

An Extension-Based Approach to Belief Revision in Abstract Argumentation

Martin Diller, Adrian Haret, Thomas Linsbichler, Stefan Rümmele, Stefan Woltran

Institute of Information Systems, TU Wien, Vienna, Austria

July 30, 2015

- Evaluation: argumentation semantics
- Extension: set of jointly acceptable arguments

- Evaluation: argumentation semantics
- Extension: set of jointly acceptable arguments

$$stable(F) =$$

- Evaluation: argumentation semantics
- Extension: set of jointly acceptable arguments

$$\mathit{stable}(F) = \{\{a, d, e\},$$

- Evaluation: argumentation semantics
- Extension: set of jointly acceptable arguments

$$\textit{stable}(F) = \{\{a, d, e\}, \{b, c, e\}\}$$

Abstract Argumentation Framework (AF) [Dung, 1995]:

- Evaluation: argumentation semantics
- Extension: set of jointly acceptable arguments

$$\textit{stable}(F) = \big\{ \{a, d, e\}, \{b, c, e\} \big\}$$

• Further semantics: preferred, complete, semi-stabe, stage, ...

- (Abstract) argumentation is an inherently dynamic process.
- Revision when new information arises
- Previously: syntax-based revision

- (Abstract) argumentation is an inherently dynamic process.
- Revision when new information arises
- Previously: syntax-based revision
- ullet Extension-based revision with respect to semantics σ
- Minimal change of the extensions of the original AF

- (Abstract) argumentation is an inherently dynamic process.
- Revision when new information arises
- Previously: syntax-based revision
- ullet Extension-based revision with respect to semantics σ
- Minimal change of the extensions of the original AF

Model-based revision	Extension-based revision
Knowledge base	Argumentation framework
Model	Extension wrt. σ
Revision formula	1. Formula / 2. AF
Knowledge base	Argumentation framework

- Coste-Marquis et al., 2014: AGM-style revision of argumentation frameworks, where result is a set of AFs
- Here: Revision results in a single AF

- Coste-Marquis et al., 2014: AGM-style revision of argumentation frameworks, where result is a set of AFs
- Here: Revision results in a single AF

$$\mathit{stable}(F) = \big\{\{a,d,e\},\{b,c,e\}\big\}$$

- Coste-Marquis et al., 2014: AGM-style revision of argumentation frameworks, where result is a set of AFs
- Here: Revision results in a single AF

$$\{\{a,d,e\},\{b,c,e\},\{a,b,e\}\}$$

- Coste-Marquis et al., 2014: AGM-style revision of argumentation frameworks, where result is a set of AFs
- Here: Revision results in a single AF

$$\mathit{stable}(F') = \big\{\{a,d,e\},\{b,c,e\},\{a,b,e\}\big\}$$

- Coste-Marquis et al., 2014: AGM-style revision of argumentation frameworks, where result is a set of AFs
- Here: Revision results in a single AF

$$\{\{a,d,e\},\{b,c,e\},\{a,b\}\}$$

- Coste-Marquis et al., 2014: AGM-style revision of argumentation frameworks, where result is a set of AFs
- Here: Revision results in a single AF

There exists no argumentation framework having this extension-set under stable semantics!

Main Contributions

- Representation theorems: Correspondence between revision operators captured by rankings and revision operators given by (extended) set of AGM postulates.
- Revision by propositional formulas

•
$$\star_{\sigma} : AF_{\mathfrak{A}} \times \mathcal{P}_{\mathfrak{A}} \mapsto AF_{\mathfrak{A}}$$

- Revision by argumentation frameworks
 - $*_{\sigma}: AF_{\mathfrak{A}} \times AF_{\mathfrak{A}} \mapsto AF_{\mathfrak{A}}$

Main Contributions

- Representation theorems: Correspondence between revision operators captured by rankings and revision operators given by (extended) set of AGM postulates.
- Revision by propositional formulas

•
$$\star_{\sigma} : AF_{\mathfrak{A}} \times \mathcal{P}_{\mathfrak{A}} \mapsto AF_{\mathfrak{A}}$$

Revision by argumentation frameworks

•
$$*_{\sigma}$$
: $AF_{\mathfrak{A}} \times AF_{\mathfrak{A}} \mapsto AF_{\mathfrak{A}}$

Tool-Kit:

- Realizability results for AF semantics [Dunne et al., 2014]
 - Exact characterization of realizable extension-sets Σ_{σ}
- Horn belief revision [Delgrande and Peppas, 2015]
 - How to modify postulates and rankings in order to stay in the fragment

Covered Semantics

Definition (Proper I-maximal Semantics)

A semantics σ is called proper I-maximal if for each $\mathbb{S} \in \Sigma_{\sigma}$:

- for all $S_1, S_2 \in \mathbb{S}$: $S_1 \subseteq S_2$ implies $S_1 = S_2$
- ② for all $\emptyset \neq \mathbb{S}' \subseteq \mathbb{S}$: $\mathbb{S}' \in \Sigma_{\sigma}$
- **③** for all ⊆-incomparable extensions S_1, S_2 : $\{S_1, S_2\} \in \Sigma_{\sigma}$

Examples:

- stable semantics
- preferred semantics
- semi-stable semantics
- stage semantics

$$\star_{\sigma} \colon AF_{\mathfrak{A}} \times \mathcal{P}_{\mathfrak{A}} \mapsto AF_{\mathfrak{A}}$$
:

- (P \star 1) $\sigma(F \star_{\sigma} \varphi) \subseteq [\varphi]$.
- (P \star 2) If $\sigma(F) \cap [\varphi] \neq \emptyset$ then $\sigma(F \star_{\sigma} \varphi) = \sigma(F) \cap [\varphi]$.
- (P \star 3) If $[\varphi] \neq \emptyset$ then $\sigma(F \star_{\sigma} \varphi) \neq \emptyset$.
- (P*4) If $\varphi \equiv \psi$ then $\sigma(F \star_{\sigma} \varphi) = \sigma(F \star_{\sigma} \psi)$.
- (P*5) $\sigma(F \star_{\sigma} \varphi) \cap [\psi] \subseteq \sigma(F \star_{\sigma} (\varphi \wedge \psi)).$
- $(\text{P} \star 6) \ \text{ If } \sigma(F \star_{\sigma} \varphi) \cap [\psi] \neq \emptyset \text{ then } \sigma(F \star_{\sigma} (\varphi \wedge \psi)) \subseteq \sigma(F \star_{\sigma} \varphi) \cap [\psi].$

[Alchourrón et al., 1985, Katsuno and Mendelzon, 1991, Coste-Marquis et al., 2014]

Definition (σ -compliance)

A pre-order \preceq is σ -compliant if for every formula φ it holds that $\min([\varphi], \preceq)$ is realizable under σ .

Example ($\sigma \in \{stable, preferred, stage, semi-stable\}$)

- $\varphi = \neg(a \land b \land c)$
- $\bullet \{a,b,c\} \prec \{a,b\} \approx \{a,c\} \approx \{b,c\} \prec \{a\} \approx \{b\} \approx \{c\} \prec \emptyset$
 - $\min([\varphi], \preceq) = \{\{a, b\}, \{a, c\}, \{b, c\}\} \notin \Sigma_{\sigma}$
 - \leq is not σ -compliant
- $\bullet \ \{a,b,c\} \prec' \{a\} \approx' \{b\} \approx' \{c\} \prec' \{a,b\} \prec' \{a,c\} \prec' \{b,c\} \prec' \emptyset$
 - \leq' is σ -compliant
 - For instance, $\min([\varphi], \preceq') = \{\{a\}, \{b\}, \{c\}\} \in \Sigma_{\sigma}$

Definition

Given semantics σ and AF F, a pre-order \leq_F is a faithful ranking if it is total and for any sets E_1, E_2 and AFs F, F_1, F_2 :

- (i) if $E_1, E_2 \in \sigma(F)$, then $E_1 \approx_F E_2$,
- (ii) if $E_1 \in \sigma(F)$ and $E_2 \notin \sigma(F)$, then $E_1 \prec_F E_2$,
- (iii) if $\sigma(F_1) = \sigma(F_2)$, then $\leq_{F_1} = \leq_{F_2}$.

Definition

Given semantics σ and AF F, a pre-order \leq_F is a faithful ranking if it is total and for any sets E_1, E_2 and AFs F, F_1, F_2 :

- (i) if $E_1, E_2 \in \sigma(F)$, then $E_1 \approx_F E_2$,
- (ii) if $E_1 \in \sigma(F)$ and $E_2 \notin \sigma(F)$, then $E_1 \prec_F E_2$,
- (iii) if $\sigma(F_1) = \sigma(F_2)$, then $\leq_{F_1} = \leq_{F_2}$.

Theorem

An operator \star_{σ} satisfies postulates $P\star 1 - P\star 6$ for proper I-maximal semantics σ

iff

there exists an assignment mapping each AF F to a faithful and σ -compliant ranking \leq_F such that $\sigma(F \star_{\sigma} \varphi) = \min([\varphi], \leq_F)$.

$$*_{\sigma}: AF_{\mathfrak{A}} \times AF_{\mathfrak{A}} \mapsto AF_{\mathfrak{A}}:$$

- (A*1) $\sigma(F *_{\sigma} G) \subseteq \sigma(G)$.
- (A*2) If $\sigma(F) \cap \sigma(G) \neq \emptyset$, then $\sigma(F *_{\sigma} G) = \sigma(F) \cap \sigma(G)$.
- (A*3) If $\sigma(G) \neq \emptyset$, then $\sigma(F *_{\sigma} G) \neq \emptyset$.
- (A*4) If $\sigma(G) = \sigma(H)$, then $\sigma(F *_{\sigma} G) = \sigma(F *_{\sigma} H)$.
- (A*5) $\sigma(F *_{\sigma} G) \cap \sigma(H) \subseteq \sigma(F *_{\sigma} f_{\sigma}(\sigma(G) \cap \sigma(H))).$
- (A*6) If $\sigma(F *_{\sigma} G) \cap \sigma(H) \neq \emptyset$, then $\sigma(F *_{\sigma} f_{\sigma}(\sigma(G) \cap \sigma(H))) \subseteq \sigma(F *_{\sigma} G) \cap \sigma(H)$.
- (*Acyc*) If for $0 \le i \le n$ we have $\sigma(F *_{\sigma} G_{i+1}) \cap \sigma(G_i) \ne \emptyset$ and $\sigma(F *_{\sigma} G_0) \cap \sigma(G_n) \ne \emptyset$ then $\sigma(F *_{\sigma} G_n) \cap \sigma(G_0) \ne \emptyset$.

Definition

Given semantics σ and AF F, a pre-order \leq_F is an I-faithful ranking if it is I-total and for any \subseteq -incomparable sets E_1, E_2 and AFs F, F_1, F_2 :

- (i) if $E_1, E_2 \in \sigma(F)$, then $E_1 \approx_F E_2$,
- (ii) if $E_1 \in \sigma(F)$ and $E_2 \notin \sigma(F)$, then $E_1 \prec_F E_2$,
- (iii) if $\sigma(F_1) = \sigma(F_2)$, then $\leq_{F_1} = \leq_{F_2}$.

Definition

Given semantics σ and AF F, a pre-order \leq_F is an I-faithful ranking if it is I-total and for any \subseteq -incomparable sets E_1, E_2 and AFs F, F_1, F_2 :

- (i) if $E_1, E_2 \in \sigma(F)$, then $E_1 \approx_F E_2$,
- (ii) if $E_1 \in \sigma(F)$ and $E_2 \notin \sigma(F)$, then $E_1 \prec_F E_2$,
- (iii) if $\sigma(F_1) = \sigma(F_2)$, then $\leq_{F_1} = \leq_{F_2}$.

Theorem

An operator $*_\sigma$ satisfies postulates A*1 – A*6 + (Acyc) for proper I-maximal semantics σ

iff

there exists an assignment mapping each AF F to an I-faithful ranking \preceq_F such that $\sigma(F \star_\sigma \varphi) = \min([\varphi], \preceq_F)$.

Definition

Given semantics σ and AF F, a pre-order \leq_F is an I-faithful ranking if it is I-total and for any \subseteq -incomparable sets E_1, E_2 and AFs F, F_1, F_2 :

- (i) if $E_1, E_2 \in \sigma(F)$, then $E_1 \approx_F E_2$,
- (ii) if $E_1 \in \sigma(F)$ and $E_2 \notin \sigma(F)$, then $E_1 \prec_F E_2$,
- (iii) if $\sigma(F_1) = \sigma(F_2)$, then $\leq_{F_1} = \leq_{F_2}$.

Theorem

An operator $*_{\sigma}$ satisfies postulates A*1 – A*6 + (Acyc) for proper I-maximal semantics σ

iff

there exists an assignment mapping each AF F to an I-faithful ranking \preceq_F such that $\sigma(F\star_\sigma\varphi)=\min([\varphi],\preceq_F)$.

⇒ standard model-based revision operators (e.g. [Dalal, 1988]) work.

Conclusion

Summary:

- Extension-based revision resulting in a single AF
- Combining recent results in argumentation and belief revision
- Different representation theorems:
 - Revision by propositional formulas
 - Revision by argumentation frameworks

Future work:

- Concrete operators
- Other semantics
- Minimal-change criteria for the realizing AFs
- Iterated revision of AFs

References I

Alchourrón, C. E., Gärdenfors, P., and Makinson, D. (1985).

On the logic of theory change: partial meet contraction and revision functions.

J. Symb. Log., 50(2):510-530.

Coste-Marquis, S., Konieczny, S., Mailly, J., and Marquis, P. (2014).

On the revision of argumentation systems: minimal change of arguments statuses.

In Proc. KR, pages 72-81.

Dalal, M. (1988).

Investigations into a theory of knowledge base revision.

In Proc. AAAI, pages 475-479.

Delgrande, J. P. and Peppas, P. (2015).

Belief revision in Horn theories.

Dung, P. M. (1995).

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.

Artif. Intell., 77(2):321-357.

Dunne, P. E., Dvorák, W., Linsbichler, T., and Woltran, S. (2014).

Characteristics of multiple viewpoints in abstract argumentation.

In Proc. KR. pages 52-61.

Katsuno, H. and Mendelzon, A. O. (1991).

Propositional knowledge base revision and minimal change.

Artif. Intell., 52(3):263-294.