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Database Theory 4. Trakhtenbrot’s Theorem 4.1. Motivation

Perfect Query Optimization

A legitimate question:

Question

Given a query Q in RA, does there exist at least one database A such that Q(A) ̸= ∅?

If there is no such database, then the query Q makes no sense and we can directly replace
it by the empty result.

Could save much run-time!

We shall show that this problem is undecidable!
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Database Theory 4. Trakhtenbrot’s Theorem 4.2. Turing Machines and Undecidability

Turing Machines

Turing machines are a formal model of algorithms to solve problems:

Definition

A Turing machine is a quadruple M = (Q,Σ, δ, q0) with a finite set of states Q, a finite set of
symbols Σ (alphabet of M) so that ⊔, ▷ ∈ Σ, a transition function δ:

Q × Σ → (Q ∪ {qyes , qno})× Σ× {+1,−1, 0},

an accepting state qyes , a rejecting state qno ,
and R/W head directions: +1 (right), −1 (left), and 0 (stay).
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Database Theory 4. Trakhtenbrot’s Theorem 4.2. Turing Machines and Undecidability

Function δ is the “program” of the machine.

For the current state q ∈ Q and the current symbol σ ∈ Σ,
– δ(q, σ) = (p, ρ,D) where p is the new state,

– ρ is the symbol to be overwritten on σ, and

– D ∈ {+1,−1, 0} is the direction in which the R/W head will move.

For any states p and q, δ(q, ▷) = (p, ρ,D) with ρ = ▷ and D = +1.

In other words: The delimiter ▷ is never overwritten by another symbol, and the R/W
head never moves off the left end of the tape.

The machine starts as follows:

(i) the initial state of M = (Q,Σ, δ, q0) is q0,

(ii) the tape is initialized to the infinite string ▷I ⊔ ⊔ . . ., where I is a finitely long string in
(Σ− {⊔})∗ (I is the input of the machine) and

(iii) the R/W head points to ▷.

The machine halts iff qyes , or qno has been reached.
If qyes has been reached, then the machine accepts the input.
If qno has been reached, then the machine rejects the input.
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Database Theory 4. Trakhtenbrot’s Theorem 4.2. Turing Machines and Undecidability

Halting Problem

HALTING

INSTANCE: A Turing machine M, an input string I .
QUESTION: Does M halt on I?

Theorem

HALTING is undecidable, i.e. there does not exist a Turing machine that decides HALTING.

Undecidability applies already to the following variant of HALTING:

HALTING-ϵ

INSTANCE: A Turing machine M.
QUESTION: Does M halt on the empty string ϵ, i.e. does M reach qyes , or qno when run on
the initial tape contents ▷ ⊔ ⊔ . . . ?
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

Trakhtenbrot’s Theorem

Theorem (Trakhtenbrot’s Theorem, 1950)

Finite Satisfiability of First-Order Logic is undecidable, i.e.: given an FO formula φ, it is
undecidable if φ has a finite model.

Remark. The problem remains undecidable even if we restrict the formulae to a relational
vocabulary with a single binary relation symbol.

This theorem rules out perfect query optimization. Translated into database terminology, it
reads:

Theorem

For a database schema σ with at least one binary relation, it is undecidable whether a Boolean
FO or RA query Q over σ has a non-empty answer for at least one database.
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

Idea to prove Trakhtenbrot’s Theorem

Define a relational signature σ suitable for encoding finite computations of a TM.

Given an arbitrary TM M, we construct an FO formula φM “encoding” the computation
of M and a halting condition, such that:

φM has a finite model iff M halts on ϵ.

The undecidability of HALTING-ϵ together with the reduction proves Trakhtenbrot’s
Theorem!
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

Proof of Trakhtenbrot’s Theorem

Assume a machine M = (Q,Σ, δ, qstart).

Simplifying assumptions:

σ may have several unary and binary relations
Exercise. We could easily encode them into a single binary relation.

Tape alphabet of M is Σ = {0, 1, ▷,⊔}
• Can always be obtained by simple binary encoding, e.g., let Σ = {a1, . . . , ak} with k ≤ 8,

then we use the following encoding:
a0 → 000, a1 → 001, a2 → 010, a3 → 011, etc.
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

We use the following relations:

Binary < will encode a linear order (as usual, we’ll write x < y instead of < (x , y)). The
elements of this linear order will be used to simulate both time instants and tape positions
(= cell numbers).

Unary Min will denote the smallest element of <.
Note: instead of a relation Min we can use a constant min.

Binary Succ will encode the successor relation w.r.t. the linear order.

Binary T0,T1,T▷,T⊔ are tape predicates: Tα(p, t) indicates that cell number p at time t
contains α.

Binary H will store the head position: H(p, t) indicates that the R/W head at time t is at
position p (i.e., at cell number p).

Binary S will store the state: S(q, t) indicates that at time instant t the machine is in
state q.
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

We let φM be the conjunction φM = φ< ∧ φMin ∧ φcomp that is explained
next:

< must be a strict linear order (a total, transitive, antisymmetric, irreflexive relation).
Thus φ< is the conjunction of:

∀x , y .(x ̸= y ↔ (x < y ∨ y < x))

∀x , y , z .((x < y ∧ y < z) → x < z)

∀x , y .¬(x < y ∧ y < x)

We axiomatize the successor relation based on < as follows:

∀x , y .(Succ(x , y) ↔ (x < y) ∧ ¬∃z .(x < z ∧ z < y))
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

Min must contain the minimal element of <. Thus φMin is:

∀x , y .(Min(x) ↔ (x = y ∨ x < y))

The formula φcomp is defined as

φcomp ≡ ∃y0, y1, ..., yk(φstates ∧ φrest),

where each variable yi corresponds to the state qi of M (we assume the TM has k + 1
states), and

φstates ≡
∧

0≤i<j≤k

yi ̸= yj .

Intuitively, using the ∃y0, y1, ..., yk prefix and φstates we associate to each state of M a
distinct domain element.

The formula φrest is the conjunction of several formulas defined next (R1-R6) to describe
the behaviour of M.
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

(R1) Formula defining the initial configuration of M with ▷ ⊔ ⊔ . . . on its input tape.
• At time instant 0 the tape has ▷ in the first cell of the tape:

∀p.(Min(p) → T▷(p, p))

• All other cells contain ⊔ at time 0:

∀p, t.((Min(t) ∧ ¬Min(p)) → T⊔(p, t))

• The head is initially at the start position 0:

∀t(Min(t) → H(t, t))

• The machine is initially in state qstart :

∀t(Min(t) → S(ystart , t))
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

(R2) Formulas stating that in every configuration, each cell of the tape contains exactly one
symbol:

∀p, t.(T0(p, t) ∨ T1(p, t) ∨ T▷(p, t) ∨ T⊔(p, t)),

∀p, t.(¬Tσ1(p, t) ∨ ¬Tσ2(p, t)), for all σ1 ̸= σ2 ∈ Σ

(R3) A formula stating that at any time the machine is in exactly one state:

∀t.((
∨

0≤i≤k

S(yi , t)) ∧
∧

0≤i<j≤k

¬(S(yi , t) ∧ S(yj , t)))

(R4) A formula stating that at any time the head is at exactly one position:

∀t.
(
[∃p.(H(p, t)] ∧ ∀p, p′.[H(p, t) ∧ H(p′, t) → p = p′]

)
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

(R5) Formulas describing the transitions. In particular, for each tuple (q1, σ1, q2, σ2,D) such
that δ(q1, σ1) = (q2, σ2,D), we have the formula:

∀p, t
(
(H(p, t) ∧ Tσ1(p, t) ∧ S(y1, t)) → ∃p′, t ′.

(
FollowTo(p, p′) ∧ Succ(t, t ′)∧

H(p′, t ′) ∧ S(y2, t
′) ∧ Tσ2(p, t

′)∧
∀r .(r ̸= p ∧ T0(r , t) → T0(r , t

′))∧
∀r .(r ̸= p ∧ T1(r , t) → T1(r , t

′))∧
∀r .(r ̸= p ∧ T▷(r , t) → T▷(r , t

′))∧

∀r .(r ̸= p ∧ T⊔(r , t) → T⊔(r , t
′))

))
where:

FollowTo(p, p′) ≡

 Succ(p, p′) if D = +1,
Succ(p′, p) if D = −1,

p = p′ if D = 0.

Lanzinger 29 October, 2024 Page 15



Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

(R6) A formula φhalt saying that M halts on input I :

∃t.(S(yyes , t) ∨ S(yno , t)).

This completes the description of the formula φM , which faithfully describes the computation
of M on the empty word ϵ.

By construction of φM , we have:

φM has a finite model iff M halts on ϵ

This completes the reduction from HALTING-ϵ and proves Trakhtenbrot’s Theorem.
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

Further Consequences of Trakhtenbrot’s Theorem

The following problems can now be easily shown undecidable:

checking whether an FO query is domain independent,

checking query containment of two FO (or RA) queries;
recall that this means: ∀A : Q1(A) ⊆ Q2(A);

checking equivalence of two FO (or RA) queries.
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

Proof Sketches

Undecidability of Domain Independence

By reduction from finite unsatisfiability:
Let φ be an arbitrary instance of finite unsatisfiability.
Construct the following instance ψ of Domain Independence:
w.l.o.g. let x be a variable not occurring in φ;
then we set ψ = ∃x .¬R(x) ∧ φ.

Undecidability of Query Containment and Query Equivalence

By reduction from finite unsatisfiability:
Let φ be an arbitrary instance of finite unsatisfiability; w.l.o.g., suppose that φ has no free
variables (i.e., simply add existential quantifiers).
Let χ be a trivially unsatisfiable query, e.g., χ = (∃x)(R(x) ∧ ¬R(x)).
Define the instance (φ, χ) of Query Containment or Query Equivalence.
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Finite vs. Infinite Domain

Motivation

Recall the following property of the formula φM in the proof of Trakhtenbrot’s Theorem: φM

has a finite model iff M halts on ϵ.

Question. What about arbitrary models (with possibly infinite domain)?

It turns out that the (”⇒” direction of the) equivalence
“φM has an arbitrary model iff M halts on ϵ”
does not hold. Indeed, suppose that M does not terminate on input ϵ.
Then φM has the following (infinite) model:

Choose as domain D the natural numbers {0, 1, . . . , } plus some additional element a.

Choose the ordering such that a is greater than all natural numbers.

By assumption, M runs “forever” and we set S( , n), Tσi (n,m), and H(n,m) according to
the intended meaning of these predicates.

Moreover, we set S(qhalt , a) to true. This is consistent with the rest since, intuitively, time
instant a is “never reached”.
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Finite vs. Infinite Domain (2)

Question. How should we modify the problem reduction to prove undecidability of the
Entscheidungsproblem (i.e. validity or, equivalently, unsatisfiability of FO without the
restriction to finite models)?

Undecidability of the Entscheidungsproblem

We modify the problem reduction as follows: Transform the formula φM into φ′
M as follows:

we replace the subformula φhalt in φM by ¬φhalt . Then we have: φ′
M has no model at all iff M

halts on ϵ.

In other words, we have reduced HALTING-ϵ to Unsatisfiability.

Question. Does this reduction also work for finite unsatisfiability?

The answer is “no”, because of the the “⇒” direction.
Indeed, suppose that M does not terminate on input ϵ. Then, by the above equivalence, φ′

M

has a model – but no finite model! Intuitively, since M does not halt, any model refers to
infinitely many time instants.

Lanzinger 29 October, 2024 Page 20



Database Theory 4. Trakhtenbrot’s Theorem 4.4. Finite vs. Infinite Domain

Learning Objectives

Short recapitulation of
• Turing machines,
• undecidability (the HALTING problem).

Formulation of Trakhtenbrot’s Theorem in terms of FO logic and databases.

Proof of Trakhtenbrot’s Theorem.

Further undecidability results.

Differences between finite and infinite domain.
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