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Introduction

Conflict-freeness: basic requirement for argumentation semantics.

Example

Given conflict-free sets ∅, {a}, {b}.

Can we compute semantics based on this?
⇒ Yes, naive semantics (maximal conflict-free sets)

aF : b aG : b aH : b . . .

na(F) = na(G) = na(H) = · · · = {{a}, {b}}.

⇒ not stage semantics (range-maximal conflict-free sets)

stg(F) = {{a}}, stg(G) = {{b}}, stg(H) = {{a}, {b}}.

Which information on top of conflict-free sets has to be added in
order to compute a certain semantics?
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Introduction

Conflict-freeness: basic requirement for argumentation semantics.

Example (2)

Given conflict free sets + their range: (∅, ∅), ({a}, {a, b}), ({b}, {b})

Which semantics can we compute based on this?
⇒ enough to compute stage semantics (range-maximal conflict-free sets)

aF ′ : b aG′ : b cH′ : a b . . .

stg(F ′) = stg(G′) = stg(H′) = · · · = {{a}}.

⇒ not preferred semantics (maximal admissible sets)

pr(F ′) = pr(G′) = {{a}}, pr(H′) = {∅}.

Which information on top of conflict-free sets has to be added in
order to compute a certain semantics?
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Introduction

Systematic comparison of argumentation semantics
Computational complexity
[Dunne and Bench-Capon, 2002, Dvořák and Woltran, 2010]
Principle-based evaluation [Baroni and Giacomin, 2007]

⇒ Hierarchy of verification classes
⇒ Classification of semantics into these classes
⇒ Each “rational” semantics is exactly verifiable by one of these classes

Strong equivalence
Central notion in non-monotonic reasoning [Lifschitz et al., 2001,
Turner, 2004, Truszczynski, 2006, Baumann and Strass, 2016]
Studied for most argumentation semantics
[Oikarinen and Woltran, 2011, Baumann, 2016]

⇒ Missing results for naive and strong admissible semantics
⇒ Characterization theorems for intermediate semantics
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Background

Definition
An argumentation framework (AF) is a pair (A,R) where

A ⊆ U is a finite set of arguments and

R ⊆ A× A is the attack relation representing conflicts.

Definition
Given an AF F = (A,R) and S ⊆ A,

S is conflict-free (S ∈ cf(F)) if ∀a, b ∈ S : (a, b) /∈ R.

a ∈ A is defended by S if ∀b ∈ A : (b, a) ∈ R⇒ ∃c ∈ S : (c, b) ∈ R

S+
F = S ∪ {a | ∃b ∈ S : (b, a) ∈ R} (the range of S)

S−F = S ∪ {a | ∃b ∈ S : (a, b) ∈ R} (the anti-range of S)

Baumann, Linsbichler, Woltran, September 16, 2016 Verifiability of Argumentation Semantics 4



Background

Semantics
Given an AF F = (A,R), a set S ⊆ A is

admissible set if S ∈ cf(F) and each a ∈ S is defended by S,

complete extension if S ∈ ad(F) and a ∈ S if a is defended by S,

naive extension if S ∈ cf(F) and @T ∈ cf(F) : T ⊃ S,

stable extension if S ∈ cf(F) and S+
F = A,

stage extension if S ∈ cf(F) and @T ∈ cf(F) : T+
F ⊃ S+

F ,

preferred, grounded, semi-stable, ideal, eager, strongly admissible
extensions

Baumann, Linsbichler, Woltran, September 16, 2016 Verifiability of Argumentation Semantics 5



Verifiability

Definition

We call a function rx : 2U × 2U →
(
2U
)n which is expressible via basic

set operations onlya neighborhood function.

The verification class induced by rx maps each AF F to

F̃ x =
{(

S, rx(S+
F , S

−
F )
)
| S ∈ cf(F)

}
.

arx(A,B) is in the language X ::= A | B | (X ∪ X) | (X ∩ X) | (X \ X)

Example

aF : b c

r+ : rx(A,B) = A
F̃+ = {(∅, ∅), ({a}, {a, b}), ({c}, {b, c}), ({a, c}, {a, b, c})}

r−± : rx(A,B) = (B,A \ B)
F̃−± = {(∅, ∅, ∅), ({a}, {a, b}, ∅), ({c}, {c}, {b}), ({a, c}, {a, b, c}, ∅)}

Baumann, Linsbichler, Woltran, September 16, 2016 Verifiability of Argumentation Semantics 6
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Verifiability

Neighborhood functions for n = 1:

rε(A,B) = ∅
r+(A,B) = A

r−(A,B) = B

r∓(A,B) = B \ A

r±(A,B) = A \ B

r∩(A,B) = A ∩ B

r∪(A,B) = A ∪ B

r∆(A,B) = (A ∪ B) \ (A ∩ B)

27 + 1 syntactically different neighborhood functions

rx1,...,xn(A,B) ::= (rx1(A,B), . . . , rxn(A,B))

Baumann, Linsbichler, Woltran, September 16, 2016 Verifiability of Argumentation Semantics 7



Verifiability

Definition
rx is more informative than ry (rx � ry): there is a function
δ :
(
2U
)n →

(
2U
)m such that δ (rx(A,B)) = ry (A,B) for any A,B ⊆ U .

In case rx ≈ ry (rx � ry and ry � rx), we say that rx represents ry.

Example

δ1(r+±(A,B)) = δ1(A,A \ B) =def (A,A \ (A \ B)) = (A,A ∩ B) =
r+∩(A,B);

δ2(r+∩(A,B)) = δ2(A,A ∩ B) =def (A \ (A ∩ B),A ∩ B) =
(A \ B,A ∩ B) = r±∩(A,B);

δ3(r±∩(A,B)) = δ3(A \ B,A ∩ B) =def ((A \ B) ∪ (A ∩ B),A \ B) =
(A,A \ B) = r+±(A,B).

⇒ r+± ≈ r+∩ ≈ r±∩

Baumann, Linsbichler, Woltran, September 16, 2016 Verifiability of Argumentation Semantics 8
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Verifiability

Lemma
All neighborhood functions are represented by the ones depicted below
and the ≺-relation represented by arcs holds.

+−

+± +∓ ±∓ ∩∪ −± −∓

+ ± ∩ ∆ ∪ ∓ −

ε

Baumann, Linsbichler, Woltran, September 16, 2016 Verifiability of Argumentation Semantics 9



Verifiability

Definition
A semantics σ is verifiable by the verification class induced by the
neighborhood function rx (x-verifiable) iff there is a function
γσ :

(
2U
)n → 22U s.t.

∀F : γσ

(
F̃ x
)

= σ(F).

Moreover, σ is exactly x-verifiable iff σ is x-verifiable and there is no ry

with ry ≺ rx such that σ is y-verifiable.

Baumann, Linsbichler, Woltran, September 16, 2016 Verifiability of Argumentation Semantics 10



Verifiability

Proposition
Complete semantics is exactly +−-verifiable.

Proof
Verifiability:

γco(F̃+−) = {S | (S, S+, S−) ∈ F̃+−, (S− \ S+) = ∅,

∀(S̄, S̄+, S̄−) ∈ F̃+− : S̄ ⊃ S⇒ (S̄− \ S+) 6= ∅)}

Exactness:

+± : aF1 : b aF ′1 : b

F̃1
+±

= {(∅, ∅, ∅), ({a}, {a}, ∅)} = F̃ ′1
+±

co(F1) = {∅} 6= {{a}} = co(F ′1)

⇒ co is not +±-verifiable

Baumann, Linsbichler, Woltran, September 16, 2016 Verifiability of Argumentation Semantics 11



Verifiability

Proposition
Complete semantics is exactly +−-verifiable.

Proof
Verifiability:

γco(F̃+−) = {S | (S, S+, S−) ∈ F̃+−, (S− \ S+) = ∅,

∀(S̄, S̄+, S̄−) ∈ F̃+− : S̄ ⊃ S⇒ (S̄− \ S+) 6= ∅)}

Exactness:

+± : aF1 : b aF ′1 : b

F̃1
+±

= {(∅, ∅, ∅), ({a}, {a}, ∅)} = F̃ ′1
+±

co(F1) = {∅} 6= {{a}} = co(F ′1)

⇒ co is not +±-verifiable

Baumann, Linsbichler, Woltran, September 16, 2016 Verifiability of Argumentation Semantics 11



Verifiability

Proposition
Complete semantics is exactly +−-verifiable.

Proof
Verifiability:

γco(F̃+−) = {S | (S, S+, S−) ∈ F̃+−, (S− \ S+) = ∅,

∀(S̄, S̄+, S̄−) ∈ F̃+− : S̄ ⊃ S⇒ (S̄− \ S+) 6= ∅)}

Exactness:

+± : aF1 : b aF ′1 : b

F̃1
+±

= {(∅, ∅, ∅), ({a}, {a}, ∅)} = F̃ ′1
+±

co(F1) = {∅} 6= {{a}} = co(F ′1)

⇒ co is not +±-verifiable

Baumann, Linsbichler, Woltran, September 16, 2016 Verifiability of Argumentation Semantics 11



Verifiability

Proposition
Complete semantics is exactly +−-verifiable.

Proof (ctd.)

−∓ : aF2 : b c aF ′2 : b c

±∓ : aF3 : b aF ′3 : b

−± : aF4 : b aF ′4 : b

+∓ : aF5 : b aF ′5 : b

∩∪ : aF6 : b aF ′6 : b
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Verifiability

ε: na

+: stb, stg ∓: ad, pr, id

+∓: ss, eg −±: gr, sad

+−: co
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Verifiability

Definition
We call a semantics σ rational if self-loop-chains are irrelevant.
That is, for every AF F it holds that σ(F) = σ(F l), where
F l = (AF ,RF \ {(a, b) ∈ RF | (a, a), (b, b) ∈ RF , a 6= b}).

Theorem
Every semantics which is rational is exactly verifiable by a verification
class induced by one of the neighborhood functions below.

+−

+± +∓ ±∓ ∩∪ −± −∓

+ ± ∩ ∆ ∪ ∓ −

ε

Baumann, Linsbichler, Woltran, September 16, 2016 Verifiability of Argumentation Semantics 14



Verifiability

Definition
We call a semantics σ rational if self-loop-chains are irrelevant.
That is, for every AF F it holds that σ(F) = σ(F l), where
F l = (AF ,RF \ {(a, b) ∈ RF | (a, a), (b, b) ∈ RF , a 6= b}).

Theorem
Every semantics which is rational is exactly verifiable by a verification
class induced by one of the neighborhood functions below.

+−

+± +∓ ±∓ ∩∪ −± −∓

+ ± ∩ ∆ ∪ ∓ −

ε

Baumann, Linsbichler, Woltran, September 16, 2016 Verifiability of Argumentation Semantics 14



Strong Equivalence

Definition
Two AFs F and G are strongly equivalent w.r.t. semanticsσ (F ≡σE G) iff
for all AFs H: σ(F ∪H) = σ(G ∪ H)

⇒ syntactical criteria exist

Example (stable semantics)

stb-kernel: F k(stb) = (A,R \ {(a, b) | a 6= b, (a, a) ∈ R}).
Theorem: F k(stb) = Gk(stb) ⇔ F and G are strongly equivalent.

aF : b aG : b

We have F k(stb) = Gk(stb) = G. Thus, F and G are strong equivalent.
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Strong Equivalence

Definition (σ-kernel)

Let F = (A,R). We define σ-kernels F k(σ) =
(
A,Rk(σ)

)
whereby

1 Rk(stb) = R \ {(a, b) |a 6= b, (a, a) ∈ R},
2 Rk(ad) = R \ {(a, b) |a 6= b, (a, a) ∈ R, {(b, a), (b, b)} ∩ R 6= ∅},
3 Rk(gr) = R \ {(a, b) |a 6= b, (b, b) ∈ R, {(a, a), (b, a)} ∩ R 6= ∅},
4 Rk(co) = R \ {(a, b) |a 6= b, (a, a), (b, b) ∈ R}.
5 Rk(na) = R ∪ {(a, b) | a 6= b, {(a, a), (b, a), (b, b)} ∩ R 6= ∅} .
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Strong Equivalence

Theorem
Strong equivalence is characterizable through kernels (see below).

F ≡σE G ⇔ F k = Gk

dstgp dstbp dssp degp dadp dprp didp dgrp dsadp dcop dnap

k(stb) k(stb) k(ad) k(ad) k(ad) k(ad) k(ad) k(gr) k(gr) k(co) k(na)
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Intermediate Semantics

stb and stg are both characterizable through k(stb).
Does this also hold for arbitrary semantics σ with
stb(F) ⊆ σ(F) ⊆ stg(F) for each AF F?
(e.g. when obtained from SESAME [Besnard et al., 2016])

Example
“Stagle semantics”:
S ∈ sta(F)⇔ S ∈ cf(F), S+

F ∪ S−F = AF and ∀T ∈ cf (F) : S+
F 6⊂ T+

F

aF : b c

stb(F) = ∅ ⊂ sta(F) = {{b}} ⊂ stg(F) = {{b}, {c}}.

aF k(stb) : b c

sta
(
F k(stb)

)
= {{b}, {c}} ⇒ F 6≡sta

E F k(stb), F k(stb) =
(
F k(stb)

)k(stb)

⇒ Stagle semantics is not compatible with the stable kernel.
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Intermediate Semantics

Theorem
For each semantics σ which is +-verifiable and stb-stg-intermediate, it
holds that

F k(stb) = Gk(stb) ⇔ F ≡σE G.

Theorem
For each semantics σ which is +∓-verifiable and ρ-ad-intermediate with
ρ ∈ {ss, id, eg}, it holds that

F k(ad) = Gk(ad) ⇔ F ≡σE G.

Theorem
For each semantics σ which is −±-verifiable and gr-sad-intermediate, it
holds that

F k(gr) = Gk(gr) ⇔ F ≡σE G.
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Conclusion

Summary:

Hierarchy of verification classes

Each “rational” semantics is exactly verifiable by a certain class

Characterization of strong equivalence for intermediate semantics

Future work:

Semantics not captured by the approach, e.g. cf2 semantics
[Baroni et al., 2005]

Investigating labelling-based semantics
[Caminada and Gabbay, 2009]

Use classification as distance measure [Doutre and Mailly, 2016]
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Verifiability

γna(F̃ε
A) = {S | S ∈ F̃ , S is ⊆-maximal in F̃};

γstg(F̃+
A ) = {S | (S, S+) ∈ F̃+, S+ is ⊆-maximal in {C+ | (C,C+) ∈ F̃+}};

γstb(F̃+
A ) = {S | (S, S+) ∈ F̃+, S+ = A};

γad(F̃∓A ) = {S | (S, S∓) ∈ F̃∓, S∓ = ∅};

γpr(F̃∓A ) = {S | S ∈ γad(F̃∓A ), S is ⊆-maximal in γad(F̃∓A )};

γss(F̃+∓
A ) = {S | S ∈ γad(F̃∓A ), S+ is ⊆-maximal in {C+ | (C,C+,C∓) ∈ F̃+∓,C ∈ γad(F̃∓A )}};

γid(F̃∓A ) = {S | S is ⊆-maximal in {C | C ∈ γad(F̃∓A ),C ⊆
⋂
γpr(F̃∓A )}};

γeg(F̃+∓
A ) = {S | S is ⊆-maximal in {C | C ∈ γad(F̃∓A ),C ⊆

⋂
γss(F̃+∓

A )}};

γsad(F̃−±A ) = {S | (S, S−, S±) ∈ F̃−±, ∃(S0, S
−
0 , S
±
0 ), . . . , (Sn, S−n , S

±
n ) ∈ F̃−± :

(∅ = S0 ⊂ · · · ⊂ Sn = S ∧ ∀i ∈ {1, . . . , n} : S−i ⊆ S±i−1)};

γgr(F̃−±A ) = {S | S ∈ γsad(F̃−±A ), ∀(S̄, S̄−, S̄±) ∈ F̃−± : S̄⊃S⇒ (S̄−\S±)6=∅)}.
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