declares EV exposes EV as an unconditional singleton variable. PPPE shall has already been handled by the rules for <quantified path primary>.

. . 5) Without Feature G035, “Quantified Paths”, conforming GQL language shall not contain a <quantified

c) Ifa<path concatenation> PPC declares EV then let PT be the <path term> and let PF be the If a <path pattern> PP declares EV, then let PPE be the simply contained <path pattern path primary> that does not immediately contain a <path primary> that is an <edge pattern>.
<path factor> simply contained in PPC. c) Ifa<path concatenation> PPC declares EV then let PT be the <path term> and let PF be the expression>.

<path factor> simply contained in PPC.

not contain another <parenthesized path pattern expression> that declares EV. h)

6) Without Feature G036, “Quantified Edges”, conforming GQL language shall not contain a <quantified

Case:
path primary> that immediately contains a <path primary> that is an <edge pattern>.

Case:
i) [afsEalr/]';;:g’s;i‘gof;l"s‘i:"l'::;g‘gm;ﬂ;'Esl;}:‘gﬁ E};Pl;):ha’;zgngts@atr};;glgv is exposed ase i) If PPE exposes EV as an unconditional singleton, a conditional singleton, or an effectively
8 v ERe P : i) If EV is exposed as an unconditional singleton by both PT and PF, then EV is exposed bounded group variable, then PP exposes EV with the same degree of exposure.
as an unconditional singleton by PPC. EV shall not be a subpath variable.

7) Without Feature G037, “Questioned Paths”, conforming GQL language shall not contain a <questioned
path primary>.

227

229 230

Let’s try to formalize.

Attempt 1: Pattern matching (PODS’23)

Node pattern

Edge pattern

Patterns

Conditions

Queries

Pattern calculus in a nutshell

U = (X A) match an 7-labeled node, assign to a variable
Both x and ¢ are

x:7 x:l x:l

a.— — ‘) ‘ . ¢ -labeled edge directed left/right/any-directed, assign to a variable
r=v | a | an | #+x | " | #n(0) 0<n<m<
node edge concatenation union repetition selection with condition

n-to-m times

O =x.a=c | x.a=y.b | vO | OANO | 6O

key-value comparisons Boolean combinations
Qi=orn | p=ocn| Q0
ensure finitely name in
many paths matched]

path

[t needs a type system

x ¢ var(s)
, : ; X 24 = :
(x) F x : Node (x :f) + x: Node &5k x : Edge x - x : Edge x =pmtx:Path
TkZ:T TkZ:T TkHZ:T Z#X
a™ ™+ z: Group(7) PTFZ:T X=prtz:T
trx:7 1€ {Node Edge} trx:t nry:7 1,7 € {Node, Edge}
7T+ x.a=c: Bool 7+ x.a=1y.b:Bool
m+0:Bool m+ 8 :Bool m+0:Bool m+ 8 :Bool 7+ 6 :Bool m+0O:Bool mrz:7T
TkFOAO :Bool 7F6VE :Bool 7+ =6 : Bool TPy Fz:T
T FZ:T Mokz:T mFz:T ot z: Maybe(r) 1 Fz:Maybe(r) mbz:T
m+mbz:T 71 + 2 + z : Maybe(7) 71 + 2 + z : Maybe(7)
mbrz:t z¢var(m) my b z:T 2z ¢ var(m)
m +mokz:T? m +mo bz T?
mrz:t mrz:7T 7€ {Node Edge} mbrz:7T 2z¢var(m) mybz:T 2z ¢ var(m)
M1 FZ2:T T2 FZ:T M1 FZ:T
QiFz:7 QoFz:7 7€ {Node Edge} OQi+z:17 z¢var(Q2) Qs Fz:17 2z ¢var(Q)
Q1,Q2Fz:7 01,02+ z:7 Q1,Q2Fz:T

Problems

Could prove a few things but not much
A bit too heavy for definition 1

Only covers pattern matching

Next step: add relational operators

ICDT23:

Complete Formalization

A Researcher’s Digest of GQL

Nadime Francis &
Laboratoire ¢’Informatique Gaspard Monge,
Université Gustave Eiffel, CNRS, France

Paolo Guagliardo =
School of Informatics,
University of Edinburgh, UK

Victor Marsault & &

Laboratoire c¢’Informatique Gaspard Monge,

Amélie Gheerbrant =
IRIF, Université Paris Cité, CNRS,
Paris, France

Leonid Libkin &
University of Edinburgh, UK
Relational AT, France

ENS, PSL University, France

Wim Martens &

Universitat Bayreuth, Germany

PATH PATTERN ForzeVars, feL,0<n<meN:

(descriptor) d := x :f{ WHERE ¥ z, :£, and WHERE @ are optional
(path pattern) =« := (4) (node pattern)
| =[8]1-> | <=[6]- | ~[6]~ (edge pattern)
| wm (concatenation)
| wlm (union)
| w WHERE ¢ (conditioning)
| w{n,m} (bounded repetition)
| w{n,} (unbounded repetition)

Université Gustave Eiffel, CNRS, France

Filip Murlak &

University of Warsaw, Poland

Liat Peterfreund =
Laboratoire d’Informatique Gaspard Monge,
Université Gustave Eiffel, CNRS, France

Alexandra Rogova &= Domagoj Vrgoc =&
IRIF, Univereité Paris Cité, CNRS, Pzris, France University of Zagreb, Coratia
Pontificia Universidad Catélica de Chile,

Santiago, Chile

Data Intelligence Institnte of Paris, Inria

—— Abstract

GQL (Graph Query Language) is being developed as a new ISO standard for graph query languages
to play the same role for graph databases as SQL plays for relational. In parallel, an extension of SQL
for querying property graphs, SQL/PGQ), is added to the SQL standard; it shares the grapa pattern
matching furctionality with GQL. Both standards (not yet published) are hard-to-understand
specifications of hundreds of pages. The goal of this paper is to present a digest of the language
that is easy for the research community to understand, anc thus to iritiate research on these future
standards for querying graphs. The paper concentrates on pattern matching features shared by GQL

and SQL/PGQ), as well as querying facilities of GQL.

2012 ACM Subject Classification Theory of computation — Database theory; Theory of computation
— Database query languages (principles); Information systems — Graph-based database models;
Information systems — Structured Query Language

Keywords and phrases GQL, Property Graph, Query Language, Graph Database, Pattern matching,
Multi-Graph

EXPRESSION and CONDITION For z € Vars, £ € L, a € K, ¢ € Const:

(expression) X =z | z.a|c¢

(condition) 0 ;= x=x | x<x | x ISNULL
|z : £ | EXISTS {Q}
|@OREG | O AND @ | NOT 6

GRAPH PATTERN For z € Vars:

(path mode) g := (ALL | ANY) [SHORTEST] [TRAIL | ACYCLIC]
pole=] = | ILII

(graph pattern) IT :

CLAUSE and QUERY Fork>0,£>1, and z,y,xy,...,2 € Vars, and G € G:

(clause) C := MATCH II
| LETz = x
| FOR z IN y
| FILTER 0

(linear query) L:=USEGL
| CL
| RETURN x; AS zy, ..., Xk AS z
(query) Q =1L
| USE G {Q, THEN Q; --- THEN Q/}
| Q INTERSECT Q | Q UNION Q | Q EXCEPT Q

<> Z<w»

1:12

A Researcher’s Digest of GQL

[-11->] = { (path(src(e), e, tgt(e), () | e € EF }
[-[z1->], = { (path(src(e), e, tgt(e)), (z — €)) ! ec EY }
[-C:0->], = { (path(src(e), e, tgt(e)), () ‘ e € ES, (e 1ab®(e) }

Other cases of the forward edge patterns are treated by moving the label and conditions
outside of the edge pattern, just as for node patterns. Backward edge patterns and undirected
edge patterns are treated similarly, with the base cases given below.

[<-01-], = { (path(tgt(e), e, src(e)), () { ec ng }

e G
-0+ = { (pathus, .2, 0. pathtus), 0) | € © 5 }

{uy,us} = endpoints® (e)

Semantics of Concatenation, Union, and Conditioning

(pi,,ui) € [[Tri]]G for ¢ = 1,2
[mim2]g S (p1-p2, 1 X p2) | p1 and ps concatenate
M1~ H2
Note that since 7 75 is assumed to be well-formed, all variables shared by m; and 7y are
singleton variables (Condition 2 in Section 3). In other words, implicit joins over group and
optional variables are disallowed; the same remark will also apply for the semantics of joins.

» Remark 9. Consider the pattern
(x) (-[:Transfer]->()-[:Transfer]->(x)1){1,}

This pattern is disallowed in GQL because the leftmost x is a singleton variable, whereas the
rightmost x is a group variable. In GQL philosophy, the leftmost x will be bound to a node
and the rightmost x will be bound to a list of nodes, which is a type mismatch.

[P me]e = {(pnU) | (pp) € [l Ulma]e }
where ¢/ maps every variable in var(my | m2) \ Dom(u) to null. (Recall that var maps a pattern
to the set of variables appearing in it.)

[VHERE 6], = { (p 1) € [l | [6]% = true }

Semantics of Repetition
[rin.m¥g = [l

[rtn. Yo = Ul

Above, for a pattern 7 and a natural number 7 > 0, we use [[W]]lG to denote the i-th power of
[7] s, which we define as

[7]% = { (path(u), u) | u is a node in G'}

where p binds each variable in Dom(sch(7)) to list(), that is, the empty-list value; and

1 o . . ! (plwu’l)v"'v(pnvﬂi)e[[ﬂ]]c
Vi >0 [[W]]G—{(pl e Dis i) ‘ph”.,pi concatenate

where 1/ binds each variable in Dom(sch()) to list(u1(z),. .., pi(z)). Recall that sch is
defined in Section 3.

Semantics

N. Francis et al.

» Remark 10. Since m{n,} is assumed to be well-formed, it holds ||7||min > 1. A simple
induction then yields that each p; in the definition above has positive length. A second
induction then yields that, given a path p, there are finitely many assignments p such
that (p,) € [r{n, m}],. This fact is crucial to have a finite output in the end.

For instance, consider a graph with a single node u and no edges, and the pattern (a){0,}
which is not well-formed (the minimal path length of () is 0). For every i, the set [(2a)]
contains (path(u), u;) where p; = (a — list(u,...,u)); hence the union in the definition of

~—
¢ times
[7{n,}], above would not only yield an infinite number of elements, but all of them would
be associated to the same path. As a result a graph pattern such as ALL SHORTEST (a){0,}
would have infinitely many results.

4.3 Semantics of Graph Patterns

We now define the semantics of graph patterns. We first fully define atomic graph patterns
and then define their joins.

[z=7]g={(p,nU{z—p}) | (p,p) € [7]g }

In the following we denote by 7 a graph pattern that never uses the “,” operator, hence it is
of the form p x= m, where p is a path mode, x is a variable, 7 is a path pattern, and “x=" is
optional.
[TRAIL 7] = { (p,) € [7] | no edge occurs more than once in p }
ACYCLIC 7|~ ={ (p,) € |7 no node occurs more than once in p
[G H G
(p/7:u’/) € [[ﬁ]]G
[SHORTEST 7, = (p,) € [7]g | len(p) = min ¢ len(p’) | src(p’) = src(p)
tgt(p’) = tgt(p)
[ALL 7] = [7]g

[avy 7], = |J {any({ (1) | (0,) € [7] , endpoints(p) = (s,t) }}
(s,t)eX

where X = { (src(p),tgt(p)) | (p, 1) € [7] } and any is a procedure that arbitrarily returns
one element from a set; any need not be deterministic.
L, o] = { (P1 X D2, 1 ™ p2) | (Pis pi) € 1] for i =1,2 and py ~ o }

Here, p1 = (pl,p?,...,p}) and po = (p3,p3,...,ph) are tuples of paths, and p; x pp stands
for (pi,p?,...,p5,p3,p3,...,pb). Just as it is the case of concatenation, since II;, I, is
well-formed, implicit joins can occur over singleton variables only.

4.4 Semantics of Conditions and Expressions

The semantics [x]/ of an expression x is an element in V that is computed with respect to
a binding p and a graph G. Intuitively, variables in x are evaluated with p and we use G to
access the properties of an element. It is formally defined as follows.

le]l =¢ for ¢ € Const

[2]% = u(z) for = € Dom(u)

[o.a]l’ = {propG(u(fv)ya) if (u(x), a) € Dom(prop®) for 2 € Dom(u).a € K

null else if p(z) € (N UEIUE,)

1:13

ICDT 2023

1:14

A Researcher’s Digest of GQL

» Remark 11. Recall that different graphs may share nodes and edges. Hence the condition
(u(x),a) € Dom(prop®), above, does imply that u(x) is a node or an edge in G, but does
not imply that it was matched in G.

The semantics [0]f of a condition 6 is an element in {true, false, null} that is evaluated with
respect to a binding p and a graph G, and is defined as follows:

null if [x1]% = null or [x2]f = null
[xi = xelo = true if Dl = Dl # nul

false otherwise

(null—if [x1]% = null or [x2]% = null

[x1 < x2]e = Qtrue else if [xa]l < 2]t
false otherwise

true if [x]7 = null
false otherwise

[x I8 NULL]Y, =

L] =
bx:flo false else if [x]l; € N UE U E,

[61 AND 65]1 = [64]5 A [62]
[61 OR 62]¢ = [64] v [62]7
[NoT 6% = =[]

{true if [x]ts € NSUESUEY and £ € lab® ([x]4)

(*) Operators A, V, and = are defined as in SQL three-valued logic, e.g. null V true = true
while null A true = null.

true if [Q], ({u}) is not empty
false otherwise

[EXISTS {Q}]L = {

4.5 Semantics of Queries

Clauses and queries are interpreted as functions that operate on tables. These tables are our
abstraction of GQL’s working tables.

» Definition 12. A table T is a set of bindings that have the same domains, referred to
as Dom(T).

Note that tables do not have schemas: two different bindings in a table might associate a
variable to values of incompatible types.

Semantics of Clauses

The semantics [C], of a clause C is a function that maps tables into tables, and is parametrized
by a graph G. Patterns, conditions and expression in a clause are evaluated with respect to
that G.

MaTcH T (T) = | J {u > o' | (o)) € Mg, p~ '}

Note that if IT uses a variable that already occurs in Dom(7'), a join is performed. Unlike in

the case of path patterns and graph patterns, this join can involve variables bound to lists
or paths. While this is not problematic mathematically, it might be disallowed in future
iterations of GQL.

Semantics

N. Francis et al.

If x ¢ Dom(T'), then

[LET 2 = x] (T) = | {n > (z = X&)}
pneT

[FILTER 0] (T) = | {n | [0]%; = true} .
pneT

If x ¢ Dom(T) and, for every u € T, pu(y) is a list or null,;® then

[FOR = IN y]; (1) = J{u x (x> v) [ve py)} .

Semantics of Linear Queries

[[USE G’ L]]G (T) = [[LHG’ (T)
[[C L]]G (T) = [[LHG ([[C]]G (T))

[RETURN X AS 21, ..., x¢ AS 2] (T) = | {(961 = Dalgs e [[Xe]],cj)}

peT

Semantics of Queries

The output of a query Q is defined as

Output(Q) = [Q] ({O}) »

where {()} is the unit table that consists of the empty binding, and G is the default graph

in D. We define the semantics of queries recursively as follows.

[USE G’ {Q1 THEN Q2 --- THEN Q;}], (T) = [Qk]e 0 0 [Qi] o (T)

If Dom ([Q:1] (7)) = Dom ([Q2] (T')), then we let

[Q1 INTERSECT Qz] (T) = [Qi]q (T) N[Q2]¢ (T)
[Q: UNION Q2] (T) = [Qil (T) U[Q2] ¢ (T)
[Q1 EXCEPT Qz] (T) = [Qi] ¢ (1) \ [Qe] (T')

5 A Few Known Discrepancies with the GQL Standard

In pursuing the goal of introducing the key features of GQL to the research community, we
inevitably had to make decisions that resulted in discrepancies between our presentation and
the 500+ pages of the forthcoming Standard. In this section, we discuss a non-exhaustive
list of differences between the actual GQL Standard and our digest. To start with, in all our
formal development we assumed that queries are given by their syntax trees, which result
from parsing them. Hence we completely omitted such parsing-related aspects as parentheses,
operator precedence etc. Also we note that many GQL features, even those described here,
are optional, and not every implementation is obliged to have them all.

3 Note that null is treated just as list()

1:15

ICDT 2023

Pause and think

- Development of SQL.:

- basic theory: relational calculus, algebra
- clean foundations: relations are sets of tuples
- finite model theory: cannot define counting, recursion
- add aggregates (right away, 1986), recursion (1999)
- and lots of other baggage: bags, nulls, etc
- Development of GQL and PGQ
- start with SQL basis: bags, nulls, aggregate
- define a language as a compromise between 3 companies
- Now need to think:
- what are their relational algebra/calculus
- what is not expressible? and why?
- and how they address it?

What are relational algebra and
calculus of GQL and PGQ?

What can we prove about them?

Patterns

No non-1NF relations, No nulls, No bags, No typing rules, just free variables

@ | =" «—"| x| z+xn | n0) | z""

S
|

0 = x.k=y.p | x.k<y.p| Zx) | 6vo | -6

FV((X)) = FV(—*]= FV(-): {x}
FV(mm,) = FV(r)) U FV(x,)

FV(z, + n,) = FV(n)) it FV(x) = FV(n,)
FV(#(0)) = FV(x) if FV(@) C FV(n)
FV(&#™™) = @

Output: a subset Q of FV(x)
Pattern with output: z

Semantics: one simple definition,
just what you expect

[(x)]g = {(path(n),{x — n}) | n e N}
BN .= {(path(ni,e,nz),{x — e}) | e € E, src(e) = ny, tgt(e) = ny}

= {(path(ng,e,nq),{x — e}) | e € E, src(e) = ny, tgt(e) =no}

= [l Y [V2lo
={(p1 - pa.pn > p2) | (pr.p1) € Wl (p2opi2) € [Y2l - 11 ~ iz, p1 © pa}
={(pw €rlg | nE O}

= U [[lﬁ]]é; where

[¥]& = {(path(n), ug) | n € N}
W% ={(p1- - Pns o) | Ipas - - - pin = (pis i) € [¥] and p; © pisq foralli < n}, n >0

Walg ={wa | 3p: (p.p) € Wi}

<
+ |
Q00 O

=
S

1 5|

o

Every output is a first-normal form relation

PGQ model

Relational algebra over all pattern outputs

What about GQL

Relational operators applied in a

Usually called linear composition

A sequence of clauses: each takes a relation and returns a relation
- while looking at the database

[t is used heavily (Cypher, GQL, PRQL, to some extent Google’s piped
SQL) but we — the theory community — neglected it

Pipelined relational algebra (PRA)

C := dbrelation | n, | 6, | CC | {Q} clauses
0 := C|QuQ|QnQ | 0-0Q ueries
Semantics

| STR) =R XS

| TTA I(R) = ”A(R)
1C,GIR) =1GC (1 G IR))

[{Q} I(R) =R X | Q [I(R)

Did we invent anything new ?

- No, just formulated what’s going on in these
pipelined languages

- An easy observation: RA = PRA

- But it gives us the formal definition of GQL

GQL model

Pipelined relational algebra over all pattern

outputs
Observation: PGQ = GQL (expressiveness)

Let’s prove a tew things

Folklore: Cypher doesn’t do all RPQs

- Cypher restriction: Kleene star only applies to labels
- Easy to model: (—* (a(x)))"" instead of arbitrary repetitions
- Cypher = PRA over such patterns

- Theorem: Cypher cannot express (aa)*
- (Gheerbrant, L, Peterfreund, Rogova)

The holy grail ot ISO/IEC JTC1 SC32 WG3

- Itseems GQL and PGQ have expressivity holes

- : find paths in which a property value in nodes increases along the path
- Hard: find paths in which a property value in edges increases along the path
- Committee solution: add more aesthetically pleasing syntax

MATCH (:Start)-[:a]->*(:Finish)
FOR EACH SEGMENT (-[x]->-[V]->)
REQUIRE (x.k<y.k)

Dangerous! A very similarly looking

MATCH (:Start)-[:a]->*(:Finish)
FOR EACH SEGMENT ((x)->+(¥y))
REQUIRE (x.k I=y.k)

is NP-hard in data complexity

Did GQL have to extend the language?

- We are back in our convenient database theory world
- we have a model and can prove a thing or two
- as in “basic SQL can’t do recursion”
- 'Theorem: GQL cannot do the “increasing value in edges query”
- and many more (GLPR24)
- caveat: modulo one condition, no back-edges
- mix of FMT and some formal languages, our stuft

GQL defies intuition

REACHABILITY is complete for under FO-reductions
GQL defines reachability: (:Start) ->* (:Finish)
GQL expresses all FO = relational algebra

and yet:
Theorem: There are queries not expressible in GQL

How does GQL do the “increasing value in edges” query?

It’s a real language after all

/ all paths
MATCH p = (:Start) ->* (:Finish)
EXCEPT
MATCH p = (:Start) ->%*

(>[x]->()—>[y]—-> WHERE x.k >= y.k)
->* (:Finish)

difference \
bad paths

Does it have a chance to work? No way!

median execution time in ms

o0 ms

300,000 ms

250,000 ms

200,000 ms

150,000 ms

100,000 ms

50,000 ms

0ms

Median execution time of QE for p=0.1

2 3 4 5 6 7

o0 ms

300,000 ms

250,000 ms

200,000 ms

150,000 ms

100,000 ms

50,000 ms

0ms

75%

50%

25%

0%

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 # of nodes

(a) p=0.1

median execution time in ms

percentage of timeouts in ms median execution time in
» 100%

o0 ms

300,000 ms

250,000 ms

200,000 ms

150,000 ms

100,000 ms

50,000 ms

0ms

Median execution time of QE for p=0.4

8 9 10 11 12 13 14 15 16 17 18 19 20 21

(d)p=0.4

100%

75%

50%

25%

0%

22 23 24 25 26 27 28 29 30 +# of nodes

Median execution time of QE for p=0.2

o0 ms

300,000 ms

250,000 ms

200,000 ms

150,000 ms

100,000 ms

50,000 ms

0ms

percentage of timeouts in ms

100%

75%

50%

25%

0%

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 # of nodes

(b) p =10.2

percentage of timeouts in ms median execution time in ms

median execution time in ms

o0 ms

300,000 ms

250,000 ms

200,000 ms

150,000 ms

100,000 ms

50,000 ms

0ms

Median execution time of QE for p=0.5

Median execution time of QE for p=0.3

percentage of timeouts in ms
100%

75%

50%

25%

0%

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 # of nodes

(¢)p=0.3

percentage of timeouts in ms

100%

75%

50%

25%

0%

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 # of nodes

(e) p=0.5

Best on sparse graphs: up to 30 nodes then 100% timeouts; dense graphs: 8 nodes

Cypher has been with us for over a decade

[t must solve real lite problems

What does it do?

Cypher gives us lists

enodes(p) — list of nodes of path p
erclationships(p) — list of edges of path p

eand reduce (or fold) over them

({4 o °_ o o bb
Increasing positive values in edges” query

MATCH p=(:Start) ->* (:Finish)
WITH [r in relationships(p) | r.k] AS values, p
WITH (reduce(res=0, v in values |
CASE v > res
WHEN true THEN v ELSE O
END) AS result, p
WHERE result |1=0
RETURN p

Are lists always innocent?

MATCH (n)

WITH collect(n.name) AS allNodes

MATCH path=(:Start)-[*]-O

WITH path, allNodes, [y IN nodes(path) | y.name] AS nodesInPath =~ Hamiltonian Path
WHERE all(node in allNodes WHERE node IN nodesInPath)

AND size(allNodes)=size(nodesInPath)

RETURN path LIMIT 1

MATCH p = allShortestPaths((:Start)-[:Edge*]->(:Finish))

WITH [r IN relationships(p) | r.value] AS values, p

UNWIND values as valSet Subset-Sum
WITH sum(valSet) AS sum, p

WHERE sum = $T

RETURN p

median execution time in ms

300,000

250,000

200,000

150,000

100,000

50,000

... and they don’t work (GLR’24

3 1 1 2 2 1 1 1 3 72 583 51

3 4 5 6 7 8 9

percentage of timeouts

100%

80%

60%

40%

20%

0%

10 11 12 13 14 15 16 17 18 '19 20 nodes

median execution time in ms percentage of timeouts

300,000 100%
250,000

80%
200,000

60%
150,000

40%
100,000 10273308
50,000 20%

ol 232 2 o 0o

0%
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 nodes

median execution time in ms percentage of timeouts

300,000 100%
250,000
80%
200,000
60%
150,000
40%
100,000
2 (o)
50,000 0%
3
ol ; : 0%
2 3 7 8 9 10 11 12 13 14 15 16 17 18 19 20 nodes

(a) Median execution time and number of time-(b) Median execution time and number of time-(c) Median execution time and number of time-
outs for p = 0.1

median execution time in ms

180,000

150,000

120,000

90,000

60,000

30,000

16183

(a) Neo4j

percentage of timeouts

100%

80%

60%

40%

20%

outs for p = 0.3

median execution time in ms percentage of timeouts

180,000 100%
150,000

80%
120,000

60%
90,000

40%
60,000

2)
30,000 0%

978
2328 10001
0 0O 0 2 2 11 12 27 55 121256214 1299 462

00 0 0 0 0 0 o 0%
2 3456 7 8 9101112131415161718192021222324252627282930 nodes

(b) Postgres

... except on tiniest graphs

outs for p = 0.8

median execution time in ms percentage of timeouts
180,000 100%

150,000
80%

120,000
60%
90,000
69295 40%

60,000

20%
30,000

879%.

11 1 2 2 3 3 4 6 9 165 12 43.561.567.5124.5480 957530.2058 0 -
' 5 0

2 3456 7 8 91011121314151617 181920 21 22 2324 252627 28 29 30 nodes

(c) DuckDB

Why? Didn’t we design one of these?

; Ry I
. oy >
~— "" I"" TRICHOTOMETRIC INDICATOR

; \' ”ll" "‘l sunpom\
~|ll'|' '“mm'

-~

AMBIHELICAL ARl D
HEXNUT b AL DL
(31416 REQUIRED) .- @ i S~
£ @ 10.16 CM
/ s
RECTABULAR EXRUSION

BRACKET

that make sense until they don’t?

GQL and PGQ design:

bird’s eye view of a single transaction

)
" l
[&A1 25 h
et ses . 8rap
/g 4= S) oy
2\ €7 "‘*J’;f WS 1 . l
‘*‘%t e on? /o o relationa
o \\\ s E s\\‘\»rl ’F/'!i:\i‘\)!‘; 3‘\.\@ _/‘ y)

AN)y {‘--/ ‘;‘ 7
0’/% &\Eff’/" Al \re
/Il/ﬁ‘/; e é l\ L@

input \ output
| output

Relational
Processing

Pattern

Matching

I ——

What is missing? COMPOSITIONALITY

The future

Standards go ahead: SQL 2028 with updated PGQ
GQL 2029
Is GQL there to stay? How many remember CODASYL, NDL?
- we had standardized graph query languages in the late 1980s!
- Big debate (see next talk) - and they lost to relational
- Relational languages are compositional:
- give me reachability and relational algebra and you have all of

Is the future graph or relational?

Ranking scores per category in percent, January 2025

Document stores 10%
Vector DBMS 2.6% ~_A& Graph DBMS 1.5%

Time Series DBMS 1%

Spatial DBMS 0.4%

Wide column stores 2.4%

Key-value stores 4.9%
RDF stores 0.3%

Search engines 4.4%

1.8% in 20253
1.5% Today

Relational DBMS 72%

© 2025, DB-Engines.com

Complete trend, starting with January 2013

1500
1250
—— Graph DBMS
1000
A - Time Series DBMS
4 — Document stores
= — Key-value stores
S — Search engines
> 750 - RDF stores
"g — Vector DBMS
= - Object oriented DBMS
g- - Native XML DBEMS
a — Wide column stores
500 — Multivalue DBMS
— Relational DBMS
— Spatial DBMS
250
0

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
© 2025, DB-Engines.com

Thanks!

And we are ready to hear about the
bright relational future

