
Parameterized Complexity of Optimal Planning: A Detailed Map

Martin Kronegger, Andreas Pfandler, and Reinhard Pichler
Vienna University of Technology, Austria

{kronegger, pfandler, pichler}@dbai.tuwien.ac.at

Abstract
The goal of this paper is a systematic parameter-
ized complexity analysis of different variants of
propositional STRIPS planning. We identify sev-
eral natural problem parameters and study all pos-
sible combinations of 9 parameters in 6 differ-
ent settings. These settings arise, for instance,
from the distinction if negative effects of actions
are allowed or not. We provide a complete pic-
ture by establishing for each case either paraNP-
hardness (i.e., the parameter combination does not
help) or W[t]-completeness with t ∈ {1, 2} (i.e.,
fixed-parameter intractability), or FPT (i.e., fixed-
parameter tractability).

1 Introduction
Planning is a classical reasoning task in AI. In general, it
is computationally hard. Bylander [1994] provided a com-
prehensive complexity analysis of propositional STRIPS (be-
low simply referred to as STRIPS, for short) – a fundamental
model of planning. Without any restrictions (in particular, im-
posing no restriction on the plan length), STRIPS is PSPACE-
complete. With a polynomial upper bound on the plan length,
the problem becomes NP-complete. Bylander also identified
several restrictions which make STRIPS planning tractable,
e.g., by allowing only positive preconditions and only one
fluent (i.e., variable) to be affected by each action.

Many attempts have been made to identify further tractable
fragments of planning. Bäckström and Klein [1991] have in-
troduced various restrictions for the more general planning
formalism SAS+, where the domain is not necessarily binary.
These restrictions include, e.g., P (i.e., every fluent is set to
a particular value by at most one action) and U (i.e., only
one fluent to be affected by an action). Bäckström and Nebel
[1995] investigated the complexity under all combinations of
these restrictions. Giménez and Jonsson [2008], Chen and
Giménez [2010], and Katz and Domshlak [2008] analyzed
planning under various restrictions of the causal graph.

A modern approach for identifying tractable fragments
of hard problems comes from parameterized complexity
[Downey and Fellows, 1999], which introduces a multivari-
ate view of complexity. The time needed to solve a problem
is thus measured not only in terms of the mere size n of a

problem instance but also in terms of the size k of some pa-
rameter (or combination of parameters) that describes certain
characteristics of the given problem instance. The primary
goal of a parameterized complexity analysis is to identify
fixed-parameter tractability (FPT), i.e., the problem can be
solved in time f(k) · nO(1), where n denotes the size of the
problem instance and f(k) depends on the parameter k only
(but not on n). The exponential time complexity is thus con-
fined to the parameter, i.e., the function f(k). Moreover, an
FPT result immediately yields tractability of the problem if
the parameter is bounded by a constant. In the area of plan-
ning, very few FPT results are known. Downey et al. [1999]
proved FPT for STRIPS planning when parameterized by the
plan length and the treewidth of an instance. Bäckström et al.
[2012] proved FPT of SAS+ planning with restriction P re-
called above when considering the plan length as parameter.

In principle, any (natural) characteristic of problem in-
stances is worth considering as parameter. Of course, there
is no guarantee that a particular parameter yields a tractable
fragment. If restricting a parameter by a constant does not
lead to tractability, we call the problem paraNP-hard. By-
lander [1994] showed that STRIPS remains NP-hard even if
every action has only one precondition and one effect. In
other words, the problem is paraNP-hard w.r.t. the parameter
combination “precondition size and effect size”.

In parameterized complexity, the area between the “nice”
case of FPT and the extreme case of paraNP-hardness is
even more fine-grained: a whole hierarchy of complexity
classes W[1], W[2], etc. lies in between and is used to classify
fixed-parameter intractable problems. For instance, STRIPS
planning parameterized by the plan length was shown W[1]-
hard by Downey et al. [1999] and actually W[2]-complete
by Bäckström et al. [2012]. It is a commonly believed
complexity-theoretic assumption that FPT 6= W[1], which
is also supported by the exponential time hypothesis (ETH).
Hence showing hardness for W[1] (or higher classes) rules
out the existence of an FPT-algorithm. Indeed, for W[t]-
complete problems, only algorithms with run time O(nf(k))
are known, i.e., the parameter k occurs in the exponent of the
input size n. This is worse than the upper bound f(k) · nO(1)

for FPT, but it still allows us to identify a PTIME-solvable
fragment of the problem by imposing a constant upper bound
on the parameter value.

In various areas of reasoning, systematic parameterized

complexity analyses (by considering all combinations of sev-
eral problem parameters) have been conducted recently. For
instance, the parameterized complexity of abduction was
studied by Fellows et al. [2012], of circumscription by Lack-
ner and Pfandler [2012a], and of handling minimal models
by Lackner and Pfandler [2012b]. For planning, very little
is known about the parameterized complexity apart from the
few results recalled above. The goal of this paper is to close
this gap by embarking on a systematic parameterized com-
plexity analysis of planning.

We start our analysis by identifying several natural param-
eters of planning instances. All of these parameters can be
simply read off from an instance. Some of them describe the
instance, e.g., size of the preconditions, size of the effects,
maximum number of occurrences of each fluent, etc. The
other parameters refer to desired properties of the solutions:
the plan length as has already been studied before and a re-
finement of it, namely the total number of fluent changes in
a plan. We study all possible combinations of 9 parameters
in 6 different settings. These settings arise depending if neg-
ative preconditions/effects of actions are allowed or not and
if we consider the length or the number of fluent changes as
a possible restriction on allowed plans. In principle we thus
get 6 · 29 = 3072 cases. However, in Section 3 we shall iden-
tify various dependencies between these parameters so that
we only need to establish the parameterized complexity of a
small subset of these cases to cover all of them. For details,
see Section 3.
Contribution. We provide a complete picture of the pa-
rameterized complexity of three variants of propositional
STRIPS planning. For each of the 3072 cases we estab-
lish either paraNP-hardness (i.e., the parameter combination
does not help) or W[t]-completeness with t ∈ {1, 2} (i.e.,
fixed-parameter intractability), or FPT (i.e., fixed-parameter
tractability). FPT is achieved, e.g., for the combined pa-
rameters plan length and maximum number of occurrences
of each fluent. This underlines the importance of studying
combinations of parameters, since the first parameter alone
yields W[2]-completeness and the second parameter alone
even leads to paraNP-hardness.

2 Preliminaries
We assume familiarity with the basics of complexity theory
and logic. For an introduction we refer, e. g., to the book
of Papadimitriou [1994]. We use the following notation. We
denote by var (ϕ) the set of variables of a propositional for-
mula ϕ. For n ∈ N, we use [n] to denote the set {1, . . . , n}.

Planning. We consider a set of state variables (or fluents)
V = {v1, . . . , vn} over the Boolean domain D = {0, 1}. A
state s is a mapping s : V → D. Let I be the initial state
and the goal G be a satisfiable conjunction of literals over V .
An action a consists of a precondition pre(a) and an effect
eff(a), both of which are satisfiable conjunctions of literals
over V . We denote such an action by a : pre(a) → eff(a).
Let A be a set of actions. A PSN (propositional STRIPS with
negation) specification is given by the tuple (V,A, I,G). An
MPSN (monotone-PSN) specification is a PSN specification

where only positive literals are allowed in the effect of the
actions. The special case of PSN where only positive literals
are allowed in the precondition of the actions and in the goal
is usually referred to as (classical propositional) STRIPS.

An action a ∈ A is applicable in state s if pre(a) is satisfied
by s, when s is considered as an interpretation. A conjunc-
tion of literals has a unique model when considering only the
variables which actually occur in this conjunction. We shall
refer to this unique model when we speak of the model of the
goal, the model of an effect, etc. Letm be the model of eff(a)
for some action a. For the resulting state s′ after executing an
applicable action a ∈ A in state s we have s′(v) = m(v) if
v ∈ var (eff(a)) and s′(v) = s(v) otherwise.

Let π = [a1, ..., al] be a sequence of actions and s0, . . . , sl
be states. Then π is called a plan from s0 to sl if ai ∈ π
is applicable in state si−1 and si is the resulting state after
executing ai in state si−1 for i ∈ [l]. A state s′ is called
reachable from a state s if there is a plan from s to s′. Let m
be the model of G and s a state. Then s is called a goal state
if s(v) = m(v) for all v ∈ var (G). We call π a plan for the
planning specification (V,A, I,G) if s0 = I , and sl is a goal
state. The plan length of π is its number of actions l.

Parameterized Complexity. Parameterized algorithmics
(cf. [Downey and Fellows, 1999; Flum and Grohe, 2006;
Niedermeier, 2006]) is a promising approach to obtain effi-
cient algorithms for fragments of NP-hard problems. In a pa-
rameterized complexity analysis the runtime of an algorithm
is studied with respect to a parameter k ∈ N and input size n.
The basic idea here is to find a parameter that describes the
structure of the instance such that the combinatorial explosion
can be confined to this parameter. The most favourable class
is FPT (fixed-parameter tractable) which contains problems
that can be decided by an algorithm running in f(k) · nO(1)

time, where f is a computable function. We call such an al-
gorithm fixed-parameter tractable (fpt).

Formally, a parameterized problem is a subset of Σ∗ × N,
where Σ is the input alphabet. If a combination of parameters
k1, . . . , kl is considered, the second component of an instance
(x, k) is given by k =

∑
1≤i≤l ki. Problem reductions now

also have to take the parameter into account. Let L1 and L2

be parameterized problems, with L1 ⊆ Σ∗1 × N and L2 ⊆
Σ∗2 × N. A parameterized reduction (or fpt-reduction) from
L1 to L2 is a mapping P : Σ∗1×N→ Σ∗2×N s.t. (1) (x, k) ∈
L1 iff P (x, k) ∈ L2; (2) the mapping can be computed by
an fpt-algorithm w.r.t. parameter k; (3) there is a computable
function g such that k′ ≤ g(k), where (x′, k′) = P (x, k).

To define the most important complexity classes for
fixed-parameter intractability, we first define the model-
checking problem over Σt,u formulas, MC[Σt,u]. The
class Σt,u contains all first-order formulas of the form
∃x1∀x2∃x3 . . . Qxtϕ(x1, . . . , xt), where the formula ϕ is
quantifier free and the quantifier Q is an ∃ if t is odd and
a ∀ if t is even, and the quantifier blocks – with the excep-
tion of the first ∃ block – are of length at most u. We write
Σ1 to denote Σ1,u for arbitary u ≥ 1. Given a finite struc-
ture A and a formula ψ ∈ Σt,u, the problem MC[Σt,u] asks
whetherA is a model of ψ. The so-called W-hierarchy can be
defined with help of MC[Σt,u]. For t ≥ 1, u ≥ 1, the class

W[t] contains all problems that are fpt-reducible to MC[Σt,u]
when parameterized by the length of ψ [Downey et al., 1998;
Flum and Grohe, 2005]. The class paraNP [Flum and Grohe,
2003] is defined as the class of problems that are solvable by
a nondeterministic Turing-machine in fpt-time. Notice that
hardness for paraNP is defined in terms of fpt-reductions. In
our paraNP-hardness proofs, we will make use of the fol-
lowing characterization of paraNP-hardness given by Flum
and Grohe [2006], Theorem 2.14: any parameterized prob-
lem that remains NP-hard when the parameter is set to some
constant is paraNP-hard. The following relations between
the parameterized complexity classes hold: FPT ⊆ W[1] ⊆
W[2] ⊆ W[3] ⊆ · · · ⊆ paraNP.

3 Overview of Results
In our parameterized complexity analysis of STRIPS, MPSN
and PSN, we shall study the parameters listed in Table 2. For
the definition of c, let V be a set of fluents, let s0 denote
the initial state, let π = [a1, ..., al] be a plan, and let si with
i ∈ [l] denote the state after action ai. For x ∈ V , we set
c(x, π, i) = 1 if si−1(x) 6= si(x) to denote that x is changed
in the i-th step of π and c(x, π, i) = 0 if si−1(x) = si(x).
Then parameter c is defined as

∑
x∈V,i∈[l] c(x, π, i), i.e., c

can be seen as a refinement of the plan length k. For the
definition of the remaining parameters we need the follow-
ing terminology. Let (V, I, A,G) be a planning specifica-
tion. The size of a conjunction of literals ϕ is given by
|var (ϕ)|. Analogously, the size of an action a ∈ A is de-
fined as |var (pre(a))|+ |var (eff(a))|. We say that a variable
v ∈ V occurs in a conjunction of literals ϕ if v or ¬v oc-
curs in ϕ. Let occv(ϕ) be 1 if v occurs in ϕ and 0 otherwise.
The number of occurrences of a variable v ∈ V is defined as∑

a∈A(occv(pre(a)) + occv(eff(a))). Finally, the overlap of
a ∈ A is given by |var (pre(a)) ∩ var (eff(a))|.

For the formal treatment of the parameters k and c, there
is a subtle issue: the parameter value should be computable
in polynomial time from the input. While all other parame-
ters in Table 2 can be computed from the input in linear time,
the parameters k and c refer to properties of the desired so-
lutions. We thus include k and c explicitly in the input. But
then another issue has to be solved: combining k and c may
make the planning problem artificially more complex in an
unintended and unintuitive way, e.g.: if we consider k (but
not c) as parameter, then a restrictive value of c in the input
may render possible plans invalid even though they satisfy the
upper bound on the plan length k. We thus further distinguish
variants of STRIPS, MPSN and PSN planning depending on
whether k or c should be used as possible restriction on plans.
Of course, if one is not interested in specifying upper bounds
on k or c, then one simply chooses a sufficiently big (i.e., sin-
gle exponential) value for them. In total, we thus study the
following six settings:

k-STRIPS/k-MPSN/k-PSN
Instance: A STRIPS/MPSN/PSN planning specification

(V,A, I,G) and an integer k.
Question: Is there a plan for (V,A, I,G) of length≤ k?

k length of the plan
c number of fluent changes in the plan
p maximum size of a precondition
e maximum size of an effect
a maximum size of an action
na number of actions
g size of the goal
nv number of state variables
vo maximum number of occurrences of a variable
o maximum overlap of the actions

Table 2: List of considered parameters.

na

vo

p, e

p o e

a

g

nv

k

c k, e

Figure 1: Parameter dependencies. An arc x → y denotes
that y ≤ f(x) holds, where f is a computable function.

c-STRIPS/c-MPSN/c-PSN
Instance: A STRIPS/MPSN/PSN planning specification

(V,A, I,G) and an integer c.
Question: Is there a plan for (V,A, I,G) with at most

c fluent changes?

Our goal is a complete parameterized complexity classifi-
cation in the above 6 settings by analyzing all combinations
of either k or c with the remaining 8 parameters in Table 2.
In this analysis, we may make use of dependencies between
these parameters, e.g., if we take a as parameter, then p, o, e
are implicitly also bounded. More specifically, we can bound
the size of parameter a in terms of the parameters p, e via the
inequation a ≤ p + e. For parameter c, the following bounds
hold: c ≤ k · e as well as c ≤ 2nv · nv. The following the-
orem, which summarizes the relevant dependencies, is easily
verified.

Theorem 1. The parameter dependencies depicted in Fig-
ure 1 are correct.

In Tables 1 (a)–(c) we give a summary of all parameter-
ized complexity results that are needed for a full classifica-
tion of all 29 parameter combinations in all MPSN and PSN
settings. Indeed, these tables contain the strongest hardness-
and membership results, from which the complexity classifi-
cation of the remaining cases can be derived. To formalize the
derivation of further complexity results, let P denote a com-
bination of parameters from Table 2. We define the closure
of P (denoted as P ∗) as the set of parameters reachable from
P in the directed graph in Figure 1. Moreover, we write “x-
PSN (resp. x-MPSN) w.r.t. P ” to denote that we consider the
x-PSN (resp. x-MPSN) problem parameterized by the param-
eter combination P . With the following rules, which allow us
to derive further complexity results from Tables 1 (a)–(c), we
will indeed get a complete parameterized complexity classi-
fication of all parameter combinations in all settings.

Lemma 2. Let x ∈ {c, k} and let P , S be parameter combi-
nations. Further, let P ∈ {x-MPSN, x-PSN} denote a prob-

Setting Complexity
k-MPSN, k, a, g, (p, e, o) W[1] (Thm. 9)
k-MPSN, k, p, (o) W[2] ∗
k-MPSN, k, g, o W[2] (Thm. 10)
k-MPSN, a, g, vo, (p, e, o) paraNP (Thm. 11)
c-MPSN, c, a, g, (p, e, o) W[1] (Thm. 9)
c-MPSN, a, g, vo, (p, e, o) paraNP (Thm. 11)

(a) Hardness results for k-MPSN/c-MPSN

Setting Complexity
k-PSN, nv FPT (Prop. 6)
k-PSN, k, vo FPT (Thm. 5)
k-PSN, na FPT (Thm. 4)
k-PSN, k, e W[1] (Thm. 8)
k-PSN, k, p, g W[1] (Thm. 7)
k-PSN, k W[2] ∗
(b) Membership results for k-PSN

Setting Complexity
c-PSN, nv FPT (Prop. 6)
c-PSN, c, vo FPT (Thm. 5)
c-PSN, na FPT (Thm. 4)
c-PSN, c W[1] (Thm. 12)
(c) Membership results for c-PSN

Table 1: Complexity Map; The results marked with ∗ are shown in the work of Bäckström et al. [2012].

lem and let C denote a complexity class. Then we can derive
new complexity results from known ones as follows:

• C-membership of x-PSN w.r.t. P implies C-membership
of x-MPSN w.r.t. P .

• If S ⊆ P ∗, then C-membership of P w.r.t. S implies C-
membership of P w.r.t. P .

• C-hardness of x-MPSN w.r.t. P implies C-hardness of x-
PSN w.r.t. P .

• If P ⊆ S∗ then C-hardness of P w.r.t. S implies C-
hardness of P w.r.t. P .

Note that in Table 1a (and in the theorems in Section 5) we
present the hardness results for the maximal combinations of
parameters s.t. the corresponding hardness still holds. Some
parameters are put in parentheses to emphasize that we could
have left them out, since they can be obtained from the re-
maining parameters via the last derivation rule in Lemma 2.

Theorem 3. The results in Tables 1 (a)–(c) together with the
derivation rules in Lemma 2 give a complete parameterized
complexity classification, i.e., for each of the 4 settings k-
MPSN/k-PSN/c-MPSN/c-PSN and for each combination of
parameter k respectively c with the remaining 8 parameters
in Table 2, we can either derive (1) membership in FPT, (2)
completeness for W[1] or W[2], or (3) paraNP-hardness.

Proof. For every parameter combination in every setting one
has to apply the rules from Lemma 2 to derive all possi-
ble membership and hardness results. By retaining only the
strongest membership and hardness results, we get one of the
3 possible classifications according to the theorem. We have
automatically verified this claim by means of a simple script
which loops through all cases.

For instance, suppose that we want to identify the complex-
ity of k-PSN w.r.t. the parameter combination P = {k, a}.
For the membership, first compute P ∗ = {k, a, p, e, o}. In
Table 1b we get W[1]- and W[2]-membership for the subsets
{k, e} respectively {k} of P ∗. We retain W[1]-membership as
the stronger result. For the hardness, we recall from Lemma 2
that hardness results for k-MPSN carry over to k-PSN. By
the first row of Table 1a, we may derive the matching W[1]-
hardness since P ⊆ S∗ with S = S∗ = {k, a, g, p, e, o}. In
total, we have thus established W[1]-completeness of k-PSN
w.r.t. the parameter combination P .

Strips. Notice that PSN can be easily reduced to STRIPS via
the following reduction. For each variable v ∈ V we intro-
duce a new “dual” variable v′ with the intended meaning that
v′ is true whenever v is false and vice versa. Next, we replace
each negative literal ¬v by v′ in all preconditions of actions
and in the goal. Furthermore, whenever a variable occurs in
the effect of an action we add the “dual” variable as follows:
For v we add ¬v′ and for ¬v we add v′ to the effect. Fi-
nally, in the initial state each primed variable is set to false if
the unprimed variable is initialized to true (and vice versa).
After these steps all variables occurring in preconditions and
the goal are positive, i. e., we have obtained a STRIPS spec-
ification. Notice that this reduction is an fpt-reduction w.r.t.
all parameters listed in Table 2 since it can be carried out in
fpt-time and all parameters in Table 2 are increased at most
by a factor of two. Therefore, all hardness results obtained
for k-PSN/c-PSN will carry over to k-STRIPS/c-STRIPS. Fur-
thermore, all membership results for k-PSN/c-PSN trivially
also hold for k-STRIPS/c-STRIPS.
Roadmap. The remainder of this paper is organized as fol-
lows. We first prove the membership results for k-PSN in
Table 1b (see Section 4) and then the hardness results for k-
MPSN in Table 1a (see Section 5). Finally, in Section 6, we
show how most results can be carried over from parameter k
to c. A separate proof is needed only when considering pa-
rameter c alone: in this case, the complexity drops from W[2]-
(for k) to W[1]-completeness (for c).

4 Membership Results for Plan Length
We start with Table 1b. To this end, we first prove the FPT-
results and then move on to the new W[1]-membership results.

Theorem 4. k-PSN parameterized by na is in FPT.

Proof. Let (V,A, I,G) be a PSN specification with at most
na actions. The crucial observation is that there are only
O(2na · na!) states reachable from the initial state I . To see
this, let π be a plan and let A(π) = {a1, . . . , al} denote the
set of actions executed in π. We write ai < aj to denote that
the last execution of aj in plan π is after the last execution of
ai in π. W.l.o.g., suppose a1 < a2 < · · · < al. Then the
value of a fluent v ∈ V after the execution of π is as follows.

• if v is not in the effect of any of the actions a1, . . . , al
then v has the value according to the initial state;

• if v ∈ var (eff(ai)) for some ai but not in the effect of
al, al−1, . . . , ai+1, then v has the value according to ai.

In other words, the state after the execution of an arbitrary
plan π is uniquely determined by the set A(π) and the order
on the actions inA(π) defined by π. The desired upper bound
O(2na · na!) on the number of reachable states follows from
the fact that there are at most 2na possible sets of actions and
for each such set there are at most na! orderings.

To decide k-PSN, we thus set up the state transition graph
withO(2na·na!) nodes and check if a state satisfying the goal-
conditions is reachable in k steps from the initial state.

Theorem 5. k-PSN parameterized by k and vo is in FPT.

Proof. Let (V,A, I,G) be a PSN specification and let π =
[a1, . . . , aj] be a sequence of actions with j ≤ k. We say
there is a gap before iwith i ∈ [j+1] if (1) after the execution
of [a1, . . . , ai−1], the precondition of ai is not satisfied or
(2) i = j+ 1 and after executing π the goal G is not satisfied.

Consider a sequence of actions π = [a1, . . . , aj] with
j ∈ [k] and assume that there is a gap before i in π for some
i ∈ [j + 1]. Otherwise π is already a plan from I to G. We
only work out the details of case (1) in the definition of a gap,
i.e., i ∈ [j], s.t. in state si−1, the precondition of ai is not
satisfied. Case (2) (i.e., i = j + 1) is shown analogously.

Let m be the model of pre(ai). Then there is at least one
variable v ∈ var (pre(ai)), s. t. si−1(v) 6= m(v). There are
at most vo actions with v in the effect. Hence, one of these
vo actions has to be inserted at a position p with p ≤ i in the
plan. Obviously, there are ≤ vo · i ≤ vo · j possibilities to
(1) choose an action with variable v in the effect and (2) to
insert this action into the current plan at some position p ≤ i.

By enumerating all these options and checking recursively
whether a gap is left, we obtain a search tree of depth ≤ k
whose branching factor increases from vo (at the root) to k·vo
(at the parent nodes of the leaves). This yields a running time
ofO(k! · vok · poly(n)), where poly(n) denotes a polynomial
in the input size n.

The third FPT-result is obvious since the number of states
(and hence the plan length) as well as the number of actions
are bounded by a (single exponential) function of nv.

Proposition 6. k-PSN parameterized by nv is in FPT.

We now turn our attention to the W[1]-membership results
in Table 1b. Recall that Bäckström et al. [2012] have shown
the W[2]-completeness of k-PSN w.r.t. parameter k (and im-
plicitly also w.r.t. the parameter combination k, p, o). In The-
orem 10, we will show W[2]-hardness of k-PSN if k is com-
bined with g and o. However, if k is combined with both p
and g together, then we obtain W[1]-membership.

Theorem 7. k-PSN parameterized by k, p, g is in W[1].

Proof. We proceed by a reduction from k-PSN to MC[Σ1].
For an arbitrary k-PSN instance 〈(V, I, A,G), k〉, we con-
struct an MC[Σ1] instance (A, ϕ) as follows. Let A′ be
the set of the identifiers of the actions in A, let V ′ ⊆ V
contain the variables that occur in a precondition or in the
goal, and let u = k · p + g. To simplify the notation we
will view conjunctions of literals also as sets of literals. We
create the structure A with domain V ∪ A′ and the follow-
ing relations: the unary relations Var := V ′, Act := A′,

initt := {v ∈ V | I(v) = 1}, goalt := {v ∈ V | v ∈ G}, and
the binary relations pret := {(a, v) ∈ A′ × V | v ∈ pre(a)},
efft := {(a, v) ∈ A′ × V | v ∈ eff(a)}. For each relation
with subscript t, we also introduce a relation with subscript f
for the dual case with negated variables. Furthermore, we add
g unary relations goalvari with i ∈ [g], s.t. goalvari contains
the variable corresponding to the i-th goal element. Simi-
larly, we add p binary relations prevari with i ∈ [p] where
prevari(a, x) indicates that variable x is contained in the pre-
condition of action a at position i. In case the size of the pre-
condition is less than p, we can assume that the last variable is
repeated until p is reached. To simplify the presentation, we
use the macro ti(x) with the intuition that the variable x is 1
at step i. ti(x) is replaced by initt(x) if i = 0 and by the sub-
formula efft(ai, x) ∨

∨
i′<i

(
ti′(x) ∧

∧
i′<j≤i ¬efff (aj , x)

)
otherwise. Its dual version fi(x) is defined analogously. The
Σ1-formula ϕ is defined as follows:

ϕ := ∃c1 · · · cu ∃a1 · · · ak

∧
i∈[u]

Var(ci) ∧
∧
i∈[k]

[
Act(ai) ∧

∧
j∈[u]

((
pret(ai, cj)→ ti−1(cj)

)
∧
(
pref (ai, cj)→ fi−1(cj)

))]
∧

∧
i∈[u]

[(
goalt(ci)→ tk(ci)

)
∧
(
goalf (ci)→ fk(ci)

)]
∧

∧
i∈[g]

∨
j∈[u]

goalvari(cj) ∧
∧
i∈[k]

∧
l∈[p]

∨
j∈[u]

prevarl(ai, cj)

Clearly ϕ ∈ Σ1 holds and the length of ϕ is bounded in
terms of k, p, and g. The crucial idea in this reduction is the
following. Since e is not considered as a parameter here, we
cannot iterate over all literals in the effects. (This would re-
quire a ∀-quantifier or increase the size of the formula by a
function depending on the input size.) We can, however, re-
strict the attention to those variables which are going to be
“read” later on. These are exactly the variables which are ei-
ther contained in the goal or in the precondition of one of the
executed actions. Observe that there are u = p · k + g many
of them. Since u depends only on parameters we can “guess”
these critical variables c1, . . . , cu by means of ∃-quantifiers.
Now it suffices to use a conjunction over c1, . . . , cu each
time the preconditions of an action are verified or the goal
is checked (all other state variables can safely be ignored).
Notice that ϕ encodes only plans of length exactly k. By us-
ing a “nop-action” for padding the plan, this construction can
be easily extended to allow for plans of length at most k.

For the sake of a simpler presentation of the proof we de-
fined the macro ti(·) as above. We remark, however, that a
recursive definition of ti(·) would have the advantage that the
expanded size reduces from exponential to polynomial.

We postpone the proof of the following theorem, since it
follows immediately from the proof of Theorem 12.

Theorem 8. k-PSN parameterized by k, e is in W[1].

5 Hardness Results for Plan Length
In this section, we prove the new parameterized hardness re-
sults for k-MPSN from Table 1a. We proceed from W[1]-
hardness via W[2]-hardness to paraNP-hardness.
Theorem 9. k-MPSN parameterized by k, a, g, (p, e, o) is
W[1]-hard.

Proof. We show this by a reduction from the well-known
W[1]-complete problem CLIQUE, parameterized by the clique
size s. Let 〈(N,E), s〉 be an instance of CLIQUE with
N = {v1, . . . , vn} and l = s(s−1)

2 , i.e., l is the number of
edges in a clique of size s. We construct a k-MPSN instance
〈(V,A, I,G), k〉 as follows. We set V := V ′ ∪E′ ∪H ∪ {f}
with V ′ = {x1, . . . , xn} representing the vertices, E′ =
{eij | 1 ≤ i < j ≤ n} representing the edges, and
H = {g1, . . . , gl} containing the goal variables. In the ini-
tial state I , we set the variables eij ∈ E′ with {vi, vj} /∈ E
to 1 and all other variables to 0. The goal isG := g1∧ . . .∧gl.
We create A := Av ∪Ae ∪ {f : ¬f → f}, where Av and Ae
are defined as follows:

Av =
⋃

i∈[n]

{axi : ¬f → xi}

Ae =
⋃

1≤i<j≤n,
m∈[l]

{am
eij : f ∧ ¬gm ∧ xi ∧ xj ∧ ¬eij → gm ∧ eij}

Finally, we define the plan length k as k := s(s+1)
2 + 1.

The intuition of this reduction is as follows. As long as f
is set to 0, the actions inAv allow us to choose variables from
V ′ (corresponding to the vertices in N) to be contained in the
clique. Eventually action f is executed, and the state of the
variables in V ′ is now “fixed”. Basically, it remains to check
whether for each pair xi, xj ∈ V with xi = xj = 1, the edge
{vi, vj} is present in E. This is done with help of the actions
in Ae. For each m ∈ [l] an unused edge variable eij ∈ E′

such that xi and xj are set to 1 has to be chosen. This is
done by executing ameij which sets both gm and eij to 1. As
a consequence, all actions ameij with m ∈ [l] are inapplicable
in the future. Here the intended meaning is that vi and vj are
connected by an edge in E and thus do not violate the clique
property. The goal is reached if all g1, . . . , gl are set to 1,
which means that l edges between the chosen vertices have
been found.

Clearly, this transformation can be carried out in fpt-time
and the parameters a, g, p, e, o are bounded in terms of the
clique size s. It remains to verify that also the length k of valid
plans is bounded in terms of s. First, s actions are required
to select the s vertices into the clique. Then, a single action
is required to activate the flag f . During the checking phase,
l actions from Ae have to be executed to reach the goal. In
total, we obtain k = s+ 1 + s(s−1)

2 = s(s+1)
2 + 1.

Bäckström et al. [2012] have shown the W[2]-hardness of
k-PSN w.r.t. parameter k by a reduction from the HITTING
SET problem. An inspection of that proof reveals that the
authors have actually shown a slightly stronger result, namely
the W[2]-hardness of k-PSN w.r.t. the parameter combination
{k, p, o}. Below we show a further W[2]-hardness result of
k-PSN by adding different parameters to parameter k.

Theorem 10. k-MPSN parameterized by k, g, o is W[2]-hard.

Proof. We show this by a reduction from DOMINATING SET,
which is known to be W[2]-complete when parameterized by
the size s of the dominating set. Let 〈H = (V,E), s〉 be an
instance of DOMINATING SET where V = {v1, . . . , vn}. By
N [v] we denote the closed neighbourhood of vertex v (i.e.,
the set containing all vertices adjacent to v and v itself) in
the graph H . The k-MPSN instance 〈(V ∪ {g}, A, I,G), k =
s + 1〉 is constructed as follows. In I , we set all variables
to 0. Let G := g. We create the actions A := {av : > →
N [v] | v ∈ V } ∪ {g : v1 ∧ · · · ∧ vn → g}. Clearly, the
reduction works in fpt-time. Moreover, the parameters k, g, o
are indeed bounded in terms of s or by a constant.

Bylander [1994] showed that PSN remains NP-hard even
if every action has only one precondition and one effect. In
other words, the problem is paraNP-hard w.r.t. the parameters
p and e. Actually, it is thus also paraNP-hard w.r.t. p, e, a, o.
Below, we further strengthen this result by adding also the
parameters g and vo.

Theorem 11. k-MPSN parameterized by a, g, vo, (p, e, o) is
paraNP-hard.

Proof. The hardness proof by Bylander [1994], (Theorem 3.5
and Corollary 3.6), is by reduction from the NP-hard 3-SAT
problem. Actually, 3-SAT remains NP-hard even if we re-
strict the propositional formulas such that every variable may
occur at most three times (see [Papadimitriou, 1994], Propo-
sition 9.3). By allowing only such instances of 3-SAT in the
reduction to k-MPSN, we make sure that also the parameter
vo is bounded by a constant.

It remains to modify the reduction by Bylander such that
also the goal size g is bounded without increasing p arbitrar-
ily. The idea here is that we can always replace a “big goal”
G = g1 ∧ · · · ∧ gn in a planning specification (V,A, I,G) as
follows. Let V ′ = V ∪{g, h1, . . . , hn−2} andG′ = g. Finally
we add n−1 new actions to obtainA′ = A∪{a1 : g1∧g2 →
h1} ∪ {ai : gi+1 ∧ hi−1 → hi|2 ≤ i ≤ n − 2} ∪ {an−1 :
gn ∧ hn−2 → g}. Notice that the increase of the plan length
caused by this transformation is not critical since k is not con-
sidered as a parameter here. Furthermore, in the new MPSN
specification (V ′, A′, I, G′), the parameters a, g, vo, p, e, o
are bounded.

6 Results for Limited Fluent Changes
Instead of imposing a limit on the plan length, we now con-
sider the possible restriction of another “resource” – the num-
ber of changes that may be performed on the fluents by the ex-
ecution of a plan. Formally, we study the problems c-MPSN
and c-PSN defined in Section 3. While the plan length k intu-
itively measures the time needed to execute a plan, the num-
ber of fluent changes c somehow measures the effort required
by the plan. In settings where changing the state of a variable
is expensive or variables cannot be changed arbitrarily often,
this parameter seems more appropriate. Moreover, the choice
of the parameter has an interesting influence on the complex-
ity: below we show that c-MPSN/c-PSN is W[1]-complete

w.r.t. c while k-MPSN/k-PSN was shown to be W[2]-complete
w.r.t. k by Bäckström et al. [2012].

The paraNP-hardness result for k-MPSN in Theorem 11
easily carries over to c-MPSN, since both settings do not in-
volve the parameters k or c. Furthermore, the proof of the
W[1]-hardness result for k-MPSN in Theorem 9 can be modi-
fied to yield also W[1]-hardness for c-MPSN.

Another nice property is that all FPT results for k-PSN pre-
sented in Section 4 can be extended to the c-PSN setting. Here
we use the fact that c ≥ k for any non-redundant plan and that
the number of fluent changes can be computed in polynomial
time for a given plan. Hence, to obtain a complete picture in
the c-MPSN/c-PSN setting, it remains to show the following
theorem.
Theorem 12. c-PSN parameterized by c is in W[1].

Proof (sketch). The proof is by reduction to MC[Σ1]. The
general approach is similar to the proof of Theorem 7. The
formula, however, becomes much more intricate since we
now have no upper bound on the values of p and g. On the
other hand, taking c as parameter instead of k means that we
have control over the fluents that are indeed changed by exe-
cuting a plan.

In a preprocessing step we compute the Hamming-distance
between the goal and the initial state. We can then split the set
of variables in the goal into “matching” and “non-matching”
variables. In case there are more than c non-matching vari-
ables, we can immediately stop with answer “no”. Similarly,
we check the distance of the precondition and of the effect of
every action from the initial state. Actions for which the dis-
tance in the precondition or in the effect exceeds c may never
be executed and can therefore safely be dropped. We keep
track of all the non-matching variables (of the goal and of the
remaining actions) in the finite structure A.

Let us call those variables which are indeed altered by a
plan “dirty”. Intuitively, the Σ1 formula guesses (via exis-
tentially quantified variables) for a plan π the ≤ c dirty vari-
ables and the sequence of actions of the plan. Moreover, we
guess for each action ai in π the fluents which are indeed
changed by ai. A ∀-quantifier is not needed, since we can
restrict our attention to the dirty variables. Further, the Σ1

formula checks whether the goal and the preconditions of the
guessed actions are satisfied and whether all fluent changes
caused by these actions are indeed contained in the guessed
dirty variables. All this can be encoded into a formula whose
length is bounded in terms of c. The details are omitted due
to lack of space.

Since it is easy to ensure that at most k actions are executed
and k · e ≥ c holds, we also obtain Theorem 8.

7 Conclusion
We have presented a complete parameterized complexity
analysis for STRIPS, MPSN and PSN where either the plan
length or the number of fluent changes may be used to de-
fine constraints on the allowed plans. In all settings, we have
found three new FPT results. Especially the combination of
k and vo could be a starting point for the development of effi-
cient algorithms on tractable fragments. Considering combi-
nations of parameters rather than just single parameters was

critical since, for instance, PSN is W[2]-complete for k and
even paraNP-hard for vo, but becomes FPT for the combina-
tion of both. It has turned out that the restriction to positive
effects does not affect the parameterized complexity w.r.t. the
considered parameters. The distinction between the problem
variants c-PSN and k-PSN (and, likewise, between c-MPSN
and k-MPSN) does have an influence on the complexity since
c-PSN is W[1]-complete w.r.t. parameter c, while k-PSN is
W[2]-complete w.r.t. parameter k.

Notice that all our membership results for MPSN and PSN
can be easily extended to the more general setting with a
multi-valued domain if the size of the domain is bounded by
a constant or considered as an additional parameter. While
we considered the problem of finding plans of length at most
k (i. e., optimal planning) in this work, the question of sat-
isficing planning (i. e., asking whether there is any plan to
reach the goal) remains future work. Related planning for-
malisms such as delete-relaxed planning (i.e., STRIPS re-
stricted to positive effects only) are also worth studying. An-
other important direction of future work is to investigate fur-
ther constraints on the plans as parameter such as the num-
ber of allowed changes of each fluent individually or the no-
tion of local depth introduced by Brafman and Domshlak
[2006]. Evaluating the parameter values on real (benchmark)
instances is also left for future work.

Acknowledgments
This research was supported by the Austrian Science Fund
(FWF): P25518-N23. We thank the anonymous IJCAI-13 re-
viewers for the very detailed and constructive remarks.

References
[Bäckström and Klein, 1991] Christer Bäckström and Inger

Klein. Planning in polynomial time: the SAS-PUBS class.
Computational Intelligence, 7:181–197, 1991.

[Bäckström and Nebel, 1995] Christer Bäckström and Bern-
hard Nebel. Complexity results for SAS+ planning. Com-
putational Intelligence, 11:625–656, 1995.

[Bäckström et al., 2012] Christer Bäckström, Yue Chen, Pe-
ter Jonsson, Sebastian Ordyniak, and Stefan Szeider. The
complexity of planning revisited – a parameterized analy-
sis. In Proc. AAAI 2012, pages 1735–1741. AAAI Press,
2012.

[Brafman and Domshlak, 2006] Ronen I. Brafman and
Carmel Domshlak. Factored planning: How, when, and
when not. In Proc. AAAI 2006, pages 809–814. AAAI
Press, 2006.

[Bylander, 1994] Tom Bylander. The computational com-
plexity of propositional STRIPS planning. Artificial In-
telligence, 69(1–2):165–204, 1994.

[Chen and Giménez, 2010] Hubie Chen and Omer Giménez.
Causal graphs and structurally restricted planning. J. Com-
put. Syst. Sci., 76(7):579–592, 2010.

[Downey and Fellows, 1999] Rodney G. Downey and
Michael R. Fellows. Parameterized Complexity. Springer,
1999.

[Downey et al., 1998] Rodney G. Downey, Michael R. Fel-
lows, and Kenneth W. Regan. Descriptive complexity and
the W hierarchy. In Proof Complexity and Feasible Arith-
metic, volume 39 of AMS-DIMACS Volume Series, pages
119–134. AMS, 1998.

[Downey et al., 1999] Rodney G. Downey, Michael R. Fel-
lows, and Ulrike Stege. Parameterized complexity: A
framework for systematically confronting computational
intractability. In Contemporary Trends in Discrete Mathe-
matics: From DIMACS and DIMATIA to the Future, vol-
ume 49 of DIMACS Series in Disc. Math. Theor. Comput.
Sci., pages 49–99. DIMACS, 1999.

[Fellows et al., 2012] Michael R. Fellows, Andreas Pfandler,
Frances A. Rosamond, and Stefan Rümmele. The param-
eterized complexity of abduction. In Proc. AAAI 2012,
pages 743–749. AAAI Press, 2012.

[Flum and Grohe, 2003] Jörg Flum and Martin Grohe. De-
scribing parameterized complexity classes. Inf. Comput.,
187(2):291–319, 2003.

[Flum and Grohe, 2005] Jörg Flum and Martin Grohe.
Model-checking problems as a basis for parameterized
intractability. Logical Methods in Computer Science,
1(1):1–36, 2005.

[Flum and Grohe, 2006] Jörg Flum and Martin Grohe. Pa-
rameterized Complexity Theory. Springer, 2006.

[Giménez and Jonsson, 2008] Omer Giménez and Anders
Jonsson. The complexity of planning problems with sim-
ple causal graphs. J. Artif. Intell. Res. (JAIR), 31:319–351,
2008.

[Katz and Domshlak, 2008] Michael Katz and Carmel
Domshlak. New islands of tractability of cost-optimal
planning. J. Artif. Intell. Res. (JAIR), 32:203–288, 2008.

[Lackner and Pfandler, 2012a] Martin Lackner and Andreas
Pfandler. Fixed-parameter algorithms for closed world rea-
soning. In Proc. ECAI 2012, volume 242 of Frontiers in
Artificial Intelligence and Applications, pages 492–497.
IOS Press, 2012.

[Lackner and Pfandler, 2012b] Martin Lackner and Andreas
Pfandler. Fixed-parameter algorithms for finding minimal
models. In Proc. KR 2012, pages 85–95. AAAI Press,
2012.

[Niedermeier, 2006] R. Niedermeier. Invitation to Fixed-
Parameter Algorithms. Oxford University Press, 2006.

[Papadimitriou, 1994] Christos H. Papadimitriou. Computa-
tional complexity. Addison-Wesley, 1994.

