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Database Theory
Conjunctive Queries



Motivation

We’ve seen that we are limited in many things we want 
to do when it comes to powerful languages like FO/RA. 

Let us instead study a restricted subclass of queries 
that lies at the core of important data retrieval tasks.



Conjunctive Queries

We call queries of this form Conjunctive Queries (CQs). 

That is, conjunctive queries are FO queries using only the connectives  and .∃ ∧

{ ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }

(Can also contain constants.)



Conjunctive Queries

{ ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }

πȳ (R1 ⋈ R2 ⋈ ⋯ ⋈ Rk)
(Assuming attributes for  are , otherwise simply rename)Ri x̄i



Conjunctive Queries

πȳ (R1 ⋈ R2 ⋈ ⋯ ⋈ Rk)
Conjunctive queries correspond so-called join queries in RA. 

That is, RA queries that only use projection, renaming, selection, and joins.

{ ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }



Conjunctive Queries

Recall our SQL example in the lecture on the relational model.



Conjunctive Queries

{(c, s) ∣ ∃sid, l, dob, active . Enrolled(c, WS24, sid) ∧
Course(c, WS24, l) ∧ Student(sid, s, dob, active)}



Conjunctive Queries

{(c, s) ∣ ∃sid, l, dob, active . Enrolled(c, WS24, sid) ∧
Course(c, WS24, l) ∧ Student(sid, s, dob, active)}

CQs cover the core part 
of most SQL queries!



Conjunctive Queries

✦ Conjunctive queries form the key part 
of most data retrieval tasks. ✦ Join queries 

✦ Datalog rule bodies are CQs 

✦ Basis for many other query languages, 
e.g., Conjunctive Regular Path Queries. 



Conjunctive Queries

✦ Conjunctive queries form the key part 
of most data retrieval tasks. 

✦ Optimising CQs can help to optimise 
the most expensive part of practical 
join evaluations

Real systems will evaluate a CQ 
first and then evaluate the min 
aggregate on the result of the CQ.



Conjunctive Queries

✦ Conjunctive queries form the key part 
of most data retrieval tasks. 

✦ Optimising CQs can help to optimise 
the most expensive part of practical 
join evaluations 

✦ Complexity for results for CQs also 
give us lower bounds for more 
complex queries that often have CQs 
at their core.

The query intuitively will be at least as 
hard to solve as the underlying CQ 
(without the min aggregate).



Equivalence & Containment



Query Containment

✦ For queries  we say that  is contained in  (in symbols, )  if 
 for every database . 

✦ Equivalence of two queries ,  (in symbols, ) is defined as 
 

q1, q2 q1 q2 q1 ⊆ q2
q1(D) ⊆ q2(D) D

q1 q2 q1 ≡ q2
q1 ≡ q2 ⟺ q1 ⊆ q2 and q2 ⊆ q1

Given  in RA, there is no algorithm to decide . 
But if  are CQs then the problem is decidable!

q1, q2 q1 ⊆ q2
q1, q2

See the Trakthenbrot 
exercise sheet!



Query Containment Example

Consider the following two queries 

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ R(y, x) ∧ R(x, y)}

A B
1 2
3 3
2 3

R

q1(D) = { (2,1), (3,2), (3,3)}
q2(D) = { (3,3)}

Intuitively it seems clear that  describes a 
weaker requirement:  only needs to reach some , 
whereas it needs to reach specifically  in . 

We would therefore suspect that  
for all . But how to prove it?

q1
x z

y q2

q2(D) ⊆ q1(D)
D



The Tableau of a CQ
Basic Idea: we can represent a CQ as a database. 

The tableau  of a CQ  is the database where the tuples of relation  are all of the term 
lists that occur for  in the query (+ a relation for the output variables).

𝖳𝖻𝗅(q) q R
R

1 2

x y

1 2
y z
y w
w y

RB
1 2

x y

𝖮𝗎𝗍

{ (x, y) ∣ ∃wz B(x, y) ∧ R(y, z) ∧ R(y, w) ∧ R(w, y) }
Consider the following query:

We  write  
for the tables without 
the special  relation for 
output variables.

𝖳𝖻𝗅*(q)

𝖮𝗎𝗍



Homomorphisms

A homomorphism of two databases  is a function 
 such that: 

D1, D2
h : Dom(D1) → Dom(D2)

(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅



Example
A homomorphism of two databases  is a function 

 such that: 
D1, D2

h : Dom(D1) → Dom(D2)
(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Name Age
Anna 54
Ben 26

Parent Child

Ben Anna

R

S

Name Age
David 85
Anna 40
Claire 34

Parent Child
David David
Anna Claire

D1 D2

R

S
?



Example
A homomorphism of two databases  is a function 

 such that: 
D1, D2

h : Dom(D1) → Dom(D2)
(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Name Age
Anna 54
Ben 26

Parent Child

Ben Anna

R

S

Name Age
David 85
Anna 40
Claire 34

Parent Child
David David
Anna Claire

D1 D2

R

S

Anna ↦ Claire
Ben ↦ Anna

54 ↦ 34
26 ↦ 40

May seem weird in 
meaning but the 
“structure” is preserved!



Example
A homomorphism of two databases  is a function 

 such that: 
D1, D2

h : Dom(D1) → Dom(D2)
(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Name Age
Anna 54
Ben 26

Parent Child

Ben Anna

R

S

Name Age
David 85
Anna 40
Claire 34

Parent Child
David David
Anna Claire

D1 D2

R

S

Anna ↦ David
Ben ↦ David

54 ↦ 85
26 ↦ 85

Nothing says the 
function must be 
injective



Example
A homomorphism of two databases  is a function 

 such that: 
D1, D2

h : Dom(D1) → Dom(D2)
(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Name Age
Anna 54
Ben 26

Parent Child

Ben Anna

R

S

Name Age
David 85
Anna 40
Claire 34

Parent Child
David David
Anna Claire

D1 D2

R

S

Anna ↦ Claire
Ben ↦ Claire

54 ↦ 34
26 ↦ 34

But that doesn’t 
always work

Not a hom!



Homomorphism Theorem

As a result we have an “easy” algorithm for deciding containment for CQs: 

1. Compute  for both queries (trivial). 

2. Check if there is a homomorphism (in NP).

𝖳𝖻𝗅( ⋅ )

Theorem 
Let  be CQs. Then 

    if and only if     

q1, q2

q1 ⊆ q2 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

Careful!  
Only holds for  
set semantics!



Homomorphism Theorem

Consider the following two queries 

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

1 2

y x

x z

R
1 2

y x

w x

x u

R
𝖳𝖻𝗅(q1) 𝖳𝖻𝗅(q2)

1 2

x y

𝖮𝗎𝗍
1 2

x y

𝖮𝗎𝗍



Homomorphism Theorem

1 2

y x

x z

R
1 2

y x

w x

x u

R
𝖳𝖻𝗅(q1) 𝖳𝖻𝗅(q2)

1 2

x y

𝖮𝗎𝗍
1 2

x y

𝖮𝗎𝗍

Since  has only one tuple, a homomorphism  must necessarily have 
 and . 

𝖮𝗎𝗍 h
h(x) = x h(y) = y



Homomorphism Theorem

1 2

y x

x z

R
1 2

y x

w x

x u

R
𝖳𝖻𝗅(q1) 𝖳𝖻𝗅(q2)

1 2

x y

𝖮𝗎𝗍
1 2

x y

𝖮𝗎𝗍

Since  has only one tuple, a homomorphism  must necessarily have 
 and . 

With  and  we get a homomorphism .

𝖮𝗎𝗍 h
h(x) = x h(y) = y

h(w) = y h(u) = z 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)



Homomorphism Theorem

1 2

y x

x z

R
1 2

y x

w x

x u

R
𝖳𝖻𝗅(q1) 𝖳𝖻𝗅(q2)

1 2

x y

𝖮𝗎𝗍
1 2

x y

𝖮𝗎𝗍

Since  has only one tuple, a homomorphism  must necessarily have 
 and . 

With  and  we get a homomorphism .

𝖮𝗎𝗍 h
h(x) = x h(y) = y

h(z) = y h(u) = z 𝖳𝖻𝗅(q1)
hom 𝖳𝖻𝗅(q2)



Homomorphism Theorem

We’ve seen that  and . 
By the Homomorphism Theorem that means  and , i.e., !

𝖳𝖻𝗅(q1)
hom 𝖳𝖻𝗅(q2) 𝖳𝖻𝗅(q2)

hom 𝖳𝖻𝗅(q1)
q1 ⊆ q2 q2 ⊆ q1 q1 ≡ q2

Consider the following two queries 

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}



Why?

Important observation 
Let  be a CQ with free variables . For any database , we have   

if and only if there is a homomorphism  from  to  such that .
q ȳ D c̄ ∈ q(D)

h 𝖳𝖻𝗅*(q) D h(ȳ) = c̄

q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

   means that there is an interpretation  such that 

1. , , and .  

2. and  and .

(a, b) ∈ q2(D) I
R(I(y), I(x)) ∈ D R(I(w), I(x)) ∈ D R(I(x), I(u)) ∈ D

I(x) = a I(y) = b
So  is precisely a homomorphism 
from  to !

I
𝖳𝖻𝗅*(q2) D



Proof Idea

If , then  
 
By assumption . So take  as database . Let  be the free variables 
of . We have that  since we can just map every variable to itself.

q1 ⊆ q2 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

q1(D) ⊆ q2(D) 𝖳𝖻𝗅*(q1) D ȳ
q1 (x, y) ∈ q1(𝖳𝖻𝗅*(q1))

1 2

y x

x z

R𝖳𝖻𝗅*(q1)
1 2

y x

x z

R𝖳𝖻𝗅*(q1)

h(x) = x, h(y) = y, h(z) = z
Example queries from before 

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

So  (x, y) ∈ q1(𝖳𝖻𝗅*(q1))



Proof Idea

If , then  
 
By assumption . So take  as database . Let  be the free variables of 

. We have that  since we can just map every variable to itself. 

Then also . By the key observation: 

  

That is, the tuple in the  relation of  maps into a tuple of  of . 
Furthermore, that homomorphism maps the free variables of  to the free variables of . 

We then have .

q1 ⊆ q2 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

q1(D) ⊆ q2(D) 𝖳𝖻𝗅*(q1) D ȳ
q1 (x, y) ∈ q1(𝖳𝖻𝗅*(q1))

(x, y) ∈ q2(𝖳𝖻𝗅*(q1))
ȳ ∈ q2(𝖳𝖻𝗅*(q1)) ⟺ 𝖳𝖻𝗅*(q2)

hom 𝖳𝖻𝗅*(q1)

𝖮𝗎𝗍 𝖳𝖻𝗅(q2) 𝖮𝗎𝗍 𝖳𝖻𝗅(q1)
q2 q1

𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)



Proof Idea

If , then  

If  is an answer of  on some database  then there is a homomorphism  
that maps the output variables of  to . 

Let  be the homomorphism from  to . It is not hard to see that  is 
homomorphism from  to  that also maps the output of variables of  to .

𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1) q1 ⊆ q2

c̄ q1 D h : 𝖳𝖻𝗅*(q1) → D
q1 c̄

g 𝖳𝖻𝗅(q2) 𝖳𝖻𝗅(q1) h ∘ g
𝖳𝖻𝗅*(q2) D q2 c̄

Example queries from before 

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

1 2
y x
x z

R
1 2
y x
w x
x u

R
𝖳𝖻𝗅(q1)𝖳𝖻𝗅(q2)

1 2
1 1
2 3
3 1
4 5

D

homomorphism g homomorphism h



Proof Idea
Example queries from before 

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

1 2
y x
x z

R
1 2
y x
w x
x u

R
𝖳𝖻𝗅(q1)𝖳𝖻𝗅(q2)

1 2
1 1
2 3
3 1
4 5

D

homomorphism g homomorphism h

1 2
y x
w x
x u

𝖳𝖻𝗅(q2)
R 1 2

1 1
2 3
3 1
4 5

D
h ∘ g Still a homomorphism!

Output variables map 
to the same values in !D



Proof Idea

If , then  

If  is an answer of  on some database  then there is a homomorphism  
that maps the output variables of  to . 

Let  be the homomorphism from  to . It is not hard to see that  is 
homomorphism from  to  that also maps the output of variables of  to .

𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1) q1 ⊆ q2

c̄ q1 D h : 𝖳𝖻𝗅*(q1) → D
q1 c̄

g 𝖳𝖻𝗅(q2) 𝖳𝖻𝗅(q1) h ∘ g
𝖳𝖻𝗅*(q2) D q2 c̄

Example queries from before 

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

1 2
y x
x z

R
1 2
y x
w x
x u

R
𝖳𝖻𝗅(q1)𝖳𝖻𝗅(q2)

1 2
1 1
2 3
3 1
4 5

D

homomorphism g homomorphism h



Query Minimisation



Minimising?

Goal: 
Given a CQ , we want the equivalent CQ  with the least amount of 

atoms. 

Formally, a CQ  is minimal if there does not exist a CQ  such that: 

a)  

b)  has fewer atoms (=terms in the conjunction) than 

q q′ 

q q′ 

q′ ≡ q

q′ q



We would like to replace a CQ with its 
minimal equivalent CQ before evaluating it. 

How do we find this minimal equivalent CQ?



To minimise CQ , it is enough to 
check only those queries obtained 

by deleting atoms from !

q

q



Minimisation by Deletion

Assume CQ . 
Furthermore, assume  has an equivalent CQ 

 with . 

 
By the Homomorphism Theorem there are homomorphisms: 

      and       

q = { ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }
q

q′ = { ȳ′ ∣ ∃z̄′ S1(x̄′ 1) ∧ S2(x̄′ 2) ∧ ⋯ ∧ Sj(x̄′ j) } j < k

f : 𝖳𝖻𝗅(q) → 𝖳𝖻𝗅(q′ ) g : 𝖳𝖻𝗅(q′ ) → 𝖳𝖻𝗅(q)



Minimisation by Deletion
We have that  maps every  into some 

 with  and .
g : 𝖳𝖻𝗅(q′ ) → 𝖳𝖻𝗅(q) Sα(x̄′ α) ∈ 𝖳𝖻𝗅(q′ )

Riα(x̄iα) ∈ 𝖳𝖻𝗅(q) Sα = Riα x̄iα = h(x̄′ α)

S1(x̄′ 1) ∧ S2(x̄′ 2) ∧ S3(x̄′ 3) ∧ S4(x̄′ 4)

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)

the mapping g



Minimisation by Deletion
We have that  maps every  into some 

 with  and . 

Let  be the set of all such images of the mapping 

 applied to the terms of  and observe that .

g : 𝖳𝖻𝗅(q′ ) → 𝖳𝖻𝗅(q) Sα(x̄′ α) ∈ 𝖳𝖻𝗅(q′ )
Riα(x̄iα) ∈ 𝖳𝖻𝗅(q) Sα = Riα x̄iα = h(x̄′ α)

Img(g) = {Ri1(x̄i1), Ri2(x̄i2), …, Riℓ(x̄iℓ)}
g q′ | Img(g) | ≤ j < k

S1(x̄′ 1) ∧ S2(x̄′ 2) ∧ S3(x̄′ 3) ∧ S4(x̄′ 4)

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)Img(g)

the mapping g



Minimisation by Deletion
Let us define the query  consisting of the 

terms in . We see that  can be obtained by simply deleting some terms from .

q′ ′ = { ȳ ∣ ∃z̄ Ri1(x̄i1) ∧ Ri2(x̄i2) ∧ ⋯ ∧ Riℓ(x̄iℓ) }
Img(g) q′ ′ q

S1(x̄′ 1) ∧ S2(x̄′ 2) ∧ S3(x̄′ 3) ∧ S4(x̄′ 4)

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)Img(g)

the mapping g

q′ ′ = {ȳ ∣ R1(x̄1) ∧ R3(x̄3) ∧ R5(x̄5)



Minimisation by Deletion

We use the Homomorphism Theorem to show that  is also equivalent to : 

✦ There is a trivial homomorphism : 
simply map every variable to itself.

q′ ′ q

𝖳𝖻𝗅(q′ ′ ) → 𝖳𝖻𝗅(q)

q : R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)

q′ ′ : R1(x̄1) ∧ R3(x̄3) ∧ R5(x̄5)



Minimisation by Deletion

We use the Homomorphism Theorem to show that  is also equivalent to : 

✦ There is a trivial homomorphism : 
simply map every variable to itself. 

✦   — i.e., the function composition  —  is a homomorphism 
:  

 - function  maps every  in   into an  in  by definition,  
 - function  maps every   in   into an atom of  by construction.

q′ ′ q

𝖳𝖻𝗅(q′ ′ ) → 𝖳𝖻𝗅(q)

g ∘ f g( f( ⋅ ))
𝖳𝖻𝗅(q) → 𝖳𝖻𝗅(q′ ′ )

f Ri(x̄i) q Sα(x̄α) q′ 

g Sα(x̄α) q′ q′ ′ 



✦   — i.e., the function composition  —  is a homomorphism 
:  

 - function  maps every  in   into an  in  by definition,  
 - function  maps every   in   into an atom of  by construction.

g ∘ f g( f( ⋅ ))
𝖳𝖻𝗅(q) → 𝖳𝖻𝗅(q′ ′ )

f Ri(x̄i) q Sα(x̄α) q′ 

g Sα(x̄α) q′ q′ ′ 

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)

the mapping f

S1(x̄′ 1) ∧ S2(x̄′ 2) ∧ S3(x̄′ 3) ∧ S4(x̄′ 4)

the mapping g

q′ ′ : R1(x̄1) ∧ R3(x̄3) ∧ R5(x̄5)



✦   — i.e., the function composition  —  is a homomorphism 
:  

 - function  maps every  in   into an  in  by definition,  
 - function  maps every   in   into an atom of  by construction.

g ∘ f g( f( ⋅ ))
𝖳𝖻𝗅(q) → 𝖳𝖻𝗅(q′ ′ )

f Ri(x̄i) q Sα(x̄α) q′ 

g Sα(x̄α) q′ q′ ′ 

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)

the mapping g ∘ f

q′ ′ : R1(x̄1) ∧ R3(x̄3) ∧ R5(x̄5)



Minimisation by Deletion
Lemma 

Assume CQ . 

Furthermore, assume  has a semantically equivalent CQ
. 

Then  is also semantically equivalent to a CQ that can obtained 
by deleting atoms from .

q = { ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }
q

q′ = { ȳ′ ∣ ∃z̄′ S1(x̄′ 1) ∧ S1(x̄′ 1) ∧ ⋯ ∧ Sj(x̄′ j) }
q q′ ′ 

q

Interesting consequence: there is always a unique minimal equivalent query. 
We call this minimal equivalent subquery of  the core of .q q



An Algorithm for Minimisation

In plain text 

Delete terms from the CQ 
as long as there is still a 
homomorphism to the 
query after deletion. 

Once this is no longer 
possible, the minimum is 
reached.



CQ Minimisation Example

q = {(x, y, z) ∣ ∃αβγ R(x, y, α) ∧ R(β, y, γ) ∧ R(β, y, z) }

A B C

x y 𝛼
β y ɣ
β y z

A B C

x y 𝛼
β y ɣ
β y z

𝖳𝖻𝗅(q) 𝖳𝖻𝗅(q)∖{(x, y, α)}

Homomorphism? 
⟶

No, because , the first row can’t be 
mapped into the right-hand tableau.

h(x) = x



CQ Minimisation Example

q = {(x, y, z) ∣ ∃αβγ R(x, y, α) ∧ R(β, y, γ) ∧ R(β, y, z) }

A B C

x y 𝛼
β y ɣ
β y z

A B C

x y 𝛼
β y ɣ
β y z

𝖳𝖻𝗅(q) 𝖳𝖻𝗅(q)∖{(β, y, γ)}

Homomorphism? 
⟶

Yes!  map to themselves and x, y, z, β h(γ) = z



CQ Minimisation Example

q′ = {(x, y, z) ∣ ∃αβ R(x, y, α) ∧ R(β, y, z) }

A B C

x y 𝛼
β y z

𝖳𝖻𝗅(q′ )

Homomorphism? 
⟶

A B C

x y 𝛼
β y z

A B C

x y 𝛼
β y z

or

Both times no. 
Hence,  is minimal!q′ 



Complexity of CQs



Data vs Combined Complexity
Recall, in classical computational complexity theory we study algorithm 
behavior (time/space/etc.) relative to the size of the input. 

In query answering problems there are different variants of this problem:

Eval(q, D) q-Eval(D)
Input size is the sum of the query size 
and database size 

Matches natural settings such as a 
DBMS, where queries and data come 
from user and are arbitrary.

Input size is only the database! 

Motivated by the fact that 
queries are usually much 
smaller than the databases.



Data vs Combined Complexity
Recall, in classical computational complexity theory we study algorithm 
behavior (time/space/etc.) relative to the size of the input. 

In query answering problems there are different variants of this problem:

Combined Complexity Data Complexity
Input size is the sum of the query size 
and database size 

Matches natural settings such as a 
DBMS, where queries and data come 
from user and are arbitrary.

Input size is only the database! 

Motivated by the fact that 
queries are usually much 
smaller than the databases.



Our Focus Now

CQ-EVAL 

Input:      Conjunctive query , database  (of same schema) 

Output:    

q D
q(D) ≠ ∅

Recall, this corresponds to combined complexity.



NP-Membership

When is ? 
If there is any homomorphism from  to . 

NP-membership is straightforward: guess and check a homomorphism.

q(D) ≠ ∅
𝖳𝖻𝗅*(q) D

{ ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }



NP-Hardness

✦ There is an easy reduction from 
3-Colourability. 

✦ 3-Colourability takes a graph as 
input and decides whether  is 3-
colourable. 
That is, can we color the vertices of  
with red, green, and blue such that 
no edge is between two vertices of 
the same colour?

G
G

G
Valid 3-colouringNot a 3-colouring

‼



NP-Hardness

✦ 3-Colourability is equivalent to 
having a homomorphism into the 
triangle graph. 

✦ The three nodes of the triangle 
intuitively represent the three colours. 

✦ Note that if there is an edge between 
 and , then  can’t be mapped to 

the same vertex, i.e., adjacent 
vertices can’t be mapped to the 
same colour.

v u v, u



NP-Hardness
This homomorphism into the triangle can be trivially expressed as a conjunctive query. 

✦ Take an input for 3-Colourability, i.e., a graph . 

✦ Create a database with relation  for the triangle: 

✦ Encode the graph as a conjunctive query: 
 

✦ There is a homomorphism  if and only if  is 3-colourable.

G

E

q = { () ∣ ∃v̄ ⋀
{vi,vj}∈E(G)

E(vi, vj) ∧ E(vj, vi) }

𝖳𝖻𝗅*(q) → D G

A B
red green

green red
red blue
blue red

green blue
blue green



Complexity of CQ -Eval

Theorem 
CQ-Eval is NP-complete in combined complexity. 
Moreover, the NP-hardness holds already for 
schemas with a single binary relation symbol.



Complexity of CQ Containment
Recall the Homomorphism Theorem: 

 

Same reduction applies here too: check whether the query  that represents the triangle is 
contained in the query  that represents graph .

q1 ⊆ q2 ⟺ 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

q1
q2 G

Theorem 
Deciding CQ Containment is NP-complete.



Complexity of CQ Minimisation

Theorem 
Checking whether a query  is minimal is 
co-NP-complete.

q

Intuition: We need to check whether there are no homomorphisms 
into any query obtained by deleting atoms.


