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Database Theory
Unit 2 — Datalog



Motivation

✦Keep the logical foundations for relational calculus to give the language a strong theoretical 
foundation. 

✦Have a simple and intuitively understandable language that can be used by domain experts 
rather than programmers. 

✦Support recursion to allow powerful queries for hierarchical data or graph-like structures. 

✦Combine all of these with efficiency in evaluation.



Syntax of Datalog



Datalog Rule
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Datalog Rule

Head
Terms 

(Variables or Constants)

Body

L0(t01
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) : − L1(t11
, …, t1#R1

), …, Ln(tn1
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)



Datalog Rule

L0(t01
, …, t0#H

) : − L1(t11
, …, t1#R1

), …, Ln(tn1
, …, tn#Rn

)

IDB vs EDB
We partition relation names into to intensional and 
extensional predicates (IDBs and EDBs). 

A relation name is an IDB if it occurs in the head of a rule. 

Intuitively, EDBs are those predicates that come from the database.



Datalog Rule

 := the set of variables in literal  

 := the set of all variables in the rule  

 := the set of all variables in the rule body

vars(L) L

vars(r)

vars(body(r))

L0(t01
, …, t0#H
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)



Datalog Rule

L0(t01
, …, t0#H

) : − L1(t11
, …, t1#R1

), …, Ln(tn1
, …, tn#Rn

)

Important Restrictions

1. Variables in the head must occur in the body, 
i.e,.  . 

2. EDB predicates cannot occur in the head of rules.

vars(L0) ⊆ vars(body(r))



Datalog Program

A Datalog program is simply a set of Datalog rules.  
A Datalog query is a pair  where  is a Datalog program and  is an IDB relation name. 

 
Example Program: 

 

 
 and  are IDBs. When used with a database we expect 

 the EDB relation  to be defined in the database.

(Π, P) Π P

CoAuthor(y, x): − Write(x, p), Write(y, p)
HasEN(x) : − HasEN(y), CoAuthor(y, x)

HasEN(Erdos) .

HasEN CoAuthor
Write

Syntactic convention 
for empty body



Operational Semantics



Some Notation

✦ In this context it will be convenient to 
introduce new notation to check 
whether a specific tuple is in a 
specific relation of a database . 

✦ For relation name , we write 
 to mean that the 

tuple  is in 

D

R
R(c1, …, cℓ) ∈ D

(c1, …, cℓ) RD

In the same sense we will also sometimes 
define databases via sets of atoms, e.g., 
the set 

 

Defines the following database:

{R(1,2), R(2,3), S(a, b)}

A B

1 2

2 3

X Y

A B

Relation R Relation S



Homomorphism

We want to talk about whether the body of rule  maps into a database . 

That is, we are interested in assignment  of all terms in the body to constants, such that for 
every  we have . 

Since we don’t want to change terms in the body that are already constants, we 
restrict  such that   for every constant . 

We call such a function  a homomorphism from  into .

r D

h
1 ≤ i ≤ n Li(h(ti1), …, h(ti#Ri

)) ∈ D

h h(c) = c c ∈ Dom

h body(r) D

L0(t01
, …, t0#H

) : − L1(t11
, …, t1#R1

), …, Ln(tn1
, …, tn#Rn

)



Immediate Consequence

Let  be a Datalog program and  a database.  

A relational atom  is an immediate consequence of  and  if: 

✦  

✦ There exists a rule  such that  

there is a homomorphism  from  to  with  for 

Π D

R(c1, …, cℓ) Π D

R(c1, …, cℓ) ∈ D

r = R(y1, …, yℓ) : − L1(x̄1), …, Ln(x̄n)
h body(r) D h(yi) = ci 1 ≤ i ≤ ℓ



Immediate Consequence — Example

Say we have the following program and database 

 

There is a homomorphism . 
Hence,  is an immediate consequence of this program and database.

CoAuthor(y, x): − Write(x, p), Write(y, p)

x ↦ A1, y ↦ A2, p ↦ P7
CoAuthor(A2,A1)

Author Paper

A1 P7

A2 P8

A2 P7

A3 P8

Write



Immediate Consequence Operator

Intuitively, Datalog semantics add all immediate consequences to the databases until there 
are no more new immediate consequences.  

The immediate consequence operator  that maps a database to a new database as 
follows: 

 

We call  a fixpoint of  if .

TΠ

TΠ(D) = { R(ā) ∣ R(ā) is an immediate consequence of Π and D }

D TΠ TΠ(D) = D



Datalog Semantics

Starting from a Datalog program  and database  we can now define the result of applying 
the program to the database as follows: 

Let          and      

and  

We write  for result of program  applied to  and define it as 

Π D

T0
Π(D) = D Ti+1

Π (D) = TΠ(Ti
Π(D))

T∞
Π = ⋃

i≥0

Ti
Π(D)

Π𝖿𝗉(D) Π D

Π𝖿𝗉(D) := T∞
Π (D)



Example

Recall our example program 

CoAuthor(y, x): − Write(x, p), Write(y, p)
HasEN(x) : − HasEN(y), CoAuthor(y, x)

HasEN(Erdos) .

Author Paper

A1 P7

A2 P8

A2 P7

Erdos P8

Write

 =  ,  .T1
Π(D) D ∪ { HasEN(Erdos) CoAuthor(Erdos, A2), CoAuthor(A2,Erdos), CoAuthor(A1,A2), CoAuthor(A2,A1) }

Now there is a new homomorphism from the second rule into :  T1
Π(D) y ↦ Erdos, x ↦ A2

 = T2
Π(D) T1

Π(D) ∪ {HasEN(A2)}  = T3
Π(D) T2

Π(D) ∪ {HasEN(A1)} Fixpoint!



Finiteness of T∞
Π (D)

Observe that if  is an immediate consequence of  and , then every  must 
either come from the database or be a fixed part of the program. 

Let  be the set of all constants that occur in at least one of  and . 
Since both  and  are finite, so is   Finitely many  to add. 

R(c1, …, cℓ) Π D ci

Dom(Π, D) Π D
Π D Dom(Π, D) ⇒ R(c1, …, cℓ)

Proposition 
Let  be the number of IDBs in  and  be their maximum arity, 
Then  where . 

r Π a
T∞

Π (D) = Tn
Π(D) n ≤ r ⋅ |Dom(Π, D) |a



Datalog Semantics

The semantics of a Datalog query  are as follows: 

 

In our running example  returns the set of all authors with finite Erdos 
number. 

 

q = (Π, R)

q(D) := {(a1, …, a#R) ∈ Dom#R ∣ R(a1, …, a#R) ∈ Π𝖿𝗉(D)}

q = (Π, HasEN)

CoAuthor(y, x): − Write(x, p), Write(y, p)
HasEN(x) : − HasEN(y), CoAuthor(y, x)

HasEN(Erdos) .



Logical Semantics



FO Theories

✦ Recall, a set  of first-order sentences is called a (first-order) theory. 

✦ A database  is a model of theory  
if  for every . 

✦ First-order formulas and databases are always defined over some schema . 
We will not explicitly mention the schema every time here. Implicitly we always talk about 
databases and theories over a single shared schema here.

Φ

D Φ
D ⊧ φ φ ∈ Φ

𝒮



Datalog as a FO Theory

For Datalog rule  we define 

 

where 

r = R(x̄) : − L1(x̄1), …, Ln(x̄n)

φr := ∀z1, z2, …zm . (L1(x̄1) ∧ ⋯Ln(x̄n)) → R(x̄)
{z1, …, zm} = vars(r)

r = HasEN(x) : − HasEN(y), CoAuthor(y, x)
vars(r) = {x, y}

φr = ∀x, y (HasEN(y) ∧ CoAuthor(x, y)) → HasEN(x)

Example



Datalog as a FO Theory

For Datalog program  we define the theory 

 

 
The theory captures logically what we mean by the rules of the program.  
A model  such that  and  makes all our rules hold true and is therefore at 

first sight a reasonable result of evaluating  on . 

Problem:  
there are always infinitely many such !

Π

ΦΠ := { φr ∣ r ∈ Π}

D′ D′ ⊇ D D′ ⊧ ΦΠ
Π D

D′ 



Minimal Models

For program  and database  we define the set of minimal models: 

 

 

Π D

𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) := { D′ ∣ D ⊆ D′ , D′  is a  ⊆ -minimal model of ΦΠ }



Minimal Models

For program  and database  we define the set of minimal models: 

 

 

Π D

𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) := { D′ ∣ D ⊆ D′ , D′  is a  ⊆ -minimal model of ΦΠ }

Example

D = {HasEN(Erdos), CoAuthor(Erdos, A1), CoAuthor(A3,A4)}

φr = ∀x, y (HasEN(y) ∧ CoAuthor(x, y)) → HasEN(x)



Minimal Models

For program  and database  we define the set of minimal models: 

 

 

Π D

𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) := { D′ ∣ D ⊆ D′ , D′  is a  ⊆ -minimal model of ΦΠ }

Example

D = {HasEN(Erdos), CoAuthor(Erdos, A1), CoAuthor(A3,A4)}

φr = ∀x, y (HasEN(y) ∧ CoAuthor(x, y)) → HasEN(x)

Is  a minimal model of ? 

 

D ∪ {HasEN(A1), HasEN(A3), HasEN(A4)} φr



Minimal Models

For program  and database  we define the set of minimal models: 

 

 

Π D

𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) := { D′ ∣ D ⊆ D′ , D′  is a  ⊆ -minimal model of ΦΠ }

Example

D = {HasEN(Erdos), CoAuthor(Erdos, A1), CoAuthor(A3,A4)}

φr = ∀x, y (HasEN(y) ∧ CoAuthor(x, y)) → HasEN(x)

Is  a model of ? 

No — It is a model (simply check the assignments for  in ) but not minimal. 

D ∪ {HasEN(A1), HasEN(A3), HasEN(A4)} φr

x, y φr



Minimal Models

For program  and database  we define the set of minimal models: 

 

 

Π D

𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) := { D′ ∣ D ⊆ D′ , D′  is a  ⊆ -minimal model of ΦΠ }

Example

D = {HasEN(Erdos), CoAuthor(Erdos, A1), CoAuthor(A3,A4)}

φr = ∀x, y (HasEN(y) ∧ CoAuthor(x, y)) → HasEN(x)

Only  is a minimal model of ! D ∪ {HasEN(A1)} φr



Minimal Models

For program  and database  we define the set of minimal models: 

 

 

Π D

𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) := { D′ ∣ D ⊆ D′ , D′  is a  ⊆ -minimal model of ΦΠ }

Theorem 
For every Datalog program  and database :Π D
|𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) | = 1



A Proof Sketch

Let . It is easy to check that : every 

possible right-hand side of an implication is in . Hence . 

Assume  and let  be the minimal models. 

We show towards a contradiction that  is also a model of  and : 

1. For every , we have . Hence . 

2. For every , if the left-hand side of an implication (for some assignment to the 

universally quantified variables) is in some , then the right-hand side will also be in . 

Hence, if the left-hand side of an implication is in , so is the right-hand side.

H = D ∪ { R(c̄) ∣ R is an IDB, c̄ ∈ Dom#R } H ⊧ ΦΠ
H |𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) | ≥ 1

|𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) | = ℓ > 1 D1, …, Dℓ
D′ = D1 ∩ ⋯ ∩ Dℓ ΦΠ D′ ⊇ D

1 ≤ i ≤ ℓ D ⊆ Di D ⊆ D′ 

φr ∈ ΦΠ
Di Di

D′ 



Minimal Model Semantics

We can use this to define the result of a Datalog program  on database  
in an alternative way: 

 the -minimal model of  that contains  

The definition of semantics of a Datalog query  remains unchanged, 
except for a change in what we consider the result of a program: 

Π D

Π𝗆𝗆(D) := ⊆ ΦD D

q = (Π, R)

q(D) := {(a1, …, a#R) ∈ Dom#R ∣ R(a1, …, a#R) ∈ Π𝗆𝗆(D)}



Connecting the Two Semantics 

Why? 

As long as  is not satisfied, the immediate consequence 

operator will add the respective atom  for which the left-hand side of the implication was true. 
Hence  is a model of . Furthermore, by definition . 

The immediate consequence operator cannot add any other atoms (hence, minimality).

∀z1, z2, …zm . (L1(x̄1) ∧ ⋯Ln(x̄n)) → R(x̄)
R(c̄)

Π𝖿𝗉(D) ΦΠ D ⊆ Π𝖿𝗉(D)

Theorem 
For every Datalog program  and database 

.
Π D

Π𝖿𝗉(D) = Π𝗆𝗆(D)



Complexity of Datalog



Data/Combined Complexity

Combined Complexity: 
Datalog-Eval is the problem, given input Datalog query  and database , 

whether  

Data Complexity: 
In data complexity, we are interested in the complexity for fixed query, that is, 
only the database is the input. 

Formally: for fixed Datalog query  , q-Datalog-Eval is the problem, given 

database , whether . 
-hardness in data complexity means -hardness of q-Datalog-Eval for some .  

We say Datalog-Eval is in  in data complexity if q-Datalog-Eval is in  for every , 

q = (Π, R) D
q(D) ≠ ∅

q = (Π, R)
D q(D) ≠ ∅

𝒞 𝒞 q
𝒞 𝒞 q



A Simple Algorithm

From our discussion of semantics above we have . 

Remember from before that  for some . 

Computing  from  requires for each rule : 

 time

ā ∈ q(D) ⟺ R(ā) ∈ T∞
Π (D)

Π𝖿𝗉(D) = Tn
Π(D) n ≤ r ⋅ |Dom(Π, D) |a

Ti
Π Ti−1

Π r

O(Dom(Π, D)vars(r) ⋅ |Ti−1
Π (D) | )

Number of functions from 
variables to domain.

Time to check if the function is a 
homomorphism into Ti−1

Π (D)

Recall that  is at most !|Ti−1
Π (D) | r ⋅ |Dom(Π, D) |a



A Simple Algorithm

From our discussion of semantics above we have . 

Remember from before that  for some . 

Computing  from  requires: 

 time 

Repeating at most  times we have an algorithm to decide  in time 

ā ∈ q(D) ⟺ R(ā) ∈ T∞
Π (D)

Π𝖿𝗉(D) = Tn
Π(D) n ≤ r ⋅ |Dom(Π, D) |a

Ti
Π Ti−1

Π

O( |Π | ⋅ Dom(Π, D)maxvars ⋅ r ⋅ |Dom(Π, D) |a )

n ā ∈ q(D)

O( |Π | ⋅ Dom(Π, D)maxvars ⋅ r2 ⋅ |Dom(Π, D) |2a )



A Simple Algorithm

Combined Complexity 

The inputs are  and . 

Both  and  depend on , 
i.e., our algorithm requires  
exponential time in combined 
complexity.

Π D

maxvars a Π

O( |Π | ⋅ Dom(Π, D)maxvars ⋅ r2 ⋅ |Dom(Π, D) |2a )

Data Complexity 

The program  is fixed, only the 
database  is an input. 

All the exponents in our time bound 
are thus fixed, i.e., they are constants.  

Our algorithm requires polynomial 
time in data complexity!

Π
D



This algorithm is very basic. 
Can we do significantly better?



Complexity of Datalog

Theorem 
Datalog-Eval is ExpTime-complete. 
Datalog-Eval is PTime-complete in data-complexity



Combined Complexity

We show ExpTime-hardness by reducing from acceptance in an  
exponential time Turing machine. 

Let ExpTime, and let  be a deterministic TM that  

decides  in exponential time. 

Our goal: On input string , compute in polynomial time a database 
 and Datalog query  such that 

 accepts              

L ∈ M = (Q, Σ, δ, q0, q⊤)
L

w
D q = (Π, 𝖠𝖼𝖼𝖾𝗉𝗍)

M w ⟺ q(D) ≠ ∅

Reminder TM: 
.. states 
…alphabet 
 …transition function 
…start state 

 …accept state

Q
Σ
δ
q0
a



Combined Complexity

High-level overview of the reduction: 

Any transition  can be understood as a rule: 

if at time  in state  the head reads , 
then at time , the state is , the symbol  under the head gets  

replaced by , and the head is moved according to  

We can express these statements easily in Datalog. If we can follow these computations for 
steps (where  is  for some ), we can capture the full computation of  on .

δ(q, a) = (q′ , b, dir)

t q a
t + 1 q′ a

b dir

2m

m |w |k k ∈ ℕ M w



Constructing a Long Chain

For each : 

 

Intuitively, this is a compact way to construct a sequence of length .

i ∈ [m − 1]

Succi+1(z, x̄, z, ȳ) : − Succi(x̄, ȳ), Low1(z)
Succi+1(z, x̄, z, ȳ) : − Succi(x̄, ȳ), High1(z)
Succi+1(z, x̄, v, ȳ) : − Succ1(z, v), Lowi(x), Highi(y)

Highi+1(x, ȳ) : − High1(x), Highi(ȳ)
Lowi+1(x, ȳ) : − Low1(x), Lowi(ȳ)

⪯m (x̄, ȳ) : − Succm(x̄, ȳ)
⪯m (x̄, z̄) : − ⪯m (x̄, ȳ), Succm(ȳ, z̄)

2m



Example Succ1(0,1), High(1), Low(0)

Succi+1(z, x̄, z, ȳ) : − Succi(x̄, ȳ), Low1(z)
Succi+1(z, x̄, z, ȳ) : − Succi(x̄, ȳ), High1(z)
Succi+1(z, x̄, v, ȳ) : − Succ1(z, v), Highi(x̄), Lowi(ȳ)

Highi+1(x, ȳ) : − High1(x), Highi(ȳ)
Lowi+1(x, ȳ) : − Low1(x), Lowi(ȳ)

⪯m (x̄, ȳ) : − Succm(x̄, ȳ)
⪯m (x̄, z̄) : − ⪯m (x̄, ȳ), Succm(ȳ, z̄)

Succ2(0,0,0,1)

Succ2(1,0,1,1)

Succ2(0,1,1,0)

We get the ordering 
00 < 01 < 10 < 11

High2(1,1) Low2(0,0)



Example Succ1(0,1), High(1), Low(0)

Succi+1(z, x̄, z, ȳ) : − Succi(x̄, ȳ), Low1(z)
Succi+1(z, x̄, z, ȳ) : − Succi(x̄, ȳ), High1(z)
Succi+1(z, x̄, v, ȳ) : − Succ1(z, v), Highi(x̄), Lowi(ȳ)

Highi+1(x, ȳ) : − High1(x), Highi(ȳ)
Lowi+1(x, ȳ) : − Low1(x), Lowi(ȳ)

⪯m (x̄, ȳ) : − Succm(x̄, ȳ)
⪯m (x̄, z̄) : − ⪯m (x̄, ȳ), Succm(ȳ, z̄)

Succ2(0,0,0,1)

Succ2(1,0,1,1)

Succ2(0,1,1,0)

We get the ordering 
00 < 01 < 10 < 11

High2(1,1) Low2(0,0)

Succ2(0,0,1,0,1,0)



Example Succ1(0,1), High(1), Low(0)

Succi+1(z, x̄, z, ȳ) : − Succi(x̄, ȳ), Low1(z)
Succi+1(z, x̄, z, ȳ) : − Succi(x̄, ȳ), High1(z)
Succi+1(z, x̄, v, ȳ) : − Succ1(z, v), Highi(x̄), Lowi(ȳ)

Highi+1(x, ȳ) : − High1(x), Highi(ȳ)
Lowi+1(x, ȳ) : − Low1(x), Lowi(ȳ)

⪯m (x̄, ȳ) : − Succm(x̄, ȳ)
⪯m (x̄, z̄) : − ⪯m (x̄, ȳ), Succm(ȳ, z̄)

Succ2(0,0,0,1)

Succ2(1,0,1,1)

Succ2(0,1,1,0)

We get the ordering 
00 < 01 < 10 < 11

High2(1,1) Low2(0,0)

Succ2(0,0,1,0,1,0) Succ2(0,0,0,0,0,1)
⋮ ⋮



The Database

We only need a very basic database from which our successor relationship 
can be constructed. 

 

Note that the database in this construction is independent of the input ! 
Hence this reduction does not work to establish the complexity in data complexity.

D = { Succ1(0,1), High1(1), Low1(0) }

w



The Starting State
For input word  we add the following rules: 

 

We use  to express that at time  cell  contains symbol . 

Similarly,  means that at time , the head is over cell .

w = a0a1⋯aℓ

States(x̄) : − Lowm(x̄)
Symbola0

(x̄, x̄) : − Lowm(x̄)
Symbola1

(x̄0, x̄1) : − Lowm(x̄0), Succm(x̄0, x̄1)
⋮

Symbolaℓ
(x̄0, x̄ℓ) : − Lowm(x̄0), Succm(x̄0, x̄1), …Succm(x̄ℓ−1, x̄ℓ)

Symbol⊔(x̄0, ȳ) : − Lowm(x̄0), Succm(x̄0, x̄1), …Succm(x̄ℓ−1, x̄ℓ), ⪯m (x̄ℓ, ȳ)
Head(x̄, x̄) : − Lowm(x̄)

Symbola(t, c) t c a
Head(t, c) t c

“At time , the machine is in the starting state”0

“At time , the symbol  is on cell  of the tape”0 a0 0

“At time , the symbol  is on cell  of the tape”0 a1 1



Transitions as Rules

For every transition  add the rules: 

 

It is straightforward to adapt the  rule to the other directions.

δ(q, a) = (q′ , b, → )

Stateq′ 
(z̄) : − Stateq(x̄), Head(x̄, ȳ), Symbola(x̄, ȳ), Succm(x̄, z̄)

Symbolb(z̄, ȳ) : − Stateq(x̄), Head(x̄, ȳ), Symbola(x̄, ȳ), Succm(x̄, z̄)
Head(z̄, v̄) : − Stateq(x̄), Head(x̄, ȳ), Symbola(x̄, ȳ), Succm(x̄, z̄), Succm(ȳ, v̄)

Head



Inertia and Acceptance

The final missing part is to preserve unchanged symbols over time: 

 

The first rule propagates the cells that come before the head to the next timepoint,  
the second propagates the cells after the head. 

Finally, we check whether our simulation of the machine reaches the accepting state  

Symbola(v̄, ȳ) : − Symbola(x̄, ȳ), Head(x̄, z̄), ⪯m (ȳ, z̄), Succm(x̄, v̄)
Symbola(v̄, ȳ) : − Symbola(x̄, ȳ), Head(x̄, z̄), ⪯m (z̄, ȳ), Succm(x̄, v̄)

q⊤

𝖠𝖼𝖼𝖾𝗉𝗍 : − Stateq⊤
(x̄)



Data Complexity

For data complexity we need to reduce some problem to answering a fixed Datalog query. 

That is, we give a fixed query  that doesn’t depend on the problem input. For every 
input , the reduction computes a database  such that  

 is an accepting input

q = (Π, R)
w D

q(D) ≠ ∅ ⟺ w



Data Complexity

We will reduce from monotone Boolean-circuit evaluation (MCVP)

∧ ∧

∧

∨

∨

∨

0 1 1 1 0 0

1

MCVP 

Input: An -input, monotone Boolean 
circuit , and a string  

Output: accepts iff  outputs true on 
input .

n
C w ∈ {0,1}n

C
w



Data Complexity

We fix the Datalog query  with program : 

 

The program simulates a monotone Boolean circuit specified in the database. 

 
To complete the proof we need to give a LogSpace algorithm that takes a circuit as input and 
outputs a corresponding database.

q = (Π, 𝖠𝖼𝖼𝖾𝗉𝗍) Π

True(x) : − Or(x, y, z), True(y)
True(x) : − Or(x, y, z), True(z)
True(x) : − And(x, y, z), True(y), True(z)
𝖠𝖼𝖼𝖾𝗉𝗍 : − End(x), True(x)



Stratified Negation



Negation in Datalog

 

What is supposed to happen here? 

 
Key problem:  

Relation is defined on the basis of its own negation

P : − ¬Q
Q : − ¬P



Semipositive Programs

A Datalog program with negation is semipositive if only EDB relation names are negated. 

Say we have EDB relation name , then the following program is semipositive: 

 

Semantics of semipositive programs is straightforward: 

1. For every negated EDB introduce relation name  and add    to the 
database 

2.  replace every occurrence of  with with  
3. The program now has no more negation, evaluate as usual.

Knows

Stranger(x, y) : − ¬Knows(x, y)

R¬ RD
¬ = Dom#R∖RD

¬R(x̄) R¬(x̄)



Stratified Negation

Semipositive is too restrictive, but often programs can be seen as a sequence of multiple 
semipositive programs! 

Dependency Graph of program  is a directed graph: 

✦ Vertices  relation names in  

✦ There is an arc  if there is a rule in  where  is the head relation symbol, 
and  is in the body. 

✦ We mark arcs  with a star  if  in the body is negated.

Π

:= Π

p → q Π p
q

p → q ⋆ q



Dependency Graph
P : − ¬Q
Q : − ¬P

P Q

⋆

⋆

CoAuthor(y, x): − Write(x, p), Write(y, p)
HasEN(x) : − HasEN(y), CoAuthor(y, x)
NoEN(x) : − ¬HasEN(x)

HasEN(Erdos) .

Write HasEN

CoAuthor

NoEN

⋆



Stratifiable Programs

If the dependency graph of  has no directed cycle that contains an  
edge marked with  we call  stratifiable.

Π
⋆ Π

P Q

⋆

⋆

Write HasEN

CoAuthor

NoEN

⋆

Not stratifiable Stratifiable

Intuition: we can solve this 
“stratum" before checking 
negation



Stratification

A stratification is a function  that assign to every relation name 
the a number such that: 

✦ If  is an EDB, then . 

✦ If there is a rule with  in its head and  in its body, 
then . 

✦ If there is a rule with  in its head and  in its body, 
then 

λ : 𝖱𝖾𝗅 → ℕ

R ∈ 𝖱𝖾𝗅 σ(R) = 0

R P
σ(R) ≥ σ(P)

R ¬P
σ(R) > σ(P)



Example
V(x, y) : − R(x, x), R(y, y)
U(x, y) : − S(x, y), S(y, z), ¬V(x, y)
W(x, y) : − ¬U(x, y), V(y, x)

V

U

RS

W Level 3: W

Level 2: U

Level 1: R, S, V

⋆

⋆



Stratified Negation — Semantics

For a given stratification , partition the program  into programs : 

Rule  with head relation name  is in program . 

Define . The result of a stratified program  where  is the 

maximum level assigned by . 

Note that this way, every program  is semipositive as every negated atom occurs in a lower 

stratum  it becomes an EDB in this stratum-wise execution.

σ Π Π1, Π2, …
r R Πσ(R)

D0 = D, Di = Πi(Di−1) Πσ(D) := Dℓ ℓ
σ

Πi
⇒

V(x, y) : − R(x, x), R(y, y)
U(x, y) : − S(x, y), S(y, z), ¬V(x, y)
W(x, y) : − ¬U(x, y), V(y, x)

Π1
Π2
Π3



Stratified Negation — Semantics

One problem is left, semantics depend on a specific stratification . 
However, actually any stratification leads to the same result, providing us with robust 
semantics for Datalog with stratified negation.

σ

Theorem 
Let  be two stratifications of Datalog 

program . Then .

σ1, σ2
Π Πσ1

(D) = Πσ2
(D)



Beyond Datalog



The Real World

Modern Datalog engine that additionally 
supports stratified aggregation, value 
invention, and many QoL extensions. 

https://knowsys.github.io/nemo-doc/ 

Try it in the browser:  
https://tools.iccl.inf.tu-dresden.de/nemo/

Datalog-based language that 
compiles to SQL. 

Specialised for data analysis. 

https://logica.dev/ 

https://knowsys.github.io/nemo-doc/
https://tools.iccl.inf.tu-dresden.de/nemo/
https://logica.dev/


Negation

Well-founded Negation 

Three-values logic where atoms 
can also have “undefined” truth. 

For example, in mutual recursion, 
both atoms have undefined truth. 

Stable Negation 

Consider anything that is not necessarily 
true as false. Programs can have multiple 
incomparable models! 

  has two stable models: 

                               and  

P : − ¬Q
Q : − ¬P

{P} {Q}



Datalog±

We commonly need to deal with incomplete data. 
We might need to invent new values! 

 

Creates a much more powerful language (the ).  
So powerful answering queries becomes undecidable. 

We therefore study restrictions that allow for value invention but  
keep the language decidable (the ).

∃x Manager(x, y) : − Employee(y)

+

−



Restricted Datalog

Restrictions to standard Datalog have also been studied.  
Some examples: 

✦ Linear Datalog 
All rules have at most one IDB in their body. This guarantees that any recursion is “linear”, 
i.e., there are no joins on recursion. 
PSpace-complete in combined complexity, NL-complete in data complexity. 

✦ Non-recursive Datalog 
No recursion is allowed, i.e., no cycles in the dependency graph at all. 
We will see in the next lecture that non-recursive Datalog with negation this is 
equivalent to relational algebra.


