
Matthias Lanzinger, 2025

Database Theory
Conjunctive Queries

Motivation

We’ve seen that we are limited in many things we want
to do when it comes to powerful languages like FO/RA.

Let us instead study a restricted subclass of queries
that lies at the core of important data retrieval tasks.

Conjunctive Queries

We call queries of this form Conjunctive Queries (CQs).

That is, conjunctive queries are FO queries using only the connectives and .∃ ∧

{ ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }

(Can also contain constants.)

Conjunctive Queries

{ ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }

πȳ (R1 ⋈ R2 ⋈ ⋯ ⋈ Rk)
(Assuming attributes for are , otherwise simply rename)Ri x̄i

Conjunctive Queries

πȳ (R1 ⋈ R2 ⋈ ⋯ ⋈ Rk)
Conjunctive queries correspond so-called join queries in RA.

That is, RA queries that only use projection, renaming, selection, and joins.

{ ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }

Conjunctive Queries

Recall our SQL example in the lecture on the relational model.

Conjunctive Queries

{(c, s) ∣ ∃sid, l, dob, active . Enrolled(c, WS24, sid) ∧
Course(c, WS24, l) ∧ Student(sid, s, dob, active)}

Conjunctive Queries

{(c, s) ∣ ∃sid, l, dob, active . Enrolled(c, WS24, sid) ∧
Course(c, WS24, l) ∧ Student(sid, s, dob, active)}

CQs cover the core part
of most SQL queries!

Conjunctive Queries

✦ Conjunctive queries form the key part
of most data retrieval tasks. ✦ Join queries

✦ Datalog rule bodies are CQs

✦ Basis for many other query languages,
e.g., Conjunctive Regular Path Queries.

Conjunctive Queries

✦ Conjunctive queries form the key part
of most data retrieval tasks.

✦ Optimising CQs can help to optimise
the most expensive part of practical
join evaluations

Real systems will evaluate a CQ
first and then evaluate the min
aggregate on the result of the CQ.

Conjunctive Queries

✦ Conjunctive queries form the key part
of most data retrieval tasks.

✦ Optimising CQs can help to optimise
the most expensive part of practical
join evaluations

✦ Complexity for results for CQs also
give us lower bounds for more
complex queries that often have CQs
at their core.

The query intuitively will be at least as
hard to solve as the underlying CQ
(without the min aggregate).

Equivalence & Containment

Query Containment

✦ For queries we say that is contained in (in symbols,) if
 for every database .

✦ Equivalence of two queries , (in symbols,) is defined as

q1, q2 q1 q2 q1 ⊆ q2
q1(D) ⊆ q2(D) D

q1 q2 q1 ≡ q2
q1 ≡ q2 ⟺ q1 ⊆ q2 and q2 ⊆ q1

Given in RA, there is no algorithm to decide .
But if are CQs then the problem is decidable!

q1, q2 q1 ⊆ q2
q1, q2

See the Trakthenbrot
exercise sheet!

Query Containment Example

Consider the following two queries

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ R(y, x) ∧ R(x, y)}

A B
1 2
3 3
2 3

R

q1(D) = { (2,1), (3,2), (3,3)}
q2(D) = { (3,3)}

Intuitively it seems clear that describes a
weaker requirement: only needs to reach some ,
whereas it needs to reach specifically in .

We would therefore suspect that
for all . But how to prove it?

q1
x z

y q2

q2(D) ⊆ q1(D)
D

The Tableau of a CQ
Basic Idea: we can represent a CQ as a database.

The tableau of a CQ is the database where the tuples of relation are all of the term
lists that occur for in the query (+ a relation for the output variables).

𝖳𝖻𝗅(q) q R
R

1 2

x y

1 2
y z
y w
w y

RB
1 2

x y

𝖮𝗎𝗍

{ (x, y) ∣ ∃wz B(x, y) ∧ R(y, z) ∧ R(y, w) ∧ R(w, y) }
Consider the following query:

We write
for the tables without
the special relation for
output variables.

𝖳𝖻𝗅*(q)

𝖮𝗎𝗍

Homomorphisms

A homomorphism of two databases is a function
 such that:

D1, D2
h : Dom(D1) → Dom(D2)

(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Example
A homomorphism of two databases is a function

 such that:
D1, D2

h : Dom(D1) → Dom(D2)
(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Name Age
Anna 54
Ben 26

Parent Child

Ben Anna

R

S

Name Age
David 85
Anna 40
Claire 34

Parent Child
David David
Anna Claire

D1 D2

R

S
?

Example
A homomorphism of two databases is a function

 such that:
D1, D2

h : Dom(D1) → Dom(D2)
(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Name Age
Anna 54
Ben 26

Parent Child

Ben Anna

R

S

Name Age
David 85
Anna 40
Claire 34

Parent Child
David David
Anna Claire

D1 D2

R

S

Anna ↦ Claire
Ben ↦ Anna

54 ↦ 34
26 ↦ 40

May seem weird in
meaning but the
“structure” is preserved!

Example
A homomorphism of two databases is a function

 such that:
D1, D2

h : Dom(D1) → Dom(D2)
(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Name Age
Anna 54
Ben 26

Parent Child

Ben Anna

R

S

Name Age
David 85
Anna 40
Claire 34

Parent Child
David David
Anna Claire

D1 D2

R

S

Anna ↦ David
Ben ↦ David

54 ↦ 85
26 ↦ 85

Nothing says the
function must be
injective

Example
A homomorphism of two databases is a function

 such that:
D1, D2

h : Dom(D1) → Dom(D2)
(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Name Age
Anna 54
Ben 26

Parent Child

Ben Anna

R

S

Name Age
David 85
Anna 40
Claire 34

Parent Child
David David
Anna Claire

D1 D2

R

S

Anna ↦ Claire
Ben ↦ Claire

54 ↦ 34
26 ↦ 34

But that doesn’t
always work

Not a hom!

Homomorphism Theorem

As a result we have an “easy” algorithm for deciding containment for CQs:

1. Compute for both queries (trivial).

2. Check if there is a homomorphism (in NP).

𝖳𝖻𝗅(⋅)

Theorem
Let be CQs. Then

 if and only if

q1, q2

q1 ⊆ q2 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

Careful!
Only holds for
set semantics!

Homomorphism Theorem

Consider the following two queries

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

1 2

y x

x z

R
1 2

y x

w x

x u

R
𝖳𝖻𝗅(q1) 𝖳𝖻𝗅(q2)

1 2

x y

𝖮𝗎𝗍
1 2

x y

𝖮𝗎𝗍

Homomorphism Theorem

1 2

y x

x z

R
1 2

y x

w x

x u

R
𝖳𝖻𝗅(q1) 𝖳𝖻𝗅(q2)

1 2

x y

𝖮𝗎𝗍
1 2

x y

𝖮𝗎𝗍

Since has only one tuple, a homomorphism must necessarily have
 and .

𝖮𝗎𝗍 h
h(x) = x h(y) = y

Homomorphism Theorem

1 2

y x

x z

R
1 2

y x

w x

x u

R
𝖳𝖻𝗅(q1) 𝖳𝖻𝗅(q2)

1 2

x y

𝖮𝗎𝗍
1 2

x y

𝖮𝗎𝗍

Since has only one tuple, a homomorphism must necessarily have
 and .

With and we get a homomorphism .

𝖮𝗎𝗍 h
h(x) = x h(y) = y

h(w) = y h(u) = z 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

Homomorphism Theorem

1 2

y x

x z

R
1 2

y x

w x

x u

R
𝖳𝖻𝗅(q1) 𝖳𝖻𝗅(q2)

1 2

x y

𝖮𝗎𝗍
1 2

x y

𝖮𝗎𝗍

Since has only one tuple, a homomorphism must necessarily have
 and .

With and we get a homomorphism .

𝖮𝗎𝗍 h
h(x) = x h(y) = y

h(z) = y h(u) = z 𝖳𝖻𝗅(q1)
hom 𝖳𝖻𝗅(q2)

Homomorphism Theorem

We’ve seen that and .
By the Homomorphism Theorem that means and , i.e., !

𝖳𝖻𝗅(q1)
hom 𝖳𝖻𝗅(q2) 𝖳𝖻𝗅(q2)

hom 𝖳𝖻𝗅(q1)
q1 ⊆ q2 q2 ⊆ q1 q1 ≡ q2

Consider the following two queries

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

Why?

Important observation
Let be a CQ with free variables . For any database , we have

if and only if there is a homomorphism from to such that .
q ȳ D c̄ ∈ q(D)

h 𝖳𝖻𝗅*(q) D h(ȳ) = c̄

q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

 means that there is an interpretation such that

1. , , and .

2. and and .

(a, b) ∈ q2(D) I
R(I(y), I(x)) ∈ D R(I(w), I(x)) ∈ D R(I(x), I(u)) ∈ D

I(x) = a I(y) = b
So is precisely a homomorphism
from to !

I
𝖳𝖻𝗅*(q2) D

Proof Idea

If , then

By assumption . So take as database . Let be the free variables
of . We have that since we can just map every variable to itself.

q1 ⊆ q2 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

q1(D) ⊆ q2(D) 𝖳𝖻𝗅*(q1) D ȳ
q1 (x, y) ∈ q1(𝖳𝖻𝗅*(q1))

1 2

y x

x z

R𝖳𝖻𝗅*(q1)
1 2

y x

x z

R𝖳𝖻𝗅*(q1)

h(x) = x, h(y) = y, h(z) = z
Example queries from before

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

So (x, y) ∈ q1(𝖳𝖻𝗅*(q1))

Proof Idea

If , then

By assumption . So take as database . Let be the free variables of

. We have that since we can just map every variable to itself.

Then also . By the key observation:

That is, the tuple in the relation of maps into a tuple of of .
Furthermore, that homomorphism maps the free variables of to the free variables of .

We then have .

q1 ⊆ q2 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

q1(D) ⊆ q2(D) 𝖳𝖻𝗅*(q1) D ȳ
q1 (x, y) ∈ q1(𝖳𝖻𝗅*(q1))

(x, y) ∈ q2(𝖳𝖻𝗅*(q1))
ȳ ∈ q2(𝖳𝖻𝗅*(q1)) ⟺ 𝖳𝖻𝗅*(q2)

hom 𝖳𝖻𝗅*(q1)

𝖮𝗎𝗍 𝖳𝖻𝗅(q2) 𝖮𝗎𝗍 𝖳𝖻𝗅(q1)
q2 q1

𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

Proof Idea

If , then

If is an answer of on some database then there is a homomorphism
that maps the output variables of to .

Let be the homomorphism from to . It is not hard to see that is
homomorphism from to that also maps the output of variables of to .

𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1) q1 ⊆ q2

c̄ q1 D h : 𝖳𝖻𝗅*(q1) → D
q1 c̄

g 𝖳𝖻𝗅(q2) 𝖳𝖻𝗅(q1) h ∘ g
𝖳𝖻𝗅*(q2) D q2 c̄

Example queries from before

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

1 2
y x
x z

R
1 2
y x
w x
x u

R
𝖳𝖻𝗅(q1)𝖳𝖻𝗅(q2)

1 2
1 1
2 3
3 1
4 5

D

homomorphism g homomorphism h

Proof Idea
Example queries from before

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

1 2
y x
x z

R
1 2
y x
w x
x u

R
𝖳𝖻𝗅(q1)𝖳𝖻𝗅(q2)

1 2
1 1
2 3
3 1
4 5

D

homomorphism g homomorphism h

1 2
y x
w x
x u

𝖳𝖻𝗅(q2)
R 1 2

1 1
2 3
3 1
4 5

D
h ∘ g Still a homomorphism!

Output variables map
to the same values in !D

Proof Idea

If , then

If is an answer of on some database then there is a homomorphism
that maps the output variables of to .

Let be the homomorphism from to . It is not hard to see that is
homomorphism from to that also maps the output of variables of to .

𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1) q1 ⊆ q2

c̄ q1 D h : 𝖳𝖻𝗅*(q1) → D
q1 c̄

g 𝖳𝖻𝗅(q2) 𝖳𝖻𝗅(q1) h ∘ g
𝖳𝖻𝗅*(q2) D q2 c̄

Example queries from before

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

1 2
y x
x z

R
1 2
y x
w x
x u

R
𝖳𝖻𝗅(q1)𝖳𝖻𝗅(q2)

1 2
1 1
2 3
3 1
4 5

D

homomorphism g homomorphism h

Query Minimisation

Minimising?

Goal:
Given a CQ , we want the equivalent CQ with the least amount of

atoms.

Formally, a CQ is minimal if there does not exist a CQ such that:

a)

b) has fewer atoms (=terms in the conjunction) than

q q′

q q′

q′ ≡ q

q′ q

We would like to replace a CQ with its
minimal equivalent CQ before evaluating it.

How do we find this minimal equivalent CQ?

To minimise CQ , it is enough to
check only those queries obtained

by deleting atoms from !

q

q

Minimisation by Deletion

Assume CQ .
Furthermore, assume has an equivalent CQ

 with .

By the Homomorphism Theorem there are homomorphisms:

 and

q = { ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }
q

q′ = { ȳ′ ∣ ∃z̄′ S1(x̄′ 1) ∧ S2(x̄′ 2) ∧ ⋯ ∧ Sj(x̄′ j) } j < k

f : 𝖳𝖻𝗅(q) → 𝖳𝖻𝗅(q′) g : 𝖳𝖻𝗅(q′) → 𝖳𝖻𝗅(q)

Minimisation by Deletion
We have that maps every into some

 with and .
g : 𝖳𝖻𝗅(q′) → 𝖳𝖻𝗅(q) Sα(x̄′ α) ∈ 𝖳𝖻𝗅(q′)

Riα(x̄iα) ∈ 𝖳𝖻𝗅(q) Sα = Riα x̄iα = h(x̄′ α)

S1(x̄′ 1) ∧ S2(x̄′ 2) ∧ S3(x̄′ 3) ∧ S4(x̄′ 4)

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)

the mapping g

Minimisation by Deletion
We have that maps every into some

 with and .

Let be the set of all such images of the mapping

 applied to the terms of and observe that .

g : 𝖳𝖻𝗅(q′) → 𝖳𝖻𝗅(q) Sα(x̄′ α) ∈ 𝖳𝖻𝗅(q′)
Riα(x̄iα) ∈ 𝖳𝖻𝗅(q) Sα = Riα x̄iα = h(x̄′ α)

Img(g) = {Ri1(x̄i1), Ri2(x̄i2), …, Riℓ(x̄iℓ)}
g q′ | Img(g) | ≤ j < k

S1(x̄′ 1) ∧ S2(x̄′ 2) ∧ S3(x̄′ 3) ∧ S4(x̄′ 4)

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)Img(g)

the mapping g

Minimisation by Deletion
Let us define the query consisting of the

terms in . We see that can be obtained by simply deleting some terms from .

q′ ′ = { ȳ ∣ ∃z̄ Ri1(x̄i1) ∧ Ri2(x̄i2) ∧ ⋯ ∧ Riℓ(x̄iℓ) }
Img(g) q′ ′ q

S1(x̄′ 1) ∧ S2(x̄′ 2) ∧ S3(x̄′ 3) ∧ S4(x̄′ 4)

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)Img(g)

the mapping g

q′ ′ = {ȳ ∣ R1(x̄1) ∧ R3(x̄3) ∧ R5(x̄5)

Minimisation by Deletion

We use the Homomorphism Theorem to show that is also equivalent to :

✦ There is a trivial homomorphism :
simply map every variable to itself.

q′ ′ q

𝖳𝖻𝗅(q′ ′) → 𝖳𝖻𝗅(q)

q : R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)

q′ ′ : R1(x̄1) ∧ R3(x̄3) ∧ R5(x̄5)

Minimisation by Deletion

We use the Homomorphism Theorem to show that is also equivalent to :

✦ There is a trivial homomorphism :
simply map every variable to itself.

✦ — i.e., the function composition — is a homomorphism
:

 - function maps every in into an in by definition,
 - function maps every in into an atom of by construction.

q′ ′ q

𝖳𝖻𝗅(q′ ′) → 𝖳𝖻𝗅(q)

g ∘ f g(f(⋅))
𝖳𝖻𝗅(q) → 𝖳𝖻𝗅(q′ ′)

f Ri(x̄i) q Sα(x̄α) q′

g Sα(x̄α) q′ q′ ′

✦ — i.e., the function composition — is a homomorphism
:

 - function maps every in into an in by definition,
 - function maps every in into an atom of by construction.

g ∘ f g(f(⋅))
𝖳𝖻𝗅(q) → 𝖳𝖻𝗅(q′ ′)

f Ri(x̄i) q Sα(x̄α) q′

g Sα(x̄α) q′ q′ ′

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)

the mapping f

S1(x̄′ 1) ∧ S2(x̄′ 2) ∧ S3(x̄′ 3) ∧ S4(x̄′ 4)

the mapping g

q′ ′ : R1(x̄1) ∧ R3(x̄3) ∧ R5(x̄5)

✦ — i.e., the function composition — is a homomorphism
:

 - function maps every in into an in by definition,
 - function maps every in into an atom of by construction.

g ∘ f g(f(⋅))
𝖳𝖻𝗅(q) → 𝖳𝖻𝗅(q′ ′)

f Ri(x̄i) q Sα(x̄α) q′

g Sα(x̄α) q′ q′ ′

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)

the mapping g ∘ f

q′ ′ : R1(x̄1) ∧ R3(x̄3) ∧ R5(x̄5)

Minimisation by Deletion
Lemma

Assume CQ .

Furthermore, assume has a semantically equivalent CQ
.

Then is also semantically equivalent to a CQ that can obtained
by deleting atoms from .

q = { ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }
q

q′ = { ȳ′ ∣ ∃z̄′ S1(x̄′ 1) ∧ S1(x̄′ 1) ∧ ⋯ ∧ Sj(x̄′ j) }
q q′ ′

q

Interesting consequence: there is always a unique minimal equivalent query.
We call this minimal equivalent subquery of the core of .q q

An Algorithm for Minimisation

In plain text

Delete terms from the CQ
as long as there is still a
homomorphism to the
query after deletion.

Once this is no longer
possible, the minimum is
reached.

CQ Minimisation Example

q = {(x, y, z) ∣ ∃αβγ R(x, y, α) ∧ R(β, y, γ) ∧ R(β, y, z) }

A B C

x y 𝛼
β y ɣ
β y z

A B C

x y 𝛼
β y ɣ
β y z

𝖳𝖻𝗅(q) 𝖳𝖻𝗅(q)∖{(x, y, α)}

Homomorphism?
⟶

No, because , the first row can’t be
mapped into the right-hand tableau.

h(x) = x

CQ Minimisation Example

q = {(x, y, z) ∣ ∃αβγ R(x, y, α) ∧ R(β, y, γ) ∧ R(β, y, z) }

A B C

x y 𝛼
β y ɣ
β y z

A B C

x y 𝛼
β y ɣ
β y z

𝖳𝖻𝗅(q) 𝖳𝖻𝗅(q)∖{(β, y, γ)}

Homomorphism?
⟶

Yes! map to themselves and x, y, z, β h(γ) = z

CQ Minimisation Example

q′ = {(x, y, z) ∣ ∃αβ R(x, y, α) ∧ R(β, y, z) }

A B C

x y 𝛼
β y z

𝖳𝖻𝗅(q′)

Homomorphism?
⟶

A B C

x y 𝛼
β y z

A B C

x y 𝛼
β y z

or

Both times no.
Hence, is minimal!q′

Complexity of CQs

Data vs Combined Complexity
Recall, in classical computational complexity theory we study algorithm
behavior (time/space/etc.) relative to the size of the input.

In query answering problems there are different variants of this problem:

Eval(q, D) q-Eval(D)
Input size is the sum of the query size
and database size

Matches natural settings such as a
DBMS, where queries and data come
from user and are arbitrary.

Input size is only the database!

Motivated by the fact that
queries are usually much
smaller than the databases.

Data vs Combined Complexity
Recall, in classical computational complexity theory we study algorithm
behavior (time/space/etc.) relative to the size of the input.

In query answering problems there are different variants of this problem:

Combined Complexity Data Complexity
Input size is the sum of the query size
and database size

Matches natural settings such as a
DBMS, where queries and data come
from user and are arbitrary.

Input size is only the database!

Motivated by the fact that
queries are usually much
smaller than the databases.

Our Focus Now

CQ-EVAL

Input: Conjunctive query , database (of same schema)

Output:

q D
q(D) ≠ ∅

Recall, this corresponds to combined complexity.

NP-Membership

When is ?
If there is any homomorphism from to .

NP-membership is straightforward: guess and check a homomorphism.

q(D) ≠ ∅
𝖳𝖻𝗅*(q) D

{ ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }

NP-Hardness

✦ There is an easy reduction from
3-Colourability.

✦ 3-Colourability takes a graph as
input and decides whether is 3-
colourable.
That is, can we color the vertices of
with red, green, and blue such that
no edge is between two vertices of
the same colour?

G
G

G
Valid 3-colouringNot a 3-colouring

‼

NP-Hardness

✦ 3-Colourability is equivalent to
having a homomorphism into the
triangle graph.

✦ The three nodes of the triangle
intuitively represent the three colours.

✦ Note that if there is an edge between
 and , then can’t be mapped to

the same vertex, i.e., adjacent
vertices can’t be mapped to the
same colour.

v u v, u

NP-Hardness
This homomorphism into the triangle can be trivially expressed as a conjunctive query.

✦ Take an input for 3-Colourability, i.e., a graph .

✦ Create a database with relation for the triangle:

✦ Encode the graph as a conjunctive query:

✦ There is a homomorphism if and only if is 3-colourable.

G

E

q = { () ∣ ∃v̄ ⋀
{vi,vj}∈E(G)

E(vi, vj) ∧ E(vj, vi) }

𝖳𝖻𝗅*(q) → D G

A B
red green

green red
red blue
blue red

green blue
blue green

Complexity of CQ -Eval

Theorem
CQ-Eval is NP-complete in combined complexity.
Moreover, the NP-hardness holds already for
schemas with a single binary relation symbol.

Complexity of CQ Containment
Recall the Homomorphism Theorem:

Same reduction applies here too: check whether the query that represents the triangle is
contained in the query that represents graph .

q1 ⊆ q2 ⟺ 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

q1
q2 G

Theorem
Deciding CQ Containment is NP-complete.

Complexity of CQ Minimisation

Theorem
Checking whether a query is minimal is
co-NP-complete.

q

Intuition: We need to check whether there are no homomorphisms
into any query obtained by deleting atoms.

