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The Relational Model



Setup

The relational database model is 
essentially first-order structures + names 
for attributes. 

This extra information on attributes can 
be useful when describing queries. 

Sometimes it is unnecessary and we just 
work on plain first-order structures.

Reminder First-order structures: 

Relations  that each  

have an arity . 

Assigned meaning through an  
interpretation  over a domain : 
                       

R1, R2, …, Rn
#Ri

I Dom
I(Ri) ⊆ Dom#Ri

n



Schemas

Let  and  be (countably infinite) 
vocabularies of relation names and 
attribute names. 

A database schema  is a partial 
function   such that 

 is finite and every image under 
 is finite. 

The arity of  is defined as 
.

𝖱𝖾𝗅 𝖠𝗍𝗍

𝒮
𝒮 : 𝖱𝖾𝗅 → 2𝖠𝗍𝗍

Dom(𝒮)
𝒮

R ∈ Dom(𝒮)
|𝒮(R) |

Example: 

In a database we have a table  
 with columns for id, name and 

birthdate. 

Formally, there is a relation name 
 and we use the schema 

 
where these are names in .

Student

Student ∈ 𝖱𝖾𝗅
𝒮(Student) = (id, name, brithdate)

𝖠𝗍𝗍



Relation Instances

Each attribute  has a domain . 

A tuple for relation name   (under schema ) 
is an element of

 

where . 

A relation (instance) for  (under ) is a finite 
set of tuples for   

A database is a finite set of relations under 
some schema .

A ∈ 𝖠𝗍𝗍 Dom(A)

R 𝒮

Dom(A1) × Dom(A2) × ⋯ × Dom(An)
𝒮(R) = (A1, A2, …, An)

R 𝒮
R

𝒮

Continuing our example: 
 

,  
 all strings 

                      (  for some alphabet ) 
 = e.g., all strings  

                          of certain format 

Example tuple: 
 

Dom(id) = ℕ
Dom(name) =

Σ* Σ
Dom(birthdate)

(1, Bob, 12-03-4567) ∈ Dom(id) × Dom(name) × Dom(birthdate)



Some Helpful Notation

1. Relation Names vs. Relation Instances 
 
When we have a database  we use  to denote  
the relation instance for relation name  

2. Attributes of Tuples 
 
For a relation  with schema , 

we use  to denote the -th position of tuple .

D RD

R

RD 𝒮(R) = (A1, …, Ak)
Ai(t) i t ∈ RD

Id Name DoB
13 Student A 14.06.19

0322 Student B 23.06.19
12… … ..

ID(t1) = 13, Name(t1) = Student A



Relational Query Languages



Formal Query Languages

As in any discussion of formal languages, 
query languages always have two core 
parts. 

Syntax 
How do terms of the language look like. 
Can be analogous to logic or more 
operational. 

Semantics 
How are expressions of the languages 
evaluated. The formal definition of what 
answers we want from the data.



Example Schema & Database

Id Name DoB Active
13 Student A 14.06.1903 TRUE
22 Student B 23.06.1912 FALSE
… … .. …

Student

Name Sem Lecturer
Logic W24 L1

Complexity S24 L2
Logic W23 L1

Course

Course Graded Student
Logic FALSE 13
Logic TRUE 22

Complexity TRUE 13

Enrolled



Relational Algebra



Overview

Syntax: 

Relational Algebra (RA) expressions   
are formed inductively: 

- every relation name  is an RA expression 

- If  is an RA expressions, so are: 

                          

                    

e

R

e1, e2
σθ(e1) πα(e1) ρA→B(e1)
e1 × e2 e1 ∪ e2 e1 − e2

Semantics: 

An expression  applied to a database  
evaluates to a new relation, we write . 

If  is relation name , then . 

Semantics of other operators are defined 
on the following slides.

e D
e(D)

e R e(D) = RD



Selection
σ

Syntax: 

 where 

  -  is a RA expression of sort  

  -  is a propositional formula over 
    attributes in , , and constants.

e = σθ(e1)
e1 U
θ

U =

Semantics: 

 

with schema  

e(D) = {t ∈ e1(D) ∣ θ(t) is true }
𝒮(e) = 𝒮(e1)



Selection
σ

σSem=′￼W24′￼
(Course) ⟶

Name Sem Lecturer
Logic W24 L1

Complexity S24 L2
Logic W23 L1



Projection
π

Syntax: 

 where 

  -  is a RA expression of sort  

  -  is sequence of attributes in 

e = πα(e1)
e1 U
α U

Semantics: 

 
       

with schema  

e(D) =
{(α1(t), α2(t), …, α|α|) ∣ t ∈ e1(D)}

𝒮(e) = α



Projection
π

Active Id
TRUE 13
FALSE 22

… …

πActive,ID(Student) ⟶



Renaming
ρ

Syntax: 

 where 

  -  is a RA expression of sort  

  - , and 

e = ρA→B(e1)
e1 U
A ∈ U B ∈ 𝖠𝗍𝗍∖U

Semantics: 

 

with schema  

e(D) = e1(D)
𝒮(e) = 𝒮(e1)[A/B]

Replace  
with 

A
B



Renaming
ρ

ρCourse→CID,Student→SID(Enrolled) ⟶
CID Graded SID

Logic FALSE 13
Logic TRUE 22

Complexity TRUE 13



Product
×

Syntax: 

 where 

  -  are RA expressions with schema 

     and , respectively.

e = e1 × e2
e1, e2
(A1, …, An) (B1, …, Bm)

Semantics: 

 

with schema  

e1(D) = {(a1, …, an, b1, …, bm)
∣ (a1, …, an) ∈ R, (b1, …, bm) ∈ S}

𝒮(e) = (A1, …, An, B1, …, Bn)



Product
×

Enrolled × πID,Name(Student) ⟶

Course Graded Student ID Name

Logic FALSE 13 13 Student A

Logic FALSE 13 22 Student B

Logic TRUE 22 13 Student A

Logic TRUE 22 22 Student B

Complexity TRUE 13 13 Student A

Complexity TRUE 13 22 Student B

… … … … …



Difference
−

Union
∪

Syntax: 

 where 

  -  are RA expressions of sort  

Semantics: 

e = e1 − e2
e1, e2 U

e(D) = e1(D)∖e2(D)

Syntax: 

 where 

  -  are RA expressions of sort  

Semantics: 

e = e1 ∪ e2
e1, e2 U

e(D) = e1(D) ∪ e2(D)



(Natural) Join
⋈

Very common in database queries. 
Can be expressed via other operators:

e1 ⋈ e2 := σA=A′￼
(e1 × ρA→A′￼

(e2))

Where  is the only shared attribute between . 
(generalisation to more shared attributes is straightforward)

A e1, e2



Example Query

List lectures together with the students that attend them in WS24:

πCourse,Student (πCourse,Student(Enrolled) ⋈ ρName→Course σSem=WS24(Course) ⋈ ρId→Student(Student))
Remove Grade attribute Limit to WS24 Rename for Join

Rename for Join

Connect student data to course data via enrollment

Keep only the two attributes that we want



The natural database theory question:  
Do we need all of these operators?

Yes 👍 — but how do we show this?
(Except for  of course)⋈



Example: Renaming

R ∪ ρB→A(S)

A

1

2

3

Relation R

B

3

4

5

Relation S

A

1

2

3

4

5

Consider the expression

We can show that  is necessary by showing that in RA without renaming 
there is no expression that gives the same output on these inputs!

ρ



Relational Domain Calculus
= First-Order Queries



Queries from Logic

Let  be a formula with free variables , then 

 

is a -ary query. It returns a set of -tuples that represent 
“solutions” for  on database . 

Logics can be seen as query languages!

φ x1, …, xk

{(x1, x2, …, xk) ∈ 𝖣𝗈𝗆k ∣ D ⊧ φ(x1, x2, …, xk)}

k k
φ D



Relational Domain Calculus

The query language induced by first-order logic is called relational (domain) calculus. 

Quick reminder — satisfaction of first-order sentences: 

 

 
with  and 

I ⊧ R(t1, …, tn) ⟺ R(t1, …, tn) ∈ I
I ⊧ t1 = t2 ⟺ t1 and t2 are the same object.

I ⊧ ¬ϕ ⟺ I /⊧ ϕ
I ⊧ ϕ1 ∧ ϕ2 ⟺ I ⊧ ϕ1 and ϕ2

I ⊧ ∃x . ϕ ⟺ I ⊧ ϕ[x/c] for some c ∈ Dom

∀x . ϕ := ¬∃x . ¬ϕ ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2)



Example Query

Recall our example query:  
list lectures together with the students that attend them in WS24.

{(c, sname) ∣ ∃sem, grade, sid, l, dob, active .
Enrolled(c, grade, sid) ∧ Course(c, sem, z) ∧
sem = WS24 ∧ Student(sid, sname, dob, active)}



Id Name DoB Active
13 Student A 14.06.1903 TRUE
22 Student B 23.06.1912 FALSE
… … .. …

Name Sem Lecturer
Logic W24 L1

Complexity S24 L2
Logic W23 L1

Course

Enrolled

Student

(Logic, Student A) is an answer to the query: 
 sem ↦ W24, sid ↦ 13, dob ↦ 14.06.1903

grade ↦ 𝖳𝖱𝖴𝖤, l ↦ L1, active ↦ TRUE

{(c, sname) ∣ ∃sem, grade, sid, l, dob, active .
Enrolled(c, grade, sid) ∧ Course(c, sem, z) ∧
sem = WS24 ∧ Student(sid, sname, dob, active)}

Course Graded Student
Logic FALSE 13
Logic TRUE 22

Complexity TRUE 13



SQL



SQL Overview

The standard language for 
relational database systems. 

Originally developed in the 1970s 
inspired by the relational model 
and especially relational algebra.



SQL Query Syntax…

Image source: https://www.postgresql.org/docs/current/sql-select.html

We are not going to formally define SQL. 

- Syntax changes between 
implementations. 

- Contains constructs that specify 
details of the actual execution of the 
query, e.g.,  
         WITH … AS MATERIALIZED 
which makes it challenging to  
specify formal semantics.



Core SQL Queries

SELECT <select_list> 
                    FROM <from_list> 
                    WHERE <condition> 

                    UNION  

                   EXCEPT 

Q1, Q2 :=

| Q1 Q2

| Q1 Q2



Core SQL Queries

SELECT <select_list> 
                    FROM <from_list> 
                    WHERE <condition> 

                    UNION  

                   EXCEPT 

Q1, Q2 :=

| Q1 Q2

| Q1 Q2

Constants or attributes of relation 
names from the <from_list>



Core SQL Queries

SELECT <select_list> 
                    FROM <from_list> 
                    WHERE <condition> 

                    UNION  

                   EXCEPT 

Q1, Q2 :=

| Q1 Q2

| Q1 Q2

List of relation names and (core SQL) 
subqueries. Can be aliased (renamed) 
to use relation repeatedly.



Core SQL Queries

SELECT <select_list> 
                    FROM <from_list> 
                    WHERE <condition> 

                    UNION  

                   EXCEPT 

Q1, Q2 :=

| Q1 Q2

| Q1 Q2

An expression consisting of: 

- Equalities between attributes, 
e.g., R.a = S.a. 

- Equalities between attributes 
and constants, e.g., R.a = 7 

- Combinations of expressions 
using AND, OR, and NOT.



Core SQL Queries

Theorem 
For every Core SQL query , there exists an RA query  such that 

 for every database , and vice versa.
q q′￼

q(D) = q′￼(D) D

For details, see Arenas, et al. "Database Theory.”, Section 5.

Informally, this means that we can focus our 
theoretical analysis only on one of these languages!



SQL — Example

List lectures together with the students that attend them in WS24: 



Warning: Bag vs. Set Semantics

Set Semantics: Answers to queries are sets of tuples. That is, there is no repetition in answers    
                             and operations ignore repeating tuples. 

Bag Semantics: Answers to queries are bags (or multisets) of tuples. Repetition matters!

A B

1 2

1 3
πA( = A

1

Set Semantics Bag Semantics

) A

1

1



Warning: Bag vs. Set Semantics

Set Semantics: Answers to queries are sets of tuples. That is, there is no repetition in answers    
                             and operations ignore repeating tuples. 

Bag Semantics: Answers to queries are bags (or multisets) of tuples. Repetition matters! 

Our definition of relational algebra and relational calculus uses set semantics. 
In the statement on the previous slide we assume set semantics for core SQL queries. 
However, SQL in practical systems usually uses bag semantics.  

Not a problem, it is also straightforward to define relational algebra with bag semantics. 
But it is important to always keep in mind which type of semantics we are talking about.



SQL is More than SELECT

Data Description 

 
CREATE: To create new tables, 
databases, views, or indexes. 

ALTER: To modify existing 
database objects (e.g., add 
columns to a table).

Data Control 

 
INSERT: Adds new rows 
(records) to a table. 

UPDATE: Modifies existing rows 
in a table based on certain 
conditions. 

DELETE: Removes rows from a 
table based on specified 
conditions.

Data Manipulation 

 
GRANT: To provide specific 
privileges (e.g., SELECT, 
INSERT) to users or roles. 

REVOKE: To remove previously 
granted privileges.



Which is Best?



How can we compare query 
languages?



Two Proposals

For two query languages  and :ℒ ℳ

Are there more efficient algorithms to answer 
queries in language  than for queries in ℒ ℳ?

Are there queries in language  that I cannot 
equivalently write in language 

ℒ
ℳ?

Complexity 
later lectures

Expressivity



Expressivity of Query Languages

We say that  can be expressed by  if for every query 
, there is a query  such that  

 on every database 

ℒ ℳ
ϕ ∈ ℒ ψ ∈ ℳ

ϕ(D) = ψ(D) D

Easy example — Core SQL can be expressed by RA

SELECT  FROM  WHERE A1, …, Aℓ T1, …, Tk C

πA1,…,Aℓ
σC (T1 × ⋯ × Tk)
⬇



Expressivity of Query Languages

We say that  can be expressed by  if for every query 
, there is a query  such that  

 on every database 

ℒ ℳ
ϕ ∈ ℒ ψ ∈ ℳ

ϕ(D) = ψ(D) D

We say that  and   have the same expressive power 
if  can be expressed by  and vice versa. 

Intuitively, you can write the exact same queries in both languages.

ℒ ℳ
ℒ ℳ



Codd’s Theorem

Theorem (Codd 1972, informal) 
Relational algebra, relational domain calculus, and Core SQL Queries 
have the same expressive power.

Technical caveat: relational calculus queries have to be “safe”



Overview of Proof Idea
Explore the details in a theory exercise!

Relational 
Algebra

(Domain-Indep.) 
Relational Calculus

Active Domain 
Relational Calculus

Range-restricted 
Calculus

RC where every 
variable tied to 
some relation.

RC where quantifiers range only 
over values in the database.

We move through  
multiple languages 
to get back to RA!



Qualitative Comparison

Relational Algebra 

Operational semantics are well 
suited for topics where we care 
about the steps taken to 
execute a query. 

Well-suited for the study of 
query optimisation and 
execution.

Relational Calculus 

Declarative language with 
cleanest semantics. Direct 
connection to extensive body 
of work on logic. 

Well-suited for theoretical 
study of complexity and 
expressivity.

SQL 

“User-friendly” language aimed 
at end-users of actual systems. 
Extremely wide-spread in the 
real world.

As a consequence of the languages being equivalent 
we can switch between them depending on the task.



Can these languages do 
everything?



Limitations?

• Paul Erdős was one of the most prolific 
mathematicians of all time. He wrote 
over 1500 articles, many of them highly 
influential.  
He had 509 direct collaborators! 

• The Erdős Number is a way of 
describing the “collaboration distance” 
Paul Erdős. 
- Erdős has an Erdős number of 0 
- The Erdős Number of author  is the 
   minimum among the Erdős Numbers 
   of all the coauthors of , plus 1

M

M
https://sites.math.rutgers.edu/~sg1108/People/Math/Erdos



Example

Paul Erdős 
EN = 0

Noga Alon 
EN = 1

Mike Fellows 
EN = 2

Igor Razgon 
EN = 3

Matthias Lanzinger 
EN = 4

Coauthor

Coauthor

Coauthor

Coauthor

We see, it’s simply a fun way of describing  
shortest path in the coauthor graph.

Isaac Asimov 
EN = ∞



Querying the Erdős Number
Assume a database with schema: 

Author(aid, name),    Paper(pid, title),     Wrote(aid, pid) 

 
We can query the authors with EN  1 easily: 

     get the ids of Erdős’ papers 

                                                      get the authors of those papers 

Can we also get the authors with EN = 1? 

≤

P := πpid (σname='Paul Erdos'(Author) ⋈ Write)
Q := πaid(P ⋈ Author)



Querying the Erdős Number
Assume a database with schema: 

Author(aid, name),    Paper(pid, title),     Wrote(aid, pid) 

 
We can query the authors with EN  1 easily: 

     get the ids of Erdős’ papers 

                                                     get the authors of those papers 

Can we also get the authors with EN = 1? 
Yes:     

≤

P := πpid (σname='Paul Erdos'(Author) ⋈ Write)
Q := πaid(P ⋈ Author)

Q − πaid σname='Paul Erdos'(Author)



Querying the Erdős Number
Assume a database with schema: 

Author(aid, name),    Paper(pid, title),     Wrote(aid, pid) 

 
We can query the authors with EN  2 just as easily: 

     get the ids of Erdős’ papers 

                                                    get the authors with EN at most 1

                                                    get their papers 

                                                    and get those papers’ coauthors                                                 

≤

P0 := πpid (σname='Paul Erdos'(Author) ⋈ Write)
Q1 := πaid(P0 ⋈ Author)
P1 := πpid(Q1 ⋈ Author)

Q2 := πaid(P1 ⋈ Author)



Querying the Erdős Number
Assume a database with schema: 

Author(aid, name),    Paper(pid, title),     Wrote(aid, pid) 

 
Let’s be more ambitious. Can we write RA queries for the following questions: 

• AIDs of authors with EN < , i.e., those with finite EN? 

• AIDs of authors with no EN?

∞



Querying the Erdős Number
Assume a database with schema: 

Author(aid, name),    Paper(pid, title),     Wrote(aid, pid) 

 
Let’s be more ambitious. Can we write RA queries for the following questions: 

• AIDs of authors with EN < , i.e., those with finite EN? 

• AIDs of authors with no EN?

∞

No



Equal expressive power also means that all 
languages that we’ve discussed so far share 

the same limitations!

☹



Looking Forward

How do we know this? 

How can we prove that there 
cannot be a RA query for these 
questions? 

We use Codd’s Theorem in 
combination with results from 
logic, e.g., Ehrenfeucht-Fraïsse 
Games or the Compactness 
Theorem.

Solutions 

Are there query languages that 
can answer these queries? 

Yes! Datalog, a prominent 
example of such languages will 
be the topic of a future lecture.



More Bad News



Finite Satisfiability

One natural piece of information for query optimization and 
automated query analysis is to know whether it is impossible for part 

of the query to have an answer. In other words, is part of the query 
always empty over any database? 

Formally we say, that query  is finitely satisfiable if there exists a 
(finite) database  such that .

ϕ
D ϕ(D) ≠ ∅

Remember, databases 
are always finite by defintion!



Finite Satisfiability — Example

Q(x) := ¬∃y E(y, x)

x has no predecessor

∧

∀z ∃w (E(z, w) ∧ ∀w′￼(E(z, w′￼) → w′￼ = w))

 is every node has exactly 1 successor

∧

∀w ∀z1 ∀z2 ((F(z1, w) ∧ F(z2, w)) → z1 = z2)

every node has at most 1 predecessor

.

Intuitively,  asks for those nodes  that are the start 
of an infinite chain. It is therefore empty for every finite database.

Q x

Ideally a query 
optimizer would 
notice this and 

instantly answer 
with !∅



Trakhtenbrot’s Theorem

Two important consequences for us: 

• Perfect query optimisation is impossible for FO queries! 

• Via Codd’s Theorem this applies just as well to RA or even core SQL.

Theorem (Trakhtenbrot 1950) 
Finite satisfiability of first-order logic is undecidable. That is, given a FO 
query , it is undecidable whether  for some database .ϕ ϕ(D) ≠ ∅ D

Explore the details in a theory exercise!



Summary

We have learned how to define relational databases as 
mathematical objects. This will form the basis for future 
mathematical arguments about their properties. 

Query languages can be defined in many ways. Operational and 
declarative languages are both important and have their 
individual strengths. Interestingly, the natural languages of 
relational algebra and first-order logic turn out to be equivalent 
(and the same as the core of SQL). 

Finally, we saw some first discussion about the limitations of query 
languages. Both in terms of model decidability and expressivity.


