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Machine learning requires 

solid foundations to be fully deployable


 

Both the theory of computation and logic can be 


instrumental in this endeavor  



Some examples of the application of logical methods in 
machine learning (ML):


• Representing knowledge (Neuro-symbolic AI) 

• Understanding the expressive power of ML models

• Verifying the correctness of such models

• Improving the interpretability of ML decisions

• Designing declarative, general purpose 

	 languages for ML tasks
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THE EXPRESSIVE POWER OF  
GRAPH NEURAL NETWORKS



Motivation

Graph Neural Networks (GNNs) have become ubiquitous in 
applications where data is structured in the form of graphs:

• Chemical and biological networks

• Social networks

• Recommendation systems

• Semantic parsing and question answering


Question: Which graph properties can GNNs express?  



Graphs in This Presentation

Node-labeled, undirected graphs




finite set of nodes


set of undirected edges over 


function that maps each node  to some label 

G = (V, E, γ)

V =

E = V

γ = v γ(v)



Message-Passing GNNs (MPGNNs)

x̄

ȳ ȳ ȳ

z̄
z̄

w̄ w̄ w̄ w̄

Node v

𝖭𝖾𝗐_𝖾𝗆𝖻𝖾𝖽𝖽𝗂𝗇𝗀(v) = 𝖢𝗈𝗆𝖻(x̄, 𝖠𝗀𝗀({{ȳ, ȳ, ȳ, z̄, z̄, w̄, w̄, w̄, w̄}}))
(Embeddings are initialized as one-hot encodings of node labels)

x̄, ȳ, z̄, w̄ ∈ ℝd



A Particular MPGNN Architecture

one-hot encoding of 

  

 

matrices of parameters,  = bias vector

 is a non-linear function, e.g., sign, ReLU, truncated ReLU, sigmoid, tanh

MPGNN0(v) = γ(v)

𝖬𝖯𝖦𝖭𝖭t(v) = σ (𝖬𝖯𝖦𝖭𝖭t−1(v) ⋅ Wt
1 + ∑

(u,v)∈E

𝖬𝖯𝖦𝖭𝖭t−1(u) ⋅ Wt
2 + bt)

Wt
1, Wt

2 = bt

σ

embedding vector computed for node  after  steps𝖬𝖯𝖦𝖭𝖭t(v) = v t

Positive results based on sign function:



Node v

Weisfeiler-Leman Test (WL Test)

𝖭𝖾𝗐𝖼𝗈𝗅𝗈𝗋(v) = 𝖧𝖺𝗌𝗁( , {{ , , , , , , , , }})
(Initial colors are an injective representation of node labels)



Expressive Power of MPGNNs

Theorem (Morris et al. 2019 & Xu et al. 2019) 


For each nodes  in a graph ,





Moreover, there exists a sequence  of 
parameter matrices for which 


u, v G

𝖶𝖫t(u) = 𝖶𝖫t(v) ⟹ 𝖬𝖯𝖦𝖭𝖭t(u) = 𝖬𝖯𝖦𝖭𝖭t(v)

(W1
1 , W1

2), …, (Wt
1, Wt

2)

𝖶𝖫t(u) = 𝖶𝖫t(v) ⟺ 𝖬𝖯𝖦𝖭𝖭t(u) = 𝖬𝖯𝖦𝖭𝖭t(v)

color assigned to node v by WL after t steps𝖶𝖫t(v) =



Logic over Colored Graphs
FO over the vocabulary that contains: 


unary symbols 

for the node colors


a binary symbol  that represents 

the adjacency relationship 


Example


  

Red(x), Blue(x), …

E(x, y)

∃x∃y∃x(E(x, y) ∧ E(y, z) ∧ E(z, x) ∧ Red(x))



Two-variable Fragment

 = Two-variable fragment of FO extended with counting quantifiers: 

 = number of a’s that satisfy  is at least  

C2

∃≥k x ϕ(x) ϕ k

The following is a  formula:





But the following is not:


C2

∃≥3y(E(x, y) ∧ Red(y) ∧ ¬∃x(E(y, x) ∧ Blue(x)))

∃x∃y∃x(E(x, y) ∧ E(y, z) ∧ E(z, x) ∧ Red(x))



Two-variable Fragment

 = Formulas from  with quantifier depth at most Ct
2 C2 t

For a graph  and nodes :  

 expresses that for every : 

G u, v

G, u ≡Ct
2

G, v ϕ(x) ∈ Ct
2 G ⊧ ϕ(u) ⟺ G ⊧ ϕ(v)



A Logical Characterization of WL

Theorem (Cai, Fürer, and Immerman 1992) 


For each nodes  in a graph :





u, v G

𝖶𝖫t(u) = 𝖶𝖫t(v) ⟺ G, u ≡Ct
2

G, v



In Terms of Logic

Corollary


For nodes  in a graph : 





Moreover, there exists a sequence  of 
parameter matrices for which 


u, v G

G, u ≡Ct
2

G, v ⟹ 𝖬𝖯𝖦𝖭𝖭t(u) = 𝖬𝖯𝖦𝖭𝖭t(v)

(W1
1 , W1

2), …, (Wt
1, Wt

2)

G, u ≡Ct
2

G, v ⟺ 𝖬𝖯𝖦𝖭𝖭t(u) = 𝖬𝖯𝖦𝖭𝖭t(v)



A Caveat

Previous characterizations are non-uniform:


The matrices  

depend on the size of the graph


The formula from  that distinguishes  and 

is constructed from the underlying graph  

(W1
1 , W1

2), …, (Wt
1, Wt

2)

Ct
2 u v



Question

How can we obtain uniform characterizations of

the expressive power of GNNs?   



Definition

Let  be an MPGNN with  layers


We write  for the embedding obtained by 

 on  after  iterations   

M t

M(u)
M u t

 expresses an FO formula , if 

for every graph  and node :


M ϕ(x)
G u

G ⊧ ϕ(u) ⟺ M(u)1 = 1

the first component of M(u)



A Lower Bound

Theorem (B., Kostylev, Monet, Pérez, Reutter, Silva 2019)


Let  be a guarded formula in . There is an MPGNN that 
expresses 

ϕ(x) C2
ϕ(x)

A formula is guarded if all its quantified sub-formulas

are of the form: 


   ∃y(E(z, y) ∧ ϕ(y)) ∀y(E(z, y) → ϕ(y))



Guarded Formulas

The following  formula is guarded:





But the following is not:


 

C2

∃≥3y(E(x, y) ∧ Red(y) ∧ ¬∃x(E(y, x) ∧ Blue(x)))

∃≥3y Red(y)



Proof Idea
Rewrite  as an equivalent formula in graded modal logic    ϕ(x)
This is the extension of basic modal logic with expressions:


 = nodes with at least  neighbors satisfying ◊≥kϕ k ϕ

The embedding computed by the MPGNN on node 

has one component for each sub-formula


At each layer , we consider sub-formulas of 

-depth bounded by 


This layer assigns a 1 to such component iff

the formula is satisfied in node   

u

t
◊ t

u



An Upper Bound

Proposition (B., Kostylev, Monet, Pérez, Reutter, Silva 2019)


Let  be an FO formula that can be expressed as an 
MPGNN. Then  is equivalent to a guarded  formula

ϕ(x)
ϕ(x) C2

Formulas expressed by MPGNNs are closed under 

counting bisimulations 

Otto (2019) has shown that such formulas are 

equivalent to formulas in graded modal logic, 


and thus in C2



Capturing C2

Only guarded  formulas can be expressed by MPGNNs


Is there a meaningful extension of MPGNNs that 

can express all  formulas? 

C2

C2



Global Readouts

We extend MPGNNs with global readouts: 

one-hot encoding of 

  

 

 

matrices of parameters,  = bias vector

MPGNN0(v) = γ(v)

𝖬𝖯𝖦𝖭𝖭t(v) = σ (𝖬𝖯𝖦𝖭𝖭t−1(v) ⋅ Wt
1 + ∑

(u,v)∈E

𝖬𝖯𝖦𝖭𝖭t−1(u) ⋅ Wt
2 +

∑
u∈V

MPGNNt−1(u) ⋅ Wt
3 + bt)

Wt
1, Wt

2, Wt
3 = bt



A Lower Bound

Theorem (B., Kostylev, Monet, Pérez, Reutter, Silva 2019)


Let  be a formula in . There is an MPGNN with global 
readouts that expresses 

ϕ(x) C2
ϕ(x)

A single global readout in the last layer suffices



Proof Idea

Rewrite  as an equivalent formula in 

graded modal logic with global modalities 

(Lutz, Sattler, Wolter, 2001)


Use an inductive procedure on sub-formulas, 

similar to the one applied for graded modal logic   

ϕ(x)



THE EXPRESSIVE POWER OF 
TRANSFORMER ENCODERS



Transformers

Transformers are a deep learning architecture that 

acts as a sequence-to-sequence transducer


They lie at the core of many of the most popular LLMs:

GPT-2, GPT-3, GPT-4, AlbertAGPT, Claude, BERT, ChatGPT  

https://en.wikipedia.org/wiki/GPT-2
https://en.wikipedia.org/wiki/GPT-3
https://en.wikipedia.org/wiki/GPT-4
https://en.wikipedia.org/w/index.php?title=AlbertAGPT&action=edit&redlink=1
https://en.wikipedia.org/wiki/Anthropic#Claude
https://en.wikipedia.org/wiki/BERT_(language_model)
https://en.wikipedia.org/wiki/ChatGPT


Motivation

What are the computational limits of Transformers?


Which languages are accepted by Transformers?  



Standard Encoder Layer

⋯ ⋯ ⋯
v1 v2 vi vj vn⏟v1, v2, …, vn ∈ ℝd

A, B : ℝd → ℝd

A, B : ℝd → ℝd

⋯ ⋯ ⋯

⋯ ⋯ ⋯

C(ai, vi)

C : ℝ2d → ℝd

⋯ ⋯ ⋯
a1 a2 ai aj an ⏟

ai = vk
for k = arg max

ℓ∈{1,…,n}
Av̄i ⋅ Bv̄ℓ

(breaking ties by choosing 

the leftmost element)



Attention Mechanism

ai = vk

for k = arg max
ℓ∈{1,…,n}

Av̄i ⋅ Bv̄ℓ

(breaking ties by choosing 

the leftmost element)

This is known as unique hard attention 

It is hard: only elements that maximize  are considered

It is unique: ties are broken by choosing a single element

Avi ⋅ Bvℓ



ReLU Encoder Layer

⋯ ⋯ ⋯
v1 v2 vi vj vn⏟v1, v2, …, vn ∈ ℝd

⋯ ⋯ ⋯
a1 a2 ai aj an

ReLU(x) = max(0,x)
k ∈ {1,…, d} ⏟  is obtained from  by


applying ReLU on its -th component
ai vi

k



Transformer Encoder

⋯ ⋯ ⋯
v1 v2 vi vj vn

⋯ ⋯ ⋯

⋯ ⋯ ⋯
⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯
o1 o2 oi oj on

Encoder Layer (Standard or ReLU)

Encoder Layer (Standard or ReLU)

Encoder Layer (Standard or ReLU)



Encodings

Consider a finite alphabet 


An encoding of  is a function 


A positional encoding is a function 


Σ

Σ f : Σ → ℝd

p : ℕ → ℝe



Language Recognizers
Consider a language  and 


 a Transformer encoder with unique hard attention


 is accepted by  if there exist:


(1) An alphabet encoding 

(2) A positional encoding  


such that for every :

L ⊆ Σ+

T

L T

f : Σ → ℝd

p : ℕ → ℝe

a1⋯an ∈ Σ+

⋯ ⋯
Transformer 

f(a1) + p(1) f(an) + p(n)

⋯ ⋯

f(ai) + p(i)

w1 wi wn ⏟wn > 0 ⟺ a1⋯an ∈ L



An Upper Bound

Theorem (Hao, Angluin, Frank, 2022)


Every language that can be accepted by a Transformer 
encoder with unique hard attention is in the class AC0



This is Not Optimal

Proposition (B., Kozachiskiy, Lin, Podolskii, 2024)


There is an  language that is not accepted by any 
Transformer encoder with unique hard attention

AC0



A Significant Lower Bound

Theorem (B., Kozachiskiy, Lin, Podolskii, 2024)


Let  be an  language that is definable in  arbitrary 
monadic numerical predicates. 


Then  is accepted by a Transformer encoder with 

unique hard attention. 

L AC0 FO +

L

Recall: arbitrary numerical predicatesAC0 = FO +



Proof Idea

Apply Kamp’s Theorem and

rewrite the FO formula that defines  as a


formula in linear temporal logic (LTL) 


Show that every language definable by an LTL formula is 

accepted by a Transformer encoder with unique hard attention  

L



An Application

Every regular language in  is definable in

FO with monadic numerical predicates 


(Barrington, Compton, Straubing, Thérien, 1992)  

AC0

Corollary (B., Kozachiskiy, Lin, Podolskii, 2024)


Let  be a regular language in . Then  is accepted by a 
Transformer encoder with unique hard attention. 

L AC0 L



A Different Attention Mechanism

set of  that maximize 
Si := ℓ′ s Avi ⋅ Bvℓ

ai = ∑
ℓ∈Si

vℓ / |Si |

This is known as average hard attention



A Lower Bound

Transformers with average hard attention can 

recognize languages in TC0

Theorem (B., Kozachiskiy, Lin, Podolskii, 2024)


Every permutation-closed language over alphabet  is 
accepted by a Transformer encoder with average hard attention 

{0,1}

As a corollary, we obtain that both majority and parity 

are accepted by Transformer encoders with average hard attention 



DECLARATIVE LANGUAGES FOR 
EXPLAINING DECISION TREES



Explainability Problem

Boolean input 
ē = (e1, e2, …, en) ∈ {0,1}n

Boolean model M

e1
e2

en

M(ē) ∈ {0,1}…

Question: How can we explain the output of  on ? M ē



Notation

We assume the set of features of the Boolean model  to be:




An input is a function 

We write  for the output of  on input 


  


M
X = {x1, …, xn}

ē : X → {0,1}
M(ē) M ē



Counterfactual Explanations

Given Boolean model  over set  of features, and input , 
we call  a counterfactual explanation for  if:  


, where  is obtained from  by flipping the 

values of features in 

M X ē : X → {0,1}
Y ⊆ X (M, ē)

M(ē) ≠ M(ē′ ) ē′ ē
Y

We look for counterfactual explanations that are:

- Minimum: There is no counterfactual explanation of smaller size



Given Boolean model  over set  of features, and input ,  
we call  a sufficient reason for  if: 


M X ē : X → {0,1}
Y ⊆ X (M, ē)

M(ē) = M(ē′ ),  for every ē′ : X → {0,1} with ē′ (y) = ē(y) for each y ∈ Y

The output of  on  is invariant to 

interpretation of features in  

M ē
X∖Y

We look for sufficient reasons that are:

- Minimum: There is no sufficient reason of smaller size

- Minimal: There is no sufficient reason  with     Z Z ⊊ Y

Sufficient Reasons



Example

Consider the model  and input  


The minimum counterfactual explanation for  is 


There are two minimum sufficient reasons for :

 and   

M = (x1 ∨ x2) ē = (1,1)

(M, ē) {x1, x2}

(M, ē)
{x1} {x2}



What’s the Need? 

These are just two examples of explainability queries, but …

many other explainability notions have been proposed in the literature     

The logical community has handled this challenge by developing 
declarative query languages  

Declarative query languages for explainability tasks could help in:

• Allowing more flexibility in writing queries for different applications

• Providing a clear syntax and semantics for such queries

• Making explainability tools more accessible for practitioners

• Opening a path for optimization of explainability tasks 



Models as Logical Structures

We represent a Boolean model  over set  of features 

as a logical structure


 , where:


•  represents an undefined value in an input

• The domain  is the set of all partial inputs

• The binary predicate  contains pairs  of partial 

inputs, such that  is more complete than ; 

    e.g.,  is more complete than 

• The unary predicate  is interpreted as the set of 

positive inputs: 

M X

𝒜M = ({⊥,0,1}n, ⊆ , Pos)

⊥
{⊥,0,1}n

⊆ (ē, ē′ )
ē′ ē

(1,0,⊥) (1, ⊥ , ⊥ )
Pos

{ē : X → {0,1} ∣ M(ē) = 1}



The Logic FOIL

FOIL is FO over structures of the form , 

where  is a Boolean model


(Arenas, Baez, B., Pérez, Subsercaseaux, 2021) 

𝒜M
M



Expressing Properties in FOIL

The set of full instances is defined as   





The binary predicate full completion corresponds to

   





The pairs of same class full instances are defined as


Full(x) = ∀y (x ⊆ y → x = y)

FullComp(x, y) = x ⊆ y ∧ Full(y)

SameClass(x, y) = Full(x) ∧ Full(y) ∧ (Pos(x) ↔ Pos(y))



Minimal Sufficient Reasons

The binary predicate sufficient reason is defined as

   





The binary predicate minimal sufficient reason is


SR(x, y) = Full(y) ∧ x ⊆ y ∧ ∀z (FullComp(x, z) → SameClass(y, z))

mSR(x, y) = SR(x, y) ∧ ∀z (SR(z, y) ∧ z ⊆ x → z = x)



Two Issues with FOIL

Expressiveness 

FOIL is not capable of expressing some useful 

explainability notions used in practice


Complexity 

The evaluation complexity of FOIL is prohibitively expensive

even over simple models




First Issue: Expressiveness

Theorem (Arenas, B., Bustamante, Caraball, Subercaseaux 2024)


There is no formula  in FOIL that checks whether  is a 
minimum sufficient reason for  over the class of decision trees 

ϕ(x, y) x
y

Intuitively, FOIL cannot compare the 

cardinalities of sets of features




Second Issue: Complexity

Theorem (Arenas, B., Bustamante, Caraball, Subercaseaux 2024)


For every , there exists a sentence  in FOIL for which the 
evaluation problem over the class of decision trees is -complete 

k ≥ 1 ϕk
ΣP

k



Conflicting Requirements
Design a logic that, at the same time, can express useful 

notions of explainability often found in practice, and 

can be evaluated “efficiently” over decision trees 

What "efficient" means in this case? 


Formulas that can be evaluated as 

Boolean combinations of NP languages 

This is unavoidable since even evaluating 

minimum sufficient reason over decision trees is coNP-complete


(B., Monet, Pérez, Subsercaseaux, 2020)


On the positive side, it allows us to use SAT solvers technology

to evaluate formulas in the language



The Logic DT-FOIL
This logic is specifically tailored for decision trees


It is composed of three layers: 


Atomic formulas that can only compare 

syntactic properties of partial inputs 


(can be evaluated in PTIME)


Guarded formulas that allow quantification over partial inputs that 
represent nodes and positive leaves of decision trees


(can be evaluated in PTIME)


DT-FOIL formulas, which are Boolean combinations of 

quantified guarded formulas


(correspond to Boolean combinations of NP languages)



Atomic Formulas

These formulas correspond to FO over the following 

syntactic relations: 


Binary relation  that contains all pairs  of partial inputs 

such that  is more complete than 


Binary relation  that contains all pairs  of partial inputs 

such that # of undefined features in  is no larger than in  


(this allows to compare cardinalities of sets of features)

⊆ (ē, ē′ )
ē′ ē

⪯ (ē, ē′ )
ē ē′ 



Guarded Formulas
These are recursively defined as follows: 


(1) Atomic formulas are guarded formulas

(2) Guarded formulas are closed under Boolean combinations

(3) If  is a guarded formula, then





are also guarded formulas

ϕ

∃x(Node(x) ∧ ϕ) ∃x(PosLeaf(x) ∧ ϕ)

 holds for 

those partial instances that correspond to nodes of the decision tree


 holds for 

those partial instances that correspond to positive leaves of the decision tree

Node(x)

PosLeaf(x)



DT-FOIL Formulas

These are recursively defined as follows: 


(1) Guarded formulas are DT-FOIL formulas

(2) DT-FOIL formulas are closed under Boolean combinations

(3) If  is a guarded formula, then





is a DT-FOIL formula

ϕ

∃x1⋯∃xl ϕ



Expressiveness of DT-FOIL

DT-FOIL is capable of expressing many 

useful explainability properties often found in practice



An Example

The following atomic formula checks whether the features 

defined in both partial inputs  and  have the same value: 





The following guarded formula checks if partial instance  is a leaf:





The following guarded formula checks whether all “completions” of 
a partial instance  are positive: 


 

x y

Cons(x, y) = ∃z(x ⊆ z ∧ y ⊆ z)

x

Leaf(x) = Node(x) ∧ ∀y(Node(y) ∧ x ⊆ y → y = x)

x

AllPos(x) = ∀y(Node(y) → (Leaf(y) ∧ Cons(x, y)) → PosLeaf(y))



An Example

The following guarded formula checks 

whether  is a sufficient reason for :


 

 


The following DT-FOIL formula checks 

whether  is a minimum sufficient reason for : 


x y

SR(x, y) = x ⊆ y ∧ Full(y) ∧ (Pos(x) → AllPos(x)) ∧ (¬Pos(x) → AllNeg(x))

x y

SR(x, y) ∧ ∀z(SR(z, y) → x ⪯ z)



Complexity of DT-FOIL

Theorem (Arenas, B., Bustamante, Caraball, Subercaseaux 2024)


Let  be a fixed DT-FOIL formula. 


The problem of evaluating  over decision trees can be solved by 
a constant number of calls to an NP oracle 

ϕ

ϕ



THANKS


