
Matthias Lanzinger, 2025

Relational Query Languages

Database Theory

The Relational Model

Setup

The relational database model is
essentially first-order structures + names
for attributes.

This extra information on attributes can
be useful when describing queries.

Sometimes it is unnecessary and we just
work on plain first-order structures.

Reminder First-order structures:

Relations that each

have an arity .

Assigned meaning through an
interpretation over a domain :

R1, R2, …, Rn
#Ri

I Dom
I(Ri) ⊆ Dom#Ri

n

Schemas

Let and be (countably infinite)
vocabularies of relation names and
attribute names.

A database schema is a partial
function such that

 is finite and every image under
 is finite.

The arity of is defined as
.

𝖱𝖾𝗅 𝖠𝗍𝗍

𝒮
𝒮 : 𝖱𝖾𝗅 → 2𝖠𝗍𝗍

Dom(𝒮)
𝒮

R ∈ Dom(𝒮)
|𝒮(R) |

Example:

In a database we have a table
 with columns for id, name and

birthdate.

Formally, there is a relation name
 and we use the schema

where these are names in .

Student

Student ∈ 𝖱𝖾𝗅
𝒮(Student) = (id, name, brithdate)

𝖠𝗍𝗍

Relation Instances

Each attribute has a domain .

A tuple for relation name (under schema)
is an element of

where .

A relation (instance) for (under) is a finite
set of tuples for

A database is a finite set of relations under
some schema .

A ∈ 𝖠𝗍𝗍 Dom(A)

R 𝒮

Dom(A1) × Dom(A2) × ⋯ × Dom(An)
𝒮(R) = (A1, A2, …, An)

R 𝒮
R

𝒮

Continuing our example:

,
 all strings

 (for some alphabet)
 = e.g., all strings

 of certain format

Example tuple:

Dom(id) = ℕ
Dom(name) =

Σ* Σ
Dom(birthdate)

(1, Bob, 12-03-4567) ∈ Dom(id) × Dom(name) × Dom(birthdate)

Some Helpful Notation

1. Relation Names vs. Relation Instances

When we have a database we use to denote
the relation instance for relation name

2. Attributes of Tuples

For a relation with schema ,

we use to denote the -th position of tuple .

D RD

R

RD 𝒮(R) = (A1, …, Ak)
Ai(t) i t ∈ RD

Id Name DoB
13 Student A 14.06.19

0322 Student B 23.06.19
12… … ..

ID(t1) = 13, Name(t1) = Student A

Relational Query Languages

Formal Query Languages

As in any discussion of formal languages,
query languages always have two core
parts.

Syntax
How do terms of the language look like.
Can be analogous to logic or more
operational.

Semantics
How are expressions of the languages
evaluated. The formal definition of what
answers we want from the data.

Example Schema & Database

Id Name DoB Active
13 Student A 14.06.1903 TRUE
22 Student B 23.06.1912 FALSE
… … .. …

Student

Name Sem Lecturer
Logic W24 L1

Complexity S24 L2
Logic W23 L1

Course

Course Graded Student
Logic FALSE 13
Logic TRUE 22

Complexity TRUE 13

Enrolled

Relational Algebra

Overview

Syntax:

Relational Algebra (RA) expressions
are formed inductively:

- every relation name is an RA expression

- If is an RA expressions, so are:

e

R

e1, e2
σθ(e1) πα(e1) ρA→B(e1)
e1 × e2 e1 ∪ e2 e1 − e2

Semantics:

An expression applied to a database
evaluates to a new relation, we write .

If is relation name , then .

Semantics of other operators are defined
on the following slides.

e D
e(D)

e R e(D) = RD

Selection
σ

Syntax:

 where

 - is a RA expression of sort

 - is a propositional formula over
 attributes in , , and constants.

e = σθ(e1)
e1 U
θ

U =

Semantics:

with schema

e(D) = {t ∈ e1(D) ∣ θ(t) is true }
𝒮(e) = 𝒮(e1)

Selection
σ

σSem=′￼W24′￼
(Course) ⟶

Name Sem Lecturer
Logic W24 L1

Complexity S24 L2
Logic W23 L1

Projection
π

Syntax:

 where

 - is a RA expression of sort

 - is sequence of attributes in

e = πα(e1)
e1 U
α U

Semantics:

with schema

e(D) =
{(α1(t), α2(t), …, α|α|) ∣ t ∈ e1(D)}

𝒮(e) = α

Projection
π

Active Id
TRUE 13
FALSE 22

… …

πActive,ID(Student) ⟶

Renaming
ρ

Syntax:

 where

 - is a RA expression of sort

 - , and

e = ρA→B(e1)
e1 U
A ∈ U B ∈ 𝖠𝗍𝗍∖U

Semantics:

with schema

e(D) = e1(D)
𝒮(e) = 𝒮(e1)[A/B]

Replace
with

A
B

Renaming
ρ

ρCourse→CID,Student→SID(Enrolled) ⟶
CID Graded SID

Logic FALSE 13
Logic TRUE 22

Complexity TRUE 13

Product
×

Syntax:

 where

 - are RA expressions with schema

 and , respectively.

e = e1 × e2
e1, e2
(A1, …, An) (B1, …, Bm)

Semantics:

with schema

e1(D) = {(a1, …, an, b1, …, bm)
∣ (a1, …, an) ∈ R, (b1, …, bm) ∈ S}

𝒮(e) = (A1, …, An, B1, …, Bn)

Product
×

Enrolled × πID,Name(Student) ⟶

Course Graded Student ID Name

Logic FALSE 13 13 Student A

Logic FALSE 13 22 Student B

Logic TRUE 22 13 Student A

Logic TRUE 22 22 Student B

Complexity TRUE 13 13 Student A

Complexity TRUE 13 22 Student B

… … … … …

Difference
−

Union
∪

Syntax:

 where

 - are RA expressions of sort

Semantics:

e = e1 − e2
e1, e2 U

e(D) = e1(D)∖e2(D)

Syntax:

 where

 - are RA expressions of sort

Semantics:

e = e1 ∪ e2
e1, e2 U

e(D) = e1(D) ∪ e2(D)

(Natural) Join
⋈

Very common in database queries.
Can be expressed via other operators:

e1 ⋈ e2 := σA=A′￼
(e1 × ρA→A′￼

(e2))

Where is the only shared attribute between .
(generalisation to more shared attributes is straightforward)

A e1, e2

Example Query

List lectures together with the students that attend them in WS24:

πCourse,Student (πCourse,Student(Enrolled) ⋈ ρName→Course σSem=WS24(Course) ⋈ ρId→Student(Student))
Remove Grade attribute Limit to WS24 Rename for Join

Rename for Join

Connect student data to course data via enrollment

Keep only the two attributes that we want

The natural database theory question:
Do we need all of these operators?

Yes 👍 — but how do we show this?
(Except for of course)⋈

Example: Renaming

R ∪ ρB→A(S)

A

1

2

3

Relation R

B

3

4

5

Relation S

A

1

2

3

4

5

Consider the expression

We can show that is necessary by showing that in RA without renaming
there is no expression that gives the same output on these inputs!

ρ

Relational Domain Calculus
= First-Order Queries

Queries from Logic

Let be a formula with free variables , then

is a -ary query. It returns a set of -tuples that represent
“solutions” for on database .

Logics can be seen as query languages!

φ x1, …, xk

{(x1, x2, …, xk) ∈ 𝖣𝗈𝗆k ∣ D ⊧ φ(x1, x2, …, xk)}

k k
φ D

Relational Domain Calculus

The query language induced by first-order logic is called relational (domain) calculus.

Quick reminder — satisfaction of first-order sentences:

with and

I ⊧ R(t1, …, tn) ⟺ R(t1, …, tn) ∈ I
I ⊧ t1 = t2 ⟺ t1 and t2 are the same object.

I ⊧ ¬ϕ ⟺ I /⊧ ϕ
I ⊧ ϕ1 ∧ ϕ2 ⟺ I ⊧ ϕ1 and ϕ2

I ⊧ ∃x . ϕ ⟺ I ⊧ ϕ[x/c] for some c ∈ Dom

∀x . ϕ := ¬∃x . ¬ϕ ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2)

Example Query

Recall our example query:
list lectures together with the students that attend them in WS24.

{(c, sname) ∣ ∃sem, grade, sid, l, dob, active .
Enrolled(c, grade, sid) ∧ Course(c, sem, z) ∧
sem = WS24 ∧ Student(sid, sname, dob, active)}

Id Name DoB Active
13 Student A 14.06.1903 TRUE
22 Student B 23.06.1912 FALSE
… … .. …

Name Sem Lecturer
Logic W24 L1

Complexity S24 L2
Logic W23 L1

Course

Enrolled

Student

(Logic, Student A) is an answer to the query:
 sem ↦ W24, sid ↦ 13, dob ↦ 14.06.1903

grade ↦ 𝖳𝖱𝖴𝖤, l ↦ L1, active ↦ TRUE

{(c, sname) ∣ ∃sem, grade, sid, l, dob, active .
Enrolled(c, grade, sid) ∧ Course(c, sem, z) ∧
sem = WS24 ∧ Student(sid, sname, dob, active)}

Course Graded Student
Logic FALSE 13
Logic TRUE 22

Complexity TRUE 13

SQL

SQL Overview

The standard language for
relational database systems.

Originally developed in the 1970s
inspired by the relational model
and especially relational algebra.

SQL Query Syntax…

Image source: https://www.postgresql.org/docs/current/sql-select.html

We are not going to formally define SQL.

- Syntax changes between
implementations.

- Contains constructs that specify
details of the actual execution of the
query, e.g.,
 WITH … AS MATERIALIZED
which makes it challenging to
specify formal semantics.

Core SQL Queries

SELECT <select_list>
 FROM <from_list>
 WHERE <condition>

 UNION

 EXCEPT

Q1, Q2 :=

| Q1 Q2

| Q1 Q2

Core SQL Queries

SELECT <select_list>
 FROM <from_list>
 WHERE <condition>

 UNION

 EXCEPT

Q1, Q2 :=

| Q1 Q2

| Q1 Q2

Constants or attributes of relation
names from the <from_list>

Core SQL Queries

SELECT <select_list>
 FROM <from_list>
 WHERE <condition>

 UNION

 EXCEPT

Q1, Q2 :=

| Q1 Q2

| Q1 Q2

List of relation names and (core SQL)
subqueries. Can be aliased (renamed)
to use relation repeatedly.

Core SQL Queries

SELECT <select_list>
 FROM <from_list>
 WHERE <condition>

 UNION

 EXCEPT

Q1, Q2 :=

| Q1 Q2

| Q1 Q2

An expression consisting of:

- Equalities between attributes,
e.g., R.a = S.a.

- Equalities between attributes
and constants, e.g., R.a = 7

- Combinations of expressions
using AND, OR, and NOT.

Core SQL Queries

Theorem
For every Core SQL query , there exists an RA query such that

 for every database , and vice versa.
q q′￼

q(D) = q′￼(D) D

For details, see Arenas, et al. "Database Theory.”, Section 5.

Informally, this means that we can focus our
theoretical analysis only on one of these languages!

SQL — Example

List lectures together with the students that attend them in WS24:

Warning: Bag vs. Set Semantics

Set Semantics: Answers to queries are sets of tuples. That is, there is no repetition in answers
 and operations ignore repeating tuples.

Bag Semantics: Answers to queries are bags (or multisets) of tuples. Repetition matters!

A B

1 2

1 3
πA(= A

1

Set Semantics Bag Semantics

) A

1

1

Warning: Bag vs. Set Semantics

Set Semantics: Answers to queries are sets of tuples. That is, there is no repetition in answers
 and operations ignore repeating tuples.

Bag Semantics: Answers to queries are bags (or multisets) of tuples. Repetition matters!

Our definition of relational algebra and relational calculus uses set semantics.
In the statement on the previous slide we assume set semantics for core SQL queries.
However, SQL in practical systems usually uses bag semantics.

Not a problem, it is also straightforward to define relational algebra with bag semantics.
But it is important to always keep in mind which type of semantics we are talking about.

SQL is More than SELECT

Data Description

CREATE: To create new tables,
databases, views, or indexes.

ALTER: To modify existing
database objects (e.g., add
columns to a table).

Data Control

INSERT: Adds new rows
(records) to a table.

UPDATE: Modifies existing rows
in a table based on certain
conditions.

DELETE: Removes rows from a
table based on specified
conditions.

Data Manipulation

GRANT: To provide specific
privileges (e.g., SELECT,
INSERT) to users or roles.

REVOKE: To remove previously
granted privileges.

Which is Best?

How can we compare query
languages?

Two Proposals

For two query languages and :ℒ ℳ

Are there more efficient algorithms to answer
queries in language than for queries in ℒ ℳ?

Are there queries in language that I cannot
equivalently write in language

ℒ
ℳ?

Complexity
later lectures

Expressivity

Expressivity of Query Languages

We say that can be expressed by if for every query
, there is a query such that

 on every database

ℒ ℳ
ϕ ∈ ℒ ψ ∈ ℳ

ϕ(D) = ψ(D) D

Easy example — Core SQL can be expressed by RA

SELECT FROM WHERE A1, …, Aℓ T1, …, Tk C

πA1,…,Aℓ
σC (T1 × ⋯ × Tk)
⬇

Expressivity of Query Languages

We say that can be expressed by if for every query
, there is a query such that

 on every database

ℒ ℳ
ϕ ∈ ℒ ψ ∈ ℳ

ϕ(D) = ψ(D) D

We say that and have the same expressive power
if can be expressed by and vice versa.

Intuitively, you can write the exact same queries in both languages.

ℒ ℳ
ℒ ℳ

Codd’s Theorem

Theorem (Codd 1972, informal)
Relational algebra, relational domain calculus, and Core SQL Queries
have the same expressive power.

Technical caveat: relational calculus queries have to be “safe”

Overview of Proof Idea
Explore the details in a theory exercise!

Relational
Algebra

(Domain-Indep.)
Relational Calculus

Active Domain
Relational Calculus

Range-restricted
Calculus

RC where every
variable tied to
some relation.

RC where quantifiers range only
over values in the database.

We move through
multiple languages
to get back to RA!

Qualitative Comparison

Relational Algebra

Operational semantics are well
suited for topics where we care
about the steps taken to
execute a query.

Well-suited for the study of
query optimisation and
execution.

Relational Calculus

Declarative language with
cleanest semantics. Direct
connection to extensive body
of work on logic.

Well-suited for theoretical
study of complexity and
expressivity.

SQL

“User-friendly” language aimed
at end-users of actual systems.
Extremely wide-spread in the
real world.

As a consequence of the languages being equivalent
we can switch between them depending on the task.

Can these languages do
everything?

Limitations?

• Paul Erdős was one of the most prolific
mathematicians of all time. He wrote
over 1500 articles, many of them highly
influential.
He had 509 direct collaborators!

• The Erdős Number is a way of
describing the “collaboration distance”
Paul Erdős.
- Erdős has an Erdős number of 0
- The Erdős Number of author is the
 minimum among the Erdős Numbers
 of all the coauthors of , plus 1

M

M
https://sites.math.rutgers.edu/~sg1108/People/Math/Erdos

Example

Paul Erdős
EN = 0

Noga Alon
EN = 1

Mike Fellows
EN = 2

Igor Razgon
EN = 3

Matthias Lanzinger
EN = 4

Coauthor

Coauthor

Coauthor

Coauthor

We see, it’s simply a fun way of describing
shortest path in the coauthor graph.

Isaac Asimov
EN = ∞

Querying the Erdős Number
Assume a database with schema:

Author(aid, name), Paper(pid, title), Wrote(aid, pid)

We can query the authors with EN 1 easily:

 get the ids of Erdős’ papers

 get the authors of those papers

Can we also get the authors with EN = 1?

≤

P := πpid (σname='Paul Erdos'(Author) ⋈ Write)
Q := πaid(P ⋈ Author)

Querying the Erdős Number
Assume a database with schema:

Author(aid, name), Paper(pid, title), Wrote(aid, pid)

We can query the authors with EN 1 easily:

 get the ids of Erdős’ papers

 get the authors of those papers

Can we also get the authors with EN = 1?
Yes:

≤

P := πpid (σname='Paul Erdos'(Author) ⋈ Write)
Q := πaid(P ⋈ Author)

Q − πaid σname='Paul Erdos'(Author)

Querying the Erdős Number
Assume a database with schema:

Author(aid, name), Paper(pid, title), Wrote(aid, pid)

We can query the authors with EN 2 just as easily:

 get the ids of Erdős’ papers

 get the authors with EN at most 1

 get their papers

 and get those papers’ coauthors

≤

P0 := πpid (σname='Paul Erdos'(Author) ⋈ Write)
Q1 := πaid(P0 ⋈ Author)
P1 := πpid(Q1 ⋈ Author)

Q2 := πaid(P1 ⋈ Author)

Querying the Erdős Number
Assume a database with schema:

Author(aid, name), Paper(pid, title), Wrote(aid, pid)

Let’s be more ambitious. Can we write RA queries for the following questions:

• AIDs of authors with EN < , i.e., those with finite EN?

• AIDs of authors with no EN?

∞

Querying the Erdős Number
Assume a database with schema:

Author(aid, name), Paper(pid, title), Wrote(aid, pid)

Let’s be more ambitious. Can we write RA queries for the following questions:

• AIDs of authors with EN < , i.e., those with finite EN?

• AIDs of authors with no EN?

∞

No

Equal expressive power also means that all
languages that we’ve discussed so far share

the same limitations!

☹

Looking Forward

How do we know this?

How can we prove that there
cannot be a RA query for these
questions?

We use Codd’s Theorem in
combination with results from
logic, e.g., Ehrenfeucht-Fraïsse
Games or the Compactness
Theorem.

Solutions

Are there query languages that
can answer these queries?

Yes! Datalog, a prominent
example of such languages will
be the topic of a future lecture.

More Bad News

Finite Satisfiability

One natural piece of information for query optimization and
automated query analysis is to know whether it is impossible for part

of the query to have an answer. In other words, is part of the query
always empty over any database?

Formally we say, that query is finitely satisfiable if there exists a
(finite) database such that .

ϕ
D ϕ(D) ≠ ∅

Remember, databases
are always finite by defintion!

Finite Satisfiability — Example

Q(x) := ¬∃y E(y, x)

x has no predecessor

∧

∀z ∃w (E(z, w) ∧ ∀w′￼(E(z, w′￼) → w′￼ = w))

 is every node has exactly 1 successor

∧

∀w ∀z1 ∀z2 ((F(z1, w) ∧ F(z2, w)) → z1 = z2)

every node has at most 1 predecessor

.

Intuitively, asks for those nodes that are the start
of an infinite chain. It is therefore empty for every finite database.

Q x

Ideally a query
optimizer would
notice this and

instantly answer
with !∅

Trakhtenbrot’s Theorem

Two important consequences for us:

• Perfect query optimisation is impossible for FO queries!

• Via Codd’s Theorem this applies just as well to RA or even core SQL.

Theorem (Trakhtenbrot 1950)
Finite satisfiability of first-order logic is undecidable. That is, given a FO
query , it is undecidable whether for some database .ϕ ϕ(D) ≠ ∅ D

Explore the details in a theory exercise!

Summary

We have learned how to define relational databases as
mathematical objects. This will form the basis for future
mathematical arguments about their properties.

Query languages can be defined in many ways. Operational and
declarative languages are both important and have their
individual strengths. Interestingly, the natural languages of
relational algebra and first-order logic turn out to be equivalent
(and the same as the core of SQL).

Finally, we saw some first discussion about the limitations of query
languages. Both in terms of model decidability and expressivity.

