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Complexity of Query Answering

For any query language  we have the 
following core decision problem.

ℒ

-Eval 

Input: a query , database  

Output: is ?

ℒ
q ∈ ℒ D

q(D) ≠ ∅

Recall, the complexity of  
-Eval is what we  

previously referred to as 
combined complexity.

ℒ



Complexity of Query Answering

Additionally, we can study the problem 
for each fixed query .q ∈ ℒ

-Eval  

Input: database  

Output: is ?

ℒ q

D
q(D) ≠ ∅

In data complexity: 

•  -Eval is in complexity class 
, if  -Eval  for every  

• -Eval is hard for  if  
-Eval  is -hard for some .

ℒ
𝒞 ℒ q ∈ 𝒞 q

ℒ 𝒞
ℒ q 𝒞 q



The Story So Far

Data Complexity Combined 
Complexity

First-Order Queries / 
 Relational Algebra ? ?

Conjunctive Queries ? NP- 
complete

Datalog PTIME- 
complete

EXPTIME-
complete



Complexity of Query Answering

It would be just as natural to study the 
problem for a fixed database .D

-Eval  

Input: query  

Output: is ?

ℒ D

q ∈ ℒ
q(D) ≠ ∅

In query complexity: 

•  -Eval is in complexity class 
, if  -Eval  for every  

• -Eval is hard for  if  
-Eval  is -hard for some .

ℒ
𝒞 ℒ D ∈ 𝒞 D
ℒ 𝒞
ℒ D 𝒞 D



The Story So Far

Data Complexity Combined 
Complexity

Query 
Complexity

First-Order Queries / 
 Relational Algebra ? ? ?

Conjunctive Queries ? NP- 
complete ?

Datalog PTIME- 
complete

EXPTIME-
complete ?



Datalog — Program Complexity

Recall, a Datalog query is a tuple  consisting of program and an atomic query. 
Hence, query complexity is also referred to as program complexity in this context. 

What is the program complexity of Datalog?

(Π, q)



Datalog — Program Complexity

Recall our EXPTIME-hardness proof for combined complexity. 
We constructed a program that simulates an EXPTIME Turing Machine.



Datalog — Program Complexity

Recall our EXPTIME-hardness proof for combined complexity. 
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Datalog — Program Complexity

Recall our EXPTIME-hardness proof for combined complexity. 
We constructed a program that simulates an EXPTIME Turing Machine.

We used the same database  for 
all input programs! 

The same reduction also shows that 
Datalog-Eval  is EXPTIME-hard. 

Thus, Datalog-EVAL is EXPTIME-hard 
in query complexity.

D

D



Datalog — Program Complexity

Recall our EXPTIME-hardness proof for combined complexity. 
We constructed a program that simulates an EXPTIME Turing Machine.

The upper bound is trivially inherited 
from combined complexity: 

If there is an EXPTIME algorithm for 
any combination of  and , then 
there the algorithm will also be in  
EXPTIME for a fixed .

q D

D



Filling the Table

Data Complexity Combined 
Complexity

Query 
Complexity

First-Order Queries / 
 Relational Algebra ? ? ?

Conjunctive Queries ? NP- 
complete ?

Datalog PTIME- 
complete

EXPTIME-
complete

EXPTIME-
complete



CQ Query Complexity

Again it is enough to recall the reduction 
we used to establish combined complexity.



CQ Query Complexity

Again it is enough to recall the reduction 
we used to establish combined complexity.



Filling the Table

Data Complexity Combined 
Complexity

Query 
Complexity

First-Order Queries / 
 Relational Algebra ? ? ?

Conjunctive Queries ? NP- 
complete

NP- 
complete

Datalog PTIME- 
complete

EXPTIME-
complete

EXPTIME-
complete



First-Order Queries



FO Queries

✦ Without loss of generality, every FO query is of the form 

 

✦ Let us use  for the elements in the active domain of  and . 

✦ We will define two procedures  and  that call each other recursively, and access 
the same global variables . Calling  on the formula of  will 

return  if and only if .

q = { z̄ ∣ ∃x1 ∀y1⋯∃xn ∀yn φ(x1, y1, …, xn, yn) }

Adom = {a1, …, am} q D

𝖾𝗏𝖺𝗅∃ 𝖾𝗏𝖺𝗅∀
X = {x1, y1, …, xn, yn} 𝖾𝗏𝖺𝗅∃ q

𝗍𝗋𝗎𝖾 q(D) ≠ ∅



FO-Eval Algorithm

func  
    for  

        if  returns   
        then return  
    return 

𝖾𝗏𝖺𝗅∃(i)
xi ∈ Adom
𝖾𝗏𝖺𝗅∀(i) 𝗍𝗋𝗎𝖾

𝗍𝗋𝗎𝖾
𝖿𝖺𝗅𝗌𝖾

func  
    for  

        if  
            if  evaluates to false under current 
               assignment to  

             then return  
        else 
            if  returns   
            then return  
    return 

𝖾𝗏𝖺𝗅∀(i)
yi ∈ Adom
i = n

φ
x1, y1, …, xn, yn

𝖿𝖺𝗅𝗌𝖾

𝖾𝗏𝖺𝗅∃(i + 1) 𝖿𝖺𝗅𝗌𝖾
𝖿𝖺𝗅𝗌𝖾

𝗍𝗋𝗎𝖾
The proof for why this is correct 
should be clear. We are just fully  
enumerating all possible assignments 
and testing all of them.



How much space does it 
require to run this algorithm?



FO-Eval Algorithm

Non-trivial parts that take up space: 

✦ The global variables : 
There are  variables (  for every ). 

Each of them stores elements from  →  space per variable. 
 =  bits to store   

✦ The stack for the recursion: 
The recursion depth is at most . 
At every step of the recursion, we need to remember  
a pointer for where to return to, and the argument . 
Since , we need  bits to store the recursion stack.

X
2n xi, yi 1 ≤ i ≤ n

Adom log |Adom |
O(n log |Adom | ) X

2n

i
i ≤ n O(n log(n))



FO-Eval Algorithm

Non-trivial parts that take up space: 

✦ Evaluation of  for fixed assignment: 
Requires a traversal of the syntax-tree of  and lookups into the database. 

 space suffices to do this.

φ
φ

O(log |φ | + log |D | )



FO-Eval Algorithm

In total we need space in the order of 

O(n log n + n log |Adom | + log |φ | + log |D | )

Depends on query  
( , , and )

q
n φ Adom

Depends on database  
(  and )

D
Adom D



FO-Eval Algorithm

In total we need space in the order of 

O(n log n + n log |Adom | + log |φ | + log |D | )

Depends on query  
( , , and )

q
n φ Adom

Depends on database  
(  and )

D
Adom D

O(log |Adom | + log |D | )O(n log n + n log |Adom | + log |φ | )



FO-Eval Algorithm

In total we need space in the order of 

O(n log n + n log |Adom | + log |φ | + log |D | )

Theorem 
FO-Eval is in PSPACE in combined complexity. 
FO-Eval is in L (log space) in data complexity. 
FO-Eval is in PSPACE in query complexity.



FO-Eval Complexity

The quantified SAT problem (QSAT)  
is PSPACE-hard.  

We can reduce QSAT to FO-Eval 
with a fixed database. 
(we leave this as an easy but 
 interesting exercise) 

 → FO-Eval is PSPACE-complete 
in both combined and query 
complexity

QSAT 

Input instances of the form 
 

where: 
✦  
✦  are Boolean variables 

(can be either true or false) 
✦  is a propositional  

formula 

Example 
 

Φ = Q1x1 Q2x2 ⋯ Qnxn ψ(x1, x2, …, xn)

Qi ∈ {∀, ∃}
x1, x2, …, xn

ψ(x1, x2, …, xn)

∀x1, x4 ∃x2, x3 (x1 ∨ ¬x2) ∧ (x3 ∨ x4) ∧ (¬x1 ∨ x3)



Filling the Table

Data Complexity Combined 
Complexity

Query 
Complexity

First-Order Queries / 
 Relational Algebra in L PSPACE- 

complete
PSPACE- 
complete

Conjunctive Queries ? NP- 
complete

NP- 
complete

Datalog PTIME- 
complete

EXPTIME-
complete

EXPTIME-
complete



Filling the Table

Data Complexity Combined 
Complexity

Query 
Complexity

First-Order Queries / 
 Relational Algebra in L PSPACE- 

complete
PSPACE- 
complete

Conjunctive Queries in L NP- 
complete

NP- 
complete

Datalog PTIME- 
complete

EXPTIME-
complete

EXPTIME-
complete

CQs are a special case FO-queries. 
Our algorithm from before works 
also for them!



Data Complexity 

Logarithmic space (L) is great, but its not 
the best we can do. 

Complexity below L will require a 
different perspective on complexity: 
Boolean Circuits.

Boolean Circuits 

A directed acyclic graph, 2 kinds of 
nodes: 

✦ Inputs (nodes with no in-edge) 

✦ Gates (AND, OR, NOT) 

The fan-in of a gate is the number of 
ingoing edges. NOT gates always have 
fan-in 1. 

There is exactly one node with no out-
edges. We call it the output gate.

Source: https://en.wikipedia.org/wiki/Circuit_complexity



Boolean Circuits

We can now define complexity classes by problems that can be decided by different kinds of 
circuits. That is, the circuit outputs 1 on every “yes”-instance, and 0 otherwise. Circuit size 
usually depends on the size  of the input word (the number of input bits). 

✦  is the class of problems decided by a circuit with  depth 
and a polynomial number of gates with fan-in at most 2 

✦  is the class of problems decided by a circuit with  depth 
 and a polynomial number of gates with unbounded fan-in

n

𝖭𝖢i O(logi(n))

𝖠𝖢i O(logi(n))



Circuit Complexity

Circuit complexity are interesting for parallelizability and related questions: 

For example, a problem in  can be solved in  time using polynomial many 
processors. 
Idea: each level of the circuit can evaluate its gates in parallel. With enough processors, we only 
need matching the depth of the circuit.

𝖭𝖢i O(logi(n))

𝖠𝖢0 ⊆ 𝖭𝖢1 ⊆ 𝖫 ⊆ 𝖭𝖫 ⊆ 𝖭𝖢2 ⊆ 𝖠𝖢2 ⊆ 𝖭𝖢3⋯ ⊆ 𝖯
“highly parallelizable”



Circuit Complexity

In data complexity, FO-Eval is in . 
Constant depth circuits are enough!

𝖠𝖢0

(Very!) Simplified, the idea is that for every quantifier free sub formula   
we can create a gate that expresses whether it holds or not for every assignment 
of  to constants . 

Universal quantification  then corresponds to one large AND gate that takes all 
gates for every  as input.  

Analogously, existential quantification  becomes a large OR with the respective 
gates for  as input.

φ(x1, x2, …, xn)

x1, …, xn c1, …, cn ∈ Dom

∀x̄φ(x̄)
φ(c̄)

∃x̄φ(x̄)
φ(c̄)



Putting AC  in Context0

Consider the following simple problem

Parity 
Input: a string of 1s and 0s. 

Output: does the string contain an 
even number of 1s?

Parity is not in !𝖠𝖢0



Filling the Table

Data Complexity Combined 
Complexity

Query 
Complexity

First-Order Queries / 
 Relational Algebra in AC0 PSPACE- 

complete
PSPACE- 
complete

Conjunctive Queries in AC0 NP- 
complete

NP- 
complete

Datalog PTIME- 
complete

EXPTIME-
complete

EXPTIME- 
complete



But databases work fine?



They do, until they don’t.

Typical applications have converged on 
using easy queries, where the joins are 
mostly simple. 

However, even on very simple queries, 
like counting paths in graphs, we clearly 
see exponential scaling behaviour on 
modern systems. 

Example query path-04: 
 

i.e., the number of 4-edge paths.
|{x̄ ∣ E(x1, x2) ∧ E(x2, x3) ∧ E(x3, x4) ∧ E(x4, x5)} |

SparkSQL
Yannakakis-

inspired 
evaluation

path-03 6.3s 1.59s

path-04 51s 1.76s

path-05 401s 2.03s

path-06 out of memory 2.18s

From: Lanzinger, M., Pichler, R., & Selzer, A. (2024). 
Avoiding Materialisation for Guarded Aggregate 
Queries. arXiv preprint arXiv:2406.17076.



Practical Data Complexity

Can the lower complexity classes for data complexity  
be useful in practice? 

✦ Difficult to use them in general database systems. These systems 
require algorithms that work on every input query. 

✦ Potential use-cases in cases where we have specialised hardware/
systems for specific queries.  
Recall that , hence with more practical bounded fan-in 
logarithmic depth circuits suffice. Could be built into hardware.

𝖠𝖢0 ⊆ 𝖭𝖢1



Descriptive Complexity
(A very imprecise introduction)



Disclaimer

We will focus on the high-level ideas of descriptive complexity.  

In the interest of accessibility, we will omit various important 
technical details. Importantly, domains are always finite in this setting 

(based on the idea that computation is inherently finite). 

These slides are not suitable as a reference on descriptive complexity.  
For a formally reliable reference please refer to  

“Immerman, N., 1998. Descriptive complexity. Springer.”



Descriptive Complexity

✦ We want to connect computational complexity classes 
with query languages. 

✦ Say I want to query a property of a database that I know is in  
complexity class . Is it possible to do this in language ? 
 
Examples for a graph database: 
Finding a large clique is in : what query language can I use? 
Deciding whether the graph is strongly connected is in :  
what query language can I use?

𝒞 ℒ

𝖭𝖯
𝖭𝖫



Descriptive Complexity

Ultimately, what we want is statements of the following form: 

For every problem  there exists a formula  in language  such that: 

 

and for every , the language  is in . 

 
As a shorthand for this relationship, we write .

P ∈ 𝒞 φ ℒ

I ∈ P ⟺ I ⊧ φ

ψ ∈ ℒ {I ∣ I ⊧ ψ} 𝒞

𝒞 ≡ ℒ Note that we implicitly 
treat all languages here 
as databases, and assume 
formulas over the same 
vocabulary..



AC   FO0 ≡

We’ve already seen that for every FO formula , there exists an 
 circuit  such that: 

 outputs  on input   

To see that  FO, we need to also show the opposite direction: 
For every circuit  there is an equivalent FO formula.

φ
𝖠𝖢0 C

C 1 D ⟺D ⊧ φ

𝖠𝖢0 ≡
C



AC   FO0 ≡

For every circuit  there is an equivalent FO formula: 
Unroll the circuit into a formula.

C

Source: https://en.wikipedia.org/wiki/Circuit_complexity

One relation: 
… Input index  has value  

we use the abbreviation  
Input(i, v) i v

I(x) := Input(x, 𝖳𝗋𝗎𝖾)

G1 := I(x1) ∧ I(x2) G2 := I(x2) ∧ I(x3) G3 := ¬I(x3)

G1 G2 G3

G4 G5

G6

G4 := ¬G1 G5 := G2 ∨ G3

G6 := G4 ∧ G5



AC  = FO0

For every circuit  there is an equivalent FO formula: 
Unroll the circuit into a formula.

C

Source: https://en.wikipedia.org/wiki/Circuit_complexity

One relation: 
… Input index  has value  

we use the abbreviation  
Input(i, v) i v

I(x) := Input(x, 𝖳𝗋𝗎𝖾)

G1 G2 G3

G4 G5

G6

φ = G6 := ¬(I(x1) ∧ I(x2)) ∧ ((I(x2) ∧ I(x3)) ∨ ¬I(x3))



Second-Order 
Logic



Second-Order Logic

✦ So far we have focused on first-order 
logic, that is, logic where we can 
quantify over the objects of the 
domain: 
“There is some object  such 
that the formula is true if we interpret 
variable  as . 

✦ A next natural step is to allow 
quantification over relations: 
“There is some relation  
such that the formula is true if interpret 
second-order variable  as .

a ∈ Dom

x a

A ⊆ Domk

X A

Second-Order Formulas 

Like first-order formulas but we also 
allow quantification  and  where 

 is a relation variable. 
∀X ∃X

X

∃C(∀x C(x) → V(x)) ∧ |C | ≤ k

∧ (∀yz, E(y, z) → (C(y) ∨ C(z))

C ⊆ V

Every edge has one endpoint in C



∃SO

 is the language of second order formulas where second order 
quantification is always existential. 

NP   

Intuition NP: A second order variable of arity  has at most  tuples. Since 
 is fixed (part of the query), we can make polynomial guesses for all relations and then 

simply check the formula for the database extended by the guesses.

∃SO

≡ ∃SO

∃SO ⊆ k |Dom |k

k



∃SO

Intuition NP: Suppose a NTM that takes at most  time for problem . 
We express this as a formula  

 

∃SO ⊇ nα − 1 P

∃C1 ∃C2⋯∃Cg ∃Δ . φ(C̄, Δ)

 := cell  at time  

contains symbol  

Ci(s̄, t̄ ) s̄ t̄
i

Encodes the non-deterministic choices. 
Assume choices are always binary, then 

 intuitively is true iff choice  is made.Δ(t̄ ) 1

 is similar to our reduction of EXPTIME TMs to Datalog.φ



∀SO

 is the language of second order formulas where second order 
quantification is always universal. 

co-NP   

Same idea as for  considering . 

∀SO

≡ ∀SO

∃SO ∀Aφ ≡ ¬∃¬φ



Full Second-Order?

PH  

Recall the definition of PH: 
NP              co-NP  

Intuition: a SO formula  
can be seen as a  formula  where . 
That is, a co-NP problem if we have an NP oracle. 

By induction this idea extends through the whole hierarchy.

≡ SO

ΣP
k+1 = ΣP

k ΠP
k+1 = ΣP

k

∀A∃B φ(A, B)
∀SO ∀A ψ(A) ψ ∈ ∃SO

∃SO =

Source: 
https://en.wikipedia.org/wiki/
Polynomial_hierarchy

Recall  means 
in complexity class 

 with an  oracle.

𝒞𝒪

𝒞 𝒪



Source: 
Immerman, N., 1998. 
Descriptive complexity. 
Springer.

There’s 
More



Summary

✦ We have a precise idea of how difficult it is to evaluate various query 
languages. 

✦ We can make more fine-grained observations about the role of 
database size and query size in the evaluation: query and data 
complexity. 

✦ The reasoning behind the complexity results reveals important 
insights for how the theory is connected to practice.  

✦ Descriptive Complexity tightly links expressivity of  
query languages to computational complexity


