Database Theory

Relational Query Languages

Ormatics

Matthias Lanzinger, 2025

The Relational Model

Setup

The relational database model is
essentially first-order structures + names

for attributes.

This extra infor

be useful whe

ﬁ

MAtio
desc

RS,

gle]

h

N at

ributes can

g C

Jeries.

Sometimes it is unnecessary and we just
work on plain first-order structures.

Reminder First-order structures:

Relations Ry, R, ..., R, that each

have an arity #R,.

Assigned meaning through an
interpretation I over a domain Dom:

I(R) C DOrrz;?E %

Schemas

Let Rel and Att be (countably infinite)

VOCO
attrib

oularies of relation names and

Ute names.

A database schema & is a partial
function & : Rel = 2A% sych that

Dom(3&) is finite and every image under

& is finite.

he arity of R € Dom(J&’) is defined as

| S(R)|.

Example:

N a database we have a table

Student with columns for id, name and
birthdate.

Formally, there is a relation name

Student € Rel and we use the schemo
&' (Student) = (id, name, brithdate)

where these are names in Att.

Relation Instances

Fach attribute A € Att has a domain Dom(A).

A tuple for relation name R (under schema &)
IS an element of

Dom(A,) X Dom(A,) X --- X Dom(A,)
where S(R) = (A, A5, ..., A).

A relation (instance) for R (under &) is a finite

set of tuples for R

A database is a finite set of relations under
some schema &'.

Continuing our example:

Dom(id) = N,
Dom(name) = all strings

(22* for some alphabet 2)

Dom(birthdate) = e.g., all strings
of certain format

Example tuple:
(1, Bob, 12-03-4567) € Dom(id) X Dom(name) X Dom(birthdate)

Some Helptul Notation

1. Relation Names vs. Relation Instances

When we have a database D we use RP to denote

the relation instance for relation name R

2. Attributes of Tuples

For a relation R with schema S(R) = (A, .- Ap),
we use A .(7) to denote the I-th position of tuple ¢ € R

Id Name DoB ‘/\
13 Student A |14.06.19 |

22 | StudentB |23.06.9 ID(t;) = 13, Name(r)) = Student A

Relational Query Languages

-ormal Query Languages

As in any discussion of formal languages,
query languages always have two core
oarts.

How do terms of the language look like.
Can be analogous to logic or more
operational.

How are expressions of the languages
evaluated. The formal definition of what
answers we want from the data.

SELECT MIN(s_acctbal), MAX(s_acctbal)
FROM part, partsupp, supplier,
nation, region

WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND n_nationkey = s_nationkey
AND r_regionkey = n_regionkey a*b (a+b)*c
AND p_price > 3y X — y /\ X > y

(SELECT avg (p_price) FROM part)
AND r_name IN ('Europe', 'Asia')

T {pid, pname} (P€TSON) — T(1id bname) (Person X City)

SELECT ?capital

?country
WHERE

{

(Vx)@yz)(y #z A E(x, y) A E(x, 2) A ?X ex:cityname ?capital
Vw)E(x, w) > (w=yVw=2))) ex:isCapitalof 7y
?y ex:countryname ?country |
ex:1isInContinent ex:Africa
}

JzDrive(z, z,y) < (©0,00]Depart(z, y)) Ujo ooy Arrive(z, y),
Working(z) < Drive(z, x, y),
Dangerous(x) <—Bjp s Working(z) A Drive(z,z,y).

Example Schema & Database

Course Student
Name Sem Lecturer Id Name DoB Active
Logic W24 N 13 Student A 14.06.1903| TRUE
Complexity S24 | 2 22 Student B 23.06.1912 | FALSE
Logic W23 1
Fnrolled
Course Graded | Student
_ogic FALSE 13
_ogic TRUE 22
Complexity TRUE 13

Relational Algebra

Overview

Syntax:

Relational Algebra (RA) expressions e
are formed inductively:

- every relation name R is an RA expression

-1f ey, e, is an RA expressions, so are:

oy(€1) r,(e1) Pa_pler)
e, Xe, eUe e —e

o

Selection

Syntax: Semantics:
e = oy(e) where e(D)={te€e/(D)| 0()istrue }
- € is d RA expression of sort U with schema &'(e) = $(e;)

- @ is a propositional formula over
attributes in U, =, and constants.

o

Selection

Name Sem Lecturer
Logic W24 L1

GSem=’W24’ (COI/””SQ) —>

Jl

Projection

Syntax: Semantics:

e(D) =
{(a1 (D), (D), ...,) | T € €1(D)}]
with schema &(e) = o

e = m,(e;) where
- e is a RA expression of sort U

- a is sequence of attributes in U

Jl

Projection
Active Id
ﬂ'Active,ID(Student) —> I;TLUSEE ;z

Renaming

Syntax: Semantics:
e = py_ple)) where e(D) = ¢,(D)
- e is a RA expression of sort U with schema §'(e) = §(e;)[A/B]
-A € U,and B € Att\U l
Replace A

with B

Renaming

P Course— CID,StudentﬁSlD(E nroll €d) 5

CID Graded SID
_ogic FALSE 13
_ogic TRUE 22

Complexity TRUE 13

Product

Syntax: Semantics:

e(D)={(ay,...,a,b,....,D)
| (ay,...,a,) ER,(by,....,b,) € S}
with schema &'(e) = (A, ..., A,, By, ..., B)

e = ey X e, where
- €1, €, are RA expressions with schema
(A, ...,A)and (By, ..., B,), respectively.

Product

Enrolled X myp yyme(Student) —

Course | Graded | Student | ID Name
_ogic -ALSE 13 13 Student A
_ogic -ALSE 13 22 Student B
Logic TRUE 22 13 Student A
Logic TRUE 22 22 Student B

Complexity| TRUE 13 13 Student A
Complexity| TRUE 13 22 Student B

Difference

Syntax:

e = e; — e, where

- €1, €, are RA expressions of sort U

Semantics:

e(D) = e,(D)\e,(D)

(Natural) Join

Very common in database queries.
Can be expressed via other operators:

e1 X ey = 0y_p (e X py_a(er))

Where A is the only shared attribute between ey, e,.
(generalisation to more shared attributes is straightforward)

Example Query

List lectures together with the students that attend them in WS24:

Keep only the two attributes that we want

Connect student data to course data via enrollment

Rename for Join

| Pr———————
Remove Grade attribute Limit to WS24 Rename for Join
P (Pr—— J—

ﬂCourse,Student (ﬂCourse,Student(Enr 0”661) X PName— Course USem=WS24(C0ur 5 6) X pld—>Student(S ! udent))

The natural database theory question:
Do we need all of these operators?

Yes & — but how do we show this?

Example: Renaming

Relation R Relation S
A B
1 3
2 A
3 5

We can show t
there is no exp

nat p

'eSS|O

IS necessary

N that gives t

Consider the expression
R U pB—)A(S)

o | b | W DN

oy showing that in RA witr

out renaming

ne same output on these |

Nputs!

Relational Domain Calculus
= FirstOrder Queries

Queries from Logic

Let @ be a formula with free variables xq, ..., x;, then
k
(X1, %5, ..., %) € Dom™ | D FE ¢(x{, %, ...,x)}

is a k-ary query. It returns a set of k-tuples that represent
“solutions” for ¢ on database D.

Logics can be seen as query languages!

Relational Domain Calculus

The query language induced by first-order logic is called relational (domain) calculus.

Quick reminder — satisfaction of first-order sentences:

IER(, ..., 1) — R(,....t) €l

[Ft =t <> t;and, are the same object.
[E g = | F¢

ILEQ Ao, <~ [F ¢ and g,

[Fdx.@ < [F ¢|x/c]forsomec € Dom

with Vx.¢ :=—-3Ix.—¢dand ¢, V ¢, := (¢, A ¢h,)

Example Query

Recall our example guery:
ist lectures together with the students that attend them in WS24.

{(c, sname) | dsem, grade, sid, [, dob, active .
Enrolled(c, grade, sid) A Course(c, sem,z) A
sem = WS24 A Student(sid, sname, dob, active))

Course Student

Name Sem Lecturer Id Name DoB Active
Logic W24 N 13 Student A 14.06.1903| TRUE
Complexity S24 | 2 22 Student B 23.06.1912 | FALSE
Logic W23 N
Fnrolled
Course Graded | Student {(c, sname) | dsem, grade, sid, [, dob, active .
 ogic FALSE 13 Enrolled(c, grade, sid) N\ Course(c, sem, z) A
_ogic TRUE 22 sem = WS24 A Student(sid, sname, dob, active) }
Complexity TRUE 13

IS an answer to the query:

sem — W24, sid— 13, dob— 14.06.1903
grade — TRUE, [+~ L1, active —» TRUE

SQL Overview

The standard language for
relational database systems.

Originally developed in the 19/0s
inspired by the relational model

and especially relational algebra.

ORACLE

%Qme)=

Spaik'sQL SOL Server

[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...]1)] 1]

[{ x | expression [[AS] output_name] } [, ...]]
FROM from_item [, ...] 1]
U e r n O X WHERE condition]
¢ o oo GROUP BY [ALL | DISTINCT] grouping_element [, ...]]
HAVING condition]
WINDOW window_name AS (window_definition) [, ...]]
{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST } 1 [, ...] 1]
LIMIT { count | ALL }]
OFFSET start [ROW | ROWS 1]

FETCH { FIRST | NEXT } [count 1 { ROW | ROWS } { ONLY | WITH TIES }]
FOR { UPDATE | NO KEY UPDATE | SHARE | KEY SHARE } [OF from_reference [, ...] 1 [NOWAIT | SKIP LOCKED] I[.

M M L e|[L T ™~ "~ ™~ "~ ™

We are not going to formally define SQL.

where from_item can be one of:

[ONLY] table_name [x 1 [[AS] alias [(column_alias [, ...]) 1]

+ ~ [TABLESAMPLE sampling_method (argument [, ...]) [REPEATABLE (seed)] 1

Syn “OX C Onges between [LATERAL] (select) [[AS] alias [(column_alias [, ...]) 1]

. . with_query _name [[AS] alias [(column_alias [, ...])]]

|mp emeﬁt(]thﬂS [LATERAL] function_name ([argument [, ...]])
[WITH ORDINALITY] [[AS] alias [(column alias [, ...]) 1]

[LATERAL] function_name ([argument [, ...]1 1) [AS] alias (column_definition [, ...])
.) [LATERAL 1 function_name ([argument [, ...]1 1) AS (column_definition [, ...])
- COntC“nS ConStrUCtS thgt SO@ley [LATERAL 1 ROWS FROM(function_name ([argument [, ...1 1) [AS (column_definition [, ...]1) 1 [, ...]1)

[WITH ORDINALITY] [[AS] alias [(column_alias [, ...]) 1]

CetC”lS Of the OCtUOl GXGCU:lOﬂ O-[: the from_1:tem join_type: 1.’rom_item { Ol\f join_condition | USING (joinm_column [, ...]) [AS join_using_alias] }

from_item NATURAL join_type from_item
from_item CROSS JOIN from_item

query, e.qg., |
WITH ... AS MATERIALIZED e e
which makes it challenging to e)
specify formal semantics. CEE { £ aprasston | | mmpressten b el) B Iy ed)
GROUPING SETS (grouping_element [, ...])

and with_query is:

with_query_name [(column_name [, ...])] AS [[NOT] MATERIALIZED] (select | values | insert | update |
[SEARCH { BREADTH | DEPTH } FIRST BY column_name [, ...] SET search_seq_col_name]
[CYCLE column_name [, ...] SET cycle_mark_col_name [TO cycle_mark_value DEFAULT cycle_mark_default] USI

Image source: https://www.postgresgl.org/docs/current/sqgl-select.html T

Core SQL Queries

(0, O, := SELECT <select_list>
FROM <from_list>
WHERE <condition>

| O UNION O,

| O, EXCEPT Q,

Core SQL Queries

(0, O, := SELECT <select_list>
FROM <from_list>
WHERE <condition>

| O UNION O,

| O, EXCEPT Q,

—

Cconstar

ts or attri

OUl

names f

‘'om the <f

‘es of relation

O

M list>

Core SQL Queries

(0, O, := SELECT <select_list>

FROM <from list> ‘\

WHERE <COﬂdItIOﬂ> List of relation names and (core SQL)

subgueries. Can be aliased (renamed)

| Ql UNION Q2 to use relation repeatedly.

| O, EXCEPT Q,

Core SQL Queries

Qp Qz := SELECT <select list>

FROM <from list>

An expression consisti

ng of:

- Equalities between attributes,

WHERE <condition>4— &9.Rda=sa

- Equalities between attributes

| O, UNION 0,

| O, EXCEPT Q,

ana constants, e.g.,

- Combinations of ex

Ra=7/

Dressions

using AND, OR, anc

NOT.

Core SQL Queries

Theorem
For every Core SQL query g, there exists an RA query g’ such that

qg(D) = q'(D) for every database D, and vice versa.

For details, see Arenas, et al. "Database Theory.”, Section b.

Informally, this means that we can focus our
theoretical analysis only on one of these languages!

SQL — Example

List lectures together with the students that attend them in WS24.

SELECT course.name, student.name

FROM course, student, enrolled

WHERE course.name = enrolled.course AND
course.sem = enrolled.sem AND
student.1d = enrolled.student AND
enrolled.sem = 'WS24°';

Warning: Bag vs. Set Semantics

Set Semantics: Answers to queries are sets of tuples. That is, there is no repetition in answers
and operations ignore repeating tuples.

Bag Semantics: Answers to queries are bags (or multisets) of tuples. Repetition matters!

A B A

] A

jzA !
1 3 1

Set semantics Bag Semantics

Warning: Bag vs. Set Semantics

Set Semantics: Answers to gue

and operations

ries are sets of tuples. That is, there is no repetition
ignore repeating tuples.

IN answers

Bag Semantics: Answers to queries are bags (or multisets) of tuples. Repetition matters!

Our definition of relational algebra and relational calculus uses set semantics.

But it is important to always kee

Not a problem, it is also straightfo

O

rward to defi

iNn mMind whic

N the statement on the previous slide we assume set sema
However, SQL in practical systems usually uses

h

0dg semdntics.

ne relational algebra with bag sema

type of semantics we are talking o

ntics for core SQL queries.

NtICS.

OOUL.

SQU is More than SELECT

Data Description Data Manipulation

CREATE: To create new tables, GRANT: To provide specific

databases, views, or indexes. orivileges (e.g., SELECT,
NSERT) to users or roles.

ALTER: To modifty existing
database objects (e.g., add REVOKE: To remove previously

columns to a table). granted privileges.

Data Control

INSERT: Adds new rows
(records) to a table.

UPDATE: Modifies existing rows
iN a table based on certain
conditions.

DELETE: Removes rows from o
table based on specified
conditions.

Which is Best?

HOW can we compare guery
languages?

Two Proposals

For two query languages & and

Are there more efficient algorithms to answer | Complexity
queries in language & than for queries in A ? ater lectures

Are there queries in language & that | cannot

=P Expressivity

equivalently write in language A

Expressivity of Query Languages

We say that &£ can be expressed by A if for every query
¢ € £, thereis a query w € A such that
@(D) = w(D) on every database D

-asy example — Core SQL can be expressed by RA

| 1]
AJ
| 1]

Expressivity of Query Languages

We say that & can be expressed by 4 if for every query
¢ € £, thereisaquery y € J such that
@(D) = w(D) on every database D

We say that & and 4 have the same expressive power

if &£ can be expressed by 4 and vice versa.
INntuitively, you can write the exact same queries in both languages.

Codd’s Theorem

Theorem (Codd 1972, informal)
Relational algebra, relational domain calculus, and Core SQL Queries

have the same expressive power.

Technical caveat: relational calculus queries have to be “safe”

Overview of Proof ldea

Relational
/’ Algebra _\
RC where every

VO“Ob'e|“ed ©© Range-restricted (Domain-Indep.)
some relation. .
Calculus Relational Calculus

- We move through
. multiple languages
. to get back to RA!

Active Domalir
Relational Calculus

RC where quantifiers range only
over values in the database.

Qualitative Comparison

As a consequence of the languages being eo
we can switch between them depending on t

Relational Algebro

Operational semantics are well
suited for topics where we care
about the steps taken to
execute a query.

Well-suited for the study of
guery optimisation ana
execution.

Relational Calculus

Declarative language with
cleanest semantics. Direct
connection to extensive body
of work on logic.

Well-suited for theoretical
study of complexity and
expressivity.

Jivalent

ne task.

SQL

“‘User-friendly” longuage aimed
at end-users of actual systems.
-xtremely wide-spread in the
real world.

Can these languages do
everything?

limitationse

PaL
agle

| ErdGs was one of the most prolific
thematicians of all time. He wrote

over 1500 articles, many of them highly

influen
He hao

ial.
509 direct collaborators!

The Erdos Number is a way of

desc

Pa
- E
-1

miNim
of all t

ribing the “collaboration distance”

Ul Erdos.

dos I

ne kErc

as an Erdds number of O
As Number of author M is the

Um among the Erdds Numbers
ne coauthors of M, plus 1

i TN N -

s
U” s

i

https://sites.math.rutgers.edu/~sg1108/People/Math/Erdos

- -

Example

Paul

Coauthor

CrdOs

N =0

—

Coauthor

|gor Razgon
N =3

Coauthor

Mike Fellows
N =2

Coauthor

—_—

We see, |

Matthias Lanzinger

'S SInT

N =4

oly a fun way of describing

shortest

nath |

N the coauthor graph.

lsaac Asimov

-N =00

Querying the Erdés Number

Assume a database with schema:

Author(aid, name), Paper(pid, title), Wrote(aid, pid)

We can query the authors with EN < 1 easily:

P = id (Unamez'Pau\ ErdOS'(AuthOV) X WFitE) get the ids of Erdés’ papers

Q — ﬂaid(P Dol Author) get the authors of those papers

Can we also get the authors with EN =17

Querying the Erdés Number

Assume a database with schema:

Author(aid, name), Paper(pid, title), Wrote(aid, pid)

We can query the authors with EN < 1 easily:

P = id (Unamez'Pau\ ErdOS'(AuthOV) X WFitE) get the ids of Erdés’ papers

O = ﬂaid(P >} Author) get the authors of those papers

Can we also get the authors with EN =17
Yes: Q — yid 0name='PaU‘ ErdOS'(AuthOr)

Querying the Erdés Number

Assume a database with schema:

Author(aid, name), Paper(pid, title), Wrote(aid, pid)

We can query the authors with EN < 2 just as easily:

PO = Tyid (0 PaUl ErdOS'(AuthOI”) Dad WFitE) get the ids of Erdds’ papers

name=
O, :=n, (PN Author) get the authors with EN at most 1
Pl — ﬂpid(Ql Dol Author) get their papers

Q2 L= ﬂaid(Pl X Al/tl‘hOV) and get those papers’ coauthors

Querying the Erdés Number

Assume a database with schema:

Author(aid, name), Paper(pid, title), Wrote(aid, pid)

Let’s be more ambitious. Can we write RA queries for the following questions:

. AlDs of authors with EN < 00, i.e. those with finite EN?

« AlDs of authors with no EN?

Querying the Erdés Number

Assume a database with schema:

Author(aid, name), Paper(pid, title), Wrote(aid, pid)

Let’s be more ambitious. Can we write RA queries for the following questions:

. AlDs of authors with EN < 00, i.e. those with finite EN?

NO

« AlDs of authors with no EN?

Fgqual expressive power also means that all
languages that we've discussed so far share
the same limitations!

6

looking Forwara

How do we know this?

How can we prove that there Are there query languages that
cannot be a RA query for these can answer these queries?
questions?

Yes! Datalog, a prominent
We use Codd's Theorem in example of such languages will
combination with results from be the topic of a future lecture.

logic, e.g., Ehrenfeucht-Fraisse
Games or the Compactness
Theorem.

More Bad News

Finite Satistiability

One natural piece of information for query optimization ana
automated query analysis is to know whether it is impossible for part
of the query to have an answer. In other words, is part of the query
always empty over any database?

Formally we say, that query ¢ is finitely satisfiable if there exists o
(finite) database D such that ¢p(D) # &.

Remember, databases
are always finite by defintion!

Finite Satistiability — Example

Q(x)

= dy E(y, X) A

x has no predecessor

Vz

Aw (E(z, w) AVW (E(z, W) = w' =w)) A

l[deally a query

IS every node has exactly 1 successor i
optimizer would

VwVz, Vz, (F(z;, W) AF(25,w)) = 21 = 2) . notice this and

INtultive

of anin

inite ¢

instantly answer
with @!

every node has at most 1 oredecessor

v, O asks for those nodes x that are the start

nain. It is therefore empty for every finite database.

Trakhtenbrot’s Theorem

Theorem (Trakhtenbrot 1950)
Finite satistiability of first-order logic is undecidable. That is, given a FO

query @, it is undecidable whether @(D) # @ for some database D.

Two important conseguences for us:
Perfect query optimisation is impossible for FO queries!

Via Codd's Theorem this applies just as well to RA or even core SQL.

Summary

We have learned how
ects. This will
mathematical arguments about their properties.

mathematical obj

Query languages can be defined in
declarative languages are both

individual strengths. Interestingly,

relational algebra and first-orc

(and the same as the core of SQL).

-inally, we saw sormr

e first ¢

ISCUSSION

anguages. Both in -

ErMNMms O

" model o

to define relational databases as

form the basis for future

many ways. Operational and
important and have their
the natural languages of

er logic turn out to be equivalent

apbout the limitations of query
ecidability and expressivity.

