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Graph Parameters

A graph parameter maps graphs to numbers.

→ ℝ



Graph Parameters — Examples

• Number of Answers to a Graph Query 

• Chromatic Number 

• Independence Number 

• Number of triangles in  

• …

G



Graph Parameters

Theorem 

For every graph parameter  there exists a set 
 of graphs such that: 

 

Γ
ℱ

Γ(G) = ∑
F∈ℱ

αF ⋅ 𝗁𝗈𝗆𝗌(F, G)

Number of homomorphisms

From F to G

Coefficient ∈ ℚ



Refresher: Homomorphisms

A homomorphism is a mapping 
 s.t.: 

If ,  
then 

h : V(G) → V(H)

v u ∈ E(G)

h(v) h(u) ∈ E(H)



Graph Motif Parameters

Graph parameter  is a graph motif parameter if 
there is a finite set  of graphs such that: 

Γ
ℱ

Γ(G) = ∑
F∈ℱ

αF ⋅ 𝗁𝗈𝗆𝗌(F, G)

Always unique!



Example

The number of 5-cycles in   

 

         

       

G

=
1
10

𝗁𝗈𝗆𝗌(F1, G)

−
1
2

𝗁𝗈𝗆𝗌(F2, G)

+
1
2

𝗁𝗈𝗆𝗌(F3, G)

F1 F2 F3



Why?

Canonical representation of many functions in 
terms of a single (kind of) function:  

Historically homomorphisms have been easier to 
understand. 

We will be able to transfer our understanding of 
homomorphisms to graph motif parameters!

homs



Important  
Graph Motif Parameters



Counting Subgraphs

 := Number of subgraphs of G 
                       isomorphic to P.
Sub(P, G)

 is a graph motif parameter 
                  (for every ).
Sub(P, ⋅ )

P

P



Important Problems

Counting the number of  
triangles in graph .G

Sub( ,G)



Important Problems

Counting the number of  
n-vertex cliques in graph .G

Sub(Kn, G)



Important Problems

Counting the number of  
size  matchings in graph .n G

Sub( ,G)…



Counting Induced Subgraphs

 := Number of induced subgraphs of G 
                            isomorphic to P.
IndSub(P, G)

 is a graph motif parameter 
                       (for every P).
IndSub(P, ⋅ )

P



Counting Induced Subgraphs

 := Number of induced subgraphs of G 
                            isomorphic to P.
IndSub(P, G)

 is a graph motif parameter 
                       (for every P).
IndSub(P, ⋅ )

P



Important Problems

Counting the number of  
 vertex independent sets in graph .n G

IndSub( ,G)…



Property Counting

number of induced subgraphs on 
                      vertices that have property  

Example:  
Number of -graphlets is the case where  is 
connectedness. 

 is a graph motif parameter for every 
computable property .

Indk
ϕ(G) :=

k ϕ

k ϕ

Indk
ϕ

ϕ



Very Robust

• Vertex/Edge-labels 

• Partial injectivity 

• Weighted counting 

• Directed Graphs 

• Projection (#UCQs on graphs) 

• …



Complexity



An Upper Bound

 

1) Compute  and all coefficients  

2) Compute  for all  

3) Arithmetic

Γ(G) = ∑
F∈ℱ

αF ⋅ homs(F, G)

ℱ α

homs(F, G) F ∈ ℱ

Computing  is no 
harder than 
computing 
the hardest  
term in the sum.

Γ

homs



Parameterised Counting

Problem with input  and parameter . 

FPT    =       

#W[1] = The complexity of counting -cliques 
              in graph  

Standard assumption FPT  #W[1] 

I k

f(k) ⋅ poly( | I | )

k
I

≠



Parameterised Counting of homs

Theorem (Marx, 2010) 

It is not possible to compute  in time 

   

where . Assuming ETH.

homs(F, G)

f(F) ⋅ |G |o(k/log k)

k = tw(F)

You cannot do 
(much) better than 
treewidth!

Theorem 

It is possible to compute  in time 

  

homs(F, G)

f(F) ⋅ |G |tw(F)



Some History

2002 — #W[1]-hardness of counting  
              paths/cycles. (Flum & Grohe) 

. 

. 

. 

2013 — #W[1]-hardness of counting matchings. 
              (Curticapean)

count  or  
in graph 

Pk Ck
I

count -matchings 
in graph 

k
I



Complexity Monotonicity

Theorem (Curticapean, Dell, Marx, 2017) 

Computing  is exactly as hard as computing 
the hardest term  for .

Γ
homs(F, G) F ∈ ℱ

Γ(G) = ∑
F∈ℱ

αF ⋅ homs(F, G)



Exactly as Hard?

There is an efficient (fpt) Turing reduction from 
computing , to computing any function 

 for 
Γ

homs(F, ⋅ ) F ∈ ℱ

Γ(G) = ∑
F∈ℱ

αF ⋅ homs(F, G)

For a very general argument of why this is the case see  
Bressan, L., Roth, “The complexity of pattern counting in directed 

graphs, parameterised by the outdegree", STOC 2023

https://dl.acm.org/doi/abs/10.1145/3564246.3585204
https://dl.acm.org/doi/abs/10.1145/3564246.3585204
https://dl.acm.org/doi/abs/10.1145/3564246.3585204


A Recipe for Dichotomies

1. Figure out the structure of the basis  

2. Understand the complexity of homomorphism 
counting for the graphs in the bases. 
(often already done 👍) 

3. Typically directly gives you a FPT vs. non-FPT 
dichotomy. 
(And probably fine-grained lower bounds.)

ℱ



When is Pattern Counting Hard?

Theorem (Curticapean, Dell, Marx, 2017) 

Computing  for  is FPT 

if and only if 

All graphs in  have vertex cover  
number , for some constant . 

If no such  exists the problem is #W[1]-hard

Sub(P, ⋅ ) P ∈ 𝒫

𝒫
≤ c c

c



Example: Paths

n-hop path



Example: Paths

Vertex cover number   

 #W[1]-hardness of counting paths 
     is immediate.

≈
n
2

⇒

n-hop pathA minimal vertex cover



Directed Paths?

…

…



In standard parameterisation by just the pattern: 
Exact same boundary as in undirected case. 

We are interested in the case where in/out edges 
are unbalanced (applies to e.g. low degeneracy).  
We study this by adding the max out-degree to 
the parameter.

Folklore / Appendix B in Bressan, L., 
Roth, “The complexity of pattern counting 
in directed graphs, parameterised by the 

outdegree", STOC 2023

https://dl.acm.org/doi/abs/10.1145/3564246.3585204
https://dl.acm.org/doi/abs/10.1145/3564246.3585204
https://dl.acm.org/doi/abs/10.1145/3564246.3585204
https://dl.acm.org/doi/abs/10.1145/3564246.3585204


The 
contour 
of ⃗H



…

…



Bressan, L., Roth, “The complexity of pattern counting in directed 
graphs, parameterised by the outdegree", STOC 2023

Parameterised by pattern and outdegree

https://dl.acm.org/doi/abs/10.1145/3564246.3585204
https://dl.acm.org/doi/abs/10.1145/3564246.3585204
https://dl.acm.org/doi/abs/10.1145/3564246.3585204


Directed Paths?

FPT

Not FPT

…

…



Expressivity

L., Barceló, “On the Power of the Weisfeiler-Leman Test for 
Graph Motif Parameters.", ICLR 2024



Color Refinement

(  ,{      })  →

(  ,{         }) →

New node color = old color + multi-set of neighbours



Color Refinement

(  ,{      })  →

(  ,{         }) →



Color Refinement

(  ,{      })  →

(  ,{         }) →
(  ,{      })  →



Color Refinement

Pattern will repeat: stable colouring!

Historical use: different stable colouring  not isomorphic⇒



Expressivity of 1-WL

GNNs cannot count the number 
of triangles in a graph (or decide 
connectedness)!

0 triangles

2 triangles



We enjoy hierarchies

1-WL: Standard Color Refinement 

2-WL: “Color refinement on all pairs of vertices” 

 

-WL: “Color refinement on all -tuples of vertices”

⋮

k k



What can -WL  
(not) express?

k



Expressing a Function — Formally

-WL can express function  if 
 

 
 

The WL-dimension of  is the least  such that 
-WL can express 

k Γ
G ≡kWL H ⇒ Γ(G) = Γ(H)

Γ k
k Γ

Intuitively, the minimal level of GNN 
that we need to reason about Γ



Early Steps

Fürer (2017): 

• WL-dimension of counting -Cycles for  is 2. 

• WL-dimension of counting -Cycles for  is at 
least 2. 

Arvind et al. (2020): 

• WL-dimension of counting -Cycles is 2 

• Only subgraph counting problems with WL-dimension 1 are 
stars and the 2-matching graph.

k 3 ≤ k ≤ 6

k 8 ≤ k ≤ 16

7



Answers!

Theorem (Neuen 2024, L. & Barceló 2024): 

For graphs with vertex and edge labels, 
-WL can distinguish graph motif parameter  

 

maximum treewidth in basis of   

k Γ

⟺

Γ ≤ k



Reuse Complexity Results

The complexity of computing graph motif 
parameters is inherently about understanding the 
treewidth in the basis. 

The same analysis from complexity theory can 
be reused for GNN expressivity!



Examples

Counting patterns: 

2 2 4

P12

WL-Dimension

Subsumes results of Fürer and Arvind et al. 
and provides a reason!

3

C8



Fancy Example

-graphlets & -vertex disconnected graphs: 
WL-Dimension  

(needs some basic algebraic topology) 

 
Special cases of counting  where  is disconnectedness.  

Roth & Schmitt: -Clique is in the basis if the Euler characteristic for 
the simplical complex of hereditary  is non-zero! 

For this , the implical complex is the  dimension wedge sum 
of spheres. Well-studied — has Euler characteristic 

k k
(k − 1)

Indk
Ψ Ψ

k
ψ

Ψ k − 3
±(k − 1)!



Impact in Practice

Idea: we can make GNNs more powerful by 
adding local information at each node.

Barceló, P., Geerts, F., 
Reutter, J., & Ryschkov, M. 

“Graph neural networks 
with local graph 

parameters.” NeurIPS 
2021( ⋮

Homs(C3, v))
( ⋮

Homs(C3, v′ ))



Impact in Practice

Idea: we can make GNNs more powerful by 
adding local information at each node.

Bouritsas, Giorgos, 
Fabrizio Frasca, Stefanos 
Zafeiriou, and Michael M. 

Bronstein. "Improving 
graph neural network 

expressivity via subgraph 
isomorphism counting." 

IEEE Transactions on 
Pattern Analysis and 

Machine Intelligence 45,.


( ⋮
Sub(C3, v))



We show that adding the basis of  
gives more expressiveness, for free!

Γ

Jin, Bronstein, Ceylan, L., “Homomorphism Counts for Graph 
Neural Networks: All About That Basis”, ICML 2024

ingredients for cake

“more expressive than”

>
cake



ZINC

We know that cycles are  
important in molecules. 

We compare adding  
to adding the  values for the 
basis of the function 

Subs(C8, ⋅ )
homs



Representation

Bao, Jin, Bronstein, Ceylan, L.. "Homomorphism Counts as 
Structural Encodings for Graph Learning.” ICLR 2025



Graph Transformers
Attention/ReLU Layers

Final 
Embeddings



The Problem

We often hear attention described as a 
“sequence to sequence” operation. 

But, on a mechanical level the inputs are not 
ordered! 

Sequence structure is obtained by adding a 
positional encoding, representing the position in 
the sequence, to inputs.



Graphs are not 
sequences.

Basic graph transformer architectures lose 
all information about adjacency structure.



Common Encodings

Random Walk Encodings 

 
 … likelihood of an -hop 

random walk from  to end at  
fi(v) i

v v

RWSEℓ(v) = [ fi(v)]i∈[ℓ]

Laplacian Encodings 

 
Derived from the eigenvectors of the 
(normalised) graph Laplacian for . 

Issue: invariant under sign changes.

v



Motif Encodings

 maps vertices of  to weights in  

 is the number of  weighted 
homomorphisms that map a fixed node  of  to  in 

ω H ℝ

ω-hom⋆→v(Gi, H) ω
⋆ Gi v H

MoSE𝒢,ω(v, H) = [ω-Hom⋆→v(Gi, H)]d
i=1



Benefits

• Homomorphism counts form the basis of all local 
functions on graphs. 

• MoSE aligns with the existing theory of GNN 
expressivity → theoretical insight into the expressivity of 
our structural encoding. 

• Generalises RWSE:     

where  and 

RWSEℓ(v) = MoSE𝒢,ω(v)

𝒢 = {Ck}k∈[ℓ] ω(v) =
1

deg(v)

RWSE is  
weaker than 
2-WL





Conclusion



Summary

Graph motif parameters are a powerful and general 
framework for studying functions on graphs. 

They provide a tight link between machine learning, 
model theory, and complexity theory. 

Probably, there is much low-hanging fruit still left.



Future Work

Generalise expressivity results from graphs to 
relational structures and to common query 
languages: 

“Which databases can I (not) distinguish by 
counting answers to some fixed CQ/UCQ/
Datalog query?”


