Database Theory

Unit & — Complexity

Ormatics

Complexity of Query Answering

For any query language &£ we have the
following core decision problem.

EOCZ-EVGI Recall, the complexity of
5 f Z-Eval is what we
Input: a query g € <, database D1 D e eferred to s

combined complexity.

Complexity of Query Answering

Additionally, we can study the problem

for each fixed query g € &

5 . In data complexity:
£ -Eval f o .
; q .« Z-Evalis in complexity class

6, if Z-Eval, € € forevery g

: . +Z-Evalis hard for € ff
:Output: is Q(D) ?é Y . Z-Eval is €-hard for some g.

The Story So Far

Data Complexit Combined
P y Complexity
First-Order Queries / ’ .
Relational Algebra ' '
Conjunctive Queries 7 NP-
complete
PTIME- EXPTIME-
Datalog
complete complete

Complexity of Query Answering

't would be just as natural to study the
oroblem for a fixed database D.

: . In query complexity:

- F-Eval” e

; .+ Z-Evalis in complexity class
§|nput; query g € A . G, if L-Eval’ € € forevery D

. . «ZL-Evalis hard for € if
éOUtp‘Jt: S Q(D) 7& @7 ZL-Eval® is €-hard for some D.

The Story So Far

] Combined Query
Data Complexity Complexity Complexity
First-Order Queries / ,))
Relational Algebra ' ' '
: : : NP-

Conjunctive Queries 7 7
complete
PTIME- EXPTIME-

Datalog ?
complete complete

Datalog — Program Complexity

Recall, a Datalog gu

Hence, query com

O

ery is a tuple (11, g) consisting of program and an atomic query.
exity is also referred to as program complexity in this context.

What is the program complexity of Datalog?

Datalog — Program Complexity

Recall our EXPTIME-hardness proof for combined complexity.
We constructed a program that simulates an EXPTIME Turing Machine.

Combined Complexity l
High-level overview i .
Constructing a Long Chain
Any transition (g, ¢
Foreachi € [m —1]:
. | The Database [
Succ't!
i+1 :
Suce The Starting State [
We can express the Succitl
steps (where m s | Hig We only need a very basi , .
L can be constructed. For input word w = aya, -+ ag TFO NSI TIOﬂS as RU |€S
0l
State(X) : —
Symbol, (X, %) : — .
— o Symbol, (o,) : — Inertia and Acceptance
Intuitively, this is a compact Herize this reducticnii : For every transition 6(q, a
Symbol, (%o, %7) : = The final missing part is to preserve unchanged symbols over time:
— Symbol, (x,,y) : — State (7) : —
Y ul (_))_)) - Symbol (v,y) : — Symbol (X,y), Head(x,Z), <" (3,Z), Succ™(x, V)
Head(x,x) : — Symbol,(Z,y) : — _ s o - e =
o Symbol (v,y) : — Symbol (X,y), Head(x,2), <" (Z,¥), Succ™(x, V)
We use Symbol, (t, ¢) to expr Read.v) : o
. u Y ar °S The first rule propagates the cells that come before the head to the next timepoint,
Similarly, Head(t, ¢) means tf It is straightforward to adc the second propagates the cells after the head.

Finally, we check whether our simulation of the machine reaches the accepting state g+

Accept : — StateqT()'c)

Datalog — Program Complexity

Recall our EXPTIME-hardness proof for combined complexity.
We constructed a program that simulates an EXPTIME Turing Machine.

The Database

We only need a very basic database from which our successor relationship
can be constructed.

D = { Succ'(0,1), High'(1), Low'(0) }

Note that the database in this construction is independent of the input w!
Hence this reduction does not work to establish the complexity in data complexity.

Datalog — Program Complexity

Recall our EXPTIME-hardness proof for combined complexity.
We constructed a program that simulates an EXPTIME Turing Machine.

The Database

We only need a very basic database from which our successor relationship
can be constructed.

D = { Succ'(0,1), High'(1), Low'(0) }

Note that the database in this construction is independent of the input w!
Hence this reduction does not work to establish the complexity in data complexity.

We U
all in

sed t

out p

e SA

'0gra

me database D for

MS!

The same reduction also shows that
Datalog-Eval” is EXPTIME-hard.

Thus, Datalog-EVAL is EXPTIME-haro
N query complexity.

Datalog — Program Complexity

Recall our EXPTIME-hardness proof for combined complexity.
We constructed a program that simulates an EXPTIME Turing Machine.

The Database

We only need a very basic database from which our successor relationship
can be constructed.

D = { Succ'(0,1), High'(1), Low'(0) }

Note that the database in this construction is independent of the input w!
Hence this reduction does not work to establish the complexity in data complexity.

The upper bound is trivially inherited
from combined complexity:

it there is an EXPTIME algorithm for

any combination of g and D, then
there the algorithm will also be in

EXPTIME for a fixed D.

Filling the Table

: Combined Query
Data Complexity Complexity Complexity
First-Order Queries / ’ , .
Relational Algebra ' ' '
: : : NP-
Conjunctive Queries 7 7
complete
PTIME- EXPTIME- EXPTIME-
Datalog
complete complete complete

CQ Query Complexity

Again it is enough to recall the reduction
we used to establish combined complexity.

NP-Hardness
0

4+ There is an easy reduction from N P‘HO rd Ness

3-Colourability.

4+ 3-Colourability takes a graph Gas

input and decides whether G is 3-
colourable. Not ¢

4+ 3-Colourability is equivalent to m B

having a homomorphism into the

That is, can we color the vertices of G triangle graph. N P_HO rd ness

with red, green, and blue such that
no edge is between two vertices of 4+ The three nodes of the triangle

the same colour? intuitively represent the three colours. . o . o _ .
This homomorphism into the triangle can be trivially expressed as a conjunctive query.

4+ Note that if there is an edge between

v and u, then v, u can’t be mapped to 4+ Take an input for 3-Colourability, i.e., a graph G.
the same vertex, i.e., adjacent

) , red green
‘ vertices can't be mapped to the 4+ Create a database with relation E for the triangle: green red
same colour. red blue

blue red
4+ Encode the graph as a conjunctive query: green blue
q= { () I v /\ E(Vi, V]) A E(Vj’ vi) } blue green

— () €EG)

4+ There is a homomorphism Tbl*(q) — D if and only if G is 3-colourable.

CQ Query Complexity

Again it is enough to recall the reduction
we used to establish combined complexity.

NP-Hardness

This homomorphism into the triangle can be trivially expressed as a conjuiictive qlcry

4+ Take an input for 3-Colourability, i.e., a graph G.

A B
red green

+ Create a database with relation E for the triangle: green red
red blue

blue red

4+ Encode the graph as a conjunctive query: green blue
q — { () | 3_) /\ E(Vi’ v]) A E(Vj, Vi) } blue green

{viv,}€E(G)

4+ There is a homomorphism Tbl*(q) — D if and only if G is 3-colourable.

Filling the Table

: Combined Query
Data Complexity Complexity Complexity
First-Order Queries / ’ , .
Relational Algebra ' ' '
Conjunctive Queries 7 NP- e
complete complete
PTIME- EXPTIME- EXPTIME-
Datalog
complete complete complete

First-Order Queries

O QAU

aries

+ Without loss of generality, every FO query is of the form

+ Letususe Adom = {ay, ...,

+ We will defi
the same g

return true

q=172] Elxl\vlyl"'Elxnvyn q”(xl’yl’ ""xn’yn) j

ne two procedures evalg and evaly that co

obal variables X = {x{, ¥y, ---,X,,, ¥, }. Cal
if and only if g(D) # @.

a, } for the elements in the active domain of g and D.

| each other recursively, and access
ing evalz on the formula of g will

FO-Eval Algorithm

func evaly(i)
fory;, € Adom

func evalz(7) TN

for x; € Adom

| it @ evaluates to false under current
if evaly(i) returns true

assignment to Xy, Yy, ..., X, V,,
then return true

then return false
return false

else
if evalg(i + 1) returns false
The proof for why this is correct then return false
should be clear. We are just fully return true

enumerating all possible assignments
and testing all of them.

How much space does it
require to run this algorithm?

FO-Eval Algorithm

Non-trivial parts that take up space:

4+ The global variables X:
There are 2n variables (x;, y; forevery 1 <1 < n).

Fach of them stores elements from Adom — log | Adom | space per variable.
= 0(n log| Adom |) bits to store X

4+ The stack for the recursion:

The recursion depth is at most 2n.
At every step of the recursion, we need to remember

a pointer for where to return to, and the argument 1.
Since i < n, we need O(nlog(n)) bits to store the recursion stack.

FO-Eval Algorithm

Non-trivial parts that take up space:

4+ Evaluation of ¢ for fixed assignment:
Requires a traversal of the syntax-tree of @ and lookups into the database.
O(log| @ | + log| D) space suffices to do this.

FO-Eval Algorithm

N total we need space in the order of

O(nlogn + nlog|Adom| + log|e| +1log|D|)

[

Depends on query g Depends on database D
(n, @, and Adom) (Adom and D)

FO-Eval Algorithm

N total we need space in the order of

O(nlogn + nlog|Adom| + log|e| +1log|D|)

[

Depends on query g Depends on database D
(n, @, and Adom) (Adom and D)

O(nlogn + nlog|Adom| + log|@|) O(log |Adom | + log|D|)

FO-Eval Algorithm

N total we need space in the order of

O(nlogn + nlog|Adom| + log|e| +1log|D]|)

Theorem
FO-Eval is in PSPACE in combined complexity.

FO-Eval is in L (log space) in data complexity.
FO-Eval is in PSPACE in query complexity.

FO-Eval Complexity

QSAT

The quantified SAT problem (QSAT) Input instances of the form

s PSPACE-hard. O = Qx; Opxy -+ O X, WXy, Xy, .., X,)
where:
We can reduce QSAT to FO-Eval + 0. e {Vv, 3}

with a fixed database. + X{,X,,...,X, are Boolean variables

(can be either true or false)
+ w(x,Xx,,...,X,)is apropositional

— FO-Eval is PSPACE-complete formula
N both combined and gquery

complexity Example
vxl,X4 3)(:2, x?) (xl V _'XZ) A\ (.X3 V X4) A\ (—le V X3)

Filling the Table

: Combined Query
Data Complexity Complexity Complexity
First-Order Queries / . PSPACE- PSPACE-
. In L
Relational Algebra complete complete
Conjunctive Queries 7 NP- NP-
complete complete
PTIME- EXPTIME- EXPTIME-
Datalog
complete complete complete

Filling the Table

: Combined Query
Data Complexity Complexity Complexity
First-Order Queries / . PSPACE- PSPACE-
. In L
Relational Algebra complete complete
Conjunctive Queries in L NP- NP-
complete complete
PTIME- EXPTIME- EXPTIME-
Datalog
complete complete complete

Data Complexity

Logarithmic space (L) is great, but its not
the best we can do.

Complexity below L will require o

different perspective on complexity:
Boolean Circuits.

X2
inputs

Source: https://en.wikipedia.org/wiki/Circuit_complexity

Boolean Circuits

We can now define complexity classes by problems that can be decided by different kinds of
circuits. That is, the circuit outputs 1 on every “yes’-instance, and O otherwise. Circuit size

usually depends on the size n of the input word (the number of input bits).

+ NC'is the class of problems decided by a circuit with O(log'(n)) depth
and a polynomial number of gates with fan-in at most 2

4+ AC'is the class of problems decided by a circuit with O(log'(n)) depth
and a polynomial number of gates with unbounded fan-in

Circuit Complexity

Circuit complexity are interesting for parallelizability and related questions:

For example, a problem in NC' can be solved in O(log!(n)) time using polynomial many
Orocessors.

Idea: each level of the circuit can evaluate its gates in parallel. With enough processors, we only
need matching the depth of the circuit.

AC'CNC!'CLCNLCNC?’CAC’CNC’..-CP

R ——
“highly parallelizable”

Circuit Complexity

In data complexity, FO-Eval is in ACY.
Constant depth circuits are enough!

(Very!) Simplified, the idea is that for every quantifier free sub formula @(x;, x5, ..., X,)
we can create a gate that expresses whether it holds or not for every assignment

of xq, ..., X, to constants ¢y, ..., ¢, € Dom.

Universal quantification Vxg@(Xx) then corresponds to one large AND gate that takes all
gates for every @(¢) as input.

Analogously, existential quantification dxg(x) becomes a large OR with the respective

gates for @(C) as input.

Putting ACY in Contex

Consider the following simple problem

élnput: a string of 1s and Os. Dty is not in ACY

Output: does the string contain an
‘even number of 1s?

Filling the Table

] Combined Query
Data Complexity Complexity Complexity
First-Order Queries / . PSPACE- PSPACE-
. iIn ACO
Relational Algebra complete complete
Conjunctive Queries in ACO NP- NP-
complete complete
PTIME- EXPTIME- EXPTIME-
Datalog
complete complete complete

But datapases work fne”?

They do, until they don't.

Typical applications have converged on
Using easy queries, where the joins are

mostly simple.

ke

OWever, even on very simple queries,

counting paths in graphs, we clearly

see exponential scaling behaviour on
modern systems.

Exa
| {X

l.E.,

Mmple query path-04:
E(xy, x5) A E(xy,x3) A E(x3,x,) A E(xy,x5) } |

the number of 4-edge paths.

Yannakakis-

SparkSQL inspired
evaluation
path-03 6.3S 1.59s
path-04 51s 1.76s
path-05 401s 2.03s
path-06 out of memory 2.18s

From: Lanzinger, M., Pichler, R., & Selzer, A. (2024).
Avoiding Materialisation for Guarded Aggregate
Queries. arXiv preprint arXiv:2406.17076.

Practical Data Complexity

Can the lower complexity classes for data complexity
be useful in practice?

+ Difficult to use them in general database systems. These systems
require algorithms that work on every input query.

4+ Potential use-cases in cases where we have specialised hardware/
systems for specific queries.

Recall that ACY € NC! hence with more oractical bounded fan-in
logarithmic depth circuits suffice. Could be built into hardware.

Descriptive Complexity

(A very imprecise introduction)

Disclaimer

We will focus on the high-level ideas of descriptive complexity.

N th
technica

These slides are not sui

“Immerman, N.

e interest of accessibility, we will omit various important
details. Importantly, domains are always finite in this setting
(based on the idea that computation is inherently finite).

For a formr

o

‘able as a reference on descriptive complexity.

v reliable reference please refer to
1998. Descriptive complexity. Springer.”

Descriptive Complexity

+ We want to connect computational complexity classes

+

with query languages.

Say | want to query a property of a database that | know is in
complexity class €. Is it possible to do this in language &7

Examples for a graph database:

Finding a large cligue is in NP: what query language can | use?

Deciding whether the graph is strongly connected is in NL.:
what query language can | use?

Descriptive Complexity

Ultimately, what we want is statements of the following form:

: For every problem P € 6 there exists a formula @ in language &£ such that: ‘
leP < IFg
and for every y € £, the language {I | I F yw} isin €.

' ' | ' — Note that | licitl
As a shorthand for this relationship, we write ¢ = & ote that we implicitly
treat all languages here

as databases, and assume
formulas over the same
vocabulary..

ACY = FO

We've already seen that for every FO formula ¢, there exists an
AC circuit C such that:

C outputs 1 oninput D <D F ¢

To see that ACY =FO, we need to also show the opposite direction:
For every circuit C there is an equivalent FO formula.

ACY = FO

For every circuit C there is an equivalent FO formula:
Jnroll the circuit into a formula.

output One relation:
Input(i, v)... Input index i has value v

we use the abbreviation I(x) := Input(x, True)
G6 — G4 AN Gs

G4 — _IGl G5 .= G2 V G3

G, = 1(x)) A I(x,) G, = 1(x,) A 1(x3) G, = 1(x)

Source: https://en.wikipedia.org/wiki/Circuit_ complexity

ACY = FO

For every circuit C there is an equivalent FO formula:
Jnroll the circuit into a formula.

output One relation:
Input(i, v)... Input index i has value v

we use the abbreviation I(x) := Input(x, True)

@ = Gg := 2(1(x)) A(xp)) A () A 1(x3)) V = 1(x3))

Source: https://en.wikipedia.org/wiki/Circuit_ complexity

Second-Order
Logic

Secona-Order Logic

+ So far we have focused on first-order
logic, that is, logic where we can
quantify over the objects of the
domain:

“There is some object a € Dom such
that the formula is true it we interpret

variable x as a.

A next natural step is to allow

guantification over relations:

“There is some relation A C Dom*

such that the formula is true if interpret
second-order variable X as A.

150

3450 is the language of second order formulas where second order
guantification is always existential.

NP = 4S50

Intuition 450 C NP: A second order variable of arity k has at most | Dom \k tuples. Since

k is fixed (part of the query), we can make polynomial guesses for all relations and then
simply check the formula for the database extended by the guesses.

150

Intuition 450 2 NP: Suppose a NTM that takes at most n* — 1 time for problem P.
We express this as a formula

3C13C2"' HCgaA ¢(C, A)

JN

.) Encodes the non-deterministic choices.
Ci(5,1) =cellsattime f Assume choices are always binary, then

contains symbol i A(?) intuitively is true iff choice 1 is made.

@ is similar to our reduction of EXPTIME TMs to Datalog.

VSO

VSO0 is the language of second order formulas where second order
guantification is always universal.

co-NP= VSO

Same idea as for 450 considering VAp = 7 d-@.

Full Second-Order?

8 IT3
PH = SO AP
33 10y
Recall the definition of PH: Recal %'@ meolns \ /
P zP P yP IN complexity class
Ek'l‘l NP~ Hk+1 co-NpP~ € with an O oracle. PN =
Intuition: a SO formula VA 3B ¢(A, B) NP = ¥F / \H? N
can be seenas a VSO formula VAw(A) wherey € 450. ’\ /

That is, a co-NP problem if we have an 350 = NP oracle. AP SP _p P = AP

Source:
https://en.wikipedia.org/wiki/
Polynomial_hierarchy

By induction this idea extends through the whole hierarchy.

Arithmetic Hierarchy

Recursive

Primitive Recursive

SO(LFP)
PSPACE FO(PFP) SO(TC)

Polynomial-Time Hierarchy
SO

p FO(LFP)
SO-Horn

,*" FO[(log m)™™"]
ll ‘\‘
l" ‘\

\

" FO(TC SO-Krom
! (TC) Nondeterministic Logspace rom Source:

mmerman, N, 1998
CACY Logarithimic-Time Hierarchy FO Springer.

Summary

4+ We have a precise idea of how difficult it is to evaluate various query
languages.

+ We can make more fine-grained observations about the role of
database size and query size in the evaluation: query and dato
complexity.

4+ The reasoning behind the complexity results reveals important
insights for how the theory is connected to practice.

4+ Descriptive Complexity tightly links expressivity of
guery languages to computational complexity

