
Matthias Lanzinger, WS2024/25

Database Theory
Unit 6 — Complexity

Complexity of Query Answering

For any query language we have the
following core decision problem.

ℒ

-Eval

Input: a query , database

Output: is ?

ℒ
q ∈ ℒ D

q(D) ≠ ∅

Recall, the complexity of
-Eval is what we

previously referred to as
combined complexity.

ℒ

Complexity of Query Answering

Additionally, we can study the problem
for each fixed query .q ∈ ℒ

-Eval

Input: database

Output: is ?

ℒ q

D
q(D) ≠ ∅

In data complexity:

• -Eval is in complexity class
, if -Eval for every

• -Eval is hard for if
-Eval is -hard for some .

ℒ
𝒞 ℒ q ∈ 𝒞 q

ℒ 𝒞
ℒ q 𝒞 q

The Story So Far

Data Complexity Combined
Complexity

First-Order Queries /
 Relational Algebra ? ?

Conjunctive Queries ? NP-
complete

Datalog PTIME-
complete

EXPTIME-
complete

Complexity of Query Answering

It would be just as natural to study the
problem for a fixed database .D

-Eval

Input: query

Output: is ?

ℒ D

q ∈ ℒ
q(D) ≠ ∅

In query complexity:

• -Eval is in complexity class
, if -Eval for every

• -Eval is hard for if
-Eval is -hard for some .

ℒ
𝒞 ℒ D ∈ 𝒞 D
ℒ 𝒞
ℒ D 𝒞 D

The Story So Far

Data Complexity Combined
Complexity

Query
Complexity

First-Order Queries /
 Relational Algebra ? ? ?

Conjunctive Queries ? NP-
complete ?

Datalog PTIME-
complete

EXPTIME-
complete ?

Datalog — Program Complexity

Recall, a Datalog query is a tuple consisting of program and an atomic query.
Hence, query complexity is also referred to as program complexity in this context.

What is the program complexity of Datalog?

(Π, q)

Datalog — Program Complexity

Recall our EXPTIME-hardness proof for combined complexity.
We constructed a program that simulates an EXPTIME Turing Machine.

Datalog — Program Complexity

Recall our EXPTIME-hardness proof for combined complexity.
We constructed a program that simulates an EXPTIME Turing Machine.

Datalog — Program Complexity

Recall our EXPTIME-hardness proof for combined complexity.
We constructed a program that simulates an EXPTIME Turing Machine.

We used the same database for
all input programs!

The same reduction also shows that
Datalog-Eval is EXPTIME-hard.

Thus, Datalog-EVAL is EXPTIME-hard
in query complexity.

D

D

Datalog — Program Complexity

Recall our EXPTIME-hardness proof for combined complexity.
We constructed a program that simulates an EXPTIME Turing Machine.

The upper bound is trivially inherited
from combined complexity:

If there is an EXPTIME algorithm for
any combination of and , then
there the algorithm will also be in
EXPTIME for a fixed .

q D

D

Filling the Table

Data Complexity Combined
Complexity

Query
Complexity

First-Order Queries /
 Relational Algebra ? ? ?

Conjunctive Queries ? NP-
complete ?

Datalog PTIME-
complete

EXPTIME-
complete

EXPTIME-
complete

CQ Query Complexity

Again it is enough to recall the reduction
we used to establish combined complexity.

CQ Query Complexity

Again it is enough to recall the reduction
we used to establish combined complexity.

Filling the Table

Data Complexity Combined
Complexity

Query
Complexity

First-Order Queries /
 Relational Algebra ? ? ?

Conjunctive Queries ? NP-
complete

NP-
complete

Datalog PTIME-
complete

EXPTIME-
complete

EXPTIME-
complete

First-Order Queries

FO Queries

✦ Without loss of generality, every FO query is of the form

✦ Let us use for the elements in the active domain of and .

✦ We will define two procedures and that call each other recursively, and access
the same global variables . Calling on the formula of will

return if and only if .

q = { z̄ ∣ ∃x1 ∀y1⋯∃xn ∀yn φ(x1, y1, …, xn, yn) }

Adom = {a1, …, am} q D

𝖾𝗏𝖺𝗅∃ 𝖾𝗏𝖺𝗅∀
X = {x1, y1, …, xn, yn} 𝖾𝗏𝖺𝗅∃ q

𝗍𝗋𝗎𝖾 q(D) ≠ ∅

FO-Eval Algorithm

func
 for

 if returns
 then return
 return

𝖾𝗏𝖺𝗅∃(i)
xi ∈ Adom
𝖾𝗏𝖺𝗅∀(i) 𝗍𝗋𝗎𝖾

𝗍𝗋𝗎𝖾
𝖿𝖺𝗅𝗌𝖾

func
 for

 if
 if evaluates to false under current
 assignment to

 then return
 else
 if returns
 then return
 return

𝖾𝗏𝖺𝗅∀(i)
yi ∈ Adom
i = n

φ
x1, y1, …, xn, yn

𝖿𝖺𝗅𝗌𝖾

𝖾𝗏𝖺𝗅∃(i + 1) 𝖿𝖺𝗅𝗌𝖾
𝖿𝖺𝗅𝗌𝖾

𝗍𝗋𝗎𝖾
The proof for why this is correct
should be clear. We are just fully
enumerating all possible assignments
and testing all of them.

How much space does it
require to run this algorithm?

FO-Eval Algorithm

Non-trivial parts that take up space:

✦ The global variables :
There are variables (for every).

Each of them stores elements from → space per variable.
 = bits to store

✦ The stack for the recursion:
The recursion depth is at most .
At every step of the recursion, we need to remember
a pointer for where to return to, and the argument .
Since , we need bits to store the recursion stack.

X
2n xi, yi 1 ≤ i ≤ n

Adom log |Adom |
O(n log |Adom |) X

2n

i
i ≤ n O(n log(n))

FO-Eval Algorithm

Non-trivial parts that take up space:

✦ Evaluation of for fixed assignment:
Requires a traversal of the syntax-tree of and lookups into the database.

 space suffices to do this.

φ
φ

O(log |φ | + log |D |)

FO-Eval Algorithm

In total we need space in the order of

O(n log n + n log |Adom | + log |φ | + log |D |)

Depends on query
(, , and)

q
n φ Adom

Depends on database
(and)

D
Adom D

FO-Eval Algorithm

In total we need space in the order of

O(n log n + n log |Adom | + log |φ | + log |D |)

Depends on query
(, , and)

q
n φ Adom

Depends on database
(and)

D
Adom D

O(log |Adom | + log |D |)O(n log n + n log |Adom | + log |φ |)

FO-Eval Algorithm

In total we need space in the order of

O(n log n + n log |Adom | + log |φ | + log |D |)

Theorem
FO-Eval is in PSPACE in combined complexity.
FO-Eval is in L (log space) in data complexity.
FO-Eval is in PSPACE in query complexity.

FO-Eval Complexity

The quantified SAT problem (QSAT)
is PSPACE-hard.

We can reduce QSAT to FO-Eval
with a fixed database.
(we leave this as an easy but
 interesting exercise)

 → FO-Eval is PSPACE-complete
in both combined and query
complexity

QSAT

Input instances of the form

where:
✦
✦ are Boolean variables

(can be either true or false)
✦ is a propositional

formula

Example

Φ = Q1x1 Q2x2 ⋯ Qnxn ψ(x1, x2, …, xn)

Qi ∈ {∀, ∃}
x1, x2, …, xn

ψ(x1, x2, …, xn)

∀x1, x4 ∃x2, x3 (x1 ∨ ¬x2) ∧ (x3 ∨ x4) ∧ (¬x1 ∨ x3)

Filling the Table

Data Complexity Combined
Complexity

Query
Complexity

First-Order Queries /
 Relational Algebra in L PSPACE-

complete
PSPACE-
complete

Conjunctive Queries ? NP-
complete

NP-
complete

Datalog PTIME-
complete

EXPTIME-
complete

EXPTIME-
complete

Filling the Table

Data Complexity Combined
Complexity

Query
Complexity

First-Order Queries /
 Relational Algebra in L PSPACE-

complete
PSPACE-
complete

Conjunctive Queries in L NP-
complete

NP-
complete

Datalog PTIME-
complete

EXPTIME-
complete

EXPTIME-
complete

CQs are a special case FO-queries.
Our algorithm from before works
also for them!

Data Complexity

Logarithmic space (L) is great, but its not
the best we can do.

Complexity below L will require a
different perspective on complexity:
Boolean Circuits.

Boolean Circuits

A directed acyclic graph, 2 kinds of
nodes:

✦ Inputs (nodes with no in-edge)

✦ Gates (AND, OR, NOT)

The fan-in of a gate is the number of
ingoing edges. NOT gates always have
fan-in 1.

There is exactly one node with no out-
edges. We call it the output gate.

Source: https://en.wikipedia.org/wiki/Circuit_complexity

Boolean Circuits

We can now define complexity classes by problems that can be decided by different kinds of
circuits. That is, the circuit outputs 1 on every “yes”-instance, and 0 otherwise. Circuit size
usually depends on the size of the input word (the number of input bits).

✦ is the class of problems decided by a circuit with depth
and a polynomial number of gates with fan-in at most 2

✦ is the class of problems decided by a circuit with depth
 and a polynomial number of gates with unbounded fan-in

n

𝖭𝖢i O(logi(n))

𝖠𝖢i O(logi(n))

Circuit Complexity

Circuit complexity are interesting for parallelizability and related questions:

For example, a problem in can be solved in time using polynomial many
processors.
Idea: each level of the circuit can evaluate its gates in parallel. With enough processors, we only
need matching the depth of the circuit.

𝖭𝖢i O(logi(n))

𝖠𝖢0 ⊆ 𝖭𝖢1 ⊆ 𝖫 ⊆ 𝖭𝖫 ⊆ 𝖭𝖢2 ⊆ 𝖠𝖢2 ⊆ 𝖭𝖢3⋯ ⊆ 𝖯
“highly parallelizable”

Circuit Complexity

In data complexity, FO-Eval is in .
Constant depth circuits are enough!

𝖠𝖢0

(Very!) Simplified, the idea is that for every quantifier free sub formula
we can create a gate that expresses whether it holds or not for every assignment
of to constants .

Universal quantification then corresponds to one large AND gate that takes all
gates for every as input.

Analogously, existential quantification becomes a large OR with the respective
gates for as input.

φ(x1, x2, …, xn)

x1, …, xn c1, …, cn ∈ Dom

∀x̄φ(x̄)
φ(c̄)

∃x̄φ(x̄)
φ(c̄)

Putting AC in Context0

Consider the following simple problem

Parity
Input: a string of 1s and 0s.

Output: does the string contain an
even number of 1s?

Parity is not in !𝖠𝖢0

Filling the Table

Data Complexity Combined
Complexity

Query
Complexity

First-Order Queries /
 Relational Algebra in AC0 PSPACE-

complete
PSPACE-
complete

Conjunctive Queries in AC0 NP-
complete

NP-
complete

Datalog PTIME-
complete

EXPTIME-
complete

EXPTIME-
complete

But databases work fine?

They do, until they don’t.

Typical applications have converged on
using easy queries, where the joins are
mostly simple.

However, even on very simple queries,
like counting paths in graphs, we clearly
see exponential scaling behaviour on
modern systems.

Example query path-04:

i.e., the number of 4-edge paths.
|{x̄ ∣ E(x1, x2) ∧ E(x2, x3) ∧ E(x3, x4) ∧ E(x4, x5)} |

SparkSQL
Yannakakis-

inspired
evaluation

path-03 6.3s 1.59s

path-04 51s 1.76s

path-05 401s 2.03s

path-06 out of memory 2.18s

From: Lanzinger, M., Pichler, R., & Selzer, A. (2024).
Avoiding Materialisation for Guarded Aggregate
Queries. arXiv preprint arXiv:2406.17076.

Practical Data Complexity

Can the lower complexity classes for data complexity
be useful in practice?

✦ Difficult to use them in general database systems. These systems
require algorithms that work on every input query.

✦ Potential use-cases in cases where we have specialised hardware/
systems for specific queries.
Recall that , hence with more practical bounded fan-in
logarithmic depth circuits suffice. Could be built into hardware.

𝖠𝖢0 ⊆ 𝖭𝖢1

Descriptive Complexity
(A very imprecise introduction)

Disclaimer

We will focus on the high-level ideas of descriptive complexity.

In the interest of accessibility, we will omit various important
technical details. Importantly, domains are always finite in this setting

(based on the idea that computation is inherently finite).

These slides are not suitable as a reference on descriptive complexity.
For a formally reliable reference please refer to

“Immerman, N., 1998. Descriptive complexity. Springer.”

Descriptive Complexity

✦ We want to connect computational complexity classes
with query languages.

✦ Say I want to query a property of a database that I know is in
complexity class . Is it possible to do this in language ?

Examples for a graph database:
Finding a large clique is in : what query language can I use?
Deciding whether the graph is strongly connected is in :
what query language can I use?

𝒞 ℒ

𝖭𝖯
𝖭𝖫

Descriptive Complexity

Ultimately, what we want is statements of the following form:

For every problem there exists a formula in language such that:

and for every , the language is in .

As a shorthand for this relationship, we write .

P ∈ 𝒞 φ ℒ

I ∈ P ⟺ I ⊧ φ

ψ ∈ ℒ {I ∣ I ⊧ ψ} 𝒞

𝒞 ≡ ℒ Note that we implicitly
treat all languages here
as databases, and assume
formulas over the same
vocabulary..

AC FO0 ≡

We’ve already seen that for every FO formula , there exists an
 circuit such that:

 outputs on input

To see that FO, we need to also show the opposite direction:
For every circuit there is an equivalent FO formula.

φ
𝖠𝖢0 C

C 1 D ⟺D ⊧ φ

𝖠𝖢0 ≡
C

AC FO0 ≡

For every circuit there is an equivalent FO formula:
Unroll the circuit into a formula.

C

Source: https://en.wikipedia.org/wiki/Circuit_complexity

One relation:
… Input index has value

we use the abbreviation
Input(i, v) i v

I(x) := Input(x, 𝖳𝗋𝗎𝖾)

G1 := I(x1) ∧ I(x2) G2 := I(x2) ∧ I(x3) G3 := ¬I(x3)

G1 G2 G3

G4 G5

G6

G4 := ¬G1 G5 := G2 ∨ G3

G6 := G4 ∧ G5

AC = FO0

For every circuit there is an equivalent FO formula:
Unroll the circuit into a formula.

C

Source: https://en.wikipedia.org/wiki/Circuit_complexity

One relation:
… Input index has value

we use the abbreviation
Input(i, v) i v

I(x) := Input(x, 𝖳𝗋𝗎𝖾)

G1 G2 G3

G4 G5

G6

φ = G6 := ¬(I(x1) ∧ I(x2)) ∧ ((I(x2) ∧ I(x3)) ∨ ¬I(x3))

Second-Order
Logic

Second-Order Logic

✦ So far we have focused on first-order
logic, that is, logic where we can
quantify over the objects of the
domain:
“There is some object such
that the formula is true if we interpret
variable as .

✦ A next natural step is to allow
quantification over relations:
“There is some relation
such that the formula is true if interpret
second-order variable as .

a ∈ Dom

x a

A ⊆ Domk

X A

Second-Order Formulas

Like first-order formulas but we also
allow quantification and where

 is a relation variable.
∀X ∃X

X

∃C(∀x C(x) → V(x)) ∧ |C | ≤ k

∧ (∀yz, E(y, z) → (C(y) ∨ C(z))

C ⊆ V

Every edge has one endpoint in C

∃SO

 is the language of second order formulas where second order
quantification is always existential.

NP

Intuition NP: A second order variable of arity has at most tuples. Since
 is fixed (part of the query), we can make polynomial guesses for all relations and then

simply check the formula for the database extended by the guesses.

∃SO

≡ ∃SO

∃SO ⊆ k |Dom |k

k

∃SO

Intuition NP: Suppose a NTM that takes at most time for problem .
We express this as a formula

∃SO ⊇ nα − 1 P

∃C1 ∃C2⋯∃Cg ∃Δ . φ(C̄, Δ)

 := cell at time

contains symbol

Ci(s̄, t̄) s̄ t̄
i

Encodes the non-deterministic choices.
Assume choices are always binary, then

 intuitively is true iff choice is made.Δ(t̄) 1

 is similar to our reduction of EXPTIME TMs to Datalog.φ

∀SO

 is the language of second order formulas where second order
quantification is always universal.

co-NP

Same idea as for considering .

∀SO

≡ ∀SO

∃SO ∀Aφ ≡ ¬∃¬φ

Full Second-Order?

PH

Recall the definition of PH:
NP co-NP

Intuition: a SO formula
can be seen as a formula where .
That is, a co-NP problem if we have an NP oracle.

By induction this idea extends through the whole hierarchy.

≡ SO

ΣP
k+1 = ΣP

k ΠP
k+1 = ΣP

k

∀A∃B φ(A, B)
∀SO ∀A ψ(A) ψ ∈ ∃SO

∃SO =

Source:
https://en.wikipedia.org/wiki/
Polynomial_hierarchy

Recall means
in complexity class

 with an oracle.

𝒞𝒪

𝒞 𝒪

Source:
Immerman, N., 1998.
Descriptive complexity.
Springer.

There’s
More

Summary

✦ We have a precise idea of how difficult it is to evaluate various query
languages.

✦ We can make more fine-grained observations about the role of
database size and query size in the evaluation: query and data
complexity.

✦ The reasoning behind the complexity results reveals important
insights for how the theory is connected to practice.

✦ Descriptive Complexity tightly links expressivity of
query languages to computational complexity

