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Kurzfassung

Im Rahmen dieser Diplomarbeit wird ein neues Problem im Gebiet der mittelfristigen
Produktionsplanung eingeführt – das Production Leveling Problem. Dabei besteht die
Aufgabe darin, Aufträge zu Produktionsperioden so zuzuteilen, dass die Auslastung der
unterschiedlichen Perioden und Produktionsressourcen ausbalanciert wird. Außerdem
sollen die Aufträge möglichst in jener Reihenfolge eingeplant werden, die von deren Prio-
rität bestimmt wird. Das Production Leveling Problem ist ein wichtiger Zwischenschritt
im mehrstufigen Prozess der Produktionsplanung, weil es dafür sorgt, dass möglichst
ausgewogene Auftragsgruppen zum darauffolgenden Scheduling-Schritt gelangen.

In dieser Arbeit wird zunächst ein formales Modell des Problems dargestellt und dessen
Komplexität theoretisch analysiert. Als exakte Lösungsverfahren werden Mixed-Integer-
Programming und Constraint-Programming untersucht, welche optimale Lösungen für
kleine Instanzen sowie untere Schranken beweisen sollen. Um auch große Probleminstan-
zen lösen zu können, werden in Folge Verfahren auf der Basis von metaheuristischer
lokaler Suche erkundet. Dafür warden eine Greedy-Heuristik und zwei Nachbarschaftss-
trukturen für die Lokale Suche eingeführt und die Verfahren Variable Neighborhood
Descent und Simulated Annealing untersucht. Zur Evaluierung wird ein Set von realisti-
schen Probleminstanzen eines Industriepartners veröffentlicht, sowie zwei zufallsbasierte
Instanzgeneratoren. Die Forschungsfrage bezüglich der exakten Methoden ist, wie große
Instanzen in einem fixen Zeitraum lösbar sind. Für die metaheuristischen Ansätze soll
gezeigt werden, dass kleine Probleminstanzen annähernd optimal gelöst werden können
und die Skalierbarkeit bis hin zu sehr großen Instanzen ebenfalls gegeben ist.

Die wichtigsten theoretischen Ergebnisse dieser Arbeit stellen das formale Problemmodell
sowie ein Beweis der NP-hardness dar, welche mittels Reduktion von Bin-Packing gezeigt
wird. Die Evaluierung der Lösungsmethoden kommt zu dem Resultat, dass mithilfe von
Mixed-Integer-Programming Instanzen mit bis zu 250 Aufträgen fast immer gelöst werden
können, während bei größeren Instanzen meist keine Lösung gefunden wird. Von den
untersuchten metaheuristischen Verfahren produziert Simulated Annealing die besten
Resultate. Es wird gezeigt, dass kleine Instanzen, für die untere Schranken bewiesen
werden konnten, mit durschnittlich weniger als 3% Optimality Gap gelöst werden können.
Auf der anderen Seite sind aber auch die größten Instanzen mit tausenden Aufträgen
und Dutzenden von Produktionsperioden in der Regel gut lösbar. Die vorgestellten
metaheuristischen Verfahren wurden bereits in der Industrie zum Einsatz gebracht.

ix





Abstract

This thesis introduces the Production Leveling Problem, which is a new problem in the
field of mid-term production planning. The task is to assign orders to production periods
such that the workload in each period and on each production resource is balanced,
capacity limits are not exceeded and the order’s priorities are taken into account. The
Production Leveling Problem is an important intermediate step between long-term
planning and the final scheduling of orders within a production period, as it responsible
for selecting good subsets of orders to be scheduled within each period.

A formal model for the Production Leveling Problem is proposed and the theoretical
complexity is analyzed. Mixed Integer Programming and Constraint Programming are
investigated as exact methods for solving moderately sized instances of the problem.
In order to be able to solve also large problem instances, metaheuristic local search is
investigated. A greedy heuristic and two neighborhood structures for local search are
proposed, in order to apply them using Variable Neighborhood Descent and Simulated
Annealing. A set of realistic problem instances from an industrial partner is contributed
to the literature, as well as random instance generators and the instances which were
generated for evaluation. Regarding exact techniques, the main question of research
is, how large instances may be while still being solvable within a fixed amount of time.
For the metaheuristic approaches the aim is to show that they produce near-optimal
solutions for smaller instances, but also scale well to very large instances.

The theoretical results of this thesis are a formal model of the Production Leveling
Problem and the proof of NP-hardness by reduction from Bin Packing. The experimental
evaluation conveys that the proposed MIP model works well for instances with up to
250 orders, but soon hits a glass ceiling if they get larger. Out of the investigated
metaheuristic approaches, Simulated Annealing achieves the best results. It is shown to
produce solutions with less than 3% average optimality gap on small instances and to
scale well up to thousands of orders and dozens of periods and products. The presented
metaheuristic methods are already being used in the industry.
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CHAPTER 1
Introduction

Production systems have been subject to continuous and radical change in the course of
the last decades. The need for productivity improvements is provoking companies to invest
heavily in automation on all levels. Production planning and scheduling play a major
role in these developments as the replacement of manual work with software-assisted or
even autonomous systems can lead to considerable efficiency increases.

We introduce a new problem in the field of production planning which arises from the
needs of an industrial partner. It is a combinatorial optimization problem which treats
the leveling of production – thus we coin the name Production Leveling Problem (PLP).
In a more general view, it is a medium-term planning problem, i.e. it is intended to be
embedded between the long-term planning and the scheduling of the concrete production
sequence.

The problem is concerned with assigning orders of certain product types and demand
sizes to production periods such that the production volume of each product type is
leveled across all periods. Furthermore, the overall amount to be produced in each period
is subject to leveling as well. A solution is feasible if the production volumes to be leveled
do not exceed given maximum values. The optimization part consists in minimizing the
deviation of the production from the optimal balance, while at the same time making
sure that the orders are assigned approximately in the order of their priorities. The
idea behind the softness of the last goal is that considering orders strictly in the order
of decreasing priority would lead to spikes and idle times for certain resources involved
in the production process. Allowing to violate the ordering by priority here and there
permits us to level these highs and lows, which results in a smoother production process
because a similar product mix is produced in every period. It is important to note, that
the solution to the PLP is not a schedule since the orders are only assigned to production
periods but the concrete execution sequence and assignment to machines and workers is
not part of this problem. The intention is rather so serve as a step between long-term
planning and short-term production scheduling.
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1. Introduction

A variety of optimization problems with a similar balancing objective have been investi-
gated in the past. For example, the Balanced Academic Curriculum Problem (BACP) is
concerned with creating curricula so that the student’s workload is balanced between
the terms [Chi+12], which is essentially the same as leveling the production between
production periods. An extensive list of similar balancing problems can be found in the
thesis of Pierre Schaus [Sch09]. Usual solution methods for these problems are Constraint
Programming (CP) or Mixed Integer Programming (MIP) models and metaheuristic
local search techniques. However, there does not seem to exist previous work which
combines balancing goals with priorities in the way that we are confronted with in the
PLP. The problems in the literature use to enforce some precedence relations as a hard
constraint, but in the PLP we have the priorities as a soft constraint, which makes a
direct comparison of results impossible.

1.1 Aims of the thesis
The main goals of this work are:

• Provide a formal model for the PLP.

• Determine the theoretical complexity of the problem and investigate tractable cases.

• Investigate exact modeling techniques in order to obtain optimal solutions for
moderately sized instances and lower bounds.

• Develop metaheuristic local search strategies which scale to large problem instances.

• Perform a detailed evaluation of the proposed solution methods.

1.2 Contributions
The main contributions of this thesis are:

• A mathematical model for the PLP is provided.

• The associated decision problem is proven to lie in the class of NP-complete
problems and thus the optimization problem is NP-hard. Furthermore, the Fixed-
Order PLP is introduced and shown to be solvable in polynomial time by providing
a dynamic programming algorithm.

• Two exact models are provided: a CP model and a MIP model,

• Two neighborhood structures for local search are introduced and applied using
Variable Neighborhood Descent (VND) and Simulated Annealing.

• Realistic problem instances and two random instance generators are provided to
the literature.

2



1.3. Structure of the thesis

• We conducted an extensive experimental evaluation by comparing the proposed
solution methods. The results show that Simulated Annealing is the best-performing
method because it produces excellent results on small instances and scales also very
well to the size of our real-life instances and even larger. Furthermore, we show
that the MIP model, which can solve well most of the realistic instances but not
the largest ones, outperforms the CP model.

• The metaheuristic local search methods, which were devised in this work, are
already being successfully employed in the electronics industry.

1.3 Structure of the thesis
The remainder of the thesis is structured as follows:

Chapter 2 presents the problem statement and a more detailed review of related work in
the literature.

Chapter 3 provides the analysis of theoretical complexity of the PLP, yielding the NP-
hardness result. Additionally, a tractable case of the problem is analyzed, which we
formalize as the Fixed-Order PLP and introduce a dynamic programming algorithm.

In Chapter 4 we turn towards solution approaches. Section 4.1 investigates exact modeling
techniques, namely CP and MIP. In Section 4.2 we turn towards local search methods
and describe algorithms and neighborhood operators.

Chapter 5 finally presents an experimental evaluation of all mentioned solution methods.
We put special emphasis on investigating which instances can be solved using exact
methods and where the strengths of the metaheurisic methods come into play. As we have
no instances from the literature, we present also random instance generation techniques.
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CHAPTER 2
Problem Statement and Related

Work

The Production Leveling Problem is a new combinatorial optimization problem which we
contribute to the scientific community. In this chapter we will present an introduction
and formal definition. Afterwards we summarize related work which has been published
in the literature and highlight the similarities and differences of the investigated problems
to the PLP.

2.1 Problem Statement

We first want introduce by means of examples how the problem looks like and how the
objectives and constraints work. Afterwards a formal definition is presented.

2.1.1 Informal problem statement

The input to the PLP are a list of orders, each of them having a demand value, priority and
product type. Furthermore, we are given a set of periods and the maximum production
capacity per period, both for all product types together and for each one separately.
We search for solutions by finding an assignment of orders to periods such that the
production volume is balanced between the periods while trying to stick to the sequence
implied by the order’s priorities as good as possible. We can see the objective function of
the PLP as the task of finding a good tradeoff between the following goals:

1. Minimize the sum of deviations of the planned production volume to the average
demand (i.e. the target value) for each period, ignoring the product types. This
makes sure that the overall production per period is being leveled.

5



2. Problem Statement and Related Work

2. Minimize the sum of deviations of the production volume of each product type to
its respective mean (target) value, making sure that the production of each product
type is being leveled.

3. Minimize the number of times a higher prioritized order is planned for a later period
than a lower prioritized order, which we call a priority inversion. This objective
makes sure that more important orders are scheduled in earlier periods.

Figure 2.1 visualizes the three optimization goals by example. The plots represent
different views on the solution, each corresponding to one sub-objective:

1. Figure 2.1a shows a tiny example instance with five orders, which are shown as
boxes, where the box height corresponds to the order size. The orders should be
assigned to the three periods such that the distances of the stacks of orders and the
dashed target line is minimized and no stack crosses the red line which represents
the capacity limit. It is easy to see that this solution is optimal w.r.t. the leveling
objective.

2. Figure 2.1b shows a slightly larger problem instance which has three product types
(blue, green and red). It visualizes the solution from the perspective of the second
objective, which works the same way as the first but discriminates by product types.
That is, we seek to minimize the sum of deviations of each stack of orders for each
product type and period from the dashed target line.

3. Figure 2.1c comes back to the first example, but views it from the perspective of
the third objective. The numbers inside the orders signalize the priorities, whereby
a larger number indicates a higher importance. That being said it is obvious that
the red order should not be assigned to an earlier period than the yellow or the blue
one. This bad state between red and blue/yellow is what we call a priority inversion
and their number is what should be minimized by the third goal. In the example,
a better solution can be easily constructed for example by swapping the red order
with the yellow one, because it would make both priority inversions disappear.
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O3

period 1 period 2 period 3
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Orders Example solution
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(a) Leveling objective for the total production amount.
This is the optimal solution w.r.t. this objective.
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(b) The leveling objective for each
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2.1. Problem Statement

8
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7

7

Orders Example solution

period 1 period 2 period 3

10

8

7
7

5

8

10

5

7

7

Orders Example solution

10

8

5

7

7

period 1 period 2 period 3

(c) The same solution as above has two priority inver-
sions. An optimal solution w.r.t. priorities would be
to swap the red and the yellow order.

Figure 2.1: Example solutions visualizing the three optimization goals. The dashed line
is the target value and the bold red line is the capacity limit.

We have seen in the examples, that an optimal solution w.r.t. one objective is not
necessarily optimal w.r.t. another. As we want to combine the three objectives into one
by a weighted sum, the location of the optima will clearly depend on the weights. These
weights must be determined on the basis of a specific use case because there is no general
way to decide without domain knowledge e.g. how important one priority inversion is
compared to one unit more of imbalance. We worked out a sensible default weighting in
cooperation with our industrial partner based on their real-life data and use it for all
experiments throughout the paper. How the objective function can be formally stated
and how the weighting works is described in more detail in the following section.

2.1.2 Mathematical Formulation

Now we turn towards a formal description of the the problem, consisting of parameters,
variables, constraints and the objective function.

Input parameters

K ⊆ Z+ Set of orders {i ∈ Z+|1 ≤ i ≤ k}, where k is the number of orders
M ⊆ Z+ Set of product types {i ∈ Z+|1 ≤ i ≤ m}, where m is the number of

product types
N ⊆ Z+ Set of periods {i ∈ Z+|1 ≤ i ≤ n}, where n is the number of periods
ai ∈ R+ for each objective function component i ∈ {1, 2, 3} the associated weight
c ∈ R+ the maximum overall production volume per period
ct ∈ R+ for each product type t ∈M the maximum production volume per period
dj ∈ Z+ for each order j ∈ K its associated demand
pj ∈ Z+ for each order j ∈ K its associated priority
tj ∈ Z+ for each order j ∈ K the product type
d∗ ∈ Z+ the target production volume per period, i.e. 1

n

∑
j∈K dj

d∗t ∈ Z+ the target production volume per period for each product type t ∈M ,
i.e. 1

n

∑
j∈K|tj=t dj

7



2. Problem Statement and Related Work

Variables

• For each order the production period for which it is planned:

yj ∈ N ∀j ∈ K

• The production volume for each period (helper variable):

wi =
∑

j∈K:
yj=i

dj ∀i ∈ N

• The production volume for each product type and period (helper variable):

wi,t =
∑

j∈K:
yj=i∧tj=t

dj ∀i ∈ N, ∀t ∈M

Hard constraints

• The limit for the overall production volume is satisfied for each period:

∀i ∈ N wi ≤ c

• The limit for the production volume of each product type is satisfied for each
period:

∀i ∈ N, t ∈M wi,t ≤ cp

Objective function

The following three objective functions represent the three targets to minimize:

f1 =
∑
i∈N

|d∗ − wi| (2.1)

f2 =
∑
t∈M

( 1
d∗t
·
∑
i∈N

|d∗t − wi,t|
)

(2.2)

f3 =|
{

(i, j) ∈ K2 : yi > yj and pi > pj

}
| (2.3)

Function f1 represents the sum over all periods of deviations from the overall target
production volume (i.e. all product types at once). Function f2 states the sum over all
product types of sums over all periods of the deviations from the target production volume
for that product type, normalized by the respective target value. The normalization is
done so that every product has the same influence onto the objective function regardless
of whether its average demand is high or low. Function f3 counts the number of priority

8



2.1. Problem Statement

inversions in the assignment, or in other words the number of order-pairs (i, j) for which
i is planned after j even though i has a higher priority than j.

In order to combine these three objectives into a single objective function and achieve a
weighting which does not change its behavior between instances with different number of
orders, periods or product types, the cost components need to be normalized.

g1 = 1
n · d∗

· f1 (2.4)

g2 = 1
n ·m

· f2 (2.5)

g3 = 2
k · (k − 1) · f3 (2.6)

The normalization ensures that g1 and g2 stay between 0 and 1 with a high probability.
Only for degenerated instances, where even in good solutions the target is exceeded
by factors ≥ 2 higher values are possible for g1 and g2. The value of g3 is guaranteed
to be ≤ 1 because the maximum number of inversions in a permutation of length k is
k · (k − 1)/2.

The final objective function is then a weighted sum of the three normalized objective
functions, where the weight ai of an objective can be seen approximately as its relative
importance.

minimize g = a1 · g1 + a2 · g2 + a3 · g3 (2.7)

Quadratic objective function

For some instances of the PLP the above presented objective function based on absolute
differences may not be well suited. Intuitively, one could argue that a solution containing
i periods with a missing demand of 1 is better compared to an otherwise equal one
containing 1 period with missing demand i. However, the above presented objective
penalizes the two scenarios in exactly the same way. In order to penalize larger deviations
more than small ones, we introduce an alternative variant of the objective function
which calculates the penalty by taking squared differences. This implies that also the
normalization factors need to be adapted.

g̃1 = 1
n · (d∗)2 ·

∑
i∈N

(d∗ − wi)2 (2.8)

g̃2 = 1
n ·m

·
∑
t∈M

( 1
(d∗t )2 ·

∑
i∈N

(d∗t − wi,t)2
)

(2.9)

g̃3 = g3 (2.10)

9



2. Problem Statement and Related Work

The final objective function using squared differences is again a weighted sum of the
three normalized objective functions:

minimize g̃ = a1 · g̃1 + a2 · g̃2 + a3 · g̃3 (2.11)

To our experience the two variants of the objective function behave very similarly for the
vast majority of our instances. Only in some rare cases, where no well-balanced solution
is possible and there are large trade-offs to be made, we found that using the quadratic
objective function produces results which intuitively look better than the ones produced
by the absolute objective. However, there are also disadvantages to consider when using
the alternative objective:

• It renders the otherwise linear problem a quadratic one, which makes it harder to
solve using MIP.

• Due to the squares in the denominators of the normalization factors, delta costs
are often very small which increases the risk of numerical instabilities when using
exact solvers.

There is also evidence in the literature that there is no a priori reason to prefer one of
the two objectives. Schaus et al. [Sch+07] investigated balancing objectives in a more
general form and stated that a set of violation measures for the perfect balance is given
by the Lp-norm of a vector of variables X minus its mean m for p ≥ 0. For p = 1 that
corresponds to

∑
X∈X |X −m|, which is the same as our linear objective f1. Similarly,

the variant with p = 2 corresponds to the quadratic-difference based objective of the
PLP. As a conclusion of the study of the different variants the authors state that neither
criterion subsumes the others [Sch+07], which means that there is no reason to commit
oneself to only one.

2.2 Related Work
The term production leveling is commonly associated with the Toyota Production System
(TPS), where it is also called Heijunka. It is a concept which aims to increase efficiency
and flexibility of mass-production by leveling the production in order to keep the stock
size low and reduce waste. Ideally the result of applying Heijunka is zero fluctuation
at the final assembly line. Heijunka can mean both the leveling of volume at the final
assembly line and the leveling of the production of intermediary materials [OR98].

The PLP is clearly inspired by Heijunka in the sense that the usage of resources should be
leveled in order to increase production efficiency but its concepts differ quite substantially
from the classical implementation of Heijunka (in the TPS) in the following points:

• The PLP does not operate on the level of schedules but disregards the ordering
which the items are produced within a period. In other words, it is concerned with

10



2.2. Related Work

planning and not scheduling, which is performed subsequently for each production
period.

• Intermediate materials are not part of the PLP. While Heijunka aims to level also
their production to keep stock sizes of intermediary products small, the PLP is
currently only concerned with one level.

There exists a whole research area concerning scheduling problems inspired by ideas from
the TPS and especially Heijunka. Under the umbrella term level scheduling there exist
several problems such as the Output Variation Problem and the Product Rate Variation
Problem [Kub93; BFS09]. They have in common that they aim to find the best schedule
for production at the final assembly line so that the demand for intermediary materials
and their production is leveled which keeps the necessary stock sizes low. However, these
problems are quite different from the PLP due to the same reasons presented above with
respect to Heijunka.

Under the term Balancing Problems several other problems are known in the literature,
which are more closely related to the PLP:

• The Balanced Academic Curriculum Problem (BACP): This problem deals with
assigning courses to semesters such that the student’s load is balanced and prereq-
uisites are fulfilled [Chi+12]. The balancing of the sum of course sizes assigned to a
semester is equivalent to the balancing of production load which we are confronted
with in the PLP. There exists also variant called the Generalized BACP which
introduces so-called Curricula where each of them should be leveled [DS08]. The
concept is similar to the product-types of the PLP except for that an order has
only one product type while a course can be in multiple curricula.
The big difference to our problem are additional constraints of the BACP, which
enforce prerequisites between courses – a concept appearing frequently in the diverse
balancing problems. They differ from the PLP’s priorities in the following aspects:
Prerequisites are hard constraints while priorities are soft constraints, which makes
a difference especially for exact solvers. Furthermore, prerequisites require one
course to be finished strictly before another starts while it does not seem sensible for
the PLP to require a penalty in case two differently prioritized orders are scheduled
to the same period. There we only want to penalize when the ordering implied by
the priorities is inverted, hence the term priority inversion. This is a fundamental
difference which makes it impossible to solve one problem by converting it to the
other.

• Nurse scheduling problems are an active field of research since their introduction
in the 70s [War76]. While most of the contributions do not consider workload
balancing, a few of them, starting with Mullinax and Lawley in 2002 [ML02], do
consider also a fair distribution of the nurses’ workload. They propose an Integer
Programming model for the Nurse to Patient Assignment Problem in neonatal
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2. Problem Statement and Related Work

intensive care, which is concerned with finding the optimal assignment of patients to
a set of working nurses, so that the workload of the team is balanced and a number
of restrictions are fulfilled. The main difficulty is the variability of the infant’s
conditions which greatly influences the amount of work needed. The problem is
often solved in two steps by first assigning nurses to zones of the nursery and then
assigns infants to nurses. More recent work in this area is for example by a paper
by Schaus et al. who investigated a CP approach using the spread constraint for
balancing [SHR09]. Furthermore, stochastic programming based approaches with
Bender’s decomposition have been proposed [PRB13].
The balancing objective of the Nurse to Patient Assignment Problem is again very
similar to the objective function which we introduced for the PLP. However, we
cannot directly compare to the results because the priorities of the PLP are have
no equivalent in this problem and also vice-versa some side-constraints and the
zone assignment cannot be expressed.

• Simple Assembly Line Balancing (SALB): An assembly line consists of identical
work stations aligned along a conveyor belt. Workpieces move along the conveyor
belt and at each station a set of (assembly) tasks is carried out, where each of them
has a task time. By the cycle time we denote the time after which workpieces are
moved on to the next station. The goal is either to minimize the number of work
stations needed given a fixed cycle time or to minimize the cycle time given a fixed
number of work stations.
The SALB problem is the simplest and most intensively studied variant of Assembly
Line Balancing. A comprehensive overview over the different variants is provided
by Boysen et al. [BFS07]. When comparing the SALB problem to the PLP, tasks
map to orders, task times to order sizes and the fixed cycle time to the maximum
capacity per production period. Hence, minimizing the cycle time is equivalent to
minimizing the maximum load of a production period of the PLP, which would
also be an admissible balancing objective. There is also recent work by Azizoğlu
and İmat [Aİ18] where the sum of squared deviations of the workstation loads is
minimized, which is equivalent to the second variant of the objective which we
proposed. However, the difference between precedence relations on the one hand
and priority inversion minimization on the other hand, disallows once again a direct
comparison between the problems.

For a more extensive list of Balancing Problems please refer to the dissertation of Pierre
Schaus which investigates CP modeling approaches for a very diverse set of Balancing
and Bin-Packing Problems [Sch09].
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CHAPTER 3
Complexity Analysis

As we are studying a new problem we are interested in analyzing its computational
complexity. In this chapter we provide an NP-completeness proof of a decision variant
of the PLP, followed by an argumentation of NP-hardness of the PLP optimization
problem presented previously. Afterwards we present the Fixed-Order PLP, which is
a variant of the problem with two further restrictions. We show that this variant is
tractable by introducing a dynamic programming algorithm.

3.1 NP-hardness of the Production Leveling Problem
In order to prove NP-completeness, we consider the following decision variant of the
problem where the objective function is dropped completely. Hence the task is solely to
find a feasible assignment of orders to periods:

Production leveling (Decision problem)

Instance: A set of orders K, of products M and of periods N . For each order j ∈ K
its demand dj with dj > 0, priority pj and product type tj . The maximum
production capacity per period c and for each product type t ∈M its associated
maximum production capacity per period ct.

Question: Does there exist an assignment {yj : N | j ∈ K} of orders to periods such that
the capacity limit c and the capacity limit for each product type {ct : t ∈M}
are not exceeded for any period?

Theorem 1. The Production Leveling decision problem is NP-complete even on instances
with |M | = 1, i.e., a single product type.

Proof. In order to prove NP-hardness we give a polynomial time reduction from the
NP-complete Bin Packing decision problem [Vaz03], which is defined as follows:
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3. Complexity Analysis

Bin Packing (Decision problem)

Instance: A set of n bins S1, S2, . . . , Sn of size V and a list of k items of respective sizes
a1, a2, . . . , ak

Question: Can the items be packed into the bins?
I.e., is there an n-partition S1 ∪ S2 ∪ . . .∪ Sn of the set {1, 2, . . . , k} such that∑

i∈Sj
ai ≤ V for all j ∈ {1, . . . , n}?

The construction of the PLP instance is straightforward:

• M = {1}
• N = {1, 2, . . . , n}
• K = {1, 2, . . . , k}
• dj = aj ∀j ∈ K
• pj = 1 ∀j ∈ K
• tj = 1 ∀j ∈ K
• c = c1 = V

That is, bins are converted to periods, each item with size ai to an order with demand di

and the bin capacity V becomes the maximum capacity per period c. There is only one
product type and order priorities can be defined as some arbitrary constant.

If there exists a feasible solution to this instance of the Production Leveling decision
problem (i.e. an assignment of orders to periods such that the capacity limit is obeyed),
it follows that there exists also a valid bin packing into n bins because each bin with size
V corresponds exactly to a period with the same capacity. Analogously, if no feasible
solution of the PLP exists we know that the corresponding instance of Bin Packing is
infeasible as well. Hence any instance of Bin Packing can be solved by converting it to
an instance of the Production Leveling decision problem and solving that one. As the
conversion is possible in linear time, the Production Leveling decision problem must be
at least as hard as Bin Packing. Consequently, we have proven that it is NP-hard, even
when considering only a single product type (|M | = 1).

In order to prove NP-membership, let us consider an assignment {yj : N | j ∈ K} of
orders to periods. In order to verify whether this assignment is a valid solution, we need
to check whether all capacity constraints are fulfilled:

• Is the overall capacity limit satisfied for each period?

∑
j∈K:
yj=i

dj

?
≤ c ∀i ∈ N

• Are the capacity bounds per period and product type satisfied?

∑
j∈K:

yj=i∧tj=t

dj

?
≤ ct ∀i ∈ N, t ∈M
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3.2. Fixed-Order Production Leveling

In total, the number of inequalities that need to be checked is: |N |+ |N | · |M | which is
clearly polynomial in the size of the instance.

As the Production Leveling decision problem with only one product type is both NP-hard
and in NPit is NP-complete.

The Production Leveling optimization problem presented in Section 2.1.2 differs from the
decision variant in that we do not only search a feasible assignment of orders to periods
but the best possible one according to an objective function. Obviously, NP-hardness
holds as well because the decision problem can be solved by the optimization problem.
NP-membership of the optimization variant, however, is clearly not the case as there is
no polynomial-time algorithm for deciding whether a given solution is the optimal one in
the general case.

3.2 Fixed-Order Production Leveling

In this section we consider a variant of the Production Leveling optimization problem,
where the priority values of all orders are unique and the correct ordering with respect
to the priorities is enforced. We will show that these two restrictions render the problem
solvable in polynomial time. The problem variant is based on ideas of Marie-Louise
Lackner and was developed in collaboration with her. The work has not yet been officially
published but a technical report is available for download [LVM19].

Fixed-Order Production leveling (Optimization problem)

Instance: Set of orders K = {i ∈ Z+|1 ≤ i ≤ k}
Set of products M = {i ∈ Z+|1 ≤ i ≤ m}
Set of periods N = {i ∈ Z+|1 ≤ i ≤ n}
For each order j ∈ K its demand dj > 0, priority pj (unique among all orders)
and product type tj
Maximum production capacity c
Maximum production capacity ct for each product type t ∈M
Target production capacity: d∗ ∈ Z+

Target production capacity for product type t ∈M : d∗t ∈ Z+

Objective: Find a mapping of orders to periods y : K → N that minimizes g = a1 · g1 +
a2 · g2 (like Equation (2.7) but without the priority objective g3)

Constraints: Respect the priorities: y(i) ≤ y(j) for orders i, j ∈ K with pi > pj

The only difference to the original version of the PLP is that the priorities are treated
as hard constraints instead of soft constraints. This new constraint together with the
assumption of unique priority values allows us to view the construction process of the
solution as partitioning the sequence of orders sorted by priority instead of assigning
arbitrary subsets to each period, which also explains the name Fixed-Order Production
Leveling Problem. The view as an assignment problem would be unnecessarily complex
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3. Complexity Analysis

for this problem variant because the new hard constraint assures that no priority inversion
can exist and the assumption of unique priority values removes the ambiguity when
sorting the orders by priority.

The view as a partition problem reminds strongly of the list partition problem, as
described for example in The Algorithm Design Manual [Ski98]. This problem is defined
as follows: Given a sequence S of length k of non-negative numbers s1, s2, . . . , sk and an
integer n, find a partition of S into n ranges, i.e. consecutive elements of the sequence, so
as to minimize the maximum sum over all the ranges. This problem allows for efficient
solutions using dynamic programming.

As our problem can be seen as an extension of the list partition problem with a different
objective we investigate this solution approach further. The algorithm used for the list
partition problem cannot be used directly in our setting, since it is not sufficient that the
maximum planned capacity of all periods is as small as possible and thus as close to d∗
as possible; we require that orders are divided evenly on periods for all other periods as
well. However, the algorithm described in the following is heavily inspired by the one
presented for list partition in [Ski98].

The main idea of the algorithm is that an optimal partitioning of a sequence according to
some objective1 can be calculated step by step. In each step of the procedure, we extend
some prior solution by one more partition until we reach the desired number. The new
partition corresponds always to the last period, so it contains always the l last orders in
the sorted order list, which are the ones with lowest priority. In order to decide how large
the partition should be (i.e. how many orders from the end of the order list it should
contain) the cost for all possibilities is calculated. All possibilities where we can have
at least one order in each period are considered. For example, assume that we want to
compute the optimal total cost of assigning the last l elements of the sequence to the
new partition. Intuitively, it consists of the optimal total cost of assigning the first k − l
orders (where k is the total number orders) to the previous number of partitions plus the
cost of assigning the last l elements to a new partition. The first part is already known
from the previous step of the algorithm, while the second part can be easily calculated.
After having computed the cost for all possibilities we define the optimal total cost for
this subproblem as the minimum of the encountered cost values.

Theorem 2. The Fixed-Order Production Leveling problem can be solved in polynomial
time using a dynamic programming approach: If n denotes the number of periods and k
the number of orders, it can be solved in O(nk2) time.

Proof. Without loss of generality, let us assume that the unique priority values pj for
j ∈ K are elements of the set {1, . . . , k}. In a preprocessing step, sort the capacity
demands of the orders in decreasing order of their priorities. That is, after sorting d1

1The objective must have the property that the cost of each partition is independent from the cost of
other partitions. This condition on the objective is clearly met in the case of the PLP, as each period
(which corresponds to a partition) contributes independently to the total cost.
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3.2. Fixed-Order Production Leveling

denotes the capacity demand of the order with priority k, d2 is the capacity demand of
the order with priority k − 1, aso. until dk which is the capacity demand of the order
with priority 1. This sorting requires O(k log k) time.

Furthermore, we assume that k ≥ n which is sensible as otherwise some periods would
be forced to stay empty and we could simply reduce the number of periods. With this
assumption we can safely exclude all cases from the algorithm, where some period stays
empty because compared to planning two orders for one period and leaving one empty it
is always at least as good to plan the two orders in different periods.

In the following, we describe how the Fixed-Order Production leveling optimization
problem can be solved using a dynamic programming approach. For this purpose, let us
denote by O(j, l) the optimal value of the objective function under consideration, i.e. the
minimum value of g, when assigning the first j orders 1, . . . , j to l periods. Thereby it is
important to point out that the normalization factors inside the objective function are
always those of the original problem, regardless of the choice of j and l. The optimal
objective value of the original problem is clearly given by O(k, n) because k and n are
the original number of orders and periods.

As indicated in the intuitive explanation of the algorithm above, O(j, l) for l ≤ j ≤ k
and 1 ≤ l ≤ n can be calculated recursively by selecting the variant with minimum cost
out of the following two extreme cases and all cases in between:

• assigning only one order to the new period and j − 1 to the l − 1 periods before

• assigning j − l orders to the new period and l − 1 to the l − 1 periods before.

The table entries O(j, l) with j < l are not defined because we do not consider cases
whose optimal solution involves empty periods. Formally, the recursion for calculating
the values O(j, l) is given by

O(j, l) = min
l≤i≤j

(O(i− 1, l − 1) + h1(i, j) + h2(i, j)) + constr(i, j) (3.1)

The functions h1(i, j) and h2(i, j) denote the respective cost increase of f1 and f2, if we
would assign the set of orders {i, . . . , j} to a new and empty period. Formally they are
defined as follows for 1 ≤ i ≤ j + 1:

h1(i, j) =a1
n
·
∣∣∣∣∣d∗ −

∑j
s=i ds

d∗

∣∣∣∣∣
h2(i, j) = a2

n ·m
·
∑
t∈M

∣∣∣∣∣d
∗
t −

∑j
s=i|ts=t ds

d∗t

∣∣∣∣∣
The penalty function constr(i, j) checks whether the capacity restrictions c and ct allow
for assigning the set of orders {i, . . . , j} to the same period and returns 0 if so and ∞
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3. Complexity Analysis

otherwise. If the final value O(k, n) happens to be ∞ we immediately know that the
instance is infeasible. The reason why this approach works is that both constraints can
be checked for each period separately.

The calculation of O(j, l) results indeed in the optimal objective value of the subproblem
where the first j orders are assigned to l periods because

• all open possibilities are enumerated (due to the fixed ordering and the requirement
of having at least one order in each period their number is only j − l), and

• the previously computed values O(i− 1, l − 1) stay meaningful also when adding
another period because the associated costs of the periods are independent.

The base cases of the recursion are those, where between 1 and k orders are assigned to
one period, which is trivially given by :

O(j, 1) = h1(1, j) + h2(1, j) + constr(1, j) for 1 ≤ j ≤ k.

In order to calculate O(k, n), we store the partial results O(j, l) for 1 ≤ j ≤ k and
1 ≤ l ≤ n in a table of size (k, n). In order to compute one of these entries O(j, l), we
require the values O(i− 1, l − 1) with 1 ≤ i ≤ j + 1, i.e., all elements in the column to
the left of and not below O(j, l). We thus fill in the table column by column from left
to right and top to bottom within a column. Moreover, we require the values h1(i, j)
and h2(i, j) for every 1 ≤ i ≤ j. Since these are also required for further elements of the
table, these values h1(i, j) and h2(i, j) are pre-computed for all i, j with 1 ≤ i ≤ j ≤ k,
which requires O(k2) time.

Given these pre-computations, the time needed to compute each entry O(j, l) is in O(k)
because the minimum of j + 1 ≤ k values needs to be found, each of which requires only
access to 3 previously computed values. As the table has the size k · n, computing all
elements of the table can be done in O(n · k2) time.

We are not merely interested in computing the the value of g for an optimal solution
but also in describing this optimal solution. That is, we need to know which orders are
assigned to which period. While we compute the values O(j, l), we thus also store the
value of i for which this minimum was achieved in Equation (3.1)2. This is stored in the
array M = M(j, l)1≤j≤k,1≤l≤n with

M(j, l) = i⇐⇒ O(j, l) = O(i− 1, l − 1) + fi,j + hi,j .

ComputingM(j, l) in addition toO(j, l) adds only a constant amount to the computational
complexity, so that the asymptotic behaviour does not change.

Once all values for O(j, l) and M(j, l) have been computed, the assignment of orders to
periods can be reconstructed as follows, starting with the last period and ending with
the first one:

2If this value of i is not unique, we pick the smallest such i.
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3.2. Fixed-Order Production Leveling

• The orders oM(k,n), . . . , ok are assigned to the last period

• Given that the first order assigned to period l with l > 2 is oi = oM(j,l) for some j,
the orders assigned to period l − 1 are: oi′ , . . . , oi−1 with i′ = M(i− 1, l − 1).

• The remaining orders are assigned to the first period.

Reconstructing the solution requires a linear amount of time in the number of periods n
and the number of orders k. When we assess the asymptotic complexity of the whole
dynamic programming algorithm, the computation of the O(j, l) values with complexity
O(n · k2) clearly outweighs all other parts. Therefore, the total complexity is also
O(n · k2).

Example 1. As an example, consider the following instance with k = 20 orders:

type gray red blue green
order =
(priority, demand)

(20,10) (15,10)
(10,10) (7,15)
(4,5)

(18,5) (14,20)
(9,10) (8,5)

(19,5) (13,10)
(6,15) (3,5)

(17,5) (16,20)
(12,25) (11,20)
(5,30) (2,5)
(1,5)

These orders need to be scheduled to n = 5 periods and we have d∗ = 1
n

∑k
s=1 os = 47,

d∗gray = 10, d∗red = 8, d∗blue = 7, d∗green = 22. We choose the weights of objectives as
follows: a1 = 1 and a2 = 1. The sorted list of orders is given as follows:

(o1, . . . , o20) = (10, 5, 5, 5, 20, 10, 20, 10, 25, 20, 10, 10, 5, 15, 15, 30, 5, 5, 5, 5).

The values for O(j, l) and M(j, l) with 0 ≤ j ≤ 20 and 1 ≤ l ≤ 5 are given in Table 3.1.

The optimal objective value is given by O(20, 5) ≈ 0.86. The entries showing a ’–’ are
those where j < l, which are unnecessary to compute, as stated above. In all cases where
O(j, l) =∞ there does not exist a feasible solution to the subproblem.

The M(j, l) values printed in bold face visualize the path through the table which allows
us to reconstruct the optimal solution. The reconstruction works as follows:

• M(20, 5) = 17, thus the orders assigned to period 5 are: o17, . . . , o20.

• M(16, 4) = 14, thus the orders assigned to period 4 are: o14, . . . , o16.

• M(13, 3) = 10, thus the orders assigned to period 3 are: o10, . . . , o13.

• M(9, 2) = 7, thus the orders assigned to period 2 are: o7, . . . , o9.

• M(7, 1) = 1, thus the orders assigned to period 1 are: o1, . . . , o6.
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Table 3.1: Dynamic Programming matrices for the Fixed-Order PLP example instance.
On the left-hand-side the values O(j, l), stating the optimal objective value of each sub-
problem and on the right-hand-side the values M(j, l) which keep track of the optimal
partition boundaries.

j
l 1 2 3 4 5

1 0.31 – – – –
2 0.25 0.65 – – –
3 0.20 0.60 1.00 – –
4 0.17 0.57 0.97 1.37 –
5 0.05 0.43 0.83 1.23 1.63
6 0.12 0.34 0.74 1.14 1.54
7 ∞ 0.30 0.68 1.08 1.48
8 ∞ 0.22 0.61 1.01 1.41
9 ∞ 0.31 0.48 0.86 1.26
10 ∞ ∞ 0.58 0.74 1.13
11 ∞ ∞ 0.49 0.65 1.04
12 ∞ ∞ 0.41 0.57 0.96
13 ∞ ∞ 0.42 0.58 0.92
14 ∞ ∞ ∞ 0.67 0.83
15 ∞ ∞ ∞ 0.61 0.77
16 ∞ ∞ ∞ 0.62 0.79
17 ∞ ∞ ∞ ∞ 0.80
18 ∞ ∞ ∞ ∞ 0.75
19 ∞ ∞ ∞ ∞ 0.89
20 ∞ ∞ ∞ ∞ 0.86

j
l 1 2 3 4 5

1 1 – – – –
2 1 2 – – –
3 1 2 3 – –
4 1 2 3 4 –
5 1 5 5 5 5
6 1 5 5 5 6
7 ∞ 6 6 7 6
8 ∞ 6 6 7 8
9 ∞ 7 8 8 9
10 ∞ ∞ 10 10 10
11 ∞ ∞ 10 10 10
12 ∞ ∞ 10 10 10
13 ∞ ∞ 10 10 13
14 ∞ ∞ ∞ 13 13
15 ∞ ∞ ∞ 13 13
16 ∞ ∞ ∞ 14 14
17 ∞ ∞ ∞ ∞ 16
18 ∞ ∞ ∞ ∞ 16
19 ∞ ∞ ∞ ∞ 17
20 ∞ ∞ ∞ ∞ 17

Figure 3.1 visualizes the obtained solution in three different ways. The view on the
left shows the overall production volume assigned to each period. The sum of absolute
differences between the bar and the dashed line corresponds to f1. The center figure shows
the production volume per period, and the sum of absolute differences corresponds to f2.
The bold colored lines are the maximum capacities c and ct which need to be respected.
The right figure shows the priority values of the orders planned in each period, which are
obviously perfectly sorted because they are enforced by a hard constraint.
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Figure 3.1: Optimal solution of the presented example instance. From left to right,
visualizations of the objectives f1, f2 and f3.
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CHAPTER 4
Solution Approaches

The PLP is a weakly constrained optimization problem as the only existing constraints
are upper bounds on the planned production volume per period and product. There
are no constraints involved in the prioritization and the objective function is a trade-off
which means for example that pruning solutions with a bad priority objective is not
immediately possible as long as there is enough room for improvement in the balancing
objectives. In other words, the feasible solution space is very large.

First we want to develop models for the PLP that allow us to obtain proven optimal
solutions by means of complete methods. In the field of constrained combinatorial
optimization problems, two of the most frequently applied options are CP and MIP. We
propose models for both paradigms which are all based on the formal problem definition
of Chapter 2 but each of them adapted for the respective technology. In both cases, we
include dominance breaking constraints which help to reduce the tremendous size of the
search space.

However, as we will see in Chapter 5 during the presentation of the experiments, large
instances cannot be solved well by any of the exact techniques. This is not very surprising,
as the problem is NP-hard, i.e. it belongs to a class of problems for which no polynomial-
time algorithms have been found so far and it is even unclear whether such algorithms
exist. It follows that there exist instances for which the required running time of any
known exact algorithm is exponential. For this reason we investigate also metaheuristic
local search methods which are generally faster in solving large instances, but do not
provide guarantees about the solution quality. We will present our local search approaches
in the second part of this chapter.
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4.1 Exact modeling techniques

In this section we introduce models of the PLP which are based on Constraint Pro-
gramming (CP) and Integer Programming. Both of them are declarative programming
paradigms which allow to formally specify combinatorial optimization problems in a way
that a general purpose solver software can compute the optimal solution to arbitrary
problem instances.

A CP model consists of variables and constraints, which are relations between the
variables. A feasible solution is an instantiation of all variables such that all relations
between the variables hold. Usually a CP-solver works towards a feasible solution by
performing alternately some kind of search over the respective domains of the variables
and an inference step, where the domains of the variables are restricted according to the
specified constraints. The propagation step is very important to reduce the exponentially
sized search space but would not be sufficient to solve arbitrary problems on its own. If we
want to minimize an objective function, the solver adds for each found solution i with cost
ci a constraint on the cost variable z which states that z < ci – i.e. the search is continued
only on improving solutions. These additional constraints on the objective value can be
again propagated, as outlined above. When the search tree has been processed completely,
it is guaranteed that the optimal solution has been found [RBW06].

Integer programming is a paradigm which deals with maximizing or minimizing a linear
function over a set of integer variables which are subject to linear constraints. When
a model has both integer and continuous variables, we instead call it Mixed Integer
Programming (MIP)1. The restriction to linear constraints comes due to the way how
MIP solvers work. The solving process relies on the fact that linear programs (with
continuous variables only) can be solved efficiently by the Simplex algorithm. The solver
exploits that by first solving a relaxation of the problem, where it treats all variables as
continuous and afterwards adds integrality restrictions again step by step. Any non-linear
constraint to be included must be rewritten by introducing one or more helper variables
and only linear constraints which link them together. For example, to find the maximum
of a set of variables S, an additional variable x and a set of constraints must be introduced
stating for each s ∈ S, that x ≥ s [WN14].

When comparing the two paradigms, CP allows for a more high-level modeling because
built-in global constraints can be used to abstract the complexity. Furthermore, solvers
can provide dedicated constraint propagation algorithms for each global constraint which
make the search more efficient. Compared to that, MIP solvers work on a very restricted
language but on the other hand they are highly optimized for that. They are especially
efficient for formulations whose linear relaxation is tight.

1Subsequently we continue to use exclusively the term Mixed Integer Program because the model
which we will present uses both integral and continuous variables. However, most of the times it would
make no difference whichever term we used.
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4.1.1 A Constraint Programming model

The CP model is an extension of the mathematical problem formulation presented in
Section 2.1.2. The problem input parameters, variables and hard constraints stated there
are also part of this model, which is why we do not repeat them. The extension takes
place in the following two areas:

• Express parts of the problem structure by global constraints.

• Find redundant constraints which improve the results or save time.

We express the model in the solver-independent general-purpose modeling language
MiniZinc [Net+07]. The advantage is that we can apply the same model to various
solvers without any changes.

Global Constraints

One part of the problem which can be captured by means of a global constraint is
the packing of orders into periods. As we have seen in Section 3.1, solving the PLP
also involves solving a Bin Packing problem. Therefore, the part of the PLP which is
concerned with packing orders into periods can be expressed using a global constraint for
Bin Packing as introduced by Shaw [Sha04]. The constraint catalog of the used modeling
language MiniZinc [Net+07] defines the constraint as follows:

Definition 1. The constraint bin_packing_load (l, b, w) requires that each item i ∈ I
with weight wi be put into bin bi and the sum of the weights of the items in each bin
j ∈ B is equal to lj. Formally speaking, the constraint holds if and only if

lj =
∑
i∈I:
bi=j

wi ∀j ∈ B

In our CP model, we can thus link the decision variables for order assignment yj to the vari-
ables wi for the load in each period by adding the constraint bin_packing_load (w, y, d).
Similarly, the variables wi,j can be linked with one constraint per product-type.

Another part of the problem which can be captured using global constraints is the
calculation of the balancing objective, where absolute deviations from a mean value are
to be calculated. That can be achieved using the deviation constraint for balancing a
set of variables, which was introduced by Schaus et al. [Sch+07]. This paper provides
the following definition:

Definition 2. The constraint deviation(X,m,D) states that the collection of values
taken by the variables of X exhibits an arithmetic mean m and a sum of deviations to m
of D. More formally, deviation(X,m,D) holds if and only if

n ·m =
n∑

i=1
Xi and D =

n∑
i=1
|Xi −m|
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This constraint is ideally suited for calculating the first two components of our objective
function, f1 and f2 (as stated in the Equation (2.1) and (2.2)). For example, assuming
the parameters and variables of the formal definition, we only need the constraint
deviation(w, d∗, f1) in order to force f1 to the correct objective value. However, the
problem is that, to the best of our knowledge, this constraint is not implemented in any
state-of-the art CP-solver which also supports float variables. Therefore, we cannot use
this constraint in our model and instead express f1 and f2 with their defining formula
(2.1) and (2.2), respectively, going without fast propagation of the balancing constraints.

Redundant constraints

The other goal when creating the model was to find redundant constraints which make
the solving process more efficient. A popular and frequently applied variant of redundant
constraints is symmetry breaking, where equivalent solutions are removed from the search
space and at least one of them is kept. For example, in the PLP it is easy to see that if
there was no priority objective, there would exist for every pair of orders, where both
have the same demand value and product type, two equivalent (symmetric) solutions.
The only difference would lie in the period assignments but due to the orders being equal,
the balancing objectives would not change. However, as we are also confronted with a
priority objective, this kind of symmetry only holds between orders which additionally
have equal priority values, which is a too rigorous restriction so as to be useful.

There is also the less widely applied concept of dominance relations which can help to
exploit the idea of repeated orders. Dominance relations are a generalization of symmetry,
that can reduce the search space by a similar or even greater amount [CS15]. They can be
seen as a kind of unidirectional symmetry which prevents the exploration of subtrees of
the search space where the optimal solution cannot reside because we can prove that the
solutions there are dominated (i.e. provably worse than some other solution). In the area
of balancing problems, Monette et al. showed that dominance rules can be successfully
applied to the BACP. They introduce a dominance relation between equally large courses
that leads to a considerable reduction of the search space[Mon+07].

We define now a similar rule for the PLP which exploits the idea of repeated orders.
As in the BACP, it is expressed by less or equal constraints between the assignment
variables. The following theorem presents the conditions for the dominance rule to hold:

Theorem 3. Posting a constraint yi ≤ yj between two orders i and j preserves at least
one optimal solution of the PLP if the following conditions are met:

1. di = dj: The order’s demand values are equal

2. ti = tj: The order’s product types are equal

3. pi ≥ pj: Order i has a higher or equal priority than order j
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4.1. Exact modeling techniques

Proof. Assume towards a contradiction that the constraint yi ≤ yj would cut off all
optimal solutions, while all three conditions hold. Let z be an arbitrary optimal solution
which is cut off by the introduced constraint – i.e. all conditions hold and the dominance
constraint is violated (i.e. yi > yj). Now let us consider the solution z′ which is derived
from z by swapping the period assignment of orders i and j. Please note that all three
conditions continue to hold for z′ and the constraint yi ≤ yj is now fulfilled, i.e. the
solution is not cut off. As we assumed that all optimal solutions are cut off by the
constraint, the objective value f(z′) must be strictly larger than f(z).

Conditions one and two ensure that the balancing objectives g1 and g2 of z and z′

are equal because the orders do not differ in any value which is used to compute
the objectives2. Hence, in order for f(z′) > f(z) to hold, g3(z′) > g3(z) and con-
sequently f3(z′) > f3(z) must hold because a3 is a constant. Equation (2.3) defines
f3 = |

{
(l, k) ∈ K2 : yl > yk and pl > pk

}
|, which counts the number of order pairs where

the one with the higher priority is planned in a strictly larger period. We can also describe
it as the cardinality of the priority inversion set. As the solutions z and z′ differ only in
the assignments of yi and yj we only need to look for differences in the set {(i, j), (j, i)}
instead of K2. For the solution z′, where both yi ≤ yj and pi ≥ pj hold, neither of the
two order pairs can satisfy the two conditions of a priority inversion at the same time,
so the priority inversion set is empty. As a set cannot contain fewer elements than 0,
whatever number of priority inversions the solution z may have, the solution z′ has fewer
or at most equally many. Consequently, f3(z′) > f3(z) cannot hold, which is the desired
contradiction to our assumption.

We have just shown that we can add constraints of the form yi < yj between repeated
orders with pi ≥ pj without cutting off all optimal solutions, which means that the
objective value does not change. As we normally do not see large numbers of repeated
orders in realistic problem instances, we add all such constraints to the model.

4.1.2 A Mixed Integer Program

Now we want to investigate the second exact modeling approach, which is MIP. As the
previously presented CP model is written in the solver-independent language MiniZinc,
we can also execute it using state-of-the-art MIP solvers. However, in this case we do
not have any control over the compilation process and how the linearization works. In
order to find out whether performing the necessary linearizations on our own would
improve the results we devised a dedicated MIP model which is implemented for the
solver Gurobi [Gur19]. The model is stated in the following, where the input parameters
are again the same as stated in Section 2.1.2.

2Recall from Equation (2.7), that the objective function is a linear combination of three objectives
with all components from R+: g = a1 · g1 + a2 · g2 + a3 · g3.
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Variables
xij ∈ {0, 1} for each i ∈ N , j ∈ K stating if order j is planned in period i
yj ∈ N for each j ∈ K, whose value is the assigned period of order j
zij ∈ {0, 1} for orders i, j ∈ K where pi > pj , existence of a priority inversion

between i and j
s+

i ∈ R+ for each i ∈ N the surplus demand for period i
s−i ∈ R+ for each i ∈ N the missing demand for period i
s+

it ∈ R+ for each i ∈ N , t ∈M the surplus demand for period i and product t
s−it ∈ R+ for each i ∈ N , t ∈M the missing demand for period i and product t

Formulation

min a1g1 + a2g2 + a3g3 (4.1)

s.t.
∑
i∈N

xij = 1 j ∈ K (4.2)∑
i∈N

i · xij = yj j ∈ K (4.3)

yi − yj ≤ (n− 1)zij i, j ∈ K | pi > pj (4.4)∑
i∈K

djxij + s+
i − s

−
i = d∗ i ∈ N (4.5)∑

j∈K|tj=t

djxij + s+
it − s

−
it = d∗t i ∈ N, t ∈M (4.6)

d∗ + s+
i ≤ c i ∈ N (4.7)

d∗t + s+
it ≤ ct i ∈ N, t ∈M (4.8)

yi ≤ yj i, j ∈ S, S ⊆ K | pi ≥ pj , di = dj , ti = tj (4.9)∑
t∈M

(s−it − s
+
it) = s−i − s

+
i i ∈ N (4.10)

Constraints (4.2) to (4.6) are the model’s required helper constraints. Constraint (4.2)
makes sure, that there is exactly one period to which an order is assigned. Constraint (4.3)
links the xij to the yi variables. Constraint (4.4) links the yi to the zi,j variables. It
makes sure that for every pair of orders i, j where i has a higher priority than j, zij is 1
(representing an inversion) if i is planned later than j. Constraint (4.5) states for each
period that the total demand planned plus the surplus minus the slack equals d∗. As both
variables have positive domains and they are subject to minimization, at most one of
them will be non-zero in any optimal solution. Constraint (4.6) repeats this relationship
over the variables s+

it and s−it for each product type t.

Constraint (4.7) ensures that the capacity bound per period is satisfied. This is elegantly
achieved by stating that the sum of target demand d∗ and the surplus variable s+ does
not exceed the threshold. Analogously, Constraint (4.8) enforces the capacity limit per
period and product type.
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4.1. Exact modeling techniques

Finally, there are two redundant constraints for strengthening the formulation: Con-
straint (4.9) enforces the same dominance relation that was introduced in the CP model for
all pairs of orders which have the same product type and demand value. Constraint (4.10)
links the s{+,−}

i and s{+,−}
it variables together, which also leads to improvements in the

average runtime.

4.1.3 Absolute-difference-based objective

The following objective function is equivalent to the one presented in Section 2.1.2 but
here it is stated on the variable set of the MIP formulation. It is not hard to see that in
function g1 s

+
i + s−i is equivalent to the absolute difference between planned an target

demand |d∗ − wi|, because at most one of them will be different from 0. The same holds
true for the analogous variables in g2.

g1 = 1
n · d∗

·
∑
i∈N

(s+
i + s−i ) (4.11)

g2 = 1
n ·m

·
∑
t∈M

( 1
d∗t
·
∑
i∈N

(s+
it + s−it)

)
(4.12)

g3 = 2
k · (k − 1) ·

∑
i,j∈K

zi,j (4.13)

4.1.4 Squared-difference-based objective

The second variant of the objective function which uses squared differences can also be
easily expressed:

g̃1 = 1
n · (d∗)2 ·

∑
i∈N

(s+
i )2 + (s−i )2 (4.14)

g̃2 = 1
n ·m

·
∑
t∈M

( 1
(d∗t )2 ·

∑
i∈N

(s+
it)

2 + (s−it)
2
)

(4.15)

g̃3 =g3 (4.16)

The main difference to the first version is that the surplus and missing demand appears
squared in the objective function. Furthermore, the normalization factors have been
adapted.

Obviously, this formulation is no longer a linear program. However, as many state-of-the
art solvers also support quadratic optimization we consider this variant worth reporting.
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4.2 Metaheuristic local search
In this section we present metaheuristic local search techniques to solve the PLP. In
order to obtain initial solutions, which we can improve with local search, we present a
greedy construction heuristic. Afterwards two neighborhood structures for the PLP are
described and finally we explain the local search algorithms.

4.2.1 Construction of initial solutions

We developed a greedy construction heuristic which is capable of constructing good initial
solutions in a very small amount of time. The parameters of the algorithm are a list of
orders, the number of periods n and the random selection size r. The first step of the
algorithm is sorting the orders by priority decreasingly which is already the approximate
handling of objective 3. Then we loop over all periods i from 1 to n, performing the
following steps:

1. Examine sequentially the orders from the head of the sorted order list: For each
of them, if it still fits into this period obeying the capacity limits, calculate the
delta cost for g1 and g2 (as defined in (2.4) and (2.5) in Section 2.1.2) which the
inclusion of this order into the period would bring with it. If the delta cost is
smaller than zero (i.e. including the order improves the objectives), it is added to a
list of suitable orders. The orders from the head of the sorted list are processed in
this way until the suitable order list has size k

n (i.e. the average number of orders
for each period) or there are no orders left.

2. Afterwards, if the list is not empty, select randomly one of the r best suitable
orders, plan it for period i, remove it from the sorted order list and go back to 1.

3. Otherwise (if there was no suitable order) repeat with i := i+ 1.

Finally, we check whether there are any orders left which could not be assigned due to
the capacity limits. If that is the case, they get assigned one by one to the period with
maximal remaining capacity. This way especially those periods which are not filled well
get assigned the remaining orders and the probability of a hard constraint violation is
minimized. However, violating the maximum capacity constraint is allowed in this step
because a complete assignment is required for the subsequent local search.

The parameter r controls the random selection size of step 2. If we set it to 1, the
algorithm is deterministic. When using values greater than 1, the construction heuristic
is randomized, which can be useful for some local search techniques (e.g. GRASP).

4.2.2 Neighborhood structures

We devised two types of moves for generating different neighborhoods of a solution which
will be introduced in the following subsections. Furthermore, we briefly describe the
delta evaluation approach and the methods of neighborhood exploration.
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Figure 4.1: Example of a move-order move: solutions before (left) and after (right)
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Figure 4.2: Example of a swap-orders move: solutions before (left) and after (right)

Move-order neighborhood

The move-order neighborhood (or simply move neighborhood) of a solution s consists of
all solutions whose only difference to s is that one order has been moved to a different
period. Figure 4.1 visualizes such a move. The figure on the left shows the leveling
objective per product type before the move and on the right side we can see the result of
applying the move. Order 2 is moved from P2 to P3 which yields in this case a better
solution.

Enumerating the move neighborhood involves iterating over k orders for each of n− 1
possible target periods, i.e. the neighborhood size is exactly k · (n− 1).

Swap orders neighborhood

The swap-orders neighborhood (or simply swap neighborhood) of a solution s consists of
all solutions s′ whose only difference to s is that two orders not assigned to the same
period in s appear with swapped period assignments in s′. Figure 4.2 visualizes such a
move. Order 1 is swapped with order 2 which in this case again yields a better solution.

Enumerating the swap neighborhood involves iterating over all pairs of orders not assigned
to the same period. Hence the neighborhood size is in O(k2).
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Neighborhood exploration

We investigated three types of neighborhood exploration:

• First Improvement: Generate and evaluate moves until the point where the
first move is found who would improve the current solution. In order to prevent a
bias towards the start of our neighborhood (e.g. the first orders in our input) the
neighborhood traversal is performed in a cyclic way. That is, instead of starting
every time at the same point we start right after the position where we found the
first improving move the last time and search until either an improving move is
found or we arrive again at the point where we started.

• Best Improvement: Generate and evaluate the complete neighborhood of a
solution and select the move which leads to the biggest improvement. Ties are
broken randomly.

• Random Neighbor: Generate and evaluate a random neighbor of the given
solution.

Move evaluation

In order to explore a neighborhood systematically, we need to be able to compare moves
with respect to their quality. Given two moves a and b, the first criterion to check is
the number of hard constraint violations which each of them introduces or resolves. If a
introduces fewer or resolves more of them we say that a is better than b. Otherwise –
if the number of hard constraint violations is equal – we compare by selecting the one
which has the lower move cost, which is defined as the change of the current solution’s
objective value if we would perform this move.

To avoid costly complete evaluations of whole solutions we propose a delta evaluation
that efficiently evaluates how much the objective value changes for a given move. The
delta evaluation implementations for the two move types both use the same primitive
for evaluating the cost of moving one order to a different period. When performing
swaps, we calculate the cost of moving order one to the period of order two, the cost for
moving order two to the period of order one and compensate the error which results from
assuming in both calculations that the respective other order remains unchanged. The
delta cost of moving an order is calculated for the three objective function components
separately:

1. For the leveling objective we only need to keep track of the planned production
volume for each period, so that we can calculate the effect the move on the difference
to the target value.

2. For the per-product leveling objective we can do the same thing, given that we
keep track of the planned production volume for each period and product.
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4.2. Metaheuristic local search

3. The priority objective is the hardest and most time-consuming part of delta
evaluation because moving an order from period i to j can introduce or resolve
inversions between the moved order and every order assigned to a period between
i and j. When the number of orders is very large it is inefficient to iterate over
all such orders and perform comparisons because we need to do that for every
candidate move. Our idea for optimizing this evaluation is based on the insight that
the only thing we care about when moving an order past a period is the number
of orders in that period which have smaller and larger priorities, respectively, not
the actual priority values. Therefore, we maintain the priority values of all orders
assigned to a certain period in a sorted list (one for each period), so that we can
efficiently retrieve via binary search how many orders have smaller / larger priorities
than the order which we currently want to move.

The delta cost of the three objective function components is aggregated to a single value
by the usual formula for the objective value (2.7).

4.2.3 Algorithms

In this section we present details of the metaheuristic local search methods which we
investigated for solving the PLP, namely the simple and deterministic VND as well as
Simulated Annealing.

Variable Neighborhood Descent

VND is a deterministic local search technique which can be seen as an extension of hill
climbing to multiple neighborhoods. The general idea is to go on to the next neighborhood
if the current one gets stuck in a local optimum and return to the first one as soon as a
further improvement is found. The selection of an improving move in the neighborhood
is usually done by using a deterministic exploration technique, i.e. either first or best
improvement. Algorithm 4.1 shows the details using pseudo code, as it is given in the
Handbook of Metaheuristics [Han+10].

The idea of using multiple neighborhoods is based on the following insights [Han+10]:

• A local optimum w.r.t. one neighborhood structure is not necessarily a local
optimum w.r.t. another.

• A global optimum is a local optimum w.r.t. all possible neighborhood structures.

That implies it is beneficial to use several complementary neighborhoods and try to
escape local optima of one neighborhood by switching to another.
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Algorithm 4.1: Variable Neighborhood Descent
Data: initialSolution, neighborhoods N1, . . . ,Nk, timeLimit, iterationLimit
Result: a solution at least as good as initialSolution

1 currentSolution← initialSolution;
2 iterationCount← 1;
3 j ← 1;
4 while j ≤ k and ¬ out of time and iterationCount ≤ iterationLimit do
5 bestMove← select a neighbor of currentSolution w.r.t. Nj ;
6 if bestMove is an improvement then
7 currentSolution← doMove(bestMove);
8 j ← 1;
9 else

10 j ← j + 1;
11 end
12 iterationCount← iterationCount+ 1;
13 end
14 return currentSolution;

Simulated Annealing

Simulated Annealing is a metaheuristic optimization method introduced by Kirkpatrick et
al. in 1983 [KGV83]. It resembles the physical process of annealing in metallurgy insofar as
both methods use a cooling schedule in order to control the amount of random movements
in the process, which in theory allows for convergence to the optimal state. Even though
convergence to the optimal solution is usually not achieved in practical settings, Simulated
Annealing is still one of the most widely used metaheuristic optimization methods.

Given an initial solution, a set of neighborhoods Ni with associated probabilities pi,
the starting temperature tmax, minimum temperature tmin, number of iterations per
temperature w, time limit and iteration limit the version of Simulated Annealing we
propose works as shown in Algorithm 4.2.

The pseudo code makes use of two functionsAccept, standing for the acceptance criterion,
and Cool-Off, defining the cooling schedule, which we discuss in the following:

• Acceptance Criterion: We use the metropolis criterion as acceptance function,
which was introduced in the original paper by Kirkpatrick in 1983 [KGV83]. The
probability of acceptance P (i⇒ j) of a move from solution i to solution j (for the
case of minimization), with f(x) standing for the objective value of solution x, can
be defined as follows:

P (i⇒ j) =

1, if f(j) ≤ f(i).
exp

(
f(i)−f(j)

t

)
, otherwise.

(4.17)
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Algorithm 4.2: Simulated Annealing
Data: initialSolution, neighbohoods Ni with probabilities pi, tmax, tmin,

iterations per temperature w, timeLimit, iterationLimit
Result: a solution at least as good as initialSolution

1 currentSolution← initialSolution;
2 bestSolution← currentSolution;
3 t← tmax;
4 while t ≥ tmin and ¬ time limit reached and ¬ iteration limit reached do
5 foreach j ∈ 1, . . . , w do
6 N ← choose one of neighborhoods Ni according to probabilities pi;
7 m← select a random move out of N (currentSolution);
8 if Accept(m, t) then
9 currentSolution← Apply(m, currentSolution);

10 if currentSolution is better than bestSolution then
11 bestSolution← currentSolution;
12 end
13 end
14 end
15 t← Cool-Down(t);
16 end
17 return bestSolution;

If the candidate solution j is at least as good as the current solution i, it is
accepted unconditionally. Otherwise it is accepted with a probability which is
decreasing exponentially as a function of the negative delta cost divided by the
current temperature. That means, if a candidate solution is much worse than the
current one it will be accepted with a lower probability than a solution which is
just a little bit worse.

• Cooling schedule: The temperature is decreased during the search process by
means of a cooling schedule which is usually a geometric row. In our case it depends
on the cooling rate α and the iterations per temperature level w. The function
Cool-Down() reduces the temperature after every w iterations by the following
formula:

ti = α · ti−1 (4.18)

We want to stress now briefly how α and w interact. Assuming we are given an
iteration limit l, the initial temperature tmax and the final temperature tmin there
exist many different options to reach tmin after l iterations, namely all combinations
of α and w such that tmin = αn · tmax where the number of temperature steps
n =

⌊
l
w

⌋
. Two examples of schedules following that formula with l = 30000,

tmax = 1 and tmin = 0.001 are depicted in Figure 4.3. Please observe that for both
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Figure 4.3: Two cooling schedules with different cooling rates and iterations per tempera-
ture but identical start and end points

options depicted in the figure the temperature at each time is approximately the
same as the different step sizes and widths compensate each other. Therefore, it
is sufficient to fix the cooling rate α when tuning the parameters of Simulated
Annealing and let the cooling schedule be determined only by the variation of w.
If we do not know the number l, we can also derive a formula which relates two
cooling schedules (α1, w1) and (α2, w2) that have the same slope:

w1
w2

= logα1
logα2

(4.19)

Using this relationship one can construct alternative cooling schedules which
decrease equally fast on average.
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CHAPTER 5
Experimental Evaluation

In this chapter we evaluate the practical contributions of our work and provide answers
to the questions which have been raised. As the PLP is a new problem we initially
elaborate on the problem instances and propose two instance generation procedures.
Next we describe properties of the test set, define parameters and describe the processing
environment. After that we turn towards the actual evaluation and look at the computa-
tional results of the exact methods in detail. Ultimately the metaheuristic approaches
are extensively evaluated.

5.1 Problem Instances

The problem we describe emerges from a real-life use case of our industrial partner which
also provided us some data from a production system. In total we obtained 27 PLP
instances which all have 20 periods, 4 to 8 product types and 79 to 1585 orders. This
set of instances will be called from now on R1. As these instances do not suffice for a
thorough evaluation and we do not want to restrict ourselves to their size, we designed
also two random instance generation procedures which are described in the following.

5.1.1 Perfectly solvable instances

We devised a method of generating instances which allow for a perfectly balanced solution
with zero cost, that we know from the construction process. That is, of course, a
restriction of generality, but it is extremely useful as a means of evaluating the optimality
gap for large instances which would otherwise be impossible as we have currently no
way of solving them exactly with usual compute resources. Despite the existence of a
perfectly balanced solution with no priority inversions the instances are still not easy to
solve to optimality, at least not as long as you don’t provide the information of perfect
realizability to the solvers.
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The instance generation process relies on the subroutine for random integer partitioning
shown in Algorithm 5.1. It takes as arguments the integer to partition, the number of
partitions and a minimum value for each partition. The main idea is to represent the
number n as an array of n − k ·minV zeros and then inserting k − 1 ones at random
positions. In the resulting array an integer partition of the number n− k ·minV into k
parts can be found by looking at the number of zeros between every two neighboring
ones. Finally we add minV to every element of the result array to obtain the requested
partition with minimum value.

Algorithm 5.1: Integer partitioning algorithm
Data: n, k, minV
Result: An array with k integers whose sum equals n, each of which being

≥ minV
1 let array ← an array consisting of n− (k ·minV) zeros;
2 Insert k − 1 ones into array at random positions;
3 let spaces ← number of zeros between the ones in array;
4 add minV to every element of spaces;
5 return spaces;

Using this partitioning algorithm, Algorithm 5.2 defines the procedure for generating
random instances with a fixed number of orders, periods and products. First the total
number of orders is partitioned into one part for each period where each part has to have
at least as many orders as we have products. This is important because every product
needs to meet always its target in order to achieve an objective value of 0. Similarly, we
decide after that upon the number of orders for each product in every period.

Next we draw the overall target value for the production volume (which is the same
for each period) by taking the desired avgDemandPerOrder and multiplying with the
average number of orders per period plus a random deviation of at most 10%. Then we
partition that value into one part for each product, which is the demand for each product
per period.

Finally we need to partition the demand for each product, which we decided upon in
line 4, into the number of orders for each period and product which we calculated in line
2. The priorities must be chosen such that no inversion can exist, which is achieved by
assigning each period a range of priority values decreasingly such that the ranges do not
overlap, and choosing for each order randomly one of the allowed values. From this data
the order and product type list can be built, which completes the instance. The optimal
solution is known as well from the construction process.

Using Algorithm 5.2 we generated 1000 instances, sampling the parameters for each
one independently as follows: The number of orders k is chosen from 100 . . . 4000,
the number of periods n from 2 . . . 80, the number of products m from 1 . . . 20 and
avgDemandPerOrder from 5 . . . 500. The resulting set of instances is subsequently called
R2.
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Algorithm 5.2: Procedure for the creation of perfectly solvable instance
Data: m, n, k, avgDemandPerOrder
Result: A realizable instance with m products, n periods, k orders and the

optimal solution
1 let ordersPerPeriod ← partition(k, n,m);
2 let ordersPerPeriodAndProduct ← partition(ordersPerPeriod[o], m, 1) for every

order o;
3 let plannedDemand ← k·avgDemandPerOrder

n ± 10%;
4 let plannedDemandPerProduct ← partition(plannedDemand, m,

max(ordersPerPeriodAndProduct));
5 let orderDemands ← partition(plannedDemandPerProduct[p],

ordersPerPeriodAndProduct[t, p], 1) for every period t and product p;
6 let allowedPriorities ← for each period n a distinct set of priorities s.t. they

decrease with increasing n;
7 let orderPriorities ← choose for each order one of the priorities which are

allowed according to the period of the order;
8 build the list of orders and products and shuffle them;
9 assign random product names;

10 return a new solution from the list of orders and products and the optimal
solution;

Figure 5.1: 3D Scatter plot of the parameters of the randomly perfect instance set R2

Figure 5.1 visualizes the randomly chosen parameters of the 1000 generated instances.
One can see clearly that the combination of a high number of periods and products
but a low number of orders is not possible, because we need to have at least one order
per period and product to achieve a perfect assignment. However, apart from that the
distribution of parameters looks uniform.
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5.1.2 Random instances

We also devised a second instance generation procedure where the optimal solutions are
not known by design and we can’t even guarantee that there exists a feasible one, which
is surely a more practice-oriented approach. The instances are designed to share some
properties of the 27 realistic instances:

• There exist only a limited number l � k of different order demand values. This
means we frequently see repeated orders which may have different priorities though.

• Orders of different products draw their demand data from different distributions.
Whereas product a may have demand values between 0 and 1000, product b may
have it between 0 and 5000.

• Sometimes there exist product types whose number of orders is smaller than the
number of periods which implies that the demand for some periods will exceed the
target while for others it must be zero.

The actual generation process is very simple. Given a number of orders k, periods n and
product types m the algorithm works as follows:

1. Partition the number of orders k into m parts c1 . . . cm.

2. Choose the maximum priority of all orders pmax ∈ [1; 3n]

3. Choose 1−50 allowed demand values d ∈ [1; random(1000−5000)] for each product
p, named Dp.

4. For each product p ∈ [1;m], generate cp orders, choosing the demand from the set
Dp and the priority from [0; pmax[.

Using this procedure, we generated the instance set R3 consisting of 1000 instances by
sampling the parameters randomly as it has been done above with the other procedure.
The number of orders k is chosen from 100 . . . 4000, the number of periods n from 2 . . . 80
and the number of products m from 1 . . . 20. Furthermore, we generated a set of 10 small
instances, named R4, where the number of orders k is chosen from 30 . . . 100, the number
of periods n from 5 . . . 20 and the number of products m from 1 . . . 5.

5.2 Experimental Setting
The instances which are described above are split into training and test set so that the
parameter tuning is not executed on the same instances as the validation. The test set
consists of the whole set of realistic instances R1, 50 instances of R2, 50 instances of R3
and all 10 instances in R4. Table 5.1 provides an overview of the instance sets and the
way they were split.
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Table 5.1: Overview of the different instance sets and the split into training and test set

Name Count Training set Test set

R1 realistic_instance 27 - 01-27
R2 randomly_perfect 1000 0001-0950 0951-1000
R3 randomly_generated 1000 0001-0950 0951-1000
R4 randomly_generated_small 10 - 01-10

Table 5.2: Minimum, maximum, mean and standard deviation of number of orders k,
number of product types m and number of periods n for every part of the test set

min max mean std
Parameter Instance Set

k

R1 79 1585 307.19 412.56
R2 105 3896 1595.86 954.09
R3 112 3991 2076.76 1207.02
R4 34 98 61.20 19.70

m

R1 4 8 6.93 1.24
R2 1 19 8.82 5.50
R3 1 19 9.04 5.48
R4 1 4 2.80 1.03

n

R1 20 20 20.00 0.00
R2 4 78 39.50 22.48
R3 4 77 39.26 22.04
R4 7 18 10.90 4.04

We chose to build the test set out of four different instance types because we wanted
to make sure that our algorithms can cope with different characteristics and sizes.
The size distribution is shown by Table 5.2 which states for each instance parameter
— k (number of orders), m (number of product types), and n (number of periods) —
the minimum, maximum and mean value on each part of the test set. The smallest
instances are R4, followed by the realistic instances R1. The instances coming from R2
and R3 are much larger on average as we want to evaluate also the scalability of our
algorithms. The set of test instances is publicly available on the following website, where
also information about the instance format as well as validation scripts are published:
https://dbai.tuwien.ac.at/staff/jvass/production-leveling.

We use the absolute-difference-based objective function (2.7) to produce all the subsequent
results. The reason is that in our setting the advantages over the objective with squares
outweigh the disadvantages, especially because it enables us to solve much more instances
exactly. The evaluation of the metaheuristics could just as well be done using the
quadratic objective function (2.11) but as we want to compare to the exact results
we use formula (2.7) as well. Hard constraint violations are not part of the objective
function but undergo a special treatment where possible by reporting the number of
violated constraints as a separate number or separate plot. In some cases, e.g. statistical
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significance tests, we handle objective and constraint violations at once by adding them
up. Due to the small magnitude of the objective a penalization factor for hard constraint
violations is not necessary. Furthermore, we devised default values for the the objective
function weights a1, a2 and a3 in cooperation with our industrial partner, namely 1, 1
and 1/3, respectively. All experiments of the evaluation are using this weighting.

Wherever nothing different is stated the algorithm parameters are defined as follows:

• The greedy heuristic has only one parameter, r, for controlling the amount of
randomness, which we set to 1 (i.e. deterministic) for all the experiments. The
parameter is only necessary for some local search techniques like GRASP which
would require a randomized construction heuristic.

• For VND the move neighborhood is used first because it can be enumerated very
quickly. Only when no improving move can be found any more the larger swap
neighborhood gets employed. This ordering leads to a much quicker termination
because the first neighborhood is searched much more often than the second. As
the neighborhood exploration strategy we use Next Improvement with restart at the
last position (as defined in Section 4.2.2), which showed at least equal performance
to Best Improvement in preliminary experiments.

• The parameters of Simulated Annealing are tuned automatically. The concrete
process and the results get introduced later on.

• The MIP model is executed using Gurobi Optimizer 8.1.1 [Gur19] using the default
settings.

• The CP model is compiled using Minizinc 2.3.1 [Net+07] for Gecode 6.1.1 and
Gurobi Optimizer 8.1.1.

• Each run was limited to a single thread and a maximum of 15 GB memory usage.

All experiments were conducted on a computing cluster with with 10 identical nodes,
each having 24 cores, an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz and 252 GB of
memory, running Ubuntu 16.04.1 LTS. The metaheuristic algorithms are implemented in
C# and executed using Mono 4.2.1.

5.3 Evaluation of exact modeling techniques
In this section we examine the CP model and the MIP formulation presented in Section 4.1
with respect to their practical performance. First we present benchmark results on the
test set. We aim to determine, which of the two produces better results, and explore how
the instance size correlates to the quality of found solutions, if at all. After that we take
a deeper look into the results of the native MIP model. Finally we evaluate the effect of
the dominance constraints. The concrete results of all exact methods can be found in
tabular form in Appendix A.
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5.3.1 Comparison of exact modeling techniques

In the following we present a comparison of the two exact models on different solvers.
While the native MIP model is implemented specifically for Gurobi, the CP model can
theoretically be executed on any solver that supports MiniZinc models. Unfortunately,
most of the CP solvers do not support continuous variables, which we need for the
normalization of the objective function even though the actual decision variables are
binary. Therefore, we ended up with only one CP solver, namely Gecode, which we
compare against native Gurobi and through MiniZinc. We executed each of the variants
for each instance of the test set on a single core with a time limit of one hour. If the time
or memory limit was exceeded, the execution was aborted and the latest found solution
counted.

The results are shown by Figure 5.2, which depicts the relative optimality gap 1 of the
best solution found by each of the three variants for all instances where at least one
of the variants found a solution. The dedicated MIP model for Gurobi is shown by
blue ’X’-signs, Gurobi through the CP-model by orange stars and Gecode through the
CP-model by red plus signs. Marks are missing if a variant could not find any solution
within the limits.

We can see clearly that the number of instances which have been solved by the dedicated
MIP model for Gurobi is the highest, followed by Gurobi through MiniZinc. This
difference presumably stems from the necessary compilation step of the latter variant,
which itself exceeded exceeded the memory limit many times and used an increasingly
large percentage of the execution time the larger the instance was. Where both variants
found solutions the native version found in 15 cases the better solution, the MiniZinc
version in 9 and in 7 cases the solutions were equal. However, in all cases the differences
were quite small. Between the MIP variants we can, therefore, conclude that both can
solve the smaller instances similarly well. However, when pushing the solvers to the limit,
the benefits of a dedicated MIP model become very apparent.

Furthermore, the figure shows that the CP solver Gecode could not find any solution for
most of the instances at all. While the two Gurobi approaches solved 41 and 31 out of
137 instances, respectively, Gecode could only find a feasible solution in three cases. In
addition, these solutions were in all cases worse compared to the Gurobi solutions. We
cannot conclude with certainty, however, that CP is generally not suited for solving the
PLP because the deviation constraint is not implemented in any suitable solver and
there are very few which currently support continuous variables. If these circumstances
happen to change at a later point in time, it would definitely be interesting to repeat
this experiment one more time.

1The relative optimality gap is a common measure of how near a solution is to a global optimum. It
is calculated as the percentage corresponding to one minus the ratio between the cost value of the best
lower bound and the cost at the incumbent solution.
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Figure 5.2: Comparison of the solutions found by our three exact approaches. The
optimality gap of all instances, where at least one of the approaches found any solution,
is compared. The optimality gap of solutions in R2 cannot be calculated due to the best
bound being 0, so we report instead objectiveValue · 100 for this group.
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Figure 5.3: Share of solution statuses of MIP for each subset of the test set. Optimal
means proven optimal. Suboptimal implies that an integer solution has been found but
it has not been proven that it is optimal. Unsolved means that within the time/memory
limit no integer solution has been found and it is thus unclear whether there exists a
feasible solution at all. Infeasible means that the solver proved that no feasible solution
exists.

5.3.2 Evaluation of the dedicated MIP model

The comparison of exact modeling techniques showed, that the dedicated MIP model
works best in our problem setting. Therefore, we now take a deeper look into the results
of this approach. We first break down the results by the different instance sets of which
the test set is composed. Afterwards we will investigate how the instance size affects the
solution quality.

We want to find out how well each part of the test set can be solved using MIP. For
a description of the different parts please refer to Table 5.2. Figure 5.3 visualizes the
shares of optimally solved, feasibly but not optimally solved, infeasible and unsolved
instances per group R1 to R4. The most noticeable difference between the sets is that
in R2 and R3 the vast majority of the instances are unsolved while for the other two
most of the instances are solved (but still not proven optimal). Presumably, the reason
for that is that most of the instances in these sets are very large. An interesting fact is,
though, that about 10 % of the instances in R2 could be solved to proven optimality but
not a single one in R3 even though the instance sizes of the two sets have been sampled
from the same distribution. One potential reason for that could be that the instances
in R2 are designed to have optimal solutions with objective value 0. That should make
optimality proofs easy for the solver once the optimal solution has been found because
no part of the objective function can by negative.
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Table 5.3: Optimality gap of MIP for suboptimal instances in R1 and R4

min max mean std

R1 0.99% 11.65% 3.96% 2.55%
R4 0.63% 98.85% 31.14% 41.52%
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Figure 5.4: Solution statuses of MIP on the test set, grouped by value ranges of the
instance features k (number of orders), m (number of products) and n (number of periods)

For the instance sets R1 and R4 over 70% of the instances end up with some solution,
which is not proven optimal. We want to investigate how good these solutions are and
use for that purpose once more the relative optimality gap with respect to the best lower
bound. Table 5.3 shows the minimum, maximum and mean optimality gap as well as the
standard deviation for all suboptimal solutions. With an average gap of only 3.96% the
realistic instance set R1 is solved really well, so that the MIP model might be usable in
practice when the instances are not too large and a runtime of one hour is not an issue.
On the other hand, R4 has a low minimum and a high maximum gap as well as a large
standard deviation. That means that the randomly generated instances are quite difficult
to solve using MIP, even though the ones in R4 are mostly smaller than the realistic
ones.

Finally, we investigate in more detail how the instance size correlates with the results of
the MIP model. Figure 5.4 visualizes the solution statuses of all instances in the test set,
grouped by the number of orders k, the number of products m and the number of periods
n, from left to right. The most apparent relationship is a correlation between the number
of orders k and the percentage of unsolved instances. While below 250 orders almost
every instance has either been proven feasible or infeasible, the share of unsolved solutions
increases drastically when increasing k. When looking at the middle and right-hand-side
figure, we can see that the share of unsolved instances is also increasing with increasing
number of periods and product types but it starts already quite high in the smallest
bin. We can conclude that instances with 250 orders or less can be solved with a high
probability by the MIP model, but there is no such bound which we could state on the
number of periods or product types. While increasing n and m clearly complicates the
problem, making them small does not automatically make the problem easy to solve.
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Table 5.4: Results for the native Gurobi MIP model with/without dominance constraints.
The left column shows the number of instances in the test set which have been solved
and the right column the average objective value of those instances, which have been
solved by both methods.

# solved instances mean objective

MIP with dominance 41 0.627583
MIP without dominance 106 0.636446

5.3.3 Dominance Constraints

All the experiments presented so far were conducted with the dominance constraints
(see Section 4.1.1) included. In the following we investigate the benefits of this inclusion.
To that end we excluded the dominance constraints from the dedicated MIP model and
evaluated it again on the test set with the same time and memory limit.

Table 5.4 shows the results on the test set for the dedicated MIP model with and without
dominance constraints in comparison. At first sight it surprises that the variant with
dominance constraints included solves not even half the number of instances compared
to the variant without dominance constraints. However, it turns out that the additional
solutions are completely useless because even our Greedy heuristic produces better results
in 63 out of the 65 cases – and that in almost no time. Compared to VND and Simulated
Annealing, not a single one of the additional solutions is better. When looking at the
right column, which shows the average objective value of all instances solved by both
variants, we can clearly see that the dominance constraints do bring a small advantage.
The improvement corresponds on average roughly to a 0.8% lower optimality gap.

To sum up, it is advisable to include dominance constraints into the exact models because
the solution quality increases. Large instances may not be solvable any more when
including the constraints but that is not a problem because the solutions which are cut
off have a low-quality, which is easily exceeded (e.g. by our metaheuristic approaches).

5.4 Evaluation of metaheuristic local search

As we have seen, neither of the investigated exact methods is suitable for reliably solving
large instances, which is why we developed local search methods for the PLP as well.
In this section we will first deal with the automatic parameter tuning for Simulated
Annealing and validate the claim that it is sound to fix the cooling rate. Then we
analyze benefits and shortcomings of our two approaches VND and Simulated Annealing
in detail on the basis of results on our test set, comparing also against the greedy
heuristic. Thereafter we examine the sensitivity of Simulated Annealing to variations
in the weighting of the neighborhoods. Finally we examine how close the metaheuristic
solutions get to the global optima by using dual bounds.
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Table 5.5: Configuration space of Simulated Annealing. The upper section are parameters
which we tuned while the ones in the lower section have been set to fixed values.

Parameter Type Min Max Default Tuned

Iterations Per Temperature integer 103 106 103 2.52 · 105

Move Neighborhood Probability (%) integer 0 100 50 40
Initial Temperature real 0.1 10.0 5.0 0.22

Minimum Temperature fixed real 0 0 0 0
Cooling Rate fixed real 0.95 0.95 0.95 0.95

5.4.1 Algorithm Configuration

As described in Section 4.2.3, Simulated Annealing depends on parameters whose setting
has a huge influence on the algorithm’s efficiency and effectiveness. We deal with their
configuration by means of Sequential Model-based Algorithm Configuration (SMAC),
an automatic algorithm configuration tool written in python. It relies on Bayesian
Optimization in combination with an aggressive racing mechanism in order to efficiently
search through huge configuration spaces [Lin+19].

We applied SMAC to tune the parameters of Simulated Annealing as it was presented
above. The set of instances which was use for the tuning can be found in the column
Training Set Selection of Table 5.1. The parameter optimization was executed for 24
hours on 24 cores in parallel. We used a time limit of five minutes per run and no
iteration limit. The cooling rate was not tuned but set to a value of 0.95, which is not a
restriction of generality as long as the number of iterations per temperature can still be
adjusted (see Figure 4.3). This claim will be verified in a separate experiment.

We tuned the initial temperature tmax, the number of iterations per temperature w
and the probability p that the move neighborhood is used to generate the next random
move (hence 1− p is the probability of the swap neighborhood). Tuning the minimum
temperature tmin is not necessary because the results cannot get worse when Simulated
Annealing is run until the time limit instead of aborting when the minimal temperature
is reached. Indeed, preliminary results showed that setting the minimum temperature
to zero instead of using the tuning results of SMAC improves results to a small but
significant extent. The configuration space with minimum and maximum values as well
as the defaults and the tuning result is shown in Table 5.5.

5.4.2 Experiments about fixing the cooling rate

We claimed in Section 14 that the cooling rate α could be set to a constant value because
it was redundant as long as the number of iterations per temperature w can be freely
configured. During algorithm configuration we did exactly that and set α← 0.95. Now we
want to verify by means of an experiment that this is sound. We derive four more cooling
schedules from the one defined by the result of parameter tuning whose temperature
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Table 5.6: Five equivalent cooling schedules which have the same slope on average. The
value for w in the line with α = 0.95 comes from parameter tuning and the rest has been
derived so that the slope is does not change.

Cooling Rate α Iterations per temperature w

0.50 3412581
0.75 1416349
0.90 518723
0.95 252533
0.99 49481

profile follows the same slope. Then we benchmark each configuration on the whole test
set ten times with different random seeds and take the median of the objective values
and number of constraint violations for each instance.

In Section 14 we already introduced an equation which allows to derive cooling schedules
with equal average slopes. We selected the alternative cooling rates 0.5, 0.75, 0.9 and 0.99
and computed the associated values of w. A summary of the resulting cooling schedules
is shown in Table 5.6.

Figure 5.5a shows a box plot for each of the schedules, each of them plotting the median
objective value resulting from the derived schedule divided by the median objective value
resulting from the original schedule, per instance. That means, values below one show
an improvement over the original schedule and values above one a degradation. For
0.75 ≤ α ≤ 0.99 the whole inter-quartile range is within ±0.5% of the original schedule’s
objective value and nearly all the rest in ±1.5% (except for a couple of outliers outside the
plotting range). The median of the schedules α = 0.9 and α = 0.99 is almost exactly at 1
whereas the other two variants have median differences slightly higher than one, although
the differences are still very small. Figure 5.5b visualizes the same for the number of
hard constraint violations, except that we do not divide but take the difference between
the alternative schedules and the original one because the interpretation is more intuitive
in this case. The whole box plot, except for some outliers, is zero which means that for
most of the instances there is no change in the number of hard constraint violations.
However, there are a few outliers going down to -1 which means that for these instances
the alternative schedules have one violation less. Compared to the 137 instances of the
test set the number of outliers is very small though.

In order to clarify whether the differences which we see are statistically significant or
not we conducted a Wilcoxon signed-rank test between the original schedule and each of
the derived ones. In order to take also the hard constraint violations into account their
number was added to the objective value as a penalty. The null hypothesis was that the
median of the differences is zero and the alternative that it is different from zero. We
want to reject the null hypothesis in case we find a p-value which is smaller than 0.05.
The result of the tests yielded a p-value of 2.6 · 10−8 for α = 0.5, 0.041 for α = 0.75, 0.966
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Figure 5.5: Results of the experiment with different cooling schedules. All the results are
comparisons per instance against the schedule with α = 0.95.

for α = 0.9 and 0.26 for α = 0.99. That implies that we must reject the null hypothesis
for the schedules with α ≤ 0.75. For the other two schedules the statistical test does not
let us reject the null hypothesis that the differences which we see are the result of chance.

To sum up, the claim that we can change alpha without changing the result is valid in our
setting as long as α is set high enough (i.e. in our experiment at least 0.9). That implies
that we were on the safe side when fixing it to 0.95 during parameter tuning. For values
α ≤ 0.75 there exists a tiny but statistically significant difference which corresponds to a
median objective value which is about 1 %� above the one of our tuned configuration.

5.4.3 Comparison of metaheuristic techniques

We want to compare now the presented heuristic and metaheuristic techniques for solving
the PLP, namely the greedy algorithm presented in Section 4.2.1, and VND and Simulated
Annealing which have been presented in Section 4.2.3. Therefore, these three algorithms
were benchmarked on the test set with the usual settings. For Simulated Annealing
we conducted 10 runs to account for randomness in the search process and aggregated
the runs by taking the median value of each measure. In order to be able to compare
objective values and hard constraint violations visually, we report for each instance the
difference to the best solution we ever obtained using any method and time limit 2.

The results are shown by Figure 5.6: To the left one can see the objective values of the
three approaches. The median difference between the greedy heuristic’s objective values
and the best known ones is about 0.07. Furthermore, we can see in the center figure

2This is a sound approach because the objective function is already normalized so that the instance
size does not have an influence on the magnitude of the objective value. Using a ratio instead of the
difference, like in the previous experiment, is not possible here because the best known solution for the
instances in R2 have objective value 0 which would lead to a division by 0.
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Figure 5.6: Comparison of objective values, hard constraint violations and solving time
of the Greedy heuristic, VND and Simulated Annealing on the test set

that a considerable number of instances could not be solved without hard constraint
violations by the Greedy heuristic. Expressed in numbers, that’s the case for 63 out of
137 instances or some 46%. Compared to the Greedy, VND delivers solutions with much
better objective values and fewer constraint violations, but there are still 33 solutions or
24% where at least one capacity constraint is violated. Simulated Annealing achieves the
best median objective value of all methods and furthermore the fewest instances with
constraint violations (22 out of 137, 16%). The non-overlapping notches of the box plot
in the left figure indicate that the difference to VND is significant. The rightmost plot
shows the solving time of the different methods in seconds. The greedy heuristic needs
always less than a second of time. VND is also mostly fast, because the search continues
only until a local optimum w.r.t. all neighborhood structures is found, which takes long
only for the very largest of our instances. Simulated Annealing uses always the complete
available time because we don’t stop at a minimum temperature in order to maximize
the solution quality.

Appendix B presents the objective value and the number of hard constraint violations
for each instance of the test set for all reported algorithms.

5.4.4 Sensitivity to neighborhood weightings in Simulated Annealing

Before selecting the next random move in the Simulated Annealing algorithm the neigh-
borhood is chosen randomly according to some weighting. This weighting has been tuned
by SMAC, resulting in a probability of 0.4 for the move neighborhood and 0.6 for the
swap neighborhood. The tuning progress of SMAC revealed quite large fluctuations in
this weighting. Therefore, we conduct a sensitivity analysis in order to find out what
impact different weightings have on the results.
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Figure 5.7: Simulated Annealing results with different neighborhood weightings, compared
per-instance with the schedule ’40 - 60’. The first number of each label is the weight of
the move neighborhood and the second the weight of the swap neighborhood.

We evaluate 6 different weightings, one of which is the result of SMAC. The probability
p for the move neighborhood in the 6 scenarios ranges from 0 to 1 in steps of 0.2 and
the probability of the swap neighborhood is the complementary probability 1− p. Each
configuration is executed on the test set 10 times with the usual time limit of five minutes.
The runs are again aggregated using the median.

Figure 5.7a shows a box plot for each of the alternative weightings, each of them plotting
the associated objective value divided by the objective value of the original weighting. The
labels ’x - y’ mean that the move neighborhood has weight x and the swap neighborhood
has weight y. The objective value gets worse in the extreme cases which can be seen
because the leftmost and the two rightmost boxes lie completely above the dashed line.
The other cases are practically equal which means that the objective value does not
change compared to the reference weighting.

Figure 5.7b shows the difference of the number of hard constraint violations to the
respective number of the reference weighting ’40 - 60’. All boxes are completely flat
contained in {0} which means that the inter-quartile range is equal for all weightings.
The outliers show that a few instances of the extreme configurations have one or two more
hard constraint violations more than the reference configuration, while the weightings
’20 - 80’ and ’60 - 40’ have tendentially fewer. However, compared to the number of 137
instances contained in the test set the amount of outliers is very small.

To sum up, the tested neighborhood weightings between ’20 - 80’ and ’60 - 40’ are equally
good and therefore it is logical to assume that the untested weightings in between are
good as well. Using one of the more extreme weightings leads to worse results, especially
in the case where only the move neighborhood is used.
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5.4. Evaluation of metaheuristic local search

5.4.5 Optimality gap of metaheuristic solutions

An interesting question during the evaluation of metaheuristic techniques is by how
far the solutions deviate from the optimal solution. As stated previously, MIP solvers
measure this property in terms of the optimality gap, which is calculated by taking one
minus a lower bound divided by the objective value. In the following we assess how large
the optimality gap of the metaheuristic solutions is which can be done by using the lower
bounds obtained though MIP. However, as only a small fraction of the instances could be
solved well enough that this kind of evaluation makes sense, we present afterwards also
an analysis based on the randomly generated instances with known optimal solutions.

1. Optimality gap for small instances: We want to analyze the optimality gap
of the solutions produced by our metaheuristic approaches. Therefore, we use the
best dual bound found by the MIP solver. In order to get even better bounds, we
executed the solver again with a time limit of 10 hours and used for each instance
the best available bound. We restrict this evaluation to the instances in R1 and
R4 because they are the only sets where the instances are small enough so that we
could obtain mostly good bounds. Furthermore, we select the subset of instances
whose optimality gap of the best MIP solution is below 10% because we can only
assume safely that the dual bound is good if the gap is small. This step eliminates
8 instances of R1 (30%) and 4 of R4 (40%), which means that 25 instances remain
for our evaluation. By using the best bound the optimality gap for each of the
metaheuristic approaches is calculated on the selected instances.

Figure 5.8 shows the optimality gap for each instance in the reduced set for the
greedy heuristic, VND, Simulated Annealing and MIP. For solutions, which are not
valid because of constraint violations, no mark is shown. The figure conveys, that
the solutions found by the greedy construction heuristic have gaps between 10%
and 25% and a considerable number of instances is not solved to feasibility at all.
VND already achieves drastic improvements by solving all instances but four with
a maximum gap of 10% and mostly around 5%. Simulated Annealing is clearly the
best metaheuristic for this restricted set of small instances, as it produced always
valid solutions which have a similar optimality gap as the MIP solutions and in
several cases even better. The gap is most almost always below 5% percent and
with an average of about 3%.

The resulting numbers state how large the relative difference between metaheuristic
and optimal solutions is at most 3. This result is interesting because it proves that
our Simulated Annealing approach solves the majority of the small instances (which
includes most of the realistic instances) extremely well. On average the solutions
are at most 3% above the optimal one.

3The gap is calculated using the best lower bound which was proven by the MIP solver. As most of
the solutions were not proven optimal, the bounds are most probably smaller than the optimal objective
value and thus the calculated gap an upper bound of the actual gap.
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5. Experimental Evaluation
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Figure 5.8: Comparison of the optimality gap of valid solutions obtained though Greedy,
VND, Simulated Annealing and MIP. Marks are missing for solutions that violate
constraints. The gap is computed using the dual bounds of MIP. The evaluation contains
all instances of R1 and R4 which could be solved with an optimality gap of 10% or lower
using MIP.

2. Comparison on large randomly perfect instances R2: The instances in R2
have been constructed in a way that the optimal solutions are known and have the
objective value 0. This enables us draw some conclusions about the optimality gap
also for larger instances than those for which we can obtain bounds using MIP.
However, the optimality gap as defined above cannot be computed for the instances
in R2 because the best known bound is zero which would lead to a division by zero.
Instead, we can say something similar by looking at the objective function. The
first objective function component g1, defined in Equation (2.4) states, informally
speaking, the gap to a hypothetical perfectly leveled solution averaged over all
periods. In case of the instances R2 this hypothetical solution actually exists and
the value g1 can be interpreted as the average percentage by which planned demand
for each period exceeds or falls short of the target. The same argument holds for
g2, defined in Equation (2.5), which states average percentage by which planned
demand for each period exceeds or falls short of the target, averaged over the
different products. The objective component g3, defined in Equation (2.6), can be
interpreted as the percentage of actual priority inversions measured against the
theoretical maximum number of inversions k·(k−1)

2 .
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5.4. Evaluation of metaheuristic local search

Table 5.7: The values of the objective function components g1, g2 and g3 multiplied
by 100 so that they can be interpreted as percentages for each each algorithm for each
instance of R2 where a valid solution has been reached. The rightmost column states for
how many percent of the solutions each algorithm reached a valid solution.

g1(%) g2(%) g3(%) valid (%)

Greedy 1.78 2.25 1.78 78.00
VND 0.04 0.34 2.62 96.00
Simulated Annealing (median) 0.32 0.47 7.95 92.00
Optimum 0.00 0.00 0.00 100.00

Table 5.7 shows the values of g1, g2 and g3 multiplied by 100, so that they can
be interpreted as percentages, as explained above for each each algorithm and for
each instance of R2 where a valid solution has been reached. The fourth column
reports the percentage of valid solutions. We can see that Simulated Annealing
and VND reach negligible mean deviations for the first two objectives. However,
also the greedy heuristic produces levelings which deviate from the target by only
2% on average, so we can assume that this part of the task is not very hard for this
instance set. With respect to the priority objective the results leave some more
room for improvements. The greedy heuristic reaches the best value here (at the
cost of fewer valid solutions and a worse leveling), followed by VND and Simulated
Annealing. The best total results are clearly reached by VND for this instance set.
It is not entirely clear why the results on R2 differ so much from the results which
are obtained on the other parts of the test set but we suspect that it might have
something to do with that the greedy heuristic finds very good initial solutions on
this instance set. That might help VND more than Simulated Annealing because
that latter starts with a random search which destroys some of the good structure
which was already there.

The above analysis of the optimality gap on small, realistic instances and the larger
perfectly solvable ones revealed that our metaheuristic methods produce solutions which
are only few percentage points away from the optimum. When taking also the comparison
of the different metaheuristics on the whole test set into account, which was presented in
the previous section, we can conclude that Simulated Annealing is the overall best of our
algorithms for the PLP because it can solve small instances in an excellent way and still
scales to the largest instances which we have.
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CHAPTER 6
Conclusion

We introduced a new combinatorial optimization problem in the area of production
planning, which concerns the assignment of orders to production periods. Thereby a
number of production capacity constraints need to be fulfilled and a work balancing
objective as well as the prioritization of the orders must be optimized.

We started with giving a precise mathematical formulation and reviewing the literature
for related problems. Thereafter a proof of NP-hardness was given and the Fixed-Order
Production Leveling problem was introduced and shown to be tractable. Then we turned
towards solution methods for the original problem and introduced both a CP model
and a MIP formulation. Finally we investigated local search methods and defined two
neighborhood structures for the problem, which we evaluated using VND and Simulated
Annealing.

The main results of this work are:

• The PLP is NP-hard, which was shown by an NP-completeness proof of the
associated decision problem via a reduction from Bin Packing.

• The Fixed-Order Production Leveling problem, a variant where the correct ordering
by priorities is enforced as a hard constraint, can be optimally solved in O(n · k2)
time using our dynamic programming algorithm for all instances where all priority
values are unique.

• The CP model is able to solve most of the small instances when being used with
the MIP solver Gurobi, but does not produce satisfactory results with the CP
solver Gecode. When using the native MIP model instead of the CP model, Gurobi
performs slightly better, especially for large instances. The complexity of solving
the MIP model grows with every dimension of the problem, but most notably with
the number of orders k. For instances with less than 250 orders we can expect
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6. Conclusion

either a feasible solution or the proof of infeasibility within one hour of time, while
we cannot count on finding any solution for instances with k ≥ 300.

• The introduced dominance constraints cut off parts of the search space which do
not contain optimal solutions. In experiments with the native MIP model their
effect was that for fewer instances a solution was found, but those who were solved
had a better objective value.

• With Simulated Annealing very good solutions can be obtained within five minutes.
The real-life instances can all be solved well and for most of them we can show
though the use of dual bounds that the solutions are within 3% of optimality on
average. Experiments based on the set of instances with perfectly leveled solutions
indicate that Simulated Annealing is capable of providing really good solutions also
for much larger instances.

• Another metaheuristic local search method studied in this work is VND. While
the objective value and the number of hard constraint violations is a bit higher on
average compared to Simulated Annealing, it still finds good solutions most of the
time. The instances with perfectly leveled solutions R2 are even solved better by
VND than Simulated Annealing.

• An experiment regarding the weighting of the two neighborhoods in Simulated
Annealing showed that it is clearly advantageous to use both neighborhoods instead
of either of them alone. The best weighting between the move and the swap
neighborhood is between ’20 - 80’ and ’60 - 40’.

A lesson learned during the practical phase of the thesis is the great importance of
efficient delta evaluation procedures during local search. The quadratic number of
potential priority inversions would render a naive implementation of delta evaluation
for the priority objective too inefficient so as to solve large instances of the problems
well in a short amount of time, as we do. Out of this experience, we want to stress that
an efficient implementation of delta evaluation can be very important to achieve good
results.

Potential future work on Production Leveling includes improvements of the MIP model,
e.g. by decomposition based techniques, so that more instances can be solved optimally
or better bounds are obtained. That would open up ways to assess the quality of
metaheuristic solutions of large instances. Another promising idea is to study extensions
of the problem, like for example secondary resource usage, that could make the problem
even more relevant in practice.
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APPENDIX A
Computational results of exact

modeling techniques

Table A.1: Objective value for all reported exact methods and the best lower bound
proven by MIP for each instance of the test set.

CP (Gecode) CP (Gurobi) MIP (Gurobi) MIP bound MIP without
dominance

randomly_generated_0951 - - - - 0.7510
randomly_generated_0952 - - - - -
randomly_generated_0953 - - - - 0.5913
randomly_generated_0954 - - - - 0.4922
randomly_generated_0955 - - - - -
randomly_generated_0956 - - - - 0.5083
randomly_generated_0957 - - - - -
randomly_generated_0958 - - - - 0.3441
randomly_generated_0959 - - - - 0.4612
randomly_generated_0960 - - - - 1.1012
randomly_generated_0961 - - - - -
randomly_generated_0962 - - - - 0.5255
randomly_generated_0963 - - - - 1.1472
randomly_generated_0964 - - - - 0.4722
randomly_generated_0965 - - - - 0.4806
randomly_generated_0966 - - - - 0.5668
randomly_generated_0967 - - - - -
randomly_generated_0968 - - - - 0.6821
randomly_generated_0969 - - - - -
randomly_generated_0970 - - - - 0.1509
randomly_generated_0971 - - - - -
randomly_generated_0972 - - - - -
randomly_generated_0973 - - - - 0.4981
randomly_generated_0974 - - 0.8627 0.8153 0.8643
randomly_generated_0975 - - - - 0.1470
randomly_generated_0976 - - - - -
randomly_generated_0977 - - - - -
randomly_generated_0978 - - - - 0.7919
randomly_generated_0979 - - - - -
randomly_generated_0980 - - - - -
randomly_generated_0981 - - - - -
randomly_generated_0982 - - - - 0.4966

Continued on next page
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A. Computational results of exact modeling techniques

CP (Gecode) CP (Gurobi) MIP (Gurobi) MIP bound MIP without
dominance

randomly_generated_0983 - - - - -
randomly_generated_0984 - - 0.2655 0.1029 0.2512
randomly_generated_0985 - - - - 0.4897
randomly_generated_0986 - - - - -
randomly_generated_0987 - - - - 0.3039
randomly_generated_0988 - - - - 0.4941
randomly_generated_0989 - - - - -
randomly_generated_0990 - - - - 0.1680
randomly_generated_0991 - - - - -
randomly_generated_0992 - - - - -
randomly_generated_0993 - - - - -
randomly_generated_0994 - - - - 0.7256
randomly_generated_0995 - - - - -
randomly_generated_0996 - - - - -
randomly_generated_0997 - - - - -
randomly_generated_0998 - - - - -
randomly_generated_0999 - - - - -
randomly_generated_1000 - - - - 0.4595
randomly_generated_small_0001 - 0.0198 0.0159 0.0007 0.0155
randomly_generated_small_0002 - - 0.5448 0.4236 0.5228
randomly_generated_small_0003 0.3364 0.2693 0.2693 0.2693 0.2693
randomly_generated_small_0004 - 0.3516 0.3489 0.3407 0.3483
randomly_generated_small_0005 - 0.7901 0.7850 0.7800 0.7889
randomly_generated_small_0006 - 0.6820 0.6820 0.6820 0.6978
randomly_generated_small_0007 0.1080 0.0016 0.0017 0.0000 0.0017
randomly_generated_small_0008 - 0.2133 0.2163 0.1738 0.2109
randomly_generated_small_0009 - 0.8044 0.7906 0.7294 0.7988
randomly_generated_small_0010 - 0.7165 0.7160 0.6997 0.7160
randomly_perfect_random_0951 - - - - 0.4343
randomly_perfect_random_0952 - - - - 0.2468
randomly_perfect_random_0953 - - 0.1670 0.0000 0.2768
randomly_perfect_random_0954 - - - - -
randomly_perfect_random_0955 - - 0.0346 0.0017 0.1028
randomly_perfect_random_0956 - - 0.2332 0.0000 0.2459
randomly_perfect_random_0957 - - - - 0.4665
randomly_perfect_random_0958 - - - - -
randomly_perfect_random_0959 - - - - 0.4659
randomly_perfect_random_0960 - - - - -
randomly_perfect_random_0961 - - - - 0.4361
randomly_perfect_random_0962 - - - - 0.4318
randomly_perfect_random_0963 - - - - 0.4155
randomly_perfect_random_0964 - - - - 0.5037
randomly_perfect_random_0965 - - - - 0.4641
randomly_perfect_random_0966 - - - - 0.4076
randomly_perfect_random_0967 - 0.0000 0.0000 0.0000 0.0222
randomly_perfect_random_0968 - - - - 0.4858
randomly_perfect_random_0969 - 0.0000 0.0000 0.0000 0.0000
randomly_perfect_random_0970 - - - - 0.4242
randomly_perfect_random_0971 - - - - 0.3972
randomly_perfect_random_0972 - - - - 0.5076
randomly_perfect_random_0973 - - - - 0.4632
randomly_perfect_random_0974 - - - - 0.2860
randomly_perfect_random_0975 - - - - 0.4050
randomly_perfect_random_0976 - - - - 0.5041
randomly_perfect_random_0977 - - - - 0.5203
randomly_perfect_random_0978 - - - - 0.5181
randomly_perfect_random_0979 - - - - 0.5170
randomly_perfect_random_0980 - 0.0000 0.0000 0.0000 0.0000
randomly_perfect_random_0981 - - - - 0.2639
randomly_perfect_random_0982 - - - - 0.4659
randomly_perfect_random_0983 - - - - 0.4899
randomly_perfect_random_0984 - - - - 0.4775
randomly_perfect_random_0985 - - - - 0.4235
randomly_perfect_random_0986 - - - - 0.3703
randomly_perfect_random_0987 - - - - -
randomly_perfect_random_0988 - 0.0000 0.0000 0.0000 0.0339
randomly_perfect_random_0989 - - - - 0.5209
randomly_perfect_random_0990 - - - - 0.4483

Continued on next page
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CP (Gecode) CP (Gurobi) MIP (Gurobi) MIP bound MIP without
dominance

randomly_perfect_random_0991 - - - - 0.4774
randomly_perfect_random_0992 - 0.0000 0.0000 0.0000 0.0000
randomly_perfect_random_0993 - - - - 0.5171
randomly_perfect_random_0994 - - - - 0.4556
randomly_perfect_random_0995 - - - - 0.5029
randomly_perfect_random_0996 - - 0.0458 0.0000 0.1448
randomly_perfect_random_0997 - - - - 0.4787
randomly_perfect_random_0998 - - - - 0.4705
randomly_perfect_random_0999 - - - - 0.3756
randomly_perfect_random_1000 - - - - 0.4964
realistic_instance_01 - 1.0552 1.0463 0.9831 1.0496
realistic_instance_02 - 1.1923 1.1922 1.1446 1.1784
realistic_instance_03 - 1.0323 0.9992 0.9653 1.0023
realistic_instance_04 - 1.0386 1.0598 0.9832 1.0317
realistic_instance_05 - 1.1658 1.1614 1.1393 1.1753
realistic_instance_06 - 1.0879 1.0909 1.0628 1.0931
realistic_instance_07 - - 1.2802 1.1311 1.2514
realistic_instance_08 - 1.1349 1.1208 1.0861 1.1259
realistic_instance_09 - 1.1129 1.1225 1.0855 1.1079
realistic_instance_10 - 1.1317 1.1210 1.1004 1.1430
realistic_instance_11 - 1.0605 1.0613 1.0240 1.0520
realistic_instance_12 - 1.1139 1.1192 1.0941 1.1259
realistic_instance_13 - 1.0086 0.9985 0.9627 1.0133
realistic_instance_14 - - - - -
realistic_instance_15 - 0.9442 0.9446 0.9198 0.9671
realistic_instance_16 - 1.1386 1.1399 1.1073 1.1362
realistic_instance_17 1.2479 1.0085 0.9972 0.9688 0.9950
realistic_instance_18 - 1.0663 1.0469 1.0365 1.0550
realistic_instance_19 - - 0.5877 0.5404 0.5763
realistic_instance_20 - - 0.6296 0.5976 0.6313
realistic_instance_21 - 0.7336 0.6851 0.6686 0.6863
realistic_instance_22 - - - - 1.0735
realistic_instance_23 - - - - 1.0513
realistic_instance_24 - - - - -
realistic_instance_25 - - - - -
realistic_instance_26 - - - - 0.7337
realistic_instance_27 - - - - 0.5667
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APPENDIX B
Computational results of
metaheuristic local search

Table B.1: Objective value and number of hard constraint violations for Greedy, VND,
and Simulated Annealing for each instance of the test set.

Objective Constraint Violations
Greedy VND SA (median / mean / std) Greedy VND SA (median)

randomly_generated_0951 0.4723 0.3780 0.3754 0.3755 0.0006 1 1 0
randomly_generated_0952 1.0752 0.9216 0.9065 0.9068 0.0010 1 1 1
randomly_generated_0953 0.3029 0.2255 0.2212 0.2209 0.0005 1 0 0
randomly_generated_0954 0.2059 0.1268 0.1270 0.1269 0.0006 2 0 0
randomly_generated_0955 0.1095 0.0412 0.0322 0.0325 0.0009 1 1 0
randomly_generated_0956 0.0905 0.0077 0.0215 0.0216 0.0007 0 0 0
randomly_generated_0957 0.6956 0.5784 0.5609 0.5612 0.0010 4 1 0
randomly_generated_0958 0.0943 0.0566 0.0356 0.0358 0.0010 1 0 0
randomly_generated_0959 0.1347 0.0067 0.0082 0.0081 0.0003 0 0 0
randomly_generated_0960 0.7608 0.6704 0.6657 0.6659 0.0004 9 0 0
randomly_generated_0961 0.4053 0.3576 0.3471 0.3477 0.0028 9 4 3
randomly_generated_0962 0.0178 0.0034 0.0227 0.0227 0.0000 0 0 0
randomly_generated_0963 1.0480 0.9419 0.9245 0.9245 0.0008 0 0 0
randomly_generated_0964 0.0763 0.0126 0.0821 0.0821 0.0000 0 0 0
randomly_generated_0965 0.0383 0.0154 0.0090 0.0090 0.0004 0 0 0
randomly_generated_0966 0.2501 0.1610 0.1605 0.1605 0.0010 0 0 0
randomly_generated_0967 0.2984 0.1794 0.1714 0.1712 0.0006 6 3 3
randomly_generated_0968 0.3573 0.2646 0.3004 0.3011 0.0021 0 0 0
randomly_generated_0969 0.3415 0.2370 0.2421 0.2419 0.0010 2 1 1
randomly_generated_0970 0.1261 0.0943 0.0895 0.0895 0.0012 0 0 0
randomly_generated_0971 0.3999 0.3881 0.4633 0.4632 0.0026 9 2 1
randomly_generated_0972 0.1641 0.0787 0.0817 0.0817 0.0003 1 1 0
randomly_generated_0973 0.1416 0.0829 0.0795 0.0796 0.0006 2 0 0
randomly_generated_0974 0.9347 0.8627 0.8381 0.8376 0.0018 0 0 0
randomly_generated_0975 0.0150 0.0133 0.0328 0.0328 0.0017 0 0 0
randomly_generated_0976 0.2035 0.1424 0.1340 0.1337 0.0009 5 1 0
randomly_generated_0977 0.3216 0.2385 0.2308 0.2306 0.0008 5 3 0
randomly_generated_0978 0.5532 0.4485 0.4460 0.4459 0.0007 1 1 0
randomly_generated_0979 0.6387 0.5409 0.5192 0.5193 0.0010 10 4 1
randomly_generated_0980 0.1583 0.0846 0.0827 0.0825 0.0012 1 1 1
randomly_generated_0981 0.4051 0.3148 0.3648 0.3655 0.0017 1 1 1
randomly_generated_0982 0.0504 0.0148 0.0063 0.0063 0.0009 0 0 0
randomly_generated_0983 0.4268 0.3222 0.3166 0.3162 0.0016 7 3 2

Continued on next page
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B. Computational results of metaheuristic local search

Objective Constraint Violations
Greedy VND SA (median / mean / std) Greedy VND SA (median)

randomly_generated_0984 0.1916 0.1435 0.1217 0.1220 0.0014 1 0 0
randomly_generated_0985 0.0426 0.0087 0.0104 0.0107 0.0008 0 0 0
randomly_generated_0986 0.4988 0.4230 0.4106 0.4106 0.0013 9 5 4
randomly_generated_0987 0.0794 0.0096 0.0803 0.0804 0.0016 2 0 0
randomly_generated_0988 0.1268 0.0365 0.0445 0.0446 0.0006 1 0 0
randomly_generated_0989 0.9005 0.7609 0.7536 0.7538 0.0011 0 0 0
randomly_generated_0990 0.0146 0.0094 0.0027 0.0028 0.0003 0 0 0
randomly_generated_0991 0.4081 0.3189 0.3117 0.3115 0.0016 1 0 0
randomly_generated_0992 0.2769 0.1438 0.2180 0.2172 0.0024 2 1 1
randomly_generated_0993 0.8421 0.7384 0.7111 0.7110 0.0010 7 3 3
randomly_generated_0994 0.3612 0.2701 0.2718 0.2719 0.0006 0 0 0
randomly_generated_0995 0.2057 0.1190 0.1140 0.1142 0.0007 2 1 1
randomly_generated_0996 0.8163 0.6418 0.6505 0.6509 0.0013 2 1 1
randomly_generated_0997 1.0120 0.8782 0.8601 0.8600 0.0009 11 4 2
randomly_generated_0998 0.2151 0.0949 0.0917 0.0916 0.0009 1 1 1
randomly_generated_0999 0.2127 0.1018 0.0938 0.0939 0.0007 2 1 1
randomly_generated_1000 0.0750 0.0144 0.0153 0.0155 0.0011 0 0 0
randomly_generated_small_0001 0.1288 0.0566 0.0303 0.0294 0.0028 0 0 0
randomly_generated_small_0002 0.5228 0.4957 0.4499 0.4499 0.0019 1 0 0
randomly_generated_small_0003 0.2956 0.2988 0.2715 0.2715 0.0021 1 0 0
randomly_generated_small_0004 0.3838 0.3662 0.3541 0.3542 0.0021 1 0 0
randomly_generated_small_0005 0.6023 0.7912 0.7900 0.7903 0.0009 1 1 0
randomly_generated_small_0006 0.7852 0.6995 0.6860 0.6864 0.0010 1 0 0
randomly_generated_small_0007 0.0338 0.0200 0.0081 0.0082 0.0011 0 0 0
randomly_generated_small_0008 0.2849 0.2248 0.2166 0.2152 0.0052 1 0 0
randomly_generated_small_0009 0.8680 0.8075 0.7865 0.7860 0.0017 1 0 0
randomly_generated_small_0010 0.7400 0.7280 0.7267 0.7266 0.0055 1 1 0
randomly_perfect_random_0951 0.0877 0.0227 0.0467 0.0464 0.0026 0 0 0
randomly_perfect_random_0952 0.0218 0.0104 0.0391 0.0397 0.0020 1 0 0
randomly_perfect_random_0953 0.0983 0.0119 0.0227 0.0229 0.0042 0 0 0
randomly_perfect_random_0954 0.0169 0.0076 0.0278 0.0278 0.0000 0 0 0
randomly_perfect_random_0955 0.0023 0.0020 0.0050 0.0050 0.0000 0 0 0
randomly_perfect_random_0956 0.0569 0.0145 0.0178 0.0179 0.0021 0 0 0
randomly_perfect_random_0957 0.0656 0.0153 0.0406 0.0411 0.0013 0 0 0
randomly_perfect_random_0958 0.0141 0.0103 0.0265 0.0265 0.0000 0 0 0
randomly_perfect_random_0959 0.0485 0.0155 0.0490 0.0488 0.0035 2 0 1
randomly_perfect_random_0960 0.0091 0.0105 0.0212 0.0212 0.0000 0 0 0
randomly_perfect_random_0961 0.0729 0.0166 0.0367 0.0375 0.0023 1 0 0
randomly_perfect_random_0962 0.0564 0.0182 0.0454 0.0453 0.0017 1 0 0
randomly_perfect_random_0963 0.0465 0.0158 0.0593 0.0593 0.0000 0 0 0
randomly_perfect_random_0964 0.0836 0.0120 0.0194 0.0283 0.0232 0 0 0
randomly_perfect_random_0965 0.0557 0.0151 0.0450 0.0456 0.0020 0 0 0
randomly_perfect_random_0966 0.0589 0.0129 0.0611 0.0627 0.0162 2 1 1
randomly_perfect_random_0967 0.0014 0.0042 0.0036 0.0029 0.0016 0 0 0
randomly_perfect_random_0968 0.0750 0.0107 0.0283 0.0288 0.0017 0 0 0
randomly_perfect_random_0969 0.0035 0.0104 0.0104 0.0104 0.0000 0 0 0
randomly_perfect_random_0970 0.0435 0.0140 0.0347 0.0348 0.0027 0 0 0
randomly_perfect_random_0971 0.0798 0.0063 0.0667 0.0635 0.0443 0 0 0
randomly_perfect_random_0972 0.0862 0.0125 0.0639 0.0636 0.0325 0 0 0
randomly_perfect_random_0973 0.0592 0.0185 0.0408 0.0405 0.0019 0 0 0
randomly_perfect_random_0974 0.0269 0.0120 0.0356 0.0354 0.0003 0 0 0
randomly_perfect_random_0975 0.0634 0.0162 0.0402 0.0437 0.0117 1 0 0
randomly_perfect_random_0976 0.0344 0.0025 0.0422 0.0422 0.0000 0 0 0
randomly_perfect_random_0977 0.0545 0.0076 0.0602 0.0602 0.0000 0 0 0
randomly_perfect_random_0978 0.0675 0.0073 0.0269 0.0267 0.0012 0 0 0
randomly_perfect_random_0979 0.0486 0.0032 0.0159 0.0160 0.0006 0 0 0
randomly_perfect_random_0980 0.0391 0.0258 0.0475 0.0472 0.0094 0 0 0
randomly_perfect_random_0981 0.0356 0.0131 0.0301 0.0300 0.0015 0 0 0
randomly_perfect_random_0982 0.0730 0.0111 0.0344 0.0520 0.0292 0 0 0
randomly_perfect_random_0983 0.0602 0.0138 0.0346 0.0341 0.0017 0 0 0
randomly_perfect_random_0984 0.0654 0.0170 0.0542 0.0552 0.0094 1 0 1
randomly_perfect_random_0985 0.0493 0.0203 0.0518 0.0520 0.0015 1 0 0
randomly_perfect_random_0986 0.0339 0.0128 0.0386 0.0388 0.0012 0 0 0
randomly_perfect_random_0987 0.0135 0.0084 0.0325 0.0328 0.0016 1 1 0
randomly_perfect_random_0988 0.0049 0.0147 0.0147 0.0137 0.0018 0 0 0
randomly_perfect_random_0989 0.0689 0.0086 0.0753 0.0753 0.0000 0 0 0
randomly_perfect_random_0990 0.0553 0.0161 0.0420 0.0425 0.0022 1 0 0
randomly_perfect_random_0991 0.0541 0.0152 0.0301 0.0303 0.0019 0 0 0

Continued on next page
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Objective Constraint Violations
Greedy VND SA (median / mean / std) Greedy VND SA (median)

randomly_perfect_random_0992 0.0051 0.0108 0.0148 0.0112 0.0061 0 0 0
randomly_perfect_random_0993 0.0431 0.0042 0.0094 0.0097 0.0008 0 0 0
randomly_perfect_random_0994 0.0419 0.0128 0.0428 0.0427 0.0016 0 0 0
randomly_perfect_random_0995 0.0724 0.0142 0.0366 0.0451 0.0187 0 0 0
randomly_perfect_random_0996 0.0035 0.0031 0.0076 0.0076 0.0000 0 0 0
randomly_perfect_random_0997 0.0532 0.0148 0.0540 0.0545 0.0024 0 0 0
randomly_perfect_random_0998 0.0846 0.0160 0.0590 0.0521 0.0120 2 0 1
randomly_perfect_random_0999 0.0410 0.0150 0.0356 0.0360 0.0016 0 0 0
randomly_perfect_random_1000 0.0551 0.0171 0.0364 0.0355 0.0023 0 0 0
realistic_instance_01 1.2277 1.0418 1.0203 1.0204 0.0038 0 0 0
realistic_instance_02 1.2684 1.1867 1.1734 1.1738 0.0015 0 0 0
realistic_instance_03 1.1241 1.0140 0.9894 0.9894 0.0029 0 0 0
realistic_instance_04 1.1657 1.0268 1.0128 1.0126 0.0016 0 0 0
realistic_instance_05 1.3426 1.2144 1.1575 1.1571 0.0020 3 1 0
realistic_instance_06 1.3166 1.1311 1.0823 1.0821 0.0008 0 0 0
realistic_instance_07 1.3468 1.2154 1.1723 1.1728 0.0027 3 1 0
realistic_instance_08 1.3197 1.1313 1.1153 1.1150 0.0023 0 0 0
realistic_instance_09 1.2925 1.1287 1.1087 1.1088 0.0026 0 0 0
realistic_instance_10 1.2907 1.1325 1.1240 1.1236 0.0025 2 0 0
realistic_instance_11 1.2241 1.0926 1.0380 1.0383 0.0023 3 1 0
realistic_instance_12 1.2952 1.1245 1.1064 1.1065 0.0012 1 1 0
realistic_instance_13 1.1180 1.0071 0.9991 0.9996 0.0022 0 0 0
realistic_instance_14 1.2777 1.1615 1.1488 1.1482 0.0034 2 1 1
realistic_instance_15 1.0607 0.9594 0.9496 0.9504 0.0025 1 0 0
realistic_instance_16 1.2509 1.1652 1.1349 1.1347 0.0024 0 0 0
realistic_instance_17 1.2413 1.0145 0.9871 0.9867 0.0017 0 0 0
realistic_instance_18 1.2303 1.0726 1.0466 1.0466 0.0011 0 0 0
realistic_instance_19 0.6811 0.5657 0.5638 0.5650 0.0050 1 0 0
realistic_instance_20 0.7998 0.6221 0.6187 0.6191 0.0043 0 0 0
realistic_instance_21 0.8092 0.7022 0.6873 0.6891 0.0043 1 0 0
realistic_instance_22 0.5624 0.4453 0.4379 0.4380 0.0012 0 0 0
realistic_instance_23 0.6113 0.4684 0.4676 0.4673 0.0013 0 0 0
realistic_instance_24 0.6569 0.5045 0.4944 0.4948 0.0011 0 0 0
realistic_instance_25 0.4971 0.3701 0.3565 0.3566 0.0012 0 0 0
realistic_instance_26 0.8475 0.6311 0.6187 0.6192 0.0015 2 0 0
realistic_instance_27 0.8199 0.5276 0.5169 0.5168 0.0012 2 0 0
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