
Instance Space Analysis for a Personnel Scheduling Problem

Lucas Kletzander1 , Nysret Musliu1 and Kate Smith-Miles2
1Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling

DBAI, TU Wien, Vienna, Austria
2School of Mathematics and Statistics, University of Melbourne, Australia
{lkletzan, musliu}@dbai.tuwien.ac.at, smith-miles@unimelb.edu.au

Abstract

In order to analyse strengths and weaknesses of
different solution methods, we use Instance Space
Analysis to perform an in-depth evaluation on the
Rotating Workforce Scheduling Problem. At first
we present a set of features aiming to describe hard-
ness of instances. We create a new, more diverse set
of instances based on a first analysis revealing gaps
and possible extensions. The results of three algo-
rithms on the extended instance set show different
strong and weak areas in the instance space as well
as a transition from feasible to infeasible instances
including a more challenging area of instances at
this transition.

1 Introduction
Due to the need for employees to work in various shifts
in many professions, different algorithms are developed and
evaluated for a wide range of personal scheduling problems.
However, for a detailed analysis of strengths and weaknesses
of solution methods, as well as for a deeper understanding
what makes certain problem instances easy or hard, it is not
sufficient to just compare average results on arbitrary bench-
marks.

In order to explain what causes hardness in instances and
which algorithms work best on different parts of the instance
space, we need a diverse set of instances, features that are able
to explain the problem hardness and a representation of the
instances where algorithms can be compared in a meaningful
way. This is done using Instance Space Analysis (ISA).

In this paper we consider the Rotating Workforce Schedul-
ing Problem (RWS) and present a set of features aiming to
describe the information required for algorithm selection and
instance space analysis. We perform ISA using the toolkit
MATILDA, revealing gaps and possible extensions for the
original set of 2000 instances for the problem. Therefore,
new instances are created and extended analysis is performed
on a more diverse selection of instances.

We present the selection of features for the representation
of the instance space. The results for two different exact mod-
els and a metaheuristic approach show different strong and
weak areas in the instance space as well as a good coverage

of the instance space when combining the strengths of the al-
gorithms. Further we describe a transition from feasible to
infeasible instances in the space and a more challenging area
of instances at this transition.

2 Related Work
This section provides previous work for both the problem we
are applying the analysis on and the methodology of instance
space analysis.

2.1 Rotating Workforce Scheduling
The rotating workforce scheduling problem is an employee
scheduling problem that can be classified as a single-activity
tour scheduling problem with non-overlapping shifts and ro-
tation constraints [Baker, 1976; Restrepo et al., 2016] and is
known to be NP-complete [Chuin Lau, 1996].

So far the problem has been addressed with a range of dif-
ferent methods. Complete approaches include a network flow
formulation [Balakrishnan and Wong, 1990], integer linear
programming [Laporte et al., 1980], several constraint pro-
gramming formulations [Laporte, 1999; Musliu et al., 2002;
Laporte and Pesant, 2004; Triska and Musliu, 2011] and
an approach with satisfiability modulo theories [Erkinger
and Musliu, 2017]. There is also work on heuristic ap-
proaches [Musliu, 2005], including the metaheuristic we use
for our evaluation [Musliu, 2006], further the creation of ro-
tating schedules by hand [Laporte, 1999], and using algebraic
methods [Falcón et al., 2016].

A new constraint model using a formulation in MiniZinc
was introduced by [Musliu et al., 2018] and evaluated us-
ing the lazy clause generation solver Chuffed and the MIP
solver Gurobi. [Kletzander et al., 2019] extends the direct
model in several ways, providing additional constraints to im-
prove handling of infeasible instances and investigating com-
plex real-world constraints and optimization goals. Results
are evaluated using Chuffed. We use the models with addi-
tional constraints (EXT1 and EXT2) from this work for our
evaluation regarding exact methods.

2.2 Instance Space Analysis
Instance Space Analysis is a methodology developed by
Smith-Miles and co-workers [Smith-Miles et al., 2014;
Smith-Miles and Bowly, 2015; Muñoz and Smith-Miles,
2017] in recent years, by extending the Algorithm Selection

Problem framework of Rice [Rice, 1976; Smith-Miles, 2009].
Instances are represented as a feature vector that captures
the intrinsic difficulty of instances for various algorithms (or
models or parameter settings). By constructing a 2-d projec-
tion of a feature-vector representation of instances, Instance
Space Analysis (ISA) allows us to:

1. visualize the distribution and diversity of existing bench-
mark instances;

2. assess the adequacy of the features;
3. identify and measure the algorithm’s regions of strength

footprint and weaknesses; and
4. distinguish areas of the space where it may be useful to

generate additional instances to support greater insights.
Figure 1 illustrates the framework and its component

spaces. The first is the ill-defined problem space, P , which
contains all the relevant problems to be solved. However, we
only have computational results for a subset, I. Second is the
algorithm space, A, which is composed of a portfolio of suc-
cessful algorithms for the problems in I. Third is the perfor-
mance space, Y , which is the set of feasible values of y(α, x),
a measure of the performance of an algorithm α ∈ A to solve
a problem x ∈ I. Fourth is the feature space, F , which con-
tains multiple measures that characterize the properties that
make an instance in I difficult. These measures are repre-
sented by the vector f(x). The meta-data, composed of the
features and algorithm performance for all the instances in I,
is used to learn the mapping g(f(x), y(α, x)) that projects an
instance x from a high-dimensional feature space to a two-
dimensional space, which we call the instance space. In ear-
lier work, this projection was achieved using principal com-
ponent analysis, and applied to problems as diverse as graph
coloring [Smith-Miles et al., 2014], time series forecasting
[Kang et al., 2017], and software test case generation meth-
ods [Oliveira et al., 2018]. In this paper, we adopt the latest
version of the evolving methodology described in [Muñoz et
al., 2018], applied to machine learning algorithms, where a
customized projection algorithm was developed to obtain an
optimal projection that aims to expose linear trends in both
features and algorithm performance to aid interpretability.

While the ISA methodology is broadly applicable, it needs
to be customised through careful choice of instance fea-
tures and an understanding of what makes the problem hard
[Smith-Miles and Lopes, 2012].

3 Problem Space
A rotating workforce schedule consists of the assignment of
shifts or days off to each day across several weeks for a cer-
tain number of employees. Table 1 shows an example for four
employees (or four equal-sized groups of employees), assign-
ing the three shift types day shift (D), afternoon shift (A), and
night shift (N). Each employee starts their schedule in a dif-
ferent row, moving from row i to row i mod n + 1 (where n
is the number of employees) in the following week.

3.1 Problem Specification
We use definitions and notation by [Musliu et al., 2002] and
[Kletzander et al., 2019]. We define:

f ∈ F
Problem
subset

λ ∈ Λ
Feature
space

τ ∈ T
Performance

space

α ∈ A
Algorithm

space

ι ∈ I
Instance

space

f ∈ F
Problem

space

Footprints
in instance

space

Learn selection mapping
from the instance space

α∗ = S (ι)

Project λ
into a vector ι

α = S (λ)

Select α∗ to
minimize Στ

Measure τ by
applying α on f

Calculate the ELA
vector λ

Define algorithm
footprints ϕ (τ, ι)

Select or generate
a subset F ⊂ F

Infer algorithm
performance

for any f ∈ F

Figure 1: Algorithm selection framework by [Smith-Miles et al.,
2014], which extends the original by [Rice, 1976].

Empl. Mon Tue Wed Thu Fri Sat Sun

1 D D D D N N -
2 - - A A A A N
3 N N - - D D D
4 A A N N - - -

Table 1: Example schedule for 4 employees

• n: Number of employees.
• w: Length of the schedule, typically w = 7 as the de-

mands repeat in a weekly cycle. The total length of
the planning period is n · w, as each employee rotates
through all n rows.
• A: Set of work shifts (activities), enumerated from 1 to
m, wherem is the number of shifts. A day off is denoted
by a special activity O with numerical value 0 and we
define A+ = A ∪ {O}.
• R: Temporal requirements matrix, an m × w-matrix

where each element Ri,j corresponds to the number of
employees that need to be assigned shift i ∈ A at day j.
• `w and uw: Minimal and maximal length of blocks of

consecutive work shifts.
• `s and us: Minimal and maximal lengths of blocks of

consecutive assignments of shift s given for each s ∈
A+.

• Forbidden sequences of shifts: Any sequences of shifts
(like N D, a night shift followed by a day shift) that are
not allowed in the schedule. This is typically required
due to legal or safety concerns. In practice in is usually
sufficient to forbid sequences of length 2 or sequences
of length 3 where the middle shift is a day off. These

are also the kind of restrictions used in the benchmark
instances for rotating workforce scheduling.

The task is to construct a cyclic schedule S, represented as
an n × w-matrix, where each Si,j ∈ A+ denotes the shift or
day off that employee i is assigned during day j in the first
period of the cycle. The schedule for employee i through the
whole planning period consists of the cyclic sequence of all
rows of S starting with row i.

3.2 Instances
For initial evaluation we took all 2000 instances from a stan-
dard benchmark set1. These instances include 20 real life
instances and other randomly generated instances [Musliu,
2006; Musliu, 2005; Musliu et al., 2018]: The instances gen-
erated consist of 9 to 51 employees, 2 to 3 shift types, 3 to
4 minimal and 5 to 7 maximal length of work blocks, 1 to 2
minimal and 2 to 4 maximal length of days-off blocks, and
minimal and maximal length of periods of consecutive shifts
(D: 2 to 3 and 5 to 7, A: 2 to 3 and 4 to 6, N : 2 to 3 and 4
to 5). The same forbidden sequences as for real-life examples
are used. Initially the temporal requirements for shifts are dis-
tributed randomly between shifts based on the total number of
working days and days-off (the number of days-off is set to
bn×w×0.2857c). With probability 0.3 the temporal require-
ments during weekend are changed (half of these duties are
distributed to the temporal requirements of the weekdays).

In this paper in the process of instance space analysis we
generated additional 4000 instances based on the generator
for the first 2000 instances. The generator was modified to
generate instances with a larger number of employees and
more diverse distribution of workforce requirements during
weekdays. As we will explain in later sections these new
instances enabled us to cover a larger space of instances.

4 Algorithm Space
In this section we present the two exact models and the meta-
heuristic used for the evaluation.

4.1 Constraint Models
For the evaluation of an exact approach to RWS we use
two different constraint models implemented in the MiniZinc
modelling language as presented in [Kletzander et al., 2019].
This section will give a short summary of the used models,
for details refer to the paper.

The models use a constraint for the sum of requirements for
each day and shift type, as well as a redundant constraint for
days off duty. Block lengths are modelled as follows: Each
time a block starts, the next shifts are constrained to be part of
the block until the minimum length and at least when reach-
ing the maximum length a different shift assignment has to
occur. Some constraints are included for symmetry breaking.
A global count constraint is used to enforce boundaries for
the number of blocks (see equations (4) and (5) in the next
section).

The difference between the two models CHUFFED1 and
CHUFFED2 (corresponding to EXT1 and EXT2 in [Klet-
zander et al., 2019]) is a set of additional constraints in

1http://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/

CHUFFED2 that enforce bounds for the number of remain-
ing blocks on and off work on the start of each new block
across the whole schedule. While this is an effort increasing
the number of constraints, for certain instances this might be
vital in reducing the search space.

The evaluation from [Kletzander et al., 2019] showed good
results for both models, but a considerable increase when us-
ing the best of both. Therefore, we expect interesting insights
analysing the comparison of the models.

4.2 Metaheuristic Solver
A metaheuristic solver for RWS was developed in [Musliu,
2005; Musliu, 2006]. This solver includes several methods
based on tabu search, min-conflicts heuristic and methods
that combine min-conflicts heuristic with tabu mechanism
and random walk. The hybrid methods improved the perfor-
mance of the commercial system for generation of rotating
workforce schedules and are currently state of the art heuris-
tic methods for this problem.

5 Features
In order to apply instance space analysis, a set of features
needs to be defined. These features need to be able to explain
the hardness of instances and the different performances of
algorithms to obtain useful results from the analysis. While a
subset of the features is eventually used for the instance space,
at first a larger set of potentially useful features is created,
using three categories.

First we use direct instance parameters or their minimum
and maximum values. Second, we add new parameters cal-
culated from the instance specification. Further we obtained
numbers of variables and constraints using the conversion of
the MiniZinc model as well as the initialization of Chuffed for
11 further features. However, when we trained some prelim-
inary models to perform algorithm selection, we found that
the model and solver features did not improve performance.
To the contrary, without these features, the performance was
slightly better. Therefore, for further analysis, we dropped
these features and used the direct and advanced instance fea-
tures, in total a set of 27 features.

5.1 Direct Instance Features
While not necessarily expressive enough to explain instance
hardness on their own, we include 13 features based on in-
stance parameters.

• Number of employees n: This features is expected to
correlate with hardness is some way as larger n requires
larger solutions.
• Number of shifts m: While instances with larger shifts

are also expected to increase difficulty, the instances in
the existing benchmarks focus on 2 or 3 shifts and still
provide a wide range of difficulty. Therefore we keep the
investigation in this area regarding the number of shifts.
• Minimum and maximum length of work blocks `w and
uw as well as blocks off shift `O and uO.
• Minimum, maximum and average for each of the sets
{`s | s ∈ A} and {us | s ∈ A}.

http://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/

• Number of forbidden sequences f .

5.2 Advanced Instance Features
We select the following 14 features based on observations
working with the algorithms that might help to explain in-
stance hardness.
• workFraction (2): Percentage of all days spent working.

Equation (1) defines the sum of all requirements.

r =

m∑
i=1

w∑
j=1

Ri,j (1)

workFraction =
r

w · n (2)

• Minimum and maximum of shiftFraction (3): Distribu-
tion of requirements between shifts.

shiftFraction =

{∑w
j=1Rs,j

w · n
∣∣∣ s ∈ A

}
(3)

• blockTightness (6): Equation (4) defines a lower bound
for the total number of working blocks in the solution.
As the problem is cyclic, the number of work blocks
and free blocks needs to be equal, therefore the maxi-
mum of the lower bounds for both types is calculated.
Equation (5) does the same for the upper bound. This
feature can be used to identify instances as infeasible
when the value is negative. This fact is used in the con-
straint models. Further, low positive values seem to lead
to harder instances according to the experience in pre-
liminary testing. This might be explained by the reduced
possibilities in choosing block lengths for a valid solu-
tion.

low = max

{⌈
r

uw

⌉
,

⌈
n · w − r
uO

⌉}
(4)

up = min

{⌊
r

`w

⌋
,

⌊
n · w − r

`O

⌋}
(5)

blockTightness = up − low (6)

• minAvgBlockLength (7) and maxAvgBlockLength (8):
Lower and upper bound for the average block length
(work block + consecutive free block) as a different way
to use blockTightness .

minAvgBlockLength =
w · n
up

(7)

maxAvgBlockLength =
w · n
low

(8)

• Minimum and maximum of shiftBlockTightness (11):
Freedom in choosing block lengths for individual shift
types. Equations (9) and (10) calculate lower and upper
bounds for the number of blocks for each type s ∈ A.

lows =

⌈∑w
j=1Rs,j

us

⌉
(9)

ups =

⌊∑w
j=1Rs,j

`s

⌋
(10)

shiftBlockTightness = {ups − lows | s ∈ A} (11)

• Minimum and maximum of shiftDayFactor (12): Reg-
ularity of shifts throughout the week.

shiftDayFactor =

{
min{Rs,j | j ∈W}
max{Rs,j | j ∈W}

∣∣∣ s ∈ A

}
(12)

• Minimum and maximum of dayFraction (13): Work-
load in relation to the number of employees for individ-
ual days.

dayFraction =

{∑m
i=1Ri,j

n

∣∣∣ j ∈W

}
(13)

• Minimum and maximum of dailyChange (14): Change
in workload between consecutive days.

dailyChange =

{
m∑
i=1

Ri,j+1 −
m∑
i=1

Ri,j

}
(14)

6 Instance Space Analysis
We perform the instance space analysis using the Matlab
toolkit MATILDA2. It uses a configuration file to specify pa-
rameters for the analysis and then performs the following
steps. It bounds extreme outliers and does normalization us-
ing a Box-Cox and Z transformation. Next, features with
low diversity and high correlation are removed and a clus-
tering step is applied. Then it calculates the projection to the
2-dimensional instance space and the footprints of the algo-
rithms within the space.

The algorithms are executed on an Intel Core i7-7500 CPU
with 2.7 GHz and 16 GB RAM using a timeout of 1000 sec-
onds. The metaheuristic is executed three times on each in-
stance to account for slight variation in the results.

The settings for MATILDA are mostly the default settings,
using all processing steps. The performance metric is set to
the runtime (lower is better). The diversity threshold is re-
duced to 0.01 (eliminate features where the number of unique
values is less than 1% of the number of instances), as some
integer features do not have high diversity, but might still be
interesting for the evaluation, e.g., blockTightness .

In the following we first report results for the original in-
stances and discuss our conclusions from these results. Then
we evaluate the extended set of instances generated based on
those conclusions and discuss the new insights we get.

6.1 Original Instances
For the first set of experiments we used the existing dataset
of 2000 instances. We evaluate the results from the model
CHUFFED1 as well as the metaheuristic.

Instance Distribution
Figure 2 shows the resulting instance space and the distribu-
tion of the selected features. Note that values on the scale cor-
respond to normalized feature values. Equation (15) shows
the projection matrix applied to the Box-Cox transformed and
normalized feature values.

(
z1
z2

)
=

−0.45 −0.39
0.45 0.40
0.50 0.08
−0.32 0.37
0.23 −0.63

ᵀ

·

maxShiftDayFactor ′

maxDayFraction ′

employees ′

minAvgBlockLength ′

blockTightness ′

 (15)

2https://github.com/andremun/matilda

https://github.com/andremun/matilda

Figure 2: Selected features for the original instance set

Figure 3: Algorithm results for the original instance set

With blockTightness and minAvgBlockLength , two fea-
tures describing possible distributions of block lengths were
selected by the analysis. Further, the number of em-
ployees representing the size of the instances is present.
The other two features represent the distribution through-
out the week (maxShiftDayFactor) and the daily workload
(maxDayFraction).

One immediate observation is that the instances cluster in
two areas with a separating gap in between. The feature most
clearly describing the difference is maxShiftDayFactor ,
where the left cluster almost uniformly has the highest value.
In fact, this cluster consists of instances with constant demand
on different days of the week while the other cluster has vary-
ing demand on some days.

Further, the first 20 instances are not randomly generated,
but stem from real-world scenarios. Some of these show as
outliers in the results, hinting that the randomly generated in-

stances do not cover all of those scenarios.

Algorithm Evaluation
Figure 3 shows the results of the evaluated algorithms on
the original instances. The results show two trends. First,
instances higher along the z2 coordinate seem to be harder.
This distribution is especially visible for the metaheuristic. A
lower z2 coordinate, on the other hand, corresponds to higher
blockTightness and lower minAvgBlockLength , translating
to more possibilities for choosing the length of blocks. Sec-
ond, within each cluster, instances with higher z1 coordinate
seem to be harder. This mostly corresponds to higher num-
bers of employees.

6.2 Extended Instances
Due to the gaps and outliers explained in the previous section
as well as the fact that algorithm performance seems similar

Figure 4: Instance distribution and selected features for the extended instance set

in the two clusters of instances, we decided to extend the set
of instances with two goals.

First, we want to close the gap between the clusters of in-
stances, mainly by changing the way the instance generator
handles the distribution of shifts across days. Second, we
want to expand the borders of the clusters in general in order
to explore a wider region of the instance space and cover the
real life instances more comprehensively.

However, some features like the number of employees
are unbounded or may have natural restrictions on values
that make sense for practical instances, such as avoiding ex-
tremely low demand relative to the number of employees. We
increased the maximum number of employees within the gen-
erated instances from 51 to 108. For several other generator
options we used wider ranges of values than before.

In total we generated 4000 new instances, dropping 520 of
those with blockTightness lower than the previous minimum,
as these instances are infeasible anyway and can be identified
rather easily. Together with the original instances, we evalu-
ated 5480 instances for the following results.

Instance Distribution
Figure 4 shows the new instance space for the extended in-
stance set. Note that due to the re-computation of the space
with more instances and all three algorithms the selection of
features changed slightly. Also, the whole projection is now
rotated roughly 90 degrees clockwise from the original pro-
jection. The projection matrix is given in Equation (16).

(
z1
z2

)
=

−0.31 0.31
0.02 −0.57
−0.47 −0.08
0.44 0.15

ᵀ

·

 minDayFraction ′

maxDayFraction ′

maxAvgBlockLength ′

minAvgBlockLength ′

 (16)

We see that this time there is no obvious gap between the
instances. There is a trail of thinly distributed instances with
high values on both coordinates identified by very high val-
ues of minAvgBlockLength . Instances at this extreme of the
instance space are not practical (very long blocks of consec-
utive work days) and are also clearly not feasible as seen in
Figure 5, therefore, we saw no need to create further instances
in this region.

The source chart shows the distribution of original and
new instances in the new instance space. The new instances
mostly fill the gap between the previous clusters and extends
the instances towards the area with high values in both co-
ordinates. Almost all original instances (19 out of 20) are
now within the more densely populated areas of the instance
space, indicating good coverage of real-world scenarios.

Regarding the selected features the representation of
blockTightness was replaced by maxAvgBlockLength . The
number of employees is not present any more, even though
a wider range of values is used in the new instances, hinting
that other factors are more critical for instance hardness in
this more diverse dataset. maxShiftDayFactor , previously
identifying a whole cluster of instances, is not present either.
However, its distribution is very similar to the ratio between
minimum and maximum of dayFraction .

Algorithm Evaluation
Figure 5 shows the algorithm results, again for a timeout of
1000 seconds, this time in the categories feasible solution
(blue), proven infeasible (green) and timeout (yellow).

For the results from Chuffed, both versions show mostly
feasible results for low z1 coordinates and mostly infeasi-
ble results for high z1 and low z2 coordinates. However, we

Figure 5: Algorithm results for the extended instance set

can see clear differences in the distribution of the timeout in-
stances. For CHUFFED1, the timeouts are more towards the
infeasible side, while for CHUFFED2, they are more towards
the feasible side. This indicates that CHUFFED2 is stronger
at detecting infeasibility at the cost of lower performance in
the feasible area while CHUFFED1 is stronger in the feasible
area.

For the metaheuristic the result is different as it is not able
to identify infeasible instances, but rather searches for a re-
sult until timeout. In comparison to the feasibility chart the
metaheuristic seems to work very well for most of the feasible
instances.

Several conclusions can be drawn from the next charts,
showing the distribution of feasible and infeasible instances
as well as the number of successful algorithms. The feasibil-
ity chart shows instances where at least one algorithm found
a feasible solution (blue), at least one algorithm proved infea-
sibility (green), or timeout on all algorithms (yellow). First,
we notice a clear distribution of feasible and infeasible in-
stances using our features. Further, there is a low number
of unsolved instances, also compared to individual algorithm
results, showing that the portfolio of algorithms can combine
the different strengths of the algorithms.

The next chart shows the number of solutions (feasible
or infeasible) before timeout counted across all algorithms
(scale normalized). In the low z1 region, for most instances
all algorithms could find a solution (yellow). For high z1 or
low z2, both Chuffed algorithms could prove infeasibility for
most instances (orange). Along the border, however, there is
a cluster of instances with a low number of successful algo-
rithms, for several instances actually no algorithm found a so-

lution. This tells us that instances on the border of feasibility
are usually harder. Furthermore, our set of instances covers
both the hard border region and easier regions on either side,
indicating a good diversity of instances.

7 Conclusion

We used instance space analysis to evaluate the performance
of two constraint models and a metaheuristic on the RWS
problem. With the results of the evaluation using the origi-
nal dataset, we were able to produce a larger, more diverse
dataset to cover a larger part of the instance space.

Using the extended dataset, we identified four features that
provide a good projection for the analysis of the instance
space. We found different strong and weak areas for the indi-
vidual algorithms and showed that the portfolio of algorithms
covers the overall instance space well. We also identified ar-
eas of feasible and infeasible instances and linked the hard-
ness of instances with the transition between these areas.

In future work we could extend the analysis to further di-
mensions of the problems like larger numbers of shifts or to
extended versions of the problem like optimization variants.

Acknowledgments

The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs and the National Foundation
for Research, Technology and Development, and the Aus-
tralian Research Council under grant FL140100012, is grate-
fully acknowledged.

References
[Baker, 1976] Kenneth R Baker. Workforce allocation in

cyclical scheduling problems: A survey. Journal of the
Operational Research Society, 27(1):155–167, 1976.

[Balakrishnan and Wong, 1990] Nagraj Balakrishnan and
Richard T Wong. A network model for the rotating work-
force scheduling problem. Networks, 20(1):25–42, 1990.

[Chuin Lau, 1996] Hoong Chuin Lau. On the complexity of
manpower shift scheduling. Computers & operations re-
search, 23(1):93–102, 1996.

[Erkinger and Musliu, 2017] Christoph Erkinger and Nysret
Musliu. Personnel scheduling as satisfiability modulo the-
ories. In International Joint Conference on Artificial Intel-
ligence – IJCAI 2017, Melbourne, Australia, August 19-
25, 2017, pages 614–621, 2017.

[Falcón et al., 2016] Raúl Falcón, Eva Barrena, David
Canca, and Gilbert Laporte. Counting and enumerating
feasible rotating schedules by means of Gröbner bases.
Mathematics and Computers in Simulation, 125:139–151,
2016.

[Kang et al., 2017] Y. Kang, R.J. Hyndman, and K. Smith-
Miles. Visualising forecasting algorithm performance us-
ing time series instance spaces. Int. J. Forecast, 33(2):345–
358, 2017.

[Kletzander et al., 2019] Lucas Kletzander, Nysret Musliu,
Johannes Gärtner, Thomas Krennwallner, and Werner
Schafhauser. Exact methods for extended rotating work-
force scheduling problems. In Proceedings of the Twenty-
Ninth International Conference on Automated Planning
and Scheduling. American Association for Artificial Intel-
ligence (AAAI), 2019. to appear.

[Laporte and Pesant, 2004] Gilbert Laporte and Gilles Pe-
sant. A general multi-shift scheduling system. Journal
of the Operational Research Society, 55(11):1208–1217,
2004.

[Laporte et al., 1980] Gilbert Laporte, Yves Nobert, and
Jean Biron. Rotating schedules. European Journal of Op-
erational Research, 4(1):24–30, 1980.

[Laporte, 1999] G Laporte. The art and science of designing
rotating schedules. Journal of the Operational Research
Society, 50:1011–1017, 9 1999.

[Muñoz and Smith-Miles, 2017] M.A. Muñoz and K.A.
Smith-Miles. Performance analysis of continuous black-
box optimization algorithms via footprints in instance
space. Evol. Comput., 25(4):529–554, 2017.

[Muñoz et al., 2018] Mario A Muñoz, Laura Villanova,
Davaatseren Baatar, and Kate Smith-Miles. Instance
spaces for machine learning classification. Machine
Learning, 107(1):109–147, 2018.

[Musliu et al., 2002] Nysret Musliu, Johannes Gärtner, and
Wolfgang Slany. Efficient generation of rotating workforce
schedules. Discrete Applied Mathematics, 118(1-2):85–
98, 2002.

[Musliu et al., 2018] Nysret Musliu, Andreas Schutt, and Pe-
ter J Stuckey. Solver independent rotating workforce
scheduling. In International Conference on the Integra-
tion of Constraint Programming, Artificial Intelligence,
and Operations Research, pages 429–445. Springer, 2018.

[Musliu, 2005] Nysret Musliu. Combination of local search
strategies for rotating workforce scheduling problem. In
International Joint Conference on Artificial Intelligence –
IJCAI 2005, Edinburgh, Scotland, UK, July 30 - August 5,
2005, pages 1529–1530, 2005.

[Musliu, 2006] Nysret Musliu. Heuristic methods for auto-
matic rotating workforce scheduling. International Jour-
nal of Computational Intelligence Research, 2(4):309–
326, 2006.

[Oliveira et al., 2018] Carlos Oliveira, Aldeida Aleti, Lars
Grunske, and Kate Smith-Miles. Mapping the effective-
ness of automated test suite generation techniques. IEEE
Transactions on Reliability, 67(3):771–785, 2018.

[Restrepo et al., 2016] Marı́a I Restrepo, Bernard Gendron,
and Louis-Martin Rousseau. Branch-and-price for person-
alized multiactivity tour scheduling. INFORMS Journal
on Computing, 28(2):334–350, 2016.

[Rice, 1976] J.R. Rice. The algorithm selection problem. In
Advances in Computers, volume 15, pages 65–118. Else-
vier, 1976.

[Smith-Miles and Bowly, 2015] K. Smith-Miles and
S. Bowly. Generating new test instances by evolving in
instance space. Comput. Oper. Res., 63:102–113, 2015.

[Smith-Miles and Lopes, 2012] Kate Smith-Miles and Leo
Lopes. Measuring instance difficulty for combinatorial op-
timization problems. Computers & Operations Research,
39(5):875–889, 2012.

[Smith-Miles et al., 2014] K. Smith-Miles, D. Baatar,
B. Wreford, and R. Lewis. Towards objective measures
of algorithm performance across instance space. Comput.
Oper. Res., 45:12–24, 2014.

[Smith-Miles, 2009] Kate A Smith-Miles. Cross-
disciplinary perspectives on meta-learning for algorithm
selection. ACM Computing Surveys (CSUR), 41(1):6,
2009.

[Triska and Musliu, 2011] Markus Triska and Nysret Mus-
liu. A constraint programming application for rotating
workforce scheduling. In Developing Concepts in Ap-
plied Intelligence, volume 363 of Studies in Computa-
tional Intelligence, pages 83–88. Springer Berlin / Heidel-
berg, 2011.

	Introduction
	Related Work
	Rotating Workforce Scheduling
	Instance Space Analysis

	Problem Space
	Problem Specification
	Instances

	Algorithm Space
	Constraint Models
	Metaheuristic Solver

	Features
	Direct Instance Features
	Advanced Instance Features

	Instance Space Analysis
	Original Instances
	Instance Distribution
	Algorithm Evaluation

	Extended Instances
	Instance Distribution
	Algorithm Evaluation

	Conclusion

