
Matthias Lanzinger, WS2024/25, partially based on Arenas, et al., “Database Theory”

Database Theory
Unit 2 — Datalog

Motivation

✦Keep the logical foundations for relational calculus to give the language a strong theoretical
foundation.

✦Have a simple and intuitively understandable language that can be used by domain experts
rather than programmers.

✦Support recursion to allow powerful queries for hierarchical data or graph-like structures.

✦Combine all of these with efficiency in evaluation.

Syntax of Datalog

Datalog Rule

L0(t01
, …, t0#H

) : − L1(t11
, …, t1#R1

), …, Ln(tn1
, …, tn#Rn

)
“If”

Datalog Rule

Head
Terms

(Variables or Constants)

Body

L0(t01
, …, t0#H

) : − L1(t11
, …, t1#R1

), …, Ln(tn1
, …, tn#Rn

)

Datalog Rule

L0(t01
, …, t0#H

) : − L1(t11
, …, t1#R1

), …, Ln(tn1
, …, tn#Rn

)

IDB vs EDB
We partition relation names into to intensional and
extensional predicates (IDBs and EDBs).

A relation name is an IDB if it occurs in the head of a rule.

Intuitively, EDBs are those predicates that come from the database.

Datalog Rule

 := the set of variables in literal

 := the set of all variables in the rule

 := the set of all variables in the rule body

vars(L) L

vars(r)

vars(body(r))

L0(t01
, …, t0#H

) : − L1(t11
, …, t1#R1

), …, Ln(tn1
, …, tn#Rn

)

Datalog Rule

L0(t01
, …, t0#H

) : − L1(t11
, …, t1#R1

), …, Ln(tn1
, …, tn#Rn

)

Important Restrictions

1. Variables in the head must occur in the body,
i.e,. .

2. EDB predicates cannot occur in the head of rules.

vars(L0) ⊆ vars(body(r))

Datalog Program

A Datalog program is simply a set of Datalog rules.
A Datalog query is a pair where is a Datalog program and is an IDB relation name.

Example Program:

 and are IDBs. When used with a database we expect

 the EDB relation to be defined in the database.

(Π, P) Π P

CoAuthor(y, x): − Write(x, p), Write(y, p)
HasEN(x) : − HasEN(y), CoAuthor(y, x)

HasEN(Erdos) .

HasEN CoAuthor
Write

Syntactic convention
for empty body

Operational Semantics

Some Notation

✦ In this context it will be convenient to
introduce new notation to check
whether a specific tuple is in a
specific relation of a database .

✦ For relation name , we write
 to mean that the

tuple is in

D

R
R(c1, …, cℓ) ∈ D

(c1, …, cℓ) RD

In the same sense we will also sometimes
define databases via sets of atoms, e.g.,
the set

Defines the following database:

{R(1,2), R(2,3), S(a, b)}

A B

1 2

2 3

X Y

A B

Relation R Relation S

Homomorphism

We want to talk about whether the body of rule maps into a database .

That is, we are interested in assignment of all terms in the body to constants, such that for
every we have .

Since we don’t want to change terms in the body that are already constants, we
restrict such that for every constant .

We call such a function a homomorphism from into .

r D

h
1 ≤ i ≤ n Li(h(ti1), …, h(ti#Ri

)) ∈ D

h h(c) = c c ∈ Dom

h body(r) D

L0(t01
, …, t0#H

) : − L1(t11
, …, t1#R1

), …, Ln(tn1
, …, tn#Rn

)

Immediate Consequence

Let be a Datalog program and a database.

A relational atom is an immediate consequence of and if:

✦

✦ There exists a rule such that

there is a homomorphism from to with for

Π D

R(c1, …, cℓ) Π D

R(c1, …, cℓ) ∈ D

r = R(y1, …, yℓ) : − L1(x̄1), …, Ln(x̄n)
h body(r) D h(yi) = ci 1 ≤ i ≤ ℓ

Immediate Consequence — Example

Say we have the following program and database

There is a homomorphism .
Hence, is an immediate consequence of this program and database.

CoAuthor(y, x): − Write(x, p), Write(y, p)

x ↦ A1, y ↦ A2, p ↦ P7
CoAuthor(A2,A1)

Author Paper

A1 P7

A2 P8

A2 P7

A3 P8

Write

Immediate Consequence Operator

Intuitively, Datalog semantics add all immediate consequences to the databases until there
are no more new immediate consequences.

The immediate consequence operator that maps a database to a new database as
follows:

We call a fixpoint of if .

TΠ

TΠ(D) = { R(ā) ∣ R(ā) is an immediate consequence of Π and D }

D TΠ TΠ(D) = D

Datalog Semantics

Starting from a Datalog program and database we can now define the result of applying
the program to the database as follows:

Let and

and

We write for result of program applied to and define it as

Π D

T0
Π(D) = D Ti+1

Π (D) = TΠ(Ti
Π(D))

T∞
Π = ⋃

i≥0

Ti
Π(D)

Π𝖿𝗉(D) Π D

Π𝖿𝗉(D) := T∞
Π (D)

Example

Recall our example program

CoAuthor(y, x): − Write(x, p), Write(y, p)
HasEN(x) : − HasEN(y), CoAuthor(y, x)

HasEN(Erdos) .

Author Paper

A1 P7

A2 P8

A2 P7

Erdos P8

Write

 = , .T1
Π(D) D ∪ { HasEN(Erdos) CoAuthor(Erdos, A2), CoAuthor(A2,Erdos), CoAuthor(A1,A2), CoAuthor(A2,A1) }

Now there is a new homomorphism from the second rule into : T1
Π(D) y ↦ Erdos, x ↦ A2

 = T2
Π(D) T1

Π(D) ∪ {HasEN(A2)} = T3
Π(D) T2

Π(D) ∪ {HasEN(A1)} Fixpoint!

Finiteness of T∞
Π (D)

Observe that if is an immediate consequence of and , then every must
either come from the database or be a fixed part of the program.

Let be the set of all constants that occur in at least one of and .
Since both and are finite, so is Finitely many to add.

R(c1, …, cℓ) Π D ci

Dom(Π, D) Π D
Π D Dom(Π, D) ⇒ R(c1, …, cℓ)

Proposition
Let be the number of IDBs in and be their maximum arity,
Then where .

r Π a
T∞

Π (D) = Tn
Π(D) n ≤ r ⋅ |Dom(Π, D) |a

Datalog Semantics

The semantics of a Datalog query are as follows:

In our running example returns the set of all authors with finite Erdos
number.

q = (Π, R)

q(D) := {(a1, …, a#R) ∈ Dom#R ∣ R(a1, …, a#R) ∈ Π𝖿𝗉(D)}

q = (Π, HasEN)

CoAuthor(y, x): − Write(x, p), Write(y, p)
HasEN(x) : − HasEN(y), CoAuthor(y, x)

HasEN(Erdos) .

Logical Semantics

FO Theories

✦ Recall, a set of first-order sentences is called a (first-order) theory.

✦ A database is a model of theory
if for every .

✦ First-order formulas and databases are always defined over some schema .
We will not explicitly mention the schema every time here. Implicitly we always talk about
databases and theories over a single shared schema here.

Φ

D Φ
D ⊧ φ φ ∈ Φ

𝒮

Datalog as a FO Theory

For Datalog rule we define

where

r = R(x̄) : − L1(x̄1), …, Ln(x̄n)

φr := ∀z1, z2, …zm . (L1(x̄1) ∧ ⋯Ln(x̄n)) → R(x̄)
{z1, …, zm} = vars(r)

r = HasEN(x) : − HasEN(y), CoAuthor(y, x)
vars(r) = {x, y}

φr = ∀x, y (HasEN(y) ∧ CoAuthor(x, y)) → HasEN(x)

Example

Datalog as a FO Theory

For Datalog program we define the theory

The theory captures logically what we mean by the rules of the program.
A model such that and makes all our rules hold true and is therefore at

first sight a reasonable result of evaluating on .

Problem:
there are always infinitely many such !

Π

ΦΠ := { φr ∣ r ∈ Π}

D′￼ D′￼ ⊇ D D′￼ ⊧ ΦΠ
Π D

D′￼

Minimal Models

For program and database we define the set of minimal models:

Π D

𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) := { D′￼ ∣ D ⊆ D′￼, D′￼ is a ⊆ -minimal model of ΦΠ }

Minimal Models

For program and database we define the set of minimal models:

Π D

𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) := { D′￼ ∣ D ⊆ D′￼, D′￼ is a ⊆ -minimal model of ΦΠ }

Example

D = {HasEN(Erdos), CoAuthor(Erdos, A1), CoAuthor(A3,A4)}

φr = ∀x, y (HasEN(y) ∧ CoAuthor(x, y)) → HasEN(x)

Minimal Models

For program and database we define the set of minimal models:

Π D

𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) := { D′￼ ∣ D ⊆ D′￼, D′￼ is a ⊆ -minimal model of ΦΠ }

Example

D = {HasEN(Erdos), CoAuthor(Erdos, A1), CoAuthor(A3,A4)}

φr = ∀x, y (HasEN(y) ∧ CoAuthor(x, y)) → HasEN(x)

Is a minimal model of ?

D ∪ {HasEN(A1), HasEN(A3), HasEN(A4)} φr

Minimal Models

For program and database we define the set of minimal models:

Π D

𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) := { D′￼ ∣ D ⊆ D′￼, D′￼ is a ⊆ -minimal model of ΦΠ }

Example

D = {HasEN(Erdos), CoAuthor(Erdos, A1), CoAuthor(A3,A4)}

φr = ∀x, y (HasEN(y) ∧ CoAuthor(x, y)) → HasEN(x)

Is a model of ?

No — It is a model (simply check the assignments for in) but not minimal.

D ∪ {HasEN(A1), HasEN(A3), HasEN(A4)} φr

x, y φr

Minimal Models

For program and database we define the set of minimal models:

Π D

𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) := { D′￼ ∣ D ⊆ D′￼, D′￼ is a ⊆ -minimal model of ΦΠ }

Example

D = {HasEN(Erdos), CoAuthor(Erdos, A1), CoAuthor(A3,A4)}

φr = ∀x, y (HasEN(y) ∧ CoAuthor(x, y)) → HasEN(x)

Only is a minimal model of ! D ∪ {HasEN(A1)} φr

Minimal Models

For program and database we define the set of minimal models:

Π D

𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) := { D′￼ ∣ D ⊆ D′￼, D′￼ is a ⊆ -minimal model of ΦΠ }

Theorem
For every Datalog program and database :Π D
|𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) | = 1

A Proof Sketch

Let . It is easy to check that : every

possible right-hand side of an implication is in . Hence .

Assume and let be the minimal models.

We show towards a contradiction that is also a model of and :

1. For every , we have . Hence .

2. For every , if the left-hand side of an implication (for some assignment to the

universally quantified variables) is in some , then the right-hand side will also be in .

Hence, if the left-hand side of an implication is in , so is the right-hand side.

H = D ∪ { R(c̄) ∣ R is an IDB, c̄ ∈ Dom#R } H ⊧ ΦΠ
H |𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) | ≥ 1

|𝖬𝗂𝗇𝖬𝗈𝖽(Π, D) | = ℓ > 1 D1, …, Dℓ
D′￼ = D1 ∩ ⋯ ∩ Dℓ ΦΠ D′￼ ⊇ D

1 ≤ i ≤ ℓ D ⊆ Di D ⊆ D′￼

φr ∈ ΦΠ
Di Di

D′￼

Minimal Model Semantics

We can use this to define the result of a Datalog program on database
in an alternative way:

 the -minimal model of that contains

The definition of semantics of a Datalog query remains unchanged,
except for a change in what we consider the result of a program:

Π D

Π𝗆𝗆(D) := ⊆ ΦD D

q = (Π, R)

q(D) := {(a1, …, a#R) ∈ Dom#R ∣ R(a1, …, a#R) ∈ Π𝗆𝗆(D)}

Connecting the Two Semantics

Why?

As long as is not satisfied, the immediate consequence

operator will add the respective atom for which the left-hand side of the implication was true.
Hence is a model of . Furthermore, by definition .

The immediate consequence operator cannot add any other atoms (hence, minimality).

∀z1, z2, …zm . (L1(x̄1) ∧ ⋯Ln(x̄n)) → R(x̄)
R(c̄)

Π𝖿𝗉(D) ΦΠ D ⊆ Π𝖿𝗉(D)

Theorem
For every Datalog program and database

.
Π D

Π𝖿𝗉(D) = Π𝗆𝗆(D)

Complexity of Datalog

Data/Combined Complexity

Combined Complexity:
Datalog-Eval is the problem, given input Datalog query and database ,

whether

Data Complexity:
In data complexity, we are interested in the complexity for fixed query, that is,
only the database is the input.

Formally: for fixed Datalog query , q-Datalog-Eval is the problem, given

database , whether .
-hardness in data complexity means -hardness of q-Datalog-Eval for some .

We say Datalog-Eval is in in data complexity if q-Datalog-Eval is in for every ,

q = (Π, R) D
q(D) ≠ ∅

q = (Π, R)
D q(D) ≠ ∅

𝒞 𝒞 q
𝒞 𝒞 q

A Simple Algorithm

From our discussion of semantics above we have .

Remember from before that for some .

Computing from requires for each rule :

 time

ā ∈ q(D) ⟺ R(ā) ∈ T∞
Π (D)

Π𝖿𝗉(D) = Tn
Π(D) n ≤ r ⋅ |Dom(Π, D) |a

Ti
Π Ti−1

Π r

O(Dom(Π, D)vars(r) ⋅ |Ti−1
Π (D) |)

Number of functions from
variables to domain.

Time to check if the function is a
homomorphism into Ti−1

Π (D)

Recall that is at most !|Ti−1
Π (D) | r ⋅ |Dom(Π, D) |a

A Simple Algorithm

From our discussion of semantics above we have .

Remember from before that for some .

Computing from requires:

 time

Repeating at most times we have an algorithm to decide in time

ā ∈ q(D) ⟺ R(ā) ∈ T∞
Π (D)

Π𝖿𝗉(D) = Tn
Π(D) n ≤ r ⋅ |Dom(Π, D) |a

Ti
Π Ti−1

Π

O(|Π | ⋅ Dom(Π, D)maxvars ⋅ r ⋅ |Dom(Π, D) |a)

n ā ∈ q(D)

O(|Π | ⋅ Dom(Π, D)maxvars ⋅ r2 ⋅ |Dom(Π, D) |2a)

A Simple Algorithm

Combined Complexity

The inputs are and .

Both and depend on ,
i.e., our algorithm requires
exponential time in combined
complexity.

Π D

maxvars a Π

O(|Π | ⋅ Dom(Π, D)maxvars ⋅ r2 ⋅ |Dom(Π, D) |2a)

Data Complexity

The program is fixed, only the
database is an input.

All the exponents in our time bound
are thus fixed, i.e., they are constants.

Our algorithm requires polynomial
time in data complexity!

Π
D

This algorithm is very basic.
Can we do significantly better?

Complexity of Datalog

Theorem
Datalog-Eval is ExpTime-complete.
Datalog-Eval is PTime-complete in data-complexity

Combined Complexity

We show ExpTime-hardness by reducing from acceptance in an
exponential time Turing machine.

Let ExpTime, and let be a deterministic TM that

decides in exponential time.

Our goal: On input string , compute in polynomial time a database
 and Datalog query such that

 accepts

L ∈ M = (Q, Σ, δ, q0, q⊤)
L

w
D q = (Π, 𝖠𝖼𝖼𝖾𝗉𝗍)

M w ⟺ q(D) ≠ ∅

Reminder TM:
.. states
…alphabet
 …transition function
…start state

 …accept state

Q
Σ
δ
q0
a

Combined Complexity

High-level overview of the reduction:

Any transition can be understood as a rule:

if at time in state the head reads ,
then at time , the state is , the symbol under the head gets

replaced by , and the head is moved according to

We can express these statements easily in Datalog. If we can follow these computations for
steps (where is for some), we can capture the full computation of on .

δ(q, a) = (q′￼, b, dir)

t q a
t + 1 q′￼ a

b dir

2m

m |w |k k ∈ ℕ M w

Constructing a Long Chain

For each :

Intuitively, this is a compact way to construct a sequence of length .

i ∈ [m − 1]

Succi+1(z, x̄, z, ȳ) : − Succi(x̄, ȳ), Low1(z)
Succi+1(z, x̄, z, ȳ) : − Succi(x̄, ȳ), High1(z)
Succi+1(z, x̄, v, ȳ) : − Succ1(z, v), Lowi(x), Highi(y)

Highi+1(x, ȳ) : − High1(x), Highi(ȳ)
Lowi+1(x, ȳ) : − Low1(x), Lowi(ȳ)

⪯m (x̄, ȳ) : − Succm(x̄, ȳ)
⪯m (x̄, z̄) : − ⪯m (x̄, ȳ), Succm(ȳ, z̄)

2m

Example Succ1(0,1), High(1), Low(0)

Succi+1(z, x̄, z, ȳ) : − Succi(x̄, ȳ), Low1(z)
Succi+1(z, x̄, z, ȳ) : − Succi(x̄, ȳ), High1(z)
Succi+1(z, x̄, v, ȳ) : − Succ1(z, v), Highi(x̄), Lowi(ȳ)

Highi+1(x, ȳ) : − High1(x), Highi(ȳ)
Lowi+1(x, ȳ) : − Low1(x), Lowi(ȳ)

⪯m (x̄, ȳ) : − Succm(x̄, ȳ)
⪯m (x̄, z̄) : − ⪯m (x̄, ȳ), Succm(ȳ, z̄)

Succ2(0,0,0,1)

Succ2(1,0,1,1)

Succ2(0,1,1,0)

We get the ordering
00 < 01 < 10 < 11

High2(1,1) Low2(0,0)

Example Succ1(0,1), High(1), Low(0)

Succi+1(z, x̄, z, ȳ) : − Succi(x̄, ȳ), Low1(z)
Succi+1(z, x̄, z, ȳ) : − Succi(x̄, ȳ), High1(z)
Succi+1(z, x̄, v, ȳ) : − Succ1(z, v), Highi(x̄), Lowi(ȳ)

Highi+1(x, ȳ) : − High1(x), Highi(ȳ)
Lowi+1(x, ȳ) : − Low1(x), Lowi(ȳ)

⪯m (x̄, ȳ) : − Succm(x̄, ȳ)
⪯m (x̄, z̄) : − ⪯m (x̄, ȳ), Succm(ȳ, z̄)

Succ2(0,0,0,1)

Succ2(1,0,1,1)

Succ2(0,1,1,0)

We get the ordering
00 < 01 < 10 < 11

High2(1,1) Low2(0,0)

Succ2(0,0,1,0,1,0)

Example Succ1(0,1), High(1), Low(0)

Succi+1(z, x̄, z, ȳ) : − Succi(x̄, ȳ), Low1(z)
Succi+1(z, x̄, z, ȳ) : − Succi(x̄, ȳ), High1(z)
Succi+1(z, x̄, v, ȳ) : − Succ1(z, v), Highi(x̄), Lowi(ȳ)

Highi+1(x, ȳ) : − High1(x), Highi(ȳ)
Lowi+1(x, ȳ) : − Low1(x), Lowi(ȳ)

⪯m (x̄, ȳ) : − Succm(x̄, ȳ)
⪯m (x̄, z̄) : − ⪯m (x̄, ȳ), Succm(ȳ, z̄)

Succ2(0,0,0,1)

Succ2(1,0,1,1)

Succ2(0,1,1,0)

We get the ordering
00 < 01 < 10 < 11

High2(1,1) Low2(0,0)

Succ2(0,0,1,0,1,0) Succ2(0,0,0,0,0,1)
⋮ ⋮

The Database

We only need a very basic database from which our successor relationship
can be constructed.

Note that the database in this construction is independent of the input !
Hence this reduction does not work to establish the complexity in data complexity.

D = { Succ1(0,1), High1(1), Low1(0) }

w

The Starting State
For input word we add the following rules:

We use to express that at time cell contains symbol .

Similarly, means that at time , the head is over cell .

w = a0a1⋯aℓ

States(x̄) : − Lowm(x̄)
Symbola0

(x̄, x̄) : − Lowm(x̄)
Symbola1

(x̄0, x̄1) : − Lowm(x̄0), Succm(x̄0, x̄1)
⋮

Symbolaℓ
(x̄0, x̄ℓ) : − Lowm(x̄0), Succm(x̄0, x̄1), …Succm(x̄ℓ−1, x̄ℓ)

Symbol⊔(x̄0, ȳ) : − Lowm(x̄0), Succm(x̄0, x̄1), …Succm(x̄ℓ−1, x̄ℓ), ⪯m (x̄ℓ, ȳ)
Head(x̄, x̄) : − Lowm(x̄)

Symbola(t, c) t c a
Head(t, c) t c

“At time , the machine is in the starting state”0

“At time , the symbol is on cell of the tape”0 a0 0

“At time , the symbol is on cell of the tape”0 a1 1

Transitions as Rules

For every transition add the rules:

It is straightforward to adapt the rule to the other directions.

δ(q, a) = (q′￼, b, →)

Stateq′￼
(z̄) : − Stateq(x̄), Head(x̄, ȳ), Symbola(x̄, ȳ), Succm(x̄, z̄)

Symbolb(z̄, ȳ) : − Stateq(x̄), Head(x̄, ȳ), Symbola(x̄, ȳ), Succm(x̄, z̄)
Head(z̄, v̄) : − Stateq(x̄), Head(x̄, ȳ), Symbola(x̄, ȳ), Succm(x̄, z̄), Succm(ȳ, v̄)

Head

Inertia and Acceptance

The final missing part is to preserve unchanged symbols over time:

The first rule propagates the cells that come before the head to the next timepoint,
the second propagates the cells after the head.

Finally, we check whether our simulation of the machine reaches the accepting state

Symbola(v̄, ȳ) : − Symbola(x̄, ȳ), Head(x̄, z̄), ⪯m (ȳ, z̄), Succm(x̄, v̄)
Symbola(v̄, ȳ) : − Symbola(x̄, ȳ), Head(x̄, z̄), ⪯m (z̄, ȳ), Succm(x̄, v̄)

q⊤

𝖠𝖼𝖼𝖾𝗉𝗍 : − Stateq⊤
(x̄)

Data Complexity

For data complexity we need to reduce some problem to answering a fixed Datalog query.

That is, we give a fixed query that doesn’t depend on the problem input. For every
input , the reduction computes a database such that

 is an accepting input

q = (Π, R)
w D

q(D) ≠ ∅ ⟺ w

Data Complexity

We will reduce from monotone Boolean-circuit evaluation (MCVP)

∧ ∧

∧

∨

∨

∨

0 1 1 1 0 0

1

MCVP

Input: An -input, monotone Boolean
circuit , and a string

Output: accepts iff outputs true on
input .

n
C w ∈ {0,1}n

C
w

Data Complexity

We fix the Datalog query with program :

The program simulates a monotone Boolean circuit specified in the database.

To complete the proof we need to give a LogSpace algorithm that takes a circuit as input and
outputs a corresponding database.

q = (Π, 𝖠𝖼𝖼𝖾𝗉𝗍) Π

True(x) : − Or(x, y, z), True(y)
True(x) : − Or(x, y, z), True(z)
True(x) : − And(x, y, z), True(y), True(z)
𝖠𝖼𝖼𝖾𝗉𝗍 : − End(x), True(x)

Stratified Negation

Negation in Datalog

What is supposed to happen here?

Key problem:

Relation is defined on the basis of its own negation

P : − ¬Q
Q : − ¬P

Semipositive Programs

A Datalog program with negation is semipositive if only EDB relation names are negated.

Say we have EDB relation name , then the following program is semipositive:

Semantics of semipositive programs is straightforward:

1. For every negated EDB introduce relation name and add to the
database

2. replace every occurrence of with with
3. The program now has no more negation, evaluate as usual.

Knows

Stranger(x, y) : − ¬Knows(x, y)

R¬ RD
¬ = Dom#R∖RD

¬R(x̄) R¬(x̄)

Stratified Negation

Semipositive is too restrictive, but often programs can be seen as a sequence of multiple
semipositive programs!

Dependency Graph of program is a directed graph:

✦ Vertices relation names in

✦ There is an arc if there is a rule in where is the head relation symbol,
and is in the body.

✦ We mark arcs with a star if in the body is negated.

Π

:= Π

p → q Π p
q

p → q ⋆ q

Dependency Graph
P : − ¬Q
Q : − ¬P

P Q

⋆

⋆

CoAuthor(y, x): − Write(x, p), Write(y, p)
HasEN(x) : − HasEN(y), CoAuthor(y, x)
NoEN(x) : − ¬HasEN(x)

HasEN(Erdos) .

Write HasEN

CoAuthor

NoEN

⋆

Stratifiable Programs

If the dependency graph of has no directed cycle that contains an
edge marked with we call stratifiable.

Π
⋆ Π

P Q

⋆

⋆

Write HasEN

CoAuthor

NoEN

⋆

Not stratifiable Stratifiable

Intuition: we can solve this
“stratum" before checking
negation

Stratification

A stratification is a function that assign to every relation name
the a number such that:

✦ If is an EDB, then .

✦ If there is a rule with in its head and in its body,
then .

✦ If there is a rule with in its head and in its body,
then

λ : 𝖱𝖾𝗅 → ℕ

R ∈ 𝖱𝖾𝗅 σ(R) = 0

R P
σ(R) ≥ σ(P)

R ¬P
σ(R) > σ(P)

Example
V(x, y) : − R(x, x), R(y, y)
U(x, y) : − S(x, y), S(y, z), ¬V(x, y)
W(x, y) : − ¬U(x, y), V(y, x)

V

U

RS

W Level 3: W

Level 2: U

Level 1: R, S, V

⋆

⋆

Stratified Negation — Semantics

For a given stratification , partition the program into programs :

Rule with head relation name is in program .

Define . The result of a stratified program where is the

maximum level assigned by .

Note that this way, every program is semipositive as every negated atom occurs in a lower

stratum it becomes an EDB in this stratum-wise execution.

σ Π Π1, Π2, …
r R Πσ(R)

D0 = D, Di = Πi(Di−1) Πσ(D) := Dℓ ℓ
σ

Πi
⇒

V(x, y) : − R(x, x), R(y, y)
U(x, y) : − S(x, y), S(y, z), ¬V(x, y)
W(x, y) : − ¬U(x, y), V(y, x)

Π1
Π2
Π3

Stratified Negation — Semantics

One problem is left, semantics depend on a specific stratification .
However, actually any stratification leads to the same result, providing us with robust
semantics for Datalog with stratified negation.

σ

Theorem
Let be two stratifications of Datalog

program . Then .

σ1, σ2
Π Πσ1

(D) = Πσ2
(D)

Beyond Datalog

The Real World

Modern Datalog engine that additionally
supports stratified aggregation, value
invention, and many QoL extensions.

https://knowsys.github.io/nemo-doc/

Try it in the browser:
https://tools.iccl.inf.tu-dresden.de/nemo/

Datalog-based language that
compiles to SQL.

Specialised for data analysis.

https://logica.dev/

https://knowsys.github.io/nemo-doc/
https://tools.iccl.inf.tu-dresden.de/nemo/
https://logica.dev/

Negation

Well-founded Negation

Three-values logic where atoms
can also have “undefined” truth.

For example, in mutual recursion,
both atoms have undefined truth.

Stable Negation

Consider anything that is not necessarily
true as false. Programs can have multiple
incomparable models!

 has two stable models:

 and

P : − ¬Q
Q : − ¬P

{P} {Q}

Datalog±

We commonly need to deal with incomplete data.
We might need to invent new values!

Creates a much more powerful language (the).
So powerful answering queries becomes undecidable.

We therefore study restrictions that allow for value invention but
keep the language decidable (the).

∃x Manager(x, y) : − Employee(y)

+

−

Restricted Datalog

Restrictions to standard Datalog have also been studied.
Some examples:

✦ Linear Datalog
All rules have at most one IDB in their body. This guarantees that any recursion is “linear”,
i.e., there are no joins on recursion.
PSpace-complete in combined complexity, NL-complete in data complexity.

✦ Non-recursive Datalog
No recursion is allowed, i.e., no cycles in the dependency graph at all.
We will see in the next lecture that non-recursive Datalog with negation this is
equivalent to relational algebra.

