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Introduction

@ Abstract Argumentation Framework (AF) [Dung, 1995]:

(D—()
@H@

@ Evaluation: argumentation semantics
@ Extension: set of jointly acceptable arguments

stb(F) = {{a,d,e},{b,c,e}}

@ Further semantics: preferred, complete, semi-stable, stage, ...
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@ Conlflict-freeness: basic requirement for argumentation semantics.
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@ Conlflict-freeness: basic requirement for argumentation semantics.

e Given conflict-free sets ), {a}, {b}.

e Can we compute semantics based on this?
= only naive semantics (maximal conflict-free sets)
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e Conflict free sets + their range: (0,0), ({a},{a,b}), ({b},{b})
= enough to compute stage semantics (range-maximal conflict-free sets)
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@ Conlflict-freeness: basic requirement for argumentation semantics.

e Given conflict-free sets ), {a}, {b}.

e Can we compute semantics based on this?
= only naive semantics (maximal conflict-free sets)
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e Conflict free sets + their range: (0,0), ({a},{a,b}), ({b},{b})
= enough to compute stage semantics (range-maximal conflict-free sets)

v

@ Which information on top of conflict-free sets has to be added in
order to compute a certain semantics?
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Introduction

@ Systematic comparison of argumentation semantics

e Principle-based evaluation [Baroni and Giacomin, 2007]
= Hierarchy of verification classes
= Each “rational” semantics is exactly verifiable by one of these classes
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Introduction

@ Systematic comparison of argumentation semantics
e Principle-based evaluation [Baroni and Giacomin, 2007]
= Hierarchy of verification classes
= Each “rational” semantics is exactly verifiable by one of these classes

@ Strong equivalence
e Central notion in non-monotonic reasoning [Lifschitz et al., 2001,
Turner, 2004, Truszczynski, 2006, Baumann and Strass, 2016]
e Studied for most argumentation semantics
[Oikarinen and Woltran, 2011, Baumann, 2016]
= Missing results for naive and strong admissible semantics
= Characterization theorems for intermediate semantics
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Background

Definition

An argumentation framework (AF) is a pair (A, R) where
@ A C U is afinite set of arguments and
@ R C A x A is the attack relation representing conflicts.

Definition
Given an AF F = (A,R) and S C A,
@ Sis conflict-free (S € cf(F))if Va,b € S : (a,b) ¢ R.
@ ac Aisdefended by SifVb € A: (b,a) e R=3c€S:(c,h) ER
@ St=SU{a|3b€S: (b,a) € R} (the range of S)
@ S =8SU{a|3b€S: (ab)c R} (the anti-range of S)
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Background

Given an AF F = (A,R),asetS C Ais
@ admissible set if S € cf(F) and each a € S is defended by S,
@ complete extension if S € ad(F) and a € S if a is defended by S,
@ naive extension if S € cf(F) and AT € c(F) : T O S,
@ stable extension if § € cf( F) and St = 4,
@ stage extension if S € cf(F) and AT € cf(F) : TE O S,
@ preferred, grounded, semi-stable, ideal, eager, strongly admissible
extensions )
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ad(F) = {0,{a}, {b},{c},{d},{a,b},{a,d} {b,c},{a,d e}, {b,c,e}}
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0,{a},{b},{c},{d},{a,b},{a,d},{b,c},{a,d,e},{b,c,e}}
0,{a},{b}.{c},{d} {a,b},{a d,e},{b,c,e}}

ad(F) =
co(F)

=
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ad(F) = {0,{a}, {b},{c},{d},{a, b}, {a,d},{b,c},{a,d, e}, {b,c,e}}
co(F) = {0,{a},{b},{c}.{d},{a,b},{a,d, e}, {b,c,e}}
na(F) = {{a,b,e},{a,d,e},{b,c,e}}
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Background

@<_>
@

ad(F) = {0,{a}, {b},{c},{d} {a, b}, {a,d},{b,c},{a,d, e}, {b,c,e}}
co(F) = {0, {a},{b},{c},{d},{a,b},{a,d, e} {b,c,e}}

na(F) = {{a b,e},{a,d,e},{b,c,e}}

stb(F) = stg(F) = {{a,d, e}, {b,d,e}}
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Verifiability

Definition

We call a function v* : 24/ x 24 — (24)" which is expressible via basic
set operations only? neighborhood function. A neighborhood function «*
induces the verification class mapping each AF F to

F = {(5,¢(55,57)) | S € cf( F)} .

“t*(A,B) isinthe language X :=A | B| (X UX) | XNX) | X\ X)
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Verifiability

Definition

We call a function v* : 24/ x 24 — (24)" which is expressible via basic
set operations only? neighborhood function. A neighborhood function «*
induces the verification class mapping each AF F to

F = {(8,¢°(5%,57)) | S € ef( F)} .

“t*(A,B) isinthe language X :=A | B| (X UX) | XNX) | X\ X)

3
HO@OMNO
vt (AB) = A

Fr={0,0), {a},{a,b}), {c},{b,c}), {a, ¢}, {a, b, c})}
v *:v"(A,B) = (B,A\ B)
F=={0,0,0), {a},{a,b},0), ({c}, {c}, {b}), ({a, c}. {a, b, c}, 0)}
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Verifiability

@ Neighborhood functions forn = 1:

t(A,B) =0
tT(A,B)=A
v (A,B) =B
tT(A,B) =B\ A
7 (A,B) =A\B
t'(A,B) =ANB
t“(A,B) =AUB
t*(A,B) = (AUB) \ (ANB)

@ 27 + 1 syntactically different neighborhood functions
@ (A B) = (r"'(A,B),...,r"(A,B))

Thomas Linsbichler, April 22,2016 Verifiability of Argumentation Semantics



Verifiability

Definition

For neighborhood functions ©* and ¥, we say that * is more informative
than v, short v* > v, if there is a function ¢ : (24)" — (24)™ such that
for any A, B C U, it holds that 0 (+*(A, B)) = ¥ (A, B).

Incase t* ~ v’ (¢* = vV and vV > t*), we say that ¢* represents ’.
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Verifiability

Definition

For neighborhood functions ©* and ¥, we say that * is more informative
than v, short v* > v, if there is a function ¢ : (24)" — (24)™ such that
for any A, B C U, it holds that 0 (+*(A, B)) = ¥ (A, B).

Incase t* ~ v’ (¢* = vV and vV > t*), we say that ¢* represents ’.

o 51(c"%(A, B)) = 61(A,A\ B) =4 (A,A\ (A\ B)) = (4,41 B) =
t™(A, B);

() (52(t+m(A,B)) = (52(A,A ﬂB) =def (A \ (A ﬂB),A ﬂB) =
(A\ B,ANB) =t*"(A,B);

@ 53(t*"(A,B)) = 03(A\ B,ANB) =4 (A\B)U(ANB),A\B) =
(A,A\ B) =t"*(4,B).
+N

=t
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Verifiability

All neighborhood functions are represented by the ones depicted below
and the <-relation represented by arcs holds.

=7 X
2
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Verifiability

Definition

A semantics o is verifiable by the verification class induced by the
neighborhood function v* (or simply, x-verifiable) iff there is a function
Yo+ (24)" x 24 — 2% s.t. for every AF F:

Y (fﬁA;) — o(F).

Moreover, o is exactly x-verifiable iff o is x-verifiable and there is no v
with ¥ < t* such that o is y-verifiable.
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Verifiability
Proposition
Complete semantics is exactly +—-verifiable.

Proof
@ Verifiability:

Yoo FT7,AF) = {S| (S,8t,87) e Ft=, (S~ \ 1) =0,
V(S, 87,8 ) e Fr:8o85= (5 \St) £0)}

@ Exactness:

ot ]-'1: Fi: (a) @

~++ — -
° Fi :{(@,@,@),({a},{a},(ﬂ)}:f{
o co(F1) = {0} # {{a}} = co(F7)

= co is not +=-verifiable

—_
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Verifiability

Proposition
Complete semantics is exactly +—-verifiable.

Proof (ctd.)

= 2@ 0O =@ Lo
o m@{y 2O O
S YOS ONEEROR O
SN0 @ OO W O
nu .FG: ]—“g:
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Verifiability
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Verifiability

Definition

We call a semantics o rational if self-loop-chains are irrelevant.
That is, for every AF F it holds that o(F) = o(F'), where
F'=(A7,Rr\{(a,b) € Rr | (a,a), (b,b) € RF,a # b}).
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Verifiability

Definition

We call a semantics o rational if self-loop-chains are irrelevant.
That is, for every AF F it holds that o(F) = o(F'), where
F'=(A7,Rr\{(a,b) € Rr | (a,a), (b,b) € RF,a # b}).

Every semantics which is rational is exactly verifiable by a verification
class induced by one of the neighborhood functions below.
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Strong Equivalence

Definition

Given semantics o, two AFs F and G are strongly equivalent w.r.t. o
(F=Zg)iffforall AFs H: o(FUH) =0(GUH)
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Strong Equivalence

Definition

Given semantics o, two AFs F and G are strongly equivalent w.r.t. o
(F=Zg)iffforall AFs H: o(FUH) =0(GUH)

= syntactical criteria exist

Example (stable semantics)
o sth-kernel: FX6®) = (A R\ {(a,b)| a # b, (a,a) € R}).
@ Theorem: F¥i) — gksth) — F and G are strongly equivalent.

A0SO NRIORO

We have Fkbth) — gk(sh) — G Thus, F and G are strong equivalent.
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Strong Equivalence

Definition (o-kernel)

Let 7 = (A,R). We define o-kernels 7*(?) = (A, R¥“)) whereby
Q@ RKS®D) = R \ {(a,b) |a # b, (a,a) € R},
@ R® — R \{(a,b)|a # b, (a,a) € R {(b,a), (b,b)} NR £ 0},
Q@ R9) =R\ {(a,b)|a # b, (b,b) € R, {(a,a), (b,a)} "R £ 0},
Q RKC) =R\ {(a,b)|a # b, (a,a), (b,b) € R}.
Q R =R U{(a,b) | a #b,{(a,a),(b,a), (b,b)} NR # 0} .

@ Arelation = is characterizable through kernels if there is a kernel k,
st. F =G < FF =gk,

Thomas Linsbichler, April 22,2016 Verifiability of Argumentation Semantics 17



Strong Equivalence
Strong equivalence is characterizable through kernels (see below). I

stg | stb | ss eg | ad  pr id gr sad @ co na

k(stb) | k(stb) | k(ad)  k(ad)|k(ad) k(ad)|k(ad)|k(gr) | k(gr) |k(co)|k(na)
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Intermediate Semantics

@ Note that stb and stg are both characterizable through k(stb).
@ Does this also hold for arbitrary semantics o with
stb(F) C o(F) C stg(F) for each AF F?
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Intermediate Semantics

@ Note that stb and stg are both characterizable through k(stb).
@ Does this also hold for arbitrary semantics o with
stb(F) C o(F) C stg(F) for each AF F?

@ “Stagle semantics”:
S € sta(F) & S € cf(F), SEUSE =Ar and VT € ¢f (F) : S£ ¢ TF

AW OO

o stb(F) = 0 C sta(F) = {{b}} C stg(F) = {{b},{c}}.
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Intermediate Semantics

@ Note that stb and stg are both characterizable through k(stb).
@ Does this also hold for arbitrary semantics o with
stb(F) C o(F) C stg(F) for each AF F?

@ “Stagle semantics”:
S € sta(F) & S € cf(F), SEUSE =Ar and VT € ¢f (F) : S£ ¢ TF
C

HOWO®O

o stb(F) = 0 C sta(F) = {{b}} C stg(F) = {{b},{c}}.

SN0

o sta( }—k(stb)) — [{b},{c}) = F £sa FHsto) Fk(stt) — ( }—k(stb))k(sfb)

4

= Stagle semantics is not compatible with the stable kernel.
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Intermediate Semantics

For each semantics o which is +-verifiable and stb-stg-intermediate, it
holds that

f (stb) __ gk(stb o F =9 g
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Intermediate Semantics

Theorem

For each semantics o which is +-verifiable and stb-stg-intermediate, it
holds that

Fkisto) _ gk(stb) o F =7 g.

Theorem

For each semantics o which is +3-verifiable and p-ad-intermediate with
p € {ss, id, eg}, it holds that

| \

FHad) — ghad) o F =¢ g.

Theorem

For each semantics o which is —+-verifiable and gr-sad-intermediate, it
holds that

| A

Fhan _ gk(gf) & F=%G.
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Conclusion

Summary:
@ Hierarchy of verification classes
@ Each “rational” semantics is exactly verifiable by a certain class
@ Characterization of strong equivalence for intermediate semantics

Future work:

@ Semantics not captured by the approach, e.g. cf2 semantics
[Baroni et al., 2005]

@ Investigating labelling-based semantics
[Caminada and Gabbay, 2009]
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Verifiability

yna(FS) ={S| S e F,Sis C-maximal in F};
vsig(Fy ) = {S | (S,8F) € F+,s% is C-maximalin {C* | (C,C") € FT}};
Yeo(Fi ) = {S] (8,8%) € FF st = A}

V)=

Yao(F) ={S | (5,5F) € FF,5F =0}

Yor(FF) = {S | S € vaa(F[), S is C-maximal in yaq(Fy )};

vss(]-'*' y={S|S¢e 'yad(]-']F) st is C-maximalin{Ct | (C,Ct,CT) € FF,C € vad( ;f)}};
Yid(Fi) ={S | Sis C-maximalin {C | C € vaa(F; ), C C () vor(Fy )}};

Yeg(FF) = {S| Sis C-maximalin {C | C € vag(F;T ), C C () vss(Fy )}

Ysad Fy *) = {S | (5,857, 5%) € F*,3(S0, 87,85 )s - (S Sy, ) € F*
O=SyC---CSy=SAVie{l,....,n}: S CSE};

Yor(Fa ©) = {S | S € ysaa(Fy ), V(5,57,5%) € F~% : 505 = (57\s%)#0)}.

Thomas Linsbichler, April 22, 2016 Verifiability of Argumentation Semantics 24



