Database Theory

Unit T — Relational Query Languages

Ormatics




The Relational Model



Setup

- The relational database model is
essentially first-order structures +
names for attributes.

. This extra information on attributes can
be useful when describing queries.

« Sometimes it is un

necessary and we

just work on plain

irst-order structures.

Reminder First-order structures:

Relations Ry, R, ..., R, that each

have an arity #R,.

Assigned meaning through an
interpretation I over a domain Dom:

I(R) C DOrrz;?E %




Schemas

. Let Rel and Att be (countably infinit

vocabularies of relation names anc
attribute names.

+ A database schema & is a
partial function & : Rel — 2At

such that Dom(&’) is finite and
every image under &’ is finite.

he arity of R € Dom(&’) is
defined as | & (R)|.

Example:

N a database we have a table

Student with columns for id, name and
birthdate.

Formally, there is a relation name

Student € Rel and we use the schemo
&' (Student) = (id, name, brithdate)

where these are names in Att.




Relation Instances

. Each attribute A € Att has a domain Continuing our example:

Dom(A).

Dom(id) = N,
. A tuple for relation name R Dom(name) = all strings
(under schema &) is an element of (22* for some alphabet 2)
Dom(A,) X Dom(A,) X -+ X Dom(A,) Dom(birthdate) = e.g., all strings
where S(R) = (A, A5, ..., A). of certain format
. A relation (instance) for R (under &) is @ Example tuple:

finite set of tUp|€S for R (1, Bob, 12-03-4567) € Dom(id) X Dom(name) X Dom(birthdate)

« A database is a finite set of relations under
some schema &




Some Helptul Notation

1. Relation Names vs. Relation Instances

When we have a database D we use RP to denote

the relation instance for relation name R

2. Attributes of Tuples

For a relation R with schema S(R) = (A, .- Ap),
we use A .(7) to denote the I-th position of tuple ¢ € R

Id Name DoB ‘/\
13 Student A |14.06.19 |

22 Student B |23.06.19 ID(1)) = 13, Name(1;) = Student A




Relational Query Languages



- Oolma | Q e ry LO N 9 UQJd 9 S SELECT MIN(s_acctbal), MAX(s_acctbal)

FROM part, partsupp, supplier,
nation, region

WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND n_nationkey = s_nationkey
AND r_regionkey = n_regionkey a*b (a+b)*c
o ' ' | £ AND p_price > —_ N
As in any discussion of formal e e oricer Fron oarty Y X Yy AX J
anguages, query languages always o) (IS U (CSEEEE, hsely

nave two core parts. T {pid.pname} (PETSON) — T1id pname) (Person x City)

SELECT ?capital

How do terms of the language look like. 2country
: WHERE
Can be analogous to logic or more A
OD@’OUOI’“O‘. (Vo)Qyz)(y #z A E(x, y) A E(x,2) A ?X exiFitynzilme ?capital
Vw)E(x,w) > (w=yVw=_2))) ex:1sCapitaloOf 7y
?y ex:countryname ?country |

ex:isInContinent ex:Africa

How are expressions of the languages
evaluated. The formal definition of 32Drive(z, 2, ) (&[0 oo Depart(s, 1) Up ooy Arrive(z, 1),

what answers we want from the data. Working(z) < Drive(z, z, y),
Dangerous(x) <—Bjp s Working(z) A Drive(z,z,y).



Fxample Schema

Course Student
Name Sem Lecturer Id Name DoB Active
Logic W24 N 13 Student A 14.06.1903| TRUE
Complexity S24 | 2 22 Student B 23.06.1912 | FALSE
Logic W23 1
Fnrolled
Course Sem Student
_ogic W24 13
_ogic W24 22
Complexity S24 13




Relational Algebra



Overview

Syntax:

Relational Algebra (RA) expressions e
are formed inductively:

- every relation name R is an RA expression

-1f ey, e, is an RA expressions, so are:

oy(€1) r,(e1) Pa_pler)
e, Xe, eUe e —e




o

Selection

Syntax: Semantics:
e = oy(e) where e(D)={te€e/(D)| 0()istrue }
- € is d RA expression of sort U with schema &'(e) = $(e;)

- @ is a propositional formula over
attributes in U, =, and constants.



o

Selection

Course Sem Student

_ogic W24 13
_ogic W24 22

GSem=’W24’ (E”VOlled) —>

........................................................................................................................................................



Jl

Projection

Syntax: Semantics:

e(D) =
{(a1 (D), (D), ..., ) | T € €1(D)}]
with schema &(e) = o

e = m,(e;) where
- e is a RA expression of sort U

- a is sequence of attributes in U



Jl

Projection
Active Id
ﬂ'Active,ID(Student) —> I;TLUSEE ;z




Renaming

Syntax: Semantics:
e = py_ple)) where e(D) = ¢,(D)
- e is a RA expression of sort U with schema §'(e) = §(e;)[A/B]
-A € U,and B € Att\U l
Replace A

with B



Renaming

PName— Course,StudentAID(E nroll €d)

Course Sem ID
_ogic W24 13
_ogic W24 22

Complexity S24 13




Product

Syntax: Semantics:

e(D)={(ay,...,a,b,....,D )
| (ay,...,a,) ER,(by,....,b,) € S}
with schema &'(e) = (A, ..., A,, By, ..., B)

e = ey X e, where
- €1, €, are RA expressions with schema
(A, ...,A)and (By, ..., B, ), respectively.



Product

Enrolled X myp yyme(Student) —

Course Sem |Student| ID Name
_ogic W24 13 13 Student A
_ogic W24 13 22 Student B
Logic W24 22 13 Student A
Logic W24 22 22 Student B

Complexity | S24 13 13 Student A
Complexity | S24 13 22 Student B




Difference

Syntax:

e = e; — e, where

- €1, €, are RA expressions of sort U

Semantics:

e(D) = e,(D)\e,(D)




(Natural) Join

Very common in database queries.
Can be expressed via other operators:

e1 X ey = 0y_p (e X py_a(er))

Where A is the only shared attribute between ey, e,.
(generalisation to more shared attributes is straightforward)



Example Query

List lectures together with the students that attend them in WS24:

Keep only the two attributes that we want

Connect student data to course data via enrolment

Rename for Join

| p—-----———————
Remove Sem attribute Limit to WS24 Rename for Join
P ( Pr—— J—

ﬂCourse,Student (ﬂCourse,Student(Enr 0”661) X PName— Course USem=WS24(C0ur 5 6) X pld—>Student(S ! udent))



The natural database theory question:
Do we need all of these operators?

Yes & — but how do we show this?



Example: Renaming

Relation R Relation S
A B
1 3
2 A
3 5

We can show t
there is no exp

nat p

'eSS|O

IS necessary

N that gives t

Consider the expression
R U pB—)A(S)

o | b | W DN

oy showing that in RA without renaming

ne same output!



Relational Domain Calculus
= FirstOrder Queries



Queries from Logic

Let @ be a formula with free variables xy, ..., X;, then
k
{(X1, %9, ..., x,) € Dom™ | D F p(xy,%5, ..., X;) }

s a k-ary query, i.e., it returns a set of k tuples that represent “solutions” for ¢ on database D.

Logics can be seen as query languages!



Relational Domain Calculus

The query language induced by first-order logic is called relational (domain) calculus.

Quick reminder — Semantics of first-order logic:

IE Ry, ...,x,) < RU(x)),...,1(x,))

[Ex=Yy — Ix) = 1)

[Ex=c — Ix)=c

I[F g ~ I F¢

I'F ¢y Ay & [F ¢ andg,

[Fdx. ¢ <~ [ F @[x/c]foreveryc € Dom

with Vx.@ :=-3dx.n¢gand @, V ¢, := (¢, A 1¢,)



Example Query

Recall our example query: list lectures together with the students that attend them in WS24.

{(c,s) | dsem,, sem,, sid, [, dob, active .
Enrolled(c, semy, sid) A Course(c, sem,, z) A
sem, = W24 A Student(sid, s, dob, active))



Course Student

Name Sem Lecturer Id Name DoB Active
Logic W24 N 13 Student A 14.06.1903| TRUE
Complexity S24 | 2 22 Student B 23.06.1912 | FALSE
Logic W23 N
Fnrolled
Course Sem | Student {(c,s) | dsem,, sem,, sid, [, dob, active .
DI W24 1S Enrolled(c, semy, sid) A Course(c, sem,,7) A
Kolefe W24 22 . .
Complexity Soa 13 sem, = WS24 A Student(sid, s, dob, active) )

IS an answer to the query:
sem; = W24, sidw— 13, dobw— 14.06.1903, active —» TRUE, [+ LI

What about sem,?



Course Student

Name Sem Lecturer Id Name DoB Active
Logic W24 N 13 Student A 14.06.1903| TRUE
Complexity S24 | 2 22 Student B 23.06.1912 | FALSE
Logic W23 N
Fnrolled
Course Sem | Student {(c,s) | dsem,, sem,, sid, [, dob, active .
-091C W24 13 Enrolled(c, sem,, sid) A Course(c, sem,,z) A
Logic W24 22 . .
Complexity Soa 3 sem; = WS24 A Student(sid, s, dob, active)}

IS an answer to the query:
sem, —= W24, sidw— 13, dobw— 14.06.1903, active —» TRUE, [+~ LI

What about sem,? Could beW24 or W23 such that Enrolled(c, sem,, ) is true.






SQL Overview

- The standard language for relational
databases.

. Originally developed in the 1970s
inspired by the relational model and
especially relational algebra.

ORACLE

%Qme )=

Spaik'sQL SOL Server




[ WITH [ RECURSIVE ] with_query [, ...] ]
SELECT [ ALL | DISTINCT [ ON ( expression [, ...]1 ) ] 1]

[ { x | expression [ [ AS ] output_name ] } [, ...] ]
FROM from_item [, ...] 1]
U e r n O X WHERE condition ]
¢ o oo GROUP BY [ ALL | DISTINCT ] grouping_element [, ...] ]
HAVING condition ]
WINDOW window_name AS ( window_definition ) [, ...] ]
{ UNION | INTERSECT | EXCEPT } [ ALL | DISTINCT ] select ]
ORDER BY expression [ ASC | DESC | USING operator ] [ NULLS { FIRST | LAST } 1 [, ...] 1]
LIMIT { count | ALL } ]
OFFSET start [ ROW | ROWS 1 ]

FETCH { FIRST | NEXT } [ count 1 { ROW | ROWS } { ONLY | WITH TIES } ]
FOR { UPDATE | NO KEY UPDATE | SHARE | KEY SHARE } [ OF from_reference [, ...] 1 [ NOWAIT | SKIP LOCKED ] I[.

M M L e|[L T ™~ "~ ™~ "~ ™

We are not going to formally define SQL.

where from_item can be one of:

[ ONLY ] table_name [ x 1 [ [ AS ] alias [ ( column_alias [, ...] ) 1 ]

[ TABLESAMPLE sampling_method ( argument [, ...] ) [ REPEATABLE ( seed ) ] 1
+ [ LATERAL ] ( select ) [ [ AS ] alias [ ( column_alias [, ...]1 ) ] ]
Syn "OX Chgnges between with_query _name [ [ AS ] alias [ ( column_alias [, ...]1 ) ] 1]
. . [ LATERAL 1 function_name ( [ argument [, ...]1 1)
ImD emeﬂtﬂthﬂS [ WITH ORDINALITY 1 [ [ AS ] alias [ ( column_alias [, ...] ) 1 1]
[ LATERAL ] function_name ( [ argument [, ...]1 1 ) [ AS ] alias ( column_definition [, ...] )
[ LATERAL ] function_name ( [ argument [, ...]1 1 ) AS ( column_definition [, ...] )
. . [ LATERAL ] ROWS FROM( function_name ( [ argument [, ...1 1 ) [ AS ( column_definition [, ...]1 ) 1 [, ...]1 )
- COD’[OIHS Constructs thgt SO@C”CY [ WITH ORDINALITY 1 [ [ AS ] alias [ ( column_alias [, ...] ) 1]
from_item join_type from_item { ON join_condition | USING ( join_column [, ...] ) [ AS join_using alias ] }
: i from_item NATURAL join_type from_item
details of the actual execution of the o o ChoSe SO e T
C Uery, eg, and grouping_element can be one of:
WITH ... AS MATERIALIZED ()
expression
( expression [, ...] )
Wthh mOkeS t ChQHeng'“g tO ROLLUP ( { expression | ( expression [, ...]1 ) } [, ...]1 )
. CUBE ( { expression | ( expression [, ...]1 ) } [, ...1)
Speley ]COI’mCI SemO ntlcs GROUPING SETS ( grouping _element [, ...] )

and with_query is:

with_query_name [ ( column_name [, ...] ) ] AS [ [ NOT ] MATERIALIZED ] ( select | values | insert | update |
[ SEARCH { BREADTH | DEPTH } FIRST BY column_name [, ...] SET search_seq_col_name ]
[ CYCLE column_name [, ...] SET cycle_mark_col_name [ TO cycle_mark_value DEFAULT cycle_mark_default ] USI

Image source: https://www.postgresgl.org/docs/current/sqgl-select.html T



Core SQL Queries

(0, O, := SELECT <select_list>
FROM <from_list>
WHERE <condition>

| O UNION O,

| O, EXCEPT Q,



Core SQL Queries

(0, O, := SELECT <select_list>
FROM <from_list>
WHERE <condition>

| O UNION O,

| O, EXCEPT Q,

—

Cconstar

ts or attri

OUl

names f

‘'om the <f

‘es of relation

O

M list>



Core SQL Queries

(0, O, := SELECT <select_list>

FROM <from list> ‘\

WHERE <condition>

| O, UNION 0,

| O, EXCEPT Q,

ISt O

- re

Used

IN t
toO use re

ation names and subgueries
ne query. Can be aliased (renameq)

ation repeatedly.



Core SQL Queries

Qp Qz := SELECT <select list>

FROM <from list>

An expression consisti

ng of:

- Equalities between attributes,

WHERE <condition>4—  &9.Rda=sa

- Equalities between attributes

| O, UNION 0,

| O, EXCEPT Q,

ana constants, e.g.,

- Combinations of ex

Ra=7/

Dressions

using AND, OR, anc

NOT.



Core SQL Queries

Theorem
Core SQL gueries are equivalent in expressiveness to Relational Algebra.

That is, for every Core SQL query g, there exists an RA query g’ such that
qg(D) = g'(D) for every database D, and vice versa.

For details, see Arenas, et al. "Database Theory.”, Section b.

Informally, this means that we can focus our theoretical analysis
only on one of these languages!



SQL — Example

List lectures together with the students that attend them in WS24.

SELECT course.name, student.name

FROM course, student, enrolled

WHERE course.name = enrolled.course AND
course.sem = enrolled.sem AND
student.1d = enrolled.student AND
enrolled.sem = 'WS24°';



Warning: Bag vs. Set Semantics

Set Semantics: Answers to queries are sets of tuples. That is, there is no repetition in answers
and operations ignore repeating tuples.

Bag Semantics: Answers to queries are bags (or multisets) of tuples. Repetition matters!

A | B | C
A B B C A B C 1 2 3
1 2 N 2 3 — 1 | 2 | 3 1 | 2 | 3
1 2 2 4 1 | 2 | 4 1 | 2 | 4
1 | 2 | 4

Set Ssemantics |
Bag Semantics



Warning: Bag vs. Set Semantics

Set Semantics: Answers to queries are sets of tuples. That is, there is no repetition in answers
and operations ignore repeating tuples.

Bag Semantics: Answers to queries are bags (or multisets) of tuples. Repetition matters!

Our definition of relational algebra and relational calculus uses set semantics.
n the statement on the previous slide we assume set semantics for core SQL queries.
However, SQL in practical systems usually uses bag semantics.

Not a problem, it is also straightforward to define relational algebra with bag semantics.
But it is important to always keep in mind which type of semantics we are talking about.




SQU is More than SELECT

Data Description Data Manipulation

CREATE: To create new tables,  GRANT: To provide specific

databases, views, or indexes. orivileges (e.g., SELECT,
NSERT) to users or roles.

ALTER: To modifty existing
database objects (e.g., add REVOKE: To remove previously

columns to a table). granted privileges.

Data Control

INSERT: Adds new rows
(records) to a table.

UPDATE: Modifies existing rows
iN a table based on certain
conditions.

DELETE: Removes rows from o
table based on specified
conditions.




Which is Best?




Codd’s Theorem

Theorem (Codd 1972, informal)

Relational algebra, relational domain calculus, and Core SQL Queries
have the same expressive power.

Limitations apply:

- Relational calculus queries have to be “safe”

We will work through the details of Codd’s Theorem in Lecture 3!



Qualitative Comparison

As a consequence of the languages being eo
we can switch between them depending on t

Relational Algebro

Operational semantics are well
suited for topics where we care
about the steps taken to
execute a query.

Well-suited for the study of
guery optimisation ana
execution.

Relational Calculus

Declarative language with
cleanest semantics. Direct
connection to extensive body
of work on logic.

Well-suited for theoretical
study of complexity and
expressivity.

Jivalent

ne task.

SQL

“‘User-friendly” longuage aimed
at end-users of actual systems.
-xtremely wide-spread in the
real world.




Limitations



limitationse

PaL
agle

| ErdGs was one of the most prolific
thematicians of all time. He wrote

over 1500 articles, many of them highly

influen
He hao

ial.
509 direct collaborators!

The Erdos Number is a way of

desc

Pa
- E
-1

miNim
of all t

ribing the “collaboration distance”

Ul Erdos.

dos I

ne kErc

as an Erdds number of O
As Number of author M is the

Um among the Erdds Numbers
ne coauthors of M, plus 1

i TN N -

s
U” s

i

https://sites.math.rutgers.edu/~sg1108/People/Math/Erdos

- -




Example

Paul

Coauthor

CrdOs

N =0

—

Coauthor

|gor Razgon
N =3

Coauthor

Mike Fellows
N =2

Coauthor

—_—

We see, |

Matthias Lanzinger

'S SInT

N =4

oly a fun way of describing

shortest

nath |

N the coauthor graph.

lsaac Asimov

-N =00



Querying the Erdés Number

Assume a database with schema:

Author(aid, name), Paper(pid, title), Wrote(aid, pid)

We can query the authors with EN < 1 easily:

P = id (Unamez'Pau\ ErdOS'(AuthOV) X WFitE) get the ids of Erdés’ papers

Q = ﬂaid(P Dad( Write) get the authors of those papers

Can we also get the authors with EN =17



Querying the Erdés Number

Assume a database with schema:

Author(aid, name), Paper(pid, title), Wrote(aid, pid)

We can query the authors with EN < 1 easily:

P = id (Unamez'Pau\ ErdOS'(AuthOV) X WFitE) get the ids of Erdés’ papers

Q = ﬂaid(P Dad( Write) get the authors of those papers

Can we also get the authors with EN =17
Yes — Q — 7,4 Opume="Paul Erdos(Author)



Querying the Erdés Number

Assume a database with schema:

Author(aid, name), Paper(pid, title), Wrote(aid, pid)

We can query the authors with EN < 2 just as easily:

PO = Tyid (0 PaUl ErdOS'(AuthOI”) Dad WFitE) get the ids of Erdds’ papers

name=
Ql .= ﬂaid(PO X} Write) get the authors with EN at most 1
Pl — ﬂpid(Ql X Wl”ité) get their papers

Q2 L= ﬂaid(Pl X} Write) and get those papers’ coauthors



Querying the Erdés Number

Assume a database with schema:

Author(aid, name), Paper(pid, title), Wrote(aid, pid)

Let’s be more ambitious. Can we write RA queries for the following questions:

. AlDs of authors with EN < 00, i.e. those with finite EN?

. AlDs of authors with EN = 00, i.e.. those with no EN?



Querying the Erdés Number

Assume a database with schema:

Author(aid, name), Paper(pid, title), Wrote(aid, pid)

Let’s be more ambitious. Can we write RA queries for the following questions:

. AlDs of authors with EN < 00, i.e. those with finite EN?

NO

. AlDs of authors with EN = 00, i.e.. those with no EN?



Fgqual expressive power also means that all
languages that we've discussed so far share
the same limitations!

6



looking Forwara

How do we know this?

How can we prove that there Are there query languages that
cannot be a RA query for these can answer these queries?
questions?

Yes! Datalog, a prominent
We use Codd's Theorem in example of such languages will
combination with results from be the topic of the next lecture.

logic, e.g., Ehrenfeucht-Fraisse
Games or the Compactness
Theorem.




