
The Role of Logic in Advancing
Machine Learning:
Three Case Studies

Pablo Barceló

Institute for Mathematical and Computational Engineering

Universidad Católica de Chile &

IMFD Chile & CENIA Chile

Machine learning requires

solid foundations to be fully deployable

Both the theory of computation and logic can be

instrumental in this endeavor

Some examples of the application of logical methods in
machine learning (ML):

• Representing knowledge (Neuro-symbolic AI)

• Understanding the expressive power of ML models

• Verifying the correctness of such models

• Improving the interpretability of ML decisions

• Designing declarative, general purpose

	 languages for ML tasks

Some examples of the application of logical methods in
machine learning:

• Representing knowledge (Neuro-symbolic AI)

• Understanding the expressive power of ML models

• Verifying the correctness of such models

• Improving the interpretability of ML decisions

• Designing declarative, general purpose

	 languages for ML tasks

THE EXPRESSIVE POWER OF
GRAPH NEURAL NETWORKS

Motivation

Graph Neural Networks (GNNs) have become ubiquitous in
applications where data is structured in the form of graphs:

• Chemical and biological networks

• Social networks

• Recommendation systems

• Semantic parsing and question answering

Question: Which graph properties can GNNs express?

Graphs in This Presentation

Node-labeled, undirected graphs

finite set of nodes

set of undirected edges over

function that maps each node to some label

G = (V, E, γ)

V =

E = V

γ = v γ(v)

Message-Passing GNNs (MPGNNs)

x̄

ȳ ȳ ȳ

z̄
z̄

w̄ w̄ w̄ w̄

Node v

𝖭𝖾𝗐_𝖾𝗆𝖻𝖾𝖽𝖽𝗂𝗇𝗀(v) = 𝖢𝗈𝗆𝖻(x̄, 𝖠𝗀𝗀({{ȳ, ȳ, ȳ, z̄, z̄, w̄, w̄, w̄, w̄}}))
(Embeddings are initialized as one-hot encodings of node labels)

x̄, ȳ, z̄, w̄ ∈ ℝd

A Particular MPGNN Architecture

one-hot encoding of

matrices of parameters, = bias vector

 is a non-linear function, e.g., sign, ReLU, truncated ReLU, sigmoid, tanh

MPGNN0(v) = γ(v)

𝖬𝖯𝖦𝖭𝖭t(v) = σ (𝖬𝖯𝖦𝖭𝖭t−1(v) ⋅ Wt
1 + ∑

(u,v)∈E

𝖬𝖯𝖦𝖭𝖭t−1(u) ⋅ Wt
2 + bt)

Wt
1, Wt

2 = bt

σ

embedding vector computed for node after steps𝖬𝖯𝖦𝖭𝖭t(v) = v t

Positive results based on sign function:

Node v

Weisfeiler-Leman Test (WL Test)

𝖭𝖾𝗐𝖼𝗈𝗅𝗈𝗋(v) = 𝖧𝖺𝗌𝗁(, {{ , , , , , , , , }})
(Initial colors are an injective representation of node labels)

Expressive Power of MPGNNs

Theorem (Morris et al. 2019 & Xu et al. 2019)

For each nodes in a graph ,

Moreover, there exists a sequence of
parameter matrices for which

u, v G

𝖶𝖫t(u) = 𝖶𝖫t(v) ⟹ 𝖬𝖯𝖦𝖭𝖭t(u) = 𝖬𝖯𝖦𝖭𝖭t(v)

(W1
1 , W1

2), …, (Wt
1, Wt

2)

𝖶𝖫t(u) = 𝖶𝖫t(v) ⟺ 𝖬𝖯𝖦𝖭𝖭t(u) = 𝖬𝖯𝖦𝖭𝖭t(v)

color assigned to node v by WL after t steps𝖶𝖫t(v) =

Logic over Colored Graphs
FO over the vocabulary that contains:

unary symbols

for the node colors

a binary symbol that represents

the adjacency relationship

Example

Red(x), Blue(x), …

E(x, y)

∃x∃y∃x(E(x, y) ∧ E(y, z) ∧ E(z, x) ∧ Red(x))

Two-variable Fragment

 = Two-variable fragment of FO extended with counting quantifiers:

 = number of a’s that satisfy is at least

C2

∃≥k x ϕ(x) ϕ k

The following is a formula:

But the following is not:

C2

∃≥3y(E(x, y) ∧ Red(y) ∧ ¬∃x(E(y, x) ∧ Blue(x)))

∃x∃y∃x(E(x, y) ∧ E(y, z) ∧ E(z, x) ∧ Red(x))

Two-variable Fragment

 = Formulas from with quantifier depth at most Ct
2 C2 t

For a graph and nodes :

 expresses that for every :

G u, v

G, u ≡Ct
2

G, v ϕ(x) ∈ Ct
2 G ⊧ ϕ(u) ⟺ G ⊧ ϕ(v)

A Logical Characterization of WL

Theorem (Cai, Fürer, and Immerman 1992)

For each nodes in a graph :

u, v G

𝖶𝖫t(u) = 𝖶𝖫t(v) ⟺ G, u ≡Ct
2

G, v

In Terms of Logic

Corollary

For nodes in a graph :

Moreover, there exists a sequence of
parameter matrices for which

u, v G

G, u ≡Ct
2

G, v ⟹ 𝖬𝖯𝖦𝖭𝖭t(u) = 𝖬𝖯𝖦𝖭𝖭t(v)

(W1
1 , W1

2), …, (Wt
1, Wt

2)

G, u ≡Ct
2

G, v ⟺ 𝖬𝖯𝖦𝖭𝖭t(u) = 𝖬𝖯𝖦𝖭𝖭t(v)

A Caveat

Previous characterizations are non-uniform:

The matrices

depend on the size of the graph

The formula from that distinguishes and

is constructed from the underlying graph

(W1
1 , W1

2), …, (Wt
1, Wt

2)

Ct
2 u v

Question

How can we obtain uniform characterizations of

the expressive power of GNNs?

Definition

Let be an MPGNN with layers

We write for the embedding obtained by

 on after iterations

M t

M(u)
M u t

 expresses an FO formula , if

for every graph and node :

M ϕ(x)
G u

G ⊧ ϕ(u) ⟺ M(u)1 = 1

the first component of M(u)

A Lower Bound

Theorem (B., Kostylev, Monet, Pérez, Reutter, Silva 2019)

Let be a guarded formula in . There is an MPGNN that
expresses

ϕ(x) C2
ϕ(x)

A formula is guarded if all its quantified sub-formulas

are of the form:

 ∃y(E(z, y) ∧ ϕ(y)) ∀y(E(z, y) → ϕ(y))

Guarded Formulas

The following formula is guarded:

But the following is not:

C2

∃≥3y(E(x, y) ∧ Red(y) ∧ ¬∃x(E(y, x) ∧ Blue(x)))

∃≥3y Red(y)

Proof Idea
Rewrite as an equivalent formula in graded modal logic ϕ(x)
This is the extension of basic modal logic with expressions:

 = nodes with at least neighbors satisfying ◊≥kϕ k ϕ

The embedding computed by the MPGNN on node

has one component for each sub-formula

At each layer , we consider sub-formulas of

-depth bounded by

This layer assigns a 1 to such component iff

the formula is satisfied in node

u

t
◊ t

u

An Upper Bound

Proposition (B., Kostylev, Monet, Pérez, Reutter, Silva 2019)

Let be an FO formula that can be expressed as an
MPGNN. Then is equivalent to a guarded formula

ϕ(x)
ϕ(x) C2

Formulas expressed by MPGNNs are closed under

counting bisimulations

Otto (2019) has shown that such formulas are

equivalent to formulas in graded modal logic,

and thus in C2

Capturing C2

Only guarded formulas can be expressed by MPGNNs

Is there a meaningful extension of MPGNNs that

can express all formulas?

C2

C2

Global Readouts

We extend MPGNNs with global readouts:

one-hot encoding of

matrices of parameters, = bias vector

MPGNN0(v) = γ(v)

𝖬𝖯𝖦𝖭𝖭t(v) = σ (𝖬𝖯𝖦𝖭𝖭t−1(v) ⋅ Wt
1 + ∑

(u,v)∈E

𝖬𝖯𝖦𝖭𝖭t−1(u) ⋅ Wt
2 +

∑
u∈V

MPGNNt−1(u) ⋅ Wt
3 + bt)

Wt
1, Wt

2, Wt
3 = bt

A Lower Bound

Theorem (B., Kostylev, Monet, Pérez, Reutter, Silva 2019)

Let be a formula in . There is an MPGNN with global
readouts that expresses

ϕ(x) C2
ϕ(x)

A single global readout in the last layer suffices

Proof Idea

Rewrite as an equivalent formula in

graded modal logic with global modalities

(Lutz, Sattler, Wolter, 2001)

Use an inductive procedure on sub-formulas,

similar to the one applied for graded modal logic

ϕ(x)

THE EXPRESSIVE POWER OF
TRANSFORMER ENCODERS

Transformers

Transformers are a deep learning architecture that

acts as a sequence-to-sequence transducer

They lie at the core of many of the most popular LLMs:

GPT-2, GPT-3, GPT-4, AlbertAGPT, Claude, BERT, ChatGPT

https://en.wikipedia.org/wiki/GPT-2
https://en.wikipedia.org/wiki/GPT-3
https://en.wikipedia.org/wiki/GPT-4
https://en.wikipedia.org/w/index.php?title=AlbertAGPT&action=edit&redlink=1
https://en.wikipedia.org/wiki/Anthropic#Claude
https://en.wikipedia.org/wiki/BERT_(language_model)
https://en.wikipedia.org/wiki/ChatGPT

Motivation

What are the computational limits of Transformers?

Which languages are accepted by Transformers?

Standard Encoder Layer

⋯ ⋯ ⋯
v1 v2 vi vj vn⏟v1, v2, …, vn ∈ ℝd

A, B : ℝd → ℝd

A, B : ℝd → ℝd

⋯ ⋯ ⋯

⋯ ⋯ ⋯

C(ai, vi)

C : ℝ2d → ℝd

⋯ ⋯ ⋯
a1 a2 ai aj an ⏟

ai = vk
for k = arg max

ℓ∈{1,…,n}
Av̄i ⋅ Bv̄ℓ

(breaking ties by choosing

the leftmost element)

Attention Mechanism

ai = vk

for k = arg max
ℓ∈{1,…,n}

Av̄i ⋅ Bv̄ℓ

(breaking ties by choosing

the leftmost element)

This is known as unique hard attention

It is hard: only elements that maximize are considered

It is unique: ties are broken by choosing a single element

Avi ⋅ Bvℓ

ReLU Encoder Layer

⋯ ⋯ ⋯
v1 v2 vi vj vn⏟v1, v2, …, vn ∈ ℝd

⋯ ⋯ ⋯
a1 a2 ai aj an

ReLU(x) = max(0,x)
k ∈ {1,…, d} ⏟ is obtained from by

applying ReLU on its -th component
ai vi

k

Transformer Encoder

⋯ ⋯ ⋯
v1 v2 vi vj vn

⋯ ⋯ ⋯

⋯ ⋯ ⋯
⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯
o1 o2 oi oj on

Encoder Layer (Standard or ReLU)

Encoder Layer (Standard or ReLU)

Encoder Layer (Standard or ReLU)

Encodings

Consider a finite alphabet

An encoding of is a function

A positional encoding is a function

Σ

Σ f : Σ → ℝd

p : ℕ → ℝe

Language Recognizers
Consider a language and

 a Transformer encoder with unique hard attention

 is accepted by if there exist:

(1) An alphabet encoding

(2) A positional encoding

such that for every :

L ⊆ Σ+

T

L T

f : Σ → ℝd

p : ℕ → ℝe

a1⋯an ∈ Σ+

⋯ ⋯
Transformer

f(a1) + p(1) f(an) + p(n)

⋯ ⋯

f(ai) + p(i)

w1 wi wn ⏟wn > 0 ⟺ a1⋯an ∈ L

An Upper Bound

Theorem (Hao, Angluin, Frank, 2022)

Every language that can be accepted by a Transformer
encoder with unique hard attention is in the class AC0

This is Not Optimal

Proposition (B., Kozachiskiy, Lin, Podolskii, 2024)

There is an language that is not accepted by any
Transformer encoder with unique hard attention

AC0

A Significant Lower Bound

Theorem (B., Kozachiskiy, Lin, Podolskii, 2024)

Let be an language that is definable in arbitrary
monadic numerical predicates.

Then is accepted by a Transformer encoder with

unique hard attention.

L AC0 FO +

L

Recall: arbitrary numerical predicatesAC0 = FO +

Proof Idea

Apply Kamp’s Theorem and

rewrite the FO formula that defines as a

formula in linear temporal logic (LTL)

Show that every language definable by an LTL formula is

accepted by a Transformer encoder with unique hard attention

L

An Application

Every regular language in is definable in

FO with monadic numerical predicates

(Barrington, Compton, Straubing, Thérien, 1992)

AC0

Corollary (B., Kozachiskiy, Lin, Podolskii, 2024)

Let be a regular language in . Then is accepted by a
Transformer encoder with unique hard attention.

L AC0 L

A Different Attention Mechanism

set of that maximize
Si := ℓ′ s Avi ⋅ Bvℓ

ai = ∑
ℓ∈Si

vℓ / |Si |

This is known as average hard attention

A Lower Bound

Transformers with average hard attention can

recognize languages in TC0

Theorem (B., Kozachiskiy, Lin, Podolskii, 2024)

Every permutation-closed language over alphabet is
accepted by a Transformer encoder with average hard attention

{0,1}

As a corollary, we obtain that both majority and parity

are accepted by Transformer encoders with average hard attention

DECLARATIVE LANGUAGES FOR
EXPLAINING DECISION TREES

Explainability Problem

Boolean input
ē = (e1, e2, …, en) ∈ {0,1}n

Boolean model M

e1
e2

en

M(ē) ∈ {0,1}…

Question: How can we explain the output of on ? M ē

Notation

We assume the set of features of the Boolean model to be:

An input is a function

We write for the output of on input

M
X = {x1, …, xn}

ē : X → {0,1}
M(ē) M ē

Counterfactual Explanations

Given Boolean model over set of features, and input ,
we call a counterfactual explanation for if:

, where is obtained from by flipping the

values of features in

M X ē : X → {0,1}
Y ⊆ X (M, ē)

M(ē) ≠ M(ē′) ē′ ē
Y

We look for counterfactual explanations that are:

- Minimum: There is no counterfactual explanation of smaller size

Given Boolean model over set of features, and input ,
we call a sufficient reason for if:

M X ē : X → {0,1}
Y ⊆ X (M, ē)

M(ē) = M(ē′), for every ē′ : X → {0,1} with ē′ (y) = ē(y) for each y ∈ Y

The output of on is invariant to

interpretation of features in

M ē
X∖Y

We look for sufficient reasons that are:

- Minimum: There is no sufficient reason of smaller size

- Minimal: There is no sufficient reason with Z Z ⊊ Y

Sufficient Reasons

Example

Consider the model and input

The minimum counterfactual explanation for is

There are two minimum sufficient reasons for :

 and

M = (x1 ∨ x2) ē = (1,1)

(M, ē) {x1, x2}

(M, ē)
{x1} {x2}

What’s the Need?

These are just two examples of explainability queries, but …

many other explainability notions have been proposed in the literature

The logical community has handled this challenge by developing
declarative query languages

Declarative query languages for explainability tasks could help in:

• Allowing more flexibility in writing queries for different applications

• Providing a clear syntax and semantics for such queries

• Making explainability tools more accessible for practitioners

• Opening a path for optimization of explainability tasks

Models as Logical Structures

We represent a Boolean model over set of features

as a logical structure

 , where:

• represents an undefined value in an input

• The domain is the set of all partial inputs

• The binary predicate contains pairs of partial

inputs, such that is more complete than ;

 e.g., is more complete than

• The unary predicate is interpreted as the set of

positive inputs:

M X

𝒜M = ({⊥,0,1}n, ⊆ , Pos)

⊥
{⊥,0,1}n

⊆ (ē, ē′)
ē′ ē

(1,0,⊥) (1, ⊥ , ⊥)
Pos

{ē : X → {0,1} ∣ M(ē) = 1}

The Logic FOIL

FOIL is FO over structures of the form ,

where is a Boolean model

(Arenas, Baez, B., Pérez, Subsercaseaux, 2021)

𝒜M
M

Expressing Properties in FOIL

The set of full instances is defined as

The binary predicate full completion corresponds to

The pairs of same class full instances are defined as

Full(x) = ∀y (x ⊆ y → x = y)

FullComp(x, y) = x ⊆ y ∧ Full(y)

SameClass(x, y) = Full(x) ∧ Full(y) ∧ (Pos(x) ↔ Pos(y))

Minimal Sufficient Reasons

The binary predicate sufficient reason is defined as

The binary predicate minimal sufficient reason is

SR(x, y) = Full(y) ∧ x ⊆ y ∧ ∀z (FullComp(x, z) → SameClass(y, z))

mSR(x, y) = SR(x, y) ∧ ∀z (SR(z, y) ∧ z ⊆ x → z = x)

Two Issues with FOIL

Expressiveness

FOIL is not capable of expressing some useful

explainability notions used in practice

Complexity

The evaluation complexity of FOIL is prohibitively expensive

even over simple models

First Issue: Expressiveness

Theorem (Arenas, B., Bustamante, Caraball, Subercaseaux 2024)

There is no formula in FOIL that checks whether is a
minimum sufficient reason for over the class of decision trees

ϕ(x, y) x
y

Intuitively, FOIL cannot compare the

cardinalities of sets of features

Second Issue: Complexity

Theorem (Arenas, B., Bustamante, Caraball, Subercaseaux 2024)

For every , there exists a sentence in FOIL for which the
evaluation problem over the class of decision trees is -complete

k ≥ 1 ϕk
ΣP

k

Conflicting Requirements
Design a logic that, at the same time, can express useful

notions of explainability often found in practice, and

can be evaluated “efficiently” over decision trees

What "efficient" means in this case?

Formulas that can be evaluated as

Boolean combinations of NP languages

This is unavoidable since even evaluating

minimum sufficient reason over decision trees is coNP-complete

(B., Monet, Pérez, Subsercaseaux, 2020)

On the positive side, it allows us to use SAT solvers technology

to evaluate formulas in the language

The Logic DT-FOIL
This logic is specifically tailored for decision trees

It is composed of three layers:

Atomic formulas that can only compare

syntactic properties of partial inputs

(can be evaluated in PTIME)

Guarded formulas that allow quantification over partial inputs that
represent nodes and positive leaves of decision trees

(can be evaluated in PTIME)

DT-FOIL formulas, which are Boolean combinations of

quantified guarded formulas

(correspond to Boolean combinations of NP languages)

Atomic Formulas

These formulas correspond to FO over the following

syntactic relations:

Binary relation that contains all pairs of partial inputs

such that is more complete than

Binary relation that contains all pairs of partial inputs

such that # of undefined features in is no larger than in

(this allows to compare cardinalities of sets of features)

⊆ (ē, ē′)
ē′ ē

⪯ (ē, ē′)
ē ē′

Guarded Formulas
These are recursively defined as follows:

(1) Atomic formulas are guarded formulas

(2) Guarded formulas are closed under Boolean combinations

(3) If is a guarded formula, then

are also guarded formulas

ϕ

∃x(Node(x) ∧ ϕ) ∃x(PosLeaf(x) ∧ ϕ)

 holds for

those partial instances that correspond to nodes of the decision tree

 holds for

those partial instances that correspond to positive leaves of the decision tree

Node(x)

PosLeaf(x)

DT-FOIL Formulas

These are recursively defined as follows:

(1) Guarded formulas are DT-FOIL formulas

(2) DT-FOIL formulas are closed under Boolean combinations

(3) If is a guarded formula, then

is a DT-FOIL formula

ϕ

∃x1⋯∃xl ϕ

Expressiveness of DT-FOIL

DT-FOIL is capable of expressing many

useful explainability properties often found in practice

An Example

The following atomic formula checks whether the features

defined in both partial inputs and have the same value:

The following guarded formula checks if partial instance is a leaf:

The following guarded formula checks whether all “completions” of
a partial instance are positive:

x y

Cons(x, y) = ∃z(x ⊆ z ∧ y ⊆ z)

x

Leaf(x) = Node(x) ∧ ∀y(Node(y) ∧ x ⊆ y → y = x)

x

AllPos(x) = ∀y(Node(y) → (Leaf(y) ∧ Cons(x, y)) → PosLeaf(y))

An Example

The following guarded formula checks

whether is a sufficient reason for :

The following DT-FOIL formula checks

whether is a minimum sufficient reason for :

x y

SR(x, y) = x ⊆ y ∧ Full(y) ∧ (Pos(x) → AllPos(x)) ∧ (¬Pos(x) → AllNeg(x))

x y

SR(x, y) ∧ ∀z(SR(z, y) → x ⪯ z)

Complexity of DT-FOIL

Theorem (Arenas, B., Bustamante, Caraball, Subercaseaux 2024)

Let be a fixed DT-FOIL formula.

The problem of evaluating over decision trees can be solved by
a constant number of calls to an NP oracle

ϕ

ϕ

THANKS

