
Database Theory

Database Theory
VU 181.140, WS 2024

3. Codd’s Theorem

Matthias Lanzinger
(Based on slides of Reinhard Pichler)

Institute of Logic and Computation
DBAI Group
TU Wien

22 October, 2024

Lanzinger 22 October, 2024 Page 1

Database Theory

Outline

3. Codd’s Theorem
3.1 What is Codd’s Theorem?
3.2 Domain Independendent Relational Calculus
3.3 From the Algebra to DI Calculus
3.4 Active Domain Semantics
3.5 Range Restricted Queries
3.6 From Range Restricted Queries to Algebra
3.7 Non-recursive Datalog with Negation

Lanzinger 22 October, 2024 Page 2

Database Theory 3. Codd’s Theorem 3.1. What is Codd’s Theorem?

What is Codd’s Theorem?

Several query languages have been considered for relational databases:
• some are more convenient for query specification
• some are easier to optimize
• some are more succcint

(Original) Codd’s Theorem shows that the most important of the above languages, the
so-called domain-independent, relational calculus and relational algebra, are equally
expressive.

By a set of translations we prove here a stronger result. The following languages are
equally expressive:

• domain-independent relational calculus,
• relational calculus under the active domain semantics,
• range-restricted relational calculus,
• relational algebra,
• non-recursive Datalog with negation,

Lanzinger 22 October, 2024 Page 3

Database Theory 3. Codd’s Theorem 3.1. What is Codd’s Theorem?

What is Codd’s Theorem?

Several query languages have been considered for relational databases:
• some are more convenient for query specification
• some are easier to optimize
• some are more succcint

(Original) Codd’s Theorem shows that the most important of the above languages, the
so-called domain-independent, relational calculus and relational algebra, are equally
expressive.

By a set of translations we prove here a stronger result. The following languages are
equally expressive:

• domain-independent relational calculus,
• relational calculus under the active domain semantics,
• range-restricted relational calculus,
• relational algebra,
• non-recursive Datalog with negation,

Lanzinger 22 October, 2024 Page 3

Database Theory 3. Codd’s Theorem 3.1. What is Codd’s Theorem?

Proof Strategy

DI CalculusRR Calculus

AD Calculus

Algebra

NRD

Lanzinger 22 October, 2024 Page 4

Database Theory 3. Codd’s Theorem 3.2. Domain Independendent Relational Calculus

Domain Independence

Some queries are “unsafe” and must be avoided:

Domain Independence: Given a query and a database, the query must evaluate to the
same result on the database no matter what the domain is assumed to be.

Idea: exclude “unsafe” queries, i.e., in particular, queries that may yield an infinite answer.

Let QB(D) denote the result of evaluating query Q on database D assuming domain B.

Definition (domain-independence)

A query Q is domain-independent iff there do not exist

a database instance D and

two sets B, C that contain all constants that appear in D or in Q
(also known as the active domain),

such that QB(D) ̸= QC (D).

Lanzinger 22 October, 2024 Page 5

Database Theory 3. Codd’s Theorem 3.2. Domain Independendent Relational Calculus

Domain Independence

Some queries are “unsafe” and must be avoided:

Domain Independence: Given a query and a database, the query must evaluate to the
same result on the database no matter what the domain is assumed to be.

Idea: exclude “unsafe” queries, i.e., in particular, queries that may yield an infinite answer.

Let QB(D) denote the result of evaluating query Q on database D assuming domain B.

Definition (domain-independence)

A query Q is domain-independent iff there do not exist

a database instance D and

two sets B, C that contain all constants that appear in D or in Q
(also known as the active domain),

such that QB(D) ̸= QC (D).

Lanzinger 22 October, 2024 Page 5

Database Theory 3. Codd’s Theorem 3.2. Domain Independendent Relational Calculus

Queries Violating Domain Independence

Example (Unsafe Queries)

{x | ¬R(x)}
• R = ∅, 1 ∈ B, 1 ̸∈ C : 1 ∈ QB(R), 1 ̸∈ QC (R).

{x | ∃y R(x) ∨ R(y)}
{y | ∃x R(x)}
{x | R(x) ∨ ¬R(x)}

Remark. Over infinite domains, these queries may yield an infinite result.

Lanzinger 22 October, 2024 Page 6

Database Theory 3. Codd’s Theorem 3.2. Domain Independendent Relational Calculus

Undecidability of Domain Independence

Definition

For a domain-independent query Q and a database D, we may define Q(D) := QB(D) for an
arbitrary domain B that contains the active domain (the choice is irrelevant due to
domain-independence).

We would like to require domain-independence in queries.

Domain-independence is an undecidable property for FO queries.

Possible solutions:
• semantic restriction on quantification
• syntactic restriction on queries

Lanzinger 22 October, 2024 Page 7

Database Theory 3. Codd’s Theorem 3.2. Domain Independendent Relational Calculus

Undecidability of Domain Independence

Definition

For a domain-independent query Q and a database D, we may define Q(D) := QB(D) for an
arbitrary domain B that contains the active domain (the choice is irrelevant due to
domain-independence).

We would like to require domain-independence in queries.

Domain-independence is an undecidable property for FO queries.

Possible solutions:
• semantic restriction on quantification
• syntactic restriction on queries

Lanzinger 22 October, 2024 Page 7

Database Theory 3. Codd’s Theorem 3.3. From the Algebra to DI Calculus

Theorem

For every relational algebra expression there exists a domain-independent, relational calculus
query.

Proof.

Almost by definition:
R := {x⃗ | R(x⃗)}

σx=y ({x⃗ | φ(x⃗)}) := {x⃗ | φ(x⃗) ∧ x = y}
πy⃗ ({x⃗ | φ(x⃗)}) := {y⃗ | ∃z⃗ φ(x⃗)} (x⃗ = y⃗ z⃗)

{x⃗ | φ(x⃗)} × {y⃗ | ψ(y⃗)} := {x⃗ y⃗ | φ(x⃗) ∧ ψ(y⃗)}
{x⃗ | φ(x⃗)} ∪ {x⃗ | ψ(x⃗)} := {x⃗ | φ(x⃗) ∨ ψ(x⃗)}
{x⃗ | φ(x⃗)} − {x⃗ | ψ(x⃗)} := {x⃗ | φ(x⃗) ∧ ¬ψ(x⃗)}

It can be shown by an easy induction argument that the resulting relational calculus query is
domain-independent.

Lanzinger 22 October, 2024 Page 8

Database Theory 3. Codd’s Theorem 3.3. From the Algebra to DI Calculus

Theorem

For every relational algebra expression there exists a domain-independent, relational calculus
query.

Proof.

Almost by definition:
R := {x⃗ | R(x⃗)}

σx=y ({x⃗ | φ(x⃗)}) := {x⃗ | φ(x⃗) ∧ x = y}
πy⃗ ({x⃗ | φ(x⃗)}) := {y⃗ | ∃z⃗ φ(x⃗)} (x⃗ = y⃗ z⃗)

{x⃗ | φ(x⃗)} × {y⃗ | ψ(y⃗)} := {x⃗ y⃗ | φ(x⃗) ∧ ψ(y⃗)}
{x⃗ | φ(x⃗)} ∪ {x⃗ | ψ(x⃗)} := {x⃗ | φ(x⃗) ∨ ψ(x⃗)}
{x⃗ | φ(x⃗)} − {x⃗ | ψ(x⃗)} := {x⃗ | φ(x⃗) ∧ ¬ψ(x⃗)}

It can be shown by an easy induction argument that the resulting relational calculus query is
domain-independent.

Lanzinger 22 October, 2024 Page 8

Database Theory 3. Codd’s Theorem 3.3. From the Algebra to DI Calculus

Current Status

DI CalculusRR Calculus

AD Calculus

Algebra

NRD

Lanzinger 22 October, 2024 Page 9

Database Theory 3. Codd’s Theorem 3.4. Active Domain Semantics

Active Domain Interpretation

Definition

Active domain semantics for relational calculus query q over DB D: variables range over the
active domain, i.e. over values occurring in the database D and the query q, denoted by
adom(q,D).

Example

Assume a database D with R = {⟨1, 1⟩} and Dom = {1, 2}.
Consider the Boolean query q = {⟨⟩ | ∀x , y .R(x , y).}:

• q is false in D under the standard semantics, but
• q is true in D under the active domain semantics.

Theorem

For every domain-independent relational calculus query there is an equivalent relational
calculus query under the active domain semantics.

Lanzinger 22 October, 2024 Page 10

Database Theory 3. Codd’s Theorem 3.4. Active Domain Semantics

Active Domain Interpretation

Definition

Active domain semantics for relational calculus query q over DB D: variables range over the
active domain, i.e. over values occurring in the database D and the query q, denoted by
adom(q,D).

Example

Assume a database D with R = {⟨1, 1⟩} and Dom = {1, 2}.
Consider the Boolean query q = {⟨⟩ | ∀x , y .R(x , y).}:

• q is false in D under the standard semantics, but
• q is true in D under the active domain semantics.

Theorem

For every domain-independent relational calculus query there is an equivalent relational
calculus query under the active domain semantics.

Lanzinger 22 October, 2024 Page 10

Database Theory 3. Codd’s Theorem 3.4. Active Domain Semantics

Active Domain Interpretation

Definition

Active domain semantics for relational calculus query q over DB D: variables range over the
active domain, i.e. over values occurring in the database D and the query q, denoted by
adom(q,D).

Example

Assume a database D with R = {⟨1, 1⟩} and Dom = {1, 2}.
Consider the Boolean query q = {⟨⟩ | ∀x , y .R(x , y).}:

• q is false in D under the standard semantics, but
• q is true in D under the active domain semantics.

Theorem

For every domain-independent relational calculus query there is an equivalent relational
calculus query under the active domain semantics.

Lanzinger 22 October, 2024 Page 10

Database Theory 3. Codd’s Theorem 3.4. Active Domain Semantics

Proof.

Assume a domain-independent query Q. We claim that Q itself is the desired query, such that
its evaluation under standard semantics and under active domain semantics coincides.

Consider an arbitrary database D.

By domain-independence, QB(D) = Qadom(Q,D)(D) under standard semantics for every domain
B with adom(Q,D) ⊆ B.

Likewise, under active domain semantics, QB(D) = Qadom(Q,D)(D) for every domain B with
adom(Q,D) ⊆ B.

Finally, Qadom(Q,D)(D) yields the same result under standard semantics and under active
domain semantics. Hence, for arbitary domain B with adom(Q,D) ⊆ B, the set QB(D) is the
same under standard semantics and under active domain semantics.

Lanzinger 22 October, 2024 Page 11

Database Theory 3. Codd’s Theorem 3.4. Active Domain Semantics

Current Status

DI CalculusRR Calculus

AD Calculus

Algebra

NRD

Lanzinger 22 October, 2024 Page 12

Database Theory 3. Codd’s Theorem 3.5. Range Restricted Queries

Range-restricted Queries: a sufficient condition for DI

Preprocessing. A formula is turned into safe-range normal form (SRNF) by the following steps:

1 Variable substitution: no distinct pair of quantifiers may employ the same variable and no
variable may occur both bound and free.
Example: (∃x φ(x)) ∨ (∃x ψ(x)) ⊢ (∃x φ(x)) ∨ (∃x ′ ψ(x ′)).

2 Remove universal quantifiers: ∀x φ ⊢ ¬∃x ¬φ.
3 Remove implications: φ⇒ ψ ⊢ ¬φ ∨ ψ.
4 Remove double negation: ¬¬φ ⊢ φ.
5 Flatten and/or, e.g.: (φ ∧ ψ) ∧ π ⊢ φ ∧ ψ ∧ π.

Lanzinger 22 October, 2024 Page 13

Database Theory 3. Codd’s Theorem 3.5. Range Restricted Queries

Range-restriction Check

Definition
Given: Input formula π in SRNF.

rr(x = a) := {x}
rr(R(t1, . . . , tn)) := Vars({t1, . . . , tn})

rr(φ ∧ ψ) := rr(φ) ∪ rr(ψ)

rr(φ ∨ ψ) := rr(φ) ∩ rr(ψ)

rr(φ ∧ x = y) :=

{
rr(φ) . . . {x , y} ∩ rr(φ) = ∅
rr(φ) ∪ {x , y} . . . otherwise

rr(¬φ) := ∅

rr(∃x φ) :=

{
rr(φ)− {x} . . . x ∈ rr(φ)
fail . . . otherwise

If free(π) ⊆ rr(π), then π is range-restricted (RR).

Lanzinger 22 October, 2024 Page 14

Database Theory 3. Codd’s Theorem 3.5. Range Restricted Queries

Range-restriction Examples

Example (in SRNF)

rr(·)={x,y}︷ ︸︸ ︷

∃z :

rr(·)={x,y ,z}︷ ︸︸ ︷

rr(·)={x,y ,z}︷ ︸︸ ︷
P(x , y , z) ∨

rr(·)={x,y ,z}︷ ︸︸ ︷

(

rr(·)={x,y}︷ ︸︸ ︷
R(x , y) ∧

rr(·)={z}︷ ︸︸ ︷
(

rr(·)={z}︷ ︸︸ ︷
(

rr(·)={z}︷︸︸︷
S(z) ∧

rr(·)=∅︷ ︸︸ ︷
¬T (x , z))∨T (y , z)))

rr(∗) = free(∗) = {x , y} ⇒ range-restricted!

Lanzinger 22 October, 2024 Page 15

Database Theory 3. Codd’s Theorem 3.5. Range Restricted Queries

Range-restricted Queries Capture AD Calculus

Theorem

For every relational calculus query under the active domain semantics there is an equivalent
range-restricted relational calculus query.

Preparation of the proof.

Idea.

define a predicate α that captures exactly the active domain,

use it to effectively restrict the quantification to the active domain (relativization)

For an n-ary predicate R, let dom(R, i) denote the formula
∃y1, . . . ,∃yi−1,∃yi+1, . . . ,∃ynR(y1, . . . , yi−1, x , yi+1, . . . ,∃yn).
Let α(x) be the disjunction of

dom(R, i) for all n-ary predicates of the schema and all 1 ≤ i ≤ n, and

x = a for every constant of φ.

Lanzinger 22 October, 2024 Page 16

Database Theory 3. Codd’s Theorem 3.5. Range Restricted Queries

Range-restricted Queries Capture AD Calculus

Theorem

For every relational calculus query under the active domain semantics there is an equivalent
range-restricted relational calculus query.

Preparation of the proof.

Idea.

define a predicate α that captures exactly the active domain,

use it to effectively restrict the quantification to the active domain (relativization)

For an n-ary predicate R, let dom(R, i) denote the formula
∃y1, . . . ,∃yi−1,∃yi+1, . . . ,∃ynR(y1, . . . , yi−1, x , yi+1, . . . ,∃yn).
Let α(x) be the disjunction of

dom(R, i) for all n-ary predicates of the schema and all 1 ≤ i ≤ n, and

x = a for every constant of φ.

Lanzinger 22 October, 2024 Page 16

Database Theory 3. Codd’s Theorem 3.5. Range Restricted Queries

Range-restricted Queries Capture AD Calculus (continued)

Proof.

We now translate φ into an rr query φ′ such that answering φ under the active domain
semantics is equivalent to evaluating φ′ under the standard semantics. (We write tr(ψ) to
denote the translation of a formula ψ.)

1 Turn φ into SRNF.

2 We build φ′ from φ as follows:
φ′ := α(x1) ∧ . . . ∧ α(xn) ∧ tr(φ),

where {x1, . . . , xn} = free(φ) and

tr(A) := A (A is an atom)

tr(φ ∧ ψ) := tr(φ) ∧ tr(ψ)

tr(φ ∨ ψ) := tr(φ) ∨ tr(ψ)

tr(¬φ) := ¬tr(φ)
tr(∃x φ) := (∃x) (α(x) ∧ tr(φ))

Lanzinger 22 October, 2024 Page 17

Database Theory 3. Codd’s Theorem 3.5. Range Restricted Queries

Current Status

DI CalculusRR Calculus

AD Calculus

Algebra

NRD

Lanzinger 22 October, 2024 Page 18

Database Theory 3. Codd’s Theorem 3.6. From Range Restricted Queries to Algebra

Theorem

For every range-restricted relational calculus query there exists an equivalent relational algebra
expression.

Proof idea.

1 Start off with a query in SRNF.

2 Put the query into Relational-Algebra NF (RANF):
• RANF: Each subformula is range-restricted. (Exception: In a subformula
π = φ1 ∧ · · · ∧ φk ∧ ¬ψ, π has to be RR and the φi and ψ have to be in RANF, but ¬ψ
does not need to be RR).

3 Translate the RANF formula into relational algebra. This can be done inductively from the
leaves to the root of the parse tree of the formula.

Lanzinger 22 October, 2024 Page 19

Database Theory 3. Codd’s Theorem 3.6. From Range Restricted Queries to Algebra

Theorem

For every range-restricted relational calculus query there exists an equivalent relational algebra
expression.

Proof idea.

1 Start off with a query in SRNF.

2 Put the query into Relational-Algebra NF (RANF):
• RANF: Each subformula is range-restricted. (Exception: In a subformula
π = φ1 ∧ · · · ∧ φk ∧ ¬ψ, π has to be RR and the φi and ψ have to be in RANF, but ¬ψ
does not need to be RR).

3 Translate the RANF formula into relational algebra. This can be done inductively from the
leaves to the root of the parse tree of the formula.

Lanzinger 22 October, 2024 Page 19

Database Theory 3. Codd’s Theorem 3.6. From Range Restricted Queries to Algebra

From SRNF to RANF

Given a formula in SRNF.

The formula is in RANF if each subformula is range-restricted.

Possible obstacles: subformulae of the form φ ∨ ψ or ¬φ.
Only these remove possibly relevant variables from rr.

Solution: relativize using the active domain relation α:

φ ∨ ψ ⊢ (φ ∧
∧

x∈(free(ψ)−free(φ))

α(x)) ∨ (ψ ∧
∧

x∈(free(φ)−free(ψ))

α(x))

︸ ︷︷ ︸
rr(∗)=free(∗)=free(φ)∪free(ψ)

¬φ ⊢ (¬φ ∧
∧

x∈free(φ)

α(x))

Shorter (=better) RANF queries can be achieved by rewriting the input formula using
equivalences we already know.

Lanzinger 22 October, 2024 Page 20

Database Theory 3. Codd’s Theorem 3.6. From Range Restricted Queries to Algebra

From RANF to Relational Algebra

RANF formulae can be translated to relational algebra using the following rules:

Alg(φ ∧ ψ) := Alg(φ) ▷◁ Alg(ψ)

(Alg(φ)× Alg(ψ) if φ and ψ have disjoint schemas)

Alg(φ ∨ ψ) := Alg(φ) ∪ Alg(ψ)

. . . φ and ψ have the same schema

Alg(φ ∧ ¬ψ) := Alg(φ)− Alg(ψ)

. . . φ and ψ have the same schema

Alg(∃y φ(x⃗ , y)) := πx⃗Alg(φ(x⃗ , y))

Alg(φ ∧ xϑt) := σxϑtAlg(φ)

. . . ϑ is either = or ̸= and t is a term.

Alg(R(x1, . . . , xk)) := ρA1...Ak→x1...xkR

. . . relation R has schema R(A1, . . . ,Ak)

Lanzinger 22 October, 2024 Page 21

Database Theory 3. Codd’s Theorem 3.6. From Range Restricted Queries to Algebra

From RR Queries to the Algebra

Example

Let α be the active domain relation with schema α(E) and let R have schema R(A,B). The
formula

∃x
(
α(x) ∧ ∃y (α(y) ∧ ¬R(x , y))

)
corresponds to the RANF formula

∃x ∃y
(
(α(x) ∧ α(y)) ∧ ¬R(x , y)

)
.

An equivalent relational algebra expression looks as follows.

Alg(∃x ∃y ((α(x) ∧ α(y)) ∧ ¬R(x , y)))
⊢ π∅

(
Alg((α(x) ∧ α(y))− Alg(R(x , y))

)
⊢ π∅((ρE→xα× ρE→yα)− ρA,B→x,yR)

Lanzinger 22 October, 2024 Page 22

Database Theory 3. Codd’s Theorem 3.6. From Range Restricted Queries to Algebra

From RR Queries to the Algebra

Example

Let α be the active domain relation with schema α(E) and let R have schema R(A,B). The
formula

∃x
(
α(x) ∧ ∃y (α(y) ∧ ¬R(x , y))

)
corresponds to the RANF formula

∃x ∃y
(
(α(x) ∧ α(y)) ∧ ¬R(x , y)

)
.

An equivalent relational algebra expression looks as follows.

Alg(∃x ∃y ((α(x) ∧ α(y)) ∧ ¬R(x , y)))
⊢ π∅

(
Alg((α(x) ∧ α(y))− Alg(R(x , y))

)
⊢ π∅((ρE→xα× ρE→yα)− ρA,B→x,yR)

Lanzinger 22 October, 2024 Page 22

Database Theory 3. Codd’s Theorem 3.6. From Range Restricted Queries to Algebra

From RR Queries to the Algebra

Example

Range-restricted but not in RANF (i.e., not locally range-restricted):

{(x , y) | ∃z : P(x , y , z) ∨ (R(x , y) ∧ (

rr(∗)={z}︷ ︸︸ ︷
(S(z) ∧ ¬T (x , z))∨T (y , z)))}

We transform this formula using the rewrite rule

φ ∧ (ψ1 ∨ ψ2) ⊢ (φ ∧ ψ1) ∨ (φ ∧ ψ2)

into RANF:

{(x , y) | ∃z : P(x , y , z) ∨ (R(x , y) ∧ S(z) ∧ ¬T (x , z)) ∨ (R(x , y) ∧ T (y , z))}

Lanzinger 22 October, 2024 Page 23

Database Theory 3. Codd’s Theorem 3.6. From Range Restricted Queries to Algebra

From RR Queries to the Algebra

Example

Range-restricted but not in RANF (i.e., not locally range-restricted):

{(x , y) | ∃z : P(x , y , z) ∨ (R(x , y) ∧ (

rr(∗)={z}︷ ︸︸ ︷
(S(z) ∧ ¬T (x , z))∨T (y , z)))}

We transform this formula using the rewrite rule

φ ∧ (ψ1 ∨ ψ2) ⊢ (φ ∧ ψ1) ∨ (φ ∧ ψ2)

into RANF:

{(x , y) | ∃z : P(x , y , z) ∨ (R(x , y) ∧ S(z) ∧ ¬T (x , z)) ∨ (R(x , y) ∧ T (y , z))}

Lanzinger 22 October, 2024 Page 23

Database Theory 3. Codd’s Theorem 3.6. From Range Restricted Queries to Algebra

From RR Queries to the Algebra

Example

Range-restricted but not in RANF (i.e., not locally range-restricted):

{(x , y) | ∃z : P(x , y , z) ∨ (R(x , y) ∧ (

rr(∗)={z}︷ ︸︸ ︷
(S(z) ∧ ¬T (x , z))∨T (y , z)))}

We transform this formula using the rewrite rule

φ ∧ (ψ1 ∨ ψ2) ⊢ (φ ∧ ψ1) ∨ (φ ∧ ψ2)

into RANF:

{(x , y) | ∃z : P(x , y , z) ∨ (R(x , y) ∧ S(z) ∧ ¬T (x , z)) ∨ (R(x , y) ∧ T (y , z))}

Lanzinger 22 October, 2024 Page 23

Database Theory 3. Codd’s Theorem 3.6. From Range Restricted Queries to Algebra

From RR Queries to the Algebra

Example (in RANF)

{(x , y) | ∃z :

e1=ρxyzP︷ ︸︸ ︷
P(x , y , z) ∨(

e2=(·)−((ρyα)▷◁(·))︷ ︸︸ ︷
(·)×(·)︷ ︸︸ ︷

ρxyR︷ ︸︸ ︷
R(x , y)∧

ρzS︷︸︸︷
S(z)∧¬

e21=ρxzT︷ ︸︸ ︷
T (x , z)) ∨

e3=(·)▷◁(·)︷ ︸︸ ︷
(

ρxyR︷ ︸︸ ︷
R(x , y)∧

ρyzT︷ ︸︸ ︷
T (y , z))}

Equivalent relational algebra expression: πxy (e1 ∪ e2 ∪ e3).

Lanzinger 22 October, 2024 Page 24

Database Theory 3. Codd’s Theorem 3.6. From Range Restricted Queries to Algebra

From RR Queries to the Algebra

Example

“Select all professors (P) who only give lectures (L) in the field of computer science (C).” The
schemata are P(P), L(P,C),C (C) and the active domain is given by a relation α with schema
α(E).

{x | P(x) ∧ ∀y(L(x , y) → C (y))}
to SRNF

⊢ {x | P(x) ∧ ¬∃y(L(x , y) ∧ ¬C (y))}
to RANF

⊢ {x | P(x) ∧ ¬∃y(L(x , y) ∧ (α(y) ∧ ¬C (y))︸ ︷︷ ︸
(ρCα)−C

)

︸ ︷︷ ︸
L ▷◁ ((ρCα)−C)︸ ︷︷ ︸

πP (L ▷◁ ((ρCα)−C))︸ ︷︷ ︸
P−πP (L ▷◁ ((ρCα)−C))

}

Lanzinger 22 October, 2024 Page 25

Database Theory 3. Codd’s Theorem 3.6. From Range Restricted Queries to Algebra

From RR Queries to the Algebra

Example

Schema R(AB), S(C), T (AC); active domain α(E).

{⟨x , y , z⟩ | R(x , y) ∧ (S(z) ∧ ¬T (x , z))}
⊢ {⟨x , y , z⟩ | R(x , y) ∧ ((α(x) ∧ S(z)︸ ︷︷ ︸

α×S

) ∧ ¬T (x , z)

︸ ︷︷ ︸
(α×S)−T

)

︸ ︷︷ ︸
R▷◁((α×S)−T)

}

Lanzinger 22 October, 2024 Page 26

Database Theory 3. Codd’s Theorem 3.6. From Range Restricted Queries to Algebra

From RR Queries to the Algebra

Example

Schema R(AB), S(AC), T (BC); active domain α(E).

{⟨x , y , z⟩ | R(x , y) ∧ (S(x , z) ∨ T (y , z))}
⊢ {⟨x , y , z⟩ | (R(x , y) ∧ S(x , z)︸ ︷︷ ︸

R ▷◁ S

) ∨ (R(x , y) ∧ T (y , z)︸ ︷︷ ︸
R ▷◁T

)

︸ ︷︷ ︸
(R ▷◁ S)∪(R ▷◁T)

}

or {⟨x , y , z⟩ | R(x , y) ∧ (S(x , z) ∨ T (y , z))}
⊢ {⟨x , y , z⟩ | R(x , y) ∧ ((S(x , z) ∧ α(y)) ∨ (T (y , z) ∧ α(x)))︸ ︷︷ ︸

R ▷◁ ((S×ρBα)∪(T×ρAα))

}

This is correct because R(x , y) ∧ (φ ∨ ψ) ≡ R(x , y) ∧ α(x) ∧ α(y) ∧ (φ ∨ ψ) ≡
R(x , y) ∧ ((α(x) ∧ α(y) ∧ φ) ∨ (α(x) ∧ α(y) ∧ ψ)).

Lanzinger 22 October, 2024 Page 27

Database Theory 3. Codd’s Theorem 3.6. From Range Restricted Queries to Algebra

From RR Queries to the Algebra

Example

Schema R(AB), S(AC), T (BC); active domain α(E).

{⟨x , y , z⟩ | R(x , y) ∧ (S(x , z) ∨ T (y , z))}
⊢ {⟨x , y , z⟩ | (R(x , y) ∧ S(x , z)︸ ︷︷ ︸

R ▷◁ S

) ∨ (R(x , y) ∧ T (y , z)︸ ︷︷ ︸
R ▷◁T

)

︸ ︷︷ ︸
(R ▷◁ S)∪(R ▷◁T)

}

or {⟨x , y , z⟩ | R(x , y) ∧ (S(x , z) ∨ T (y , z))}
⊢ {⟨x , y , z⟩ | R(x , y) ∧ ((S(x , z) ∧ α(y)) ∨ (T (y , z) ∧ α(x)))︸ ︷︷ ︸

R ▷◁ ((S×ρBα)∪(T×ρAα))

}

This is correct because R(x , y) ∧ (φ ∨ ψ) ≡ R(x , y) ∧ α(x) ∧ α(y) ∧ (φ ∨ ψ) ≡
R(x , y) ∧ ((α(x) ∧ α(y) ∧ φ) ∨ (α(x) ∧ α(y) ∧ ψ)).

Lanzinger 22 October, 2024 Page 27

Database Theory 3. Codd’s Theorem 3.6. From Range Restricted Queries to Algebra

Current Status

DI CalculusRR Calculus

AD Calculus

Algebra

NRD

Lanzinger 22 October, 2024 Page 28

Database Theory 3. Codd’s Theorem 3.7. Non-recursive Datalog with Negation

Non-recursive Datalog with negation

Definition

Non-recursive Datalog with negation (nr-Datalog¬) prohibits cycles in the dependency graph of
a program P.

non-recursiveness means that negation is trivially stratified!

Theorem

For every relational algebra query there exists an equivalent nr-Datalog¬ query.

Proof idea.

Inductively, for each algebra expression E , we construct the program PE that defines the
predicate QE of the same arity as E .

We proceed by a bottom-up traversal of the syntax tree of algebra expression E ,
introducing a new predicate for each subexpression of E . Hence, the resulting program is
clearly non-recursive.

Lanzinger 22 October, 2024 Page 29

Database Theory 3. Codd’s Theorem 3.7. Non-recursive Datalog with Negation

Non-recursive Datalog with negation

Definition

Non-recursive Datalog with negation (nr-Datalog¬) prohibits cycles in the dependency graph of
a program P.

non-recursiveness means that negation is trivially stratified!

Theorem

For every relational algebra query there exists an equivalent nr-Datalog¬ query.

Proof idea.

Inductively, for each algebra expression E , we construct the program PE that defines the
predicate QE of the same arity as E .

We proceed by a bottom-up traversal of the syntax tree of algebra expression E ,
introducing a new predicate for each subexpression of E . Hence, the resulting program is
clearly non-recursive.

Lanzinger 22 October, 2024 Page 29

Database Theory 3. Codd’s Theorem 3.7. Non-recursive Datalog with Negation

Non-recursive Datalog with negation

Definition

Non-recursive Datalog with negation (nr-Datalog¬) prohibits cycles in the dependency graph of
a program P.

non-recursiveness means that negation is trivially stratified!

Theorem

For every relational algebra query there exists an equivalent nr-Datalog¬ query.

Proof idea.

Inductively, for each algebra expression E , we construct the program PE that defines the
predicate QE of the same arity as E .

We proceed by a bottom-up traversal of the syntax tree of algebra expression E ,
introducing a new predicate for each subexpression of E . Hence, the resulting program is
clearly non-recursive.

Lanzinger 22 October, 2024 Page 29

Database Theory 3. Codd’s Theorem 3.7. Non-recursive Datalog with Negation

From Algebra to nr-Datalog¬

Proof.

PE := {QE (x⃗) :- R(x⃗)} if E is a relation R

Pσx=y (E) := {Qσx=y (E)(x⃗) :- QE (x⃗) ∧ x = y} ∪ PE

Pπy⃗ (E) := {Qπy⃗ (E)(y⃗) :- QE (x⃗)} ∪ PE

PE1×E2 := {QE1×E2(x⃗ , y⃗) :- QE1(x⃗), QE2(y⃗)} ∪ PE1 ∪ PE2

PE1∪E2 := {QE1∪E2(x⃗) :- QE1(x⃗))} ∪
{QE1∪E2(x⃗) :- QE2(x⃗))} ∪ PE1 ∪ PE2

PE1−E2 := {QE1−E2(x⃗) :- QE1(x⃗), not QE2
(x⃗)} ∪ PE1 ∪ PE2

Clearly, E and PE have the same answer, i.e. for any database DB and any constant tuple c⃗ ,
we have c⃗ ∈ M[E](DB) iff P∗

E ∧ DB∗ |= QE (c⃗).
Lanzinger 22 October, 2024 Page 30

Database Theory 3. Codd’s Theorem 3.7. Non-recursive Datalog with Negation

Current Status

DI CalculusRR Calculus

AD Calculus

Algebra

NRD

Lanzinger 22 October, 2024 Page 31

Database Theory 3. Codd’s Theorem 3.7. Non-recursive Datalog with Negation

From nr-Datalog¬ to DI Calculus

Theorem

For every query in non-recursive Datalog with negation there exists an equivalent
domain-independent relational calculus query.

Proof idea.

Let us assume an nr-Datalog¬ program P.

For every predicate R occurring in P we define a formula φP,R .

φP,R captures the query defined by the program P “restricted to predicate R”, i.e., for
any database DB the following are equal:

• the answer to {x⃗ | φP,R(x⃗)}, where x⃗ are the free variables of φP,R ;
• the set of constant tuples c⃗ with P∗ ∧ DB∗ |= R(c⃗).

Lanzinger 22 October, 2024 Page 32

Database Theory 3. Codd’s Theorem 3.7. Non-recursive Datalog with Negation

From nr-Datalog¬ to DI Calculus

Theorem

For every query in non-recursive Datalog with negation there exists an equivalent
domain-independent relational calculus query.

Proof idea.

Let us assume an nr-Datalog¬ program P.

For every predicate R occurring in P we define a formula φP,R .

φP,R captures the query defined by the program P “restricted to predicate R”, i.e., for
any database DB the following are equal:

• the answer to {x⃗ | φP,R(x⃗)}, where x⃗ are the free variables of φP,R ;
• the set of constant tuples c⃗ with P∗ ∧ DB∗ |= R(c⃗).

Lanzinger 22 October, 2024 Page 32

Database Theory 3. Codd’s Theorem 3.7. Non-recursive Datalog with Negation

From nr-Datalog¬ to DI Calculus (continued)

Proof

W.l.o.g., we assume:

P has no constants and no multiple occurrences of variables in rule heads: this can be
simulated using (fresh) variables and =.

for every pair H1(x⃗1), H2(x⃗2) of head atoms in P, H1 = H2 implies x⃗1 = x⃗2 (can be
achieved by variable renaming)

Inductive definition of φP,R :

(Base case) If R is a predicate that does not appear in the head of any rule in P, then
φP,R = R(x⃗).

(Inductive step) Choose a predicate Q in P, s.t. for all predicates W occurring in the body
of some rule with head predicate Q, the formula φP,W has already been defined.

Lanzinger 22 October, 2024 Page 33

Database Theory 3. Codd’s Theorem 3.7. Non-recursive Datalog with Negation

From nr-Datalog¬ to DI Calculus (continued)

Proof

W.l.o.g., we assume:

P has no constants and no multiple occurrences of variables in rule heads: this can be
simulated using (fresh) variables and =.

for every pair H1(x⃗1), H2(x⃗2) of head atoms in P, H1 = H2 implies x⃗1 = x⃗2 (can be
achieved by variable renaming)

Inductive definition of φP,R :

(Base case) If R is a predicate that does not appear in the head of any rule in P, then
φP,R = R(x⃗).

(Inductive step) Choose a predicate Q in P, s.t. for all predicates W occurring in the body
of some rule with head predicate Q, the formula φP,W has already been defined.

Lanzinger 22 October, 2024 Page 33

Database Theory 3. Codd’s Theorem 3.7. Non-recursive Datalog with Negation

Proof.

Suppose that the following are the rules with head predicate Q:

Q(x⃗) :- L0,0, . . . , L0,n0
...

Q(x⃗) :- Lm,0, . . . , Lm,nm

Then we set
φP,Q =

∨
i∈{0,...,m}

(
∃y⃗i :

∧
j∈{0,...,ni}

L′i,j
)
,

where y⃗i are the variables occurring only in the body (i.e., not in the head) of the ith rule, and

L′i,j =

{
φP,W (v) if Li,j is an atom W(v).

¬φP,W (v) if Li,j is an atom ¬ W(v).

Lanzinger 22 October, 2024 Page 34

Database Theory 3. Codd’s Theorem 3.7. Non-recursive Datalog with Negation

Current Status

DI CalculusRR Calculus

AD Calculus

Algebra

NRD

Lanzinger 22 October, 2024 Page 35

Database Theory 3. Codd’s Theorem 3.7. Non-recursive Datalog with Negation

Learning objectives

Understanding:

the notion of domain-independence,

the active domain semantics,

the notion of range restricted queries,

Codd’s Theorem: equivalence of various relational query languages in terms expressive
power.

More details: Serge Abiteboul, Richard Hull, Victor Vianu: Foundations of Databases. Chapter
5. Addison-Wesley 1995,

Lanzinger 22 October, 2024 Page 36

	Codd's Theorem
	What is Codd's Theorem?
	Domain Independendent Relational Calculus
	From the Algebra to DI Calculus
	Active Domain Semantics
	Range Restricted Queries
	From Range Restricted Queries to Algebra
	Non-recursive Datalog with Negation

