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ABSTRACT
Voting in multi-issue domains allows for compromise outcomes

that satisfy all voters to some extent. Such fairness considerations,

however, open the possibility of a special form of manipulation:

free-riding. By untruthfully opposing a popular opinion in one

issue, voters can receive increased consideration in other issues.

We study under which conditions this is possible. Additionally, we

study free-riding from a computational and experimental point of

view. Our results show that free-riding in multi-issue domains is

largely unavoidable, but comes at a non-negligible individual risk

for voters. Thus, the allure of free-riding is smaller than one could

intuitively assume.
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1 INTRODUCTION
Elections are a fundamental and well-studied form of collective

decision making. One can often observe that elections do not occur

as isolated events with a tightly constrained decision space (i.e.,

only a small number of candidates). Instead, a group of voters needs

to make several decisions, either at the same time (cf. multiple ref-

erenda [3, 6, 8] or voting over combinatorial domains [33]) or over

time (cf. perpetual voting [14, 26] or successive committees [11]).

For example, the council of a faculty or the members of a sports

club have to make several independent decisions each year. By con-

sidering these individual decisions in conjunction, one can achieve

more equitable outcomes than would otherwise be possible. As the

combinatorial complexity increases with the number of issues, so

does the possibility of finding good comprise outcomes.

However, by striving for fairness across multiple issues, we open

the door to a specific, simple form of manipulation: free-riding. We

define free-riding as untruthfully opposing a necessarily winning

candidate. That is, if there is a very popular (maybe unanimous) can-

didate for a certain issue, it typically does not change the outcome

if one voter does not approve this candidate. Under the assumption

that the voting rule in use tries to establish some form of fairness,

it will give this voter additional consideration as she does not ap-

prove the choice in this issue. As we show in our paper, this form of

manipulation is possible almost universally in multi-issue voting.
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The problem of free-riding is particularly apparent if issues are

decided sequentially. Then, presented with a popular candidate that

is certain to win, a voter may be especially tempted to misrepresent

her preferences. This is because untruthfully opposing a winning

candidate artificially lowers the voter’s (calculated) satisfaction and

thus gives the voter additional weight for subsequent issues, if the

voting rule is taking past satisfaction into account. Thus, intuitively,

it may appear as if free-riding is a form of risk-free manipulation.

The main contribution of our paper is to refute this intuition.

While free-riding is indeed often a successful form of manipulation,

it is far from trivially beneficial for free-riding individuals. For our

analysis, we consider two fundamentally different categories of

voting rules: rules based on a global optimization problem and rules

based on sequential decisions. Within both categories, we consider

voting rules based on order-weighted averages (OWA [3, 45]) and

on Thiele scores (inspired by multiwinner voting [31, 44]). Based

on these classes, we obtain the following results:

• First, we show that almost every OWA and Thiele rule as

well as their sequential counterparts are susceptible to free-

riding. The utilitarian rule, maximizing the sum of utilities,

is the only exception.

• Unsurprisingly, it is computationally hard to determine the

outcome for OWA and Thiele rules based on global optimiza-

tion. However, we show even stronger hardness results: even

when the winner of an issue is known, it remains computa-

tionally hard to determine whether free-riding in this issue

is possible. Thus, for rules based on global optimization, it

is computationally difficult and may require full informa-

tion to free-ride. We conclude from these results that for

optimization-based rules, free-riding is at least no more of a

concern than the general problem of strategic voting.

• For sequential OWA and Thiele rules, we observe an inter-

esting phenomenon. Here, it may be that free-riding in an

issue leads to a lower satisfaction in subsequent issues. Thus,

free-riding for these voting rules is not risk-free. Moreover,

we show that it is a computationally hard task to determine

whether free-riding is beneficial. We note that this decision

requires full preference information about all issues; in the

case of incomplete information voters cannot determine the

impact of free-riding.

• Finally, votersmight still decide to free-ridewithout certainty

about the outcome if the risk is small enough. To study

this question, we complement our theoretical analysis with

numerical simulations to quantify this risk. Our simulations

show that the risk of free-riding is indeed significant, even

though positive outcomes are more likely.

In general, our results show that free-riding in multi-issue voting

is not as simple and risk-free as one could intuitively assume.



1.1 Related Work
Our work falls in the broad class of voting in combinatorial do-

mains [33]. In contrast to many works in this field (e.g., [1, 8, 9, 16,

32]), we assume that voters’ preferences are separable (i.e., inde-

pendent) between issues.

Our work is most closely related to papers on multiple referenda.

Amanatidis et al. [3] study the computational complexity of OWA

voting rules in multiple referenda, including questions of strategic

voting. In a similar model, Barrot et al. [6] consider questions of

manipulability: how does the OWA vector impact the susceptibility

to manipulation. In contrast to our paper, these two papers do

not consider free-riding. We discuss more technical connections

between these papers and ours later in the text.

Another related formalism is perpetual voting [26], which essen-

tially corresponds to voting on multi-issue decisions in sequential

order. In this setting, issues are chronologically ordered, i.e., decided

one after the other. The work of Lackner [26] and its follow-up

by Lackner and Maly [27, 28] do not consider strategic issues. Fur-

ther, Bulteau et al. [14] move to a non-sequential (offline) model

of perpetual voting and study proportional representation in this

setting.

A third related formalism is that of public decision making [15].

As in our model, public decision making considers k issues and for

each one alternative has to be chosen. This model is more general

than ours in that it allows arbitrary additive utilities (whereas we

consider only binary utilities, i.e., approval ballots). Our works dif-

fer in that Conitzer et al. [15] focus on fairness properties, whereas

our focus is on strategic aspects. Fairness considerations in pub-

lic decision making have further been explored by Skowron and

Górecki [43]. Note that both papers [15, 43] assume that all issues

are decided in parallel (offline) – in contrast to perpetual voting [26].

Our model is also related to multi-winner voting [20, 31]. The

main difference is that instead of selecting k candidates from the

same set of candidates, we have individual candidates for each

of the k issues. In our paper, we adapt the class of Thiele rules

from the multi-winner setting to ours. This class has been studied

extensively, both axiomatically [4, 30, 39, 40] and computationally

[5, 13, 23, 42]. The concept of free-riding has also been considered

for multi-winner elections [7, 36, 41]. Here, free-riding refers to

“subset-manipulation”, i.e., to submit only a subset of one’s truly

approved candidates. We note that this notion of free-riding is

related to ours in its essence, but technically distinct.

In multi-winner voting, there is also substantial literature on

the relationship between fairness (often proportionality) and strat-

egyproofness, e.g., [17, 25, 29, 34, 36].

Finally, free-riding is a very general phenomenon and has been

widely studied in the economic literature on public goods [24, 38].

It has also been considered in more technical domains, such as

free-riding in memory sharing [21].

2 THE MODEL
As is customary, we write [k] to denote {1, . . . ,k}.

We study a form of multi-issue decision making, where for each

issue there are two or more possible options available. Furthermore,

we assume that for each issue each voter submits an approval ballot,

i.e., a subset of candidates that she likes. Formally, k denotes the

number of issues and C1, . . . ,Ck the respective sets of candidates.

Let N = [n] denote the set of voters. We write Ai (v) ⊆ Ci for the
approval ballot of voter v concerning issue i . In combination, we

call such a triple E = ({Ci }i ∈[k],N , {Ai }i ∈[k ]) an election. If k is

clear from the context, we write C̄ for {Ci }i ∈[k ] and Ā for {Ai }i ∈[k].
An outcome of an election is a k-tuple w̄ = (w1, . . . ,wk ) with

wi ∈ Ci . Given an election E and an outcome w̄ , the satisfaction

of voter v ∈ N with w̄ is satE (v, w̄) = |{1 ≤ i ≤ k : wi ∈ Ai (v)}|
In other words, the satisfaction of a voter is the number of issues

that were decided in this voter’s favour.
1
Furthermore, we write

sE (w̄) = (s1, . . . , sn ) to denote the n-tuple of satisfaction scores

(satE (v, w̄))v ∈N sorted in increasing order, i.e., s1 ≤ s2 ≤ · · · ≤ sn .
If the election E is clear from the context, we omit it in the notation.

There are two main voting rules that have been studied in this

setting: maximizing the total satisfaction and maximizing the satis-

faction of the least satisfied voter.
2

• The utilitarian rule returns an outcome w̄ that maximizes∑
v ∈N sat(v, w̄). This rule corresponds to selecting issue-

wise the candidate with the most approvals.

• The egalitarian rule returns an outcome w̄ that maximizes

minv ∈N sat(v, w̄).

The egalitarian rule is NP-hard to compute [3], while the util-

itarian rule is computable in polynomial time (as one can decide

each issue separately).

The egalitarian rule has the disadvantage that often many out-

comes are optimal in the egalitarian sense. In such cases, it would

be desirable to also pay attention to the second-least satisfied voter,

third-least, etc. This leads to the leximin rule.

• The leximin rule is based on the leximin ordering ≻. Given

two outcomes w̄ and w̄ ′
with s(w̄) = (s1, . . . , sn ) and s(w̄

′) =

(s ′
1
, . . . , s ′n ), w̄ ≻ w̄ ′

if there exists an index j ∈ [n] such that

s1 = s
′
1
, . . . , sj−1 = s

′
j−1

and sj > s ′j . The leximin rule returns

an outcome w̄ that is maximal with respect to ≻.

Example 1. Consider an election with 100 voters and 4 issues with

the same three candidates, {a,b, c}. There are 66 voters that approve
{a} in all issues, 33 voters that approve {b} in all issues, and one voter
approves always {c}. The utilitarian rule selects the outcome w̄1 =

(a,a,a,a) as it achieves a total satisfaction of

∑
v ∈N sat(v, w̄1) = 4 ·

66. The leximin rule selects w̄2 = (a,a,b, c) (or a permutation thereof)

with s(w̄2) = (1, . . . , 1︸  ︷︷  ︸
34 times

, 2, . . . , 2︸  ︷︷  ︸
66 times

). The egalitarian rule can select any

outcome that contains a, b, and c at least once, including the rather
questionable outcome w̄3 = (a,b, c, c) with s(w̄3) = (1, . . . , 1, 2).

1
Note that different notions of satisfaction are possible; for instance, we could assume

that the voters have fine-grained preferences over the issues and the candidates.

However, our simple model is a natural starting point, and we leave the investigation

of different notions of satisfaction as future work.

2
These two voting rules (in the context of binary elections) are referred to as minsum

and minimax by Amanatidis et al. [3]. Note that in the case of binary elections, the

satisfaction of a voter v with w̄ corresponds to k minus the Hamming distance

(symmetric difference) between {i ∈ [k ] : Ai (v) = {1}} and {i ∈ [k ] : wi = 1}. The

minsum rule minimizes the sum of Hamming distances; the minimax rule minimizes

the maximum Hamming distance. This is equivalent to our approach of maximizing

the total or minimum satisfaction.



2.1 Optimization-Based Rules
In the following, we describe two classes of multi-issue voting rules

based on maximizing scores. OWA voting rules for multi-issue

domains were proposed by Amanatidis et al. [3] and are based on

ordered weighted averaging operators [45]. An OWA voting rule is

defined by a set of vectors {αn }n≥1, where each αn = (α1, . . . ,αn )
has length n and satisfies α1 > 0 and α j ≥ 0 for j ∈ [n]. Given an

election with n voters, the score of an outcome w̄ subject to αn is

OWAαn (w̄) = αn · s(w̄),

where · is the scalar (dot) product. The OWA rule returns an out-

come with maximum OWAαn -score. If more than one outcome

achieves the maximum score, we use a fixed tie-breaking order

among outcomes. We typically omit the superscript of αn , as n is

clear from the context.

Note that the utilitarian rule corresponds to αn = (1/n, . . . , 1/n),

the egalitarian rule corresponds to αn = (1, 0, . . . , 0), and the lex-

imin rule to αn = (1, 1/kn, 1/k2n2, . . . ).3

Proposition 1. The OWA rule defined by α = (1, 1

kn ,
1

k2n2
, . . . ) is

equivalent to the leximin rule.

The second class is based on Thiele methods (introduced by

Thiele [44], see the survey by Lackner and Skowron [31]). While

Thiele methods are a class of multi-winner voting rules, they can be

adapted to our setting straightforwardly. A voting rule in the Thiele

class is defined by a function f : N→ R≥0
satisfying f (1) > 0 and

f (i) ≥ f (i + 1) for all i ∈ N. The f -Thiele rule assigns a score of

Thielef (w̄) =
∑
v ∈N

sat(v,w̄ )∑
i=1

f (i)

to an outcome w̄ and returns an outcome with maximum score.

Intuitively, these are weighted approval rules for which the weight

assigned to each voter only depends on her satisfaction. Note that

the utilitarian rule corresponds to f
util

(i) = 1. The egalitarian and

leximin rules do not appear in this class.
4
Another important Thiele

rule is f (i) = 1/i , which is called Proportional Approval Voting in

the multi-winner setting. We also refer to this Thiele rule as PAV.

Example 2. Continuing with the election of Example 1, we see

that PAV selects w̄4 = (a,a,a,b) (or a permutation thereof) with

ThielePAV(w̄4) = 66+33+22+33. Note that PAV is more majoritarian

than leximin as it essentially ignores the single {c}-voter.

2.2 Sequential Rules
We also consider sequential variants of both the OWA and Thiele

classes. Sequential rules construct the outcome in rounds, one is-

sue after the other. To define them, we require an ordering over

issues. In this paper, we make no assumptions about the origin of

these orderings, but a natural order may follow from time (issues

are decided at different points in time)
5
or importance (important

decisions are made first). The advantage of sequential rules is that

they are computable in polynomial time. They can be viewed as

approximation algorithms of their optimization-based counterparts.

3
This definition requires the assumption of a fixed number of issues k .

4
However, if we fix n and k , leximin can be “simulated” by, e.g., flex (i) = 1/(kn)i−1

.

5
This corresponds to the model of perpetual voting [26], where a sequence of collective

decisions has to be made at different points in time.

To formally define sequential rules, we assume that issues are

decided in order 1, . . . ,k . The sequential α-OWA rule is defined

as follows: Ifw1, . . . ,wi−1 are already selected for issues 1, . . . , i −
1, then we select for issue i a candidate c ∈ Ci that maximizes

OWAα (w1, . . . ,wi−1, c). This is repeated until all issues have been

decided. Similarly, for sequential f -Thiele we iteratively choose for

issue i a candidate c ∈ Ci that maximizesThielef (w1, . . . ,wi−1, c).

2.3 Free-Riding
In this paper, we study a specific form of strategic manipulation

called free-riding. Intuitively, this means that a voter misrepresents

her preferences on an issue where her favourite candidate wins also

without her support. If the used voting rule takes the satisfaction

of voters into account (as most OWA and Thiele methods do), such

a manipulation can increase the voter’s influence on other issues.

Example 3. Consider an election with three voters and two issues.

The first issue is uncontroversial: all voters approve candidate a. The
second issue is highly controversial: all voters approve different can-

didates (A2(1) = {x}, A2(2) = {y}, A2(3) = {z}). If the egalitarian
rule (with some tie-breaking) is used to determine the outcome, it

could select, e.g., the outcome (a,x). This leaves voters 2 and 3 less

satisfied than voter 1. Both of them could free-ride to improve their

satisfaction. Consider voter 2. If voter 2 changes her ballot on the first

issue to another candidate, the outcome changes to (a,y) as it gives all
voters a satisfaction of 1 (according to their ballots). As voter 2’s true

preferences are positive towards a, this manipulation was successful.

In the following, given an election E and a rule R such that

R(E) = (w1, . . . ,wk ), we indicatewi as R(E)i .

Definition 1. Consider an election E = ({Ci }i ∈[k ],N , {Ai }i ∈[k]),
a voter v ∈ N and a voting rule R. Let R(E) = (w1, . . . ,wk ). We say

that voter v can free-ride in election E on issues I ⊆ [k] if there exists
another election E∗ = ({Ci }i ∈[k ],N , {A

∗
i }i ∈[k]) that only differs from

E in the approvals of v for issues in I such that, for all i ∈ I , wi ∈

Ai (v),wi < A
∗
i (v) and R(E∗)i = wi . In this case, we also say that v

can free-ride in E via E∗
.

Usually, we say a voter can manipulate if she can achieve a

higher satisfaction by misrepresenting her preferences. In contrast,

Definition 1 makes no assumptions about the satisfaction of the

free-riding voter. Instead, we only require that the manipulator

can misrepresent her preference in an issue without changing the

outcome of the issue. This might lead to the same, a higher or lower

satisfaction for the manipulator. This distinction will be crucial

when talking about the risk of free-riding.

We will also sometimes consider a more general notion of free-

riding. Here, we lift the constraint that the outcome on the issues

where free-riding occurs remains exactly the same. We just require

that the new winning candidate is still (truthfully) approved by

the manipulator. At its core, generalized free-riding is based on the

assumption that voters are indifferent between approved candidates.

To define generalized free-riding formally, we replace R(E∗)i = wi
in Definition 1 with R(E∗)i ∈ Ai (v).

Finally, we say that a voting rule R can be manipulated by (gen-

eralized) free-riding if there exists an election E, a voter v and an

election E∗
such that v can perform (generalized) free-riding in E

via E∗
and satE (v,R(E)) < satE (v,R(E

∗)).



3 POSSIBILITY AND RISK OF FREE-RIDING
In this section, we study for which voting rules free-riding is possi-

ble and under which conditions it is safe (in the sense that it cannot

lead to a decrease in the satisfaction of the free-riding voter). Firstly,

we observe that the results for different issues do not influence each

other for the utilitarian rule, hence free-riding on one issue has no

effect on the outcome of other issues. Therefore, the utilitarian rule

cannot be manipulated by (generalized) free-riding.

Proposition 2. The utilitarian rule cannot be manipulated by (gen-

eralized) free-riding.

However, it turns out that every other rule in the classes we

study can be manipulated by free-riding.

Theorem 3. Every (sequential) Thiele and (sequential) OWA rule

except the utilitarian rule can be manipulated by free-riding.

Proof. Let R be an OWA-Rule that is not the utilitarian rule.

Then there exists a k for which the vector α for k voters satisfies

α1 > αk . Clearly, k ≥ 2. Consider an election with 2 issues and k
voters. In each issue there are k candidates a1, . . . ak . In the first

issue, voters 1 and 2 approve a1. Every other voter i ∈ {3, . . . ,k} ap-
proves ai . In the second issue voter 1 approves a1, voter 2 approves

a2 and all other voters approve both a1 and a2. We assume that can-

didates with a lower index are preferred by the tie-breaking, which

is applied lexicographically. Selecting a candidate other than a1 in

the first issue leads to satisfaction vector (0, 1, . . . , 1, 2), indepen-

dently of whether a1 or a2 is selected in issue 2. On the other hand,

selecting a1 in issue 1 leads to satisfaction vector (1, 1, . . . , 1, 2),

independently of whether a1 or a2 is selected in issue 2. This means

(a1,a1) and (a1,a2) lead to the highest OWA score. By tie-breaking,

(a1,a1)wins. Now, we claim that voter 2 can free-ride by approving

a2 instead of a1 in the first issue. Assume first, that a candidate

other than a1 or a2 is selected in the first issue. This still leads to

the same satisfaction vector independently of whether a1 or a2 is

selected in issue 2. However choosing a1 in both issues now leads

to the vector (0, 1, . . . , 1, 2). Choosing a1 in issue 1 and a2 in issue 2

leads satisfaction 1 for every voter. Choosing a2 both times or first

a2 and then a1 is symmetric. As α1 > αk we know that

α · (1, . . . , 1) =

k∑
i=1

αi > αk − α1 +

k∑
i=1

αi = α · (0, 1, . . . , 1, 2)

It follows that (a1,a2) and (a2,a1) are the outcomes maximizing

the OWA score. By tie-breaking, (a1,a2) is the winning outcome. It

follows that voter 2 did successfully free-ride.

The proofs for sequential OWA and (sequential) Thiele rules are

similar. Details can be found in the full version of the paper. □

Hence, free-riding is essentially unavoidable if we want to guar-

antee fairer outcomes using Thiele or OWA rules. Intuitively, free-

riding seems to offer a simple and risk-free way to manipulate. And

indeed, it is risk-free for some voting rules, such as the leximin rule.

Proposition 4. Free-riding cannot reduce the satisfaction of the

free-riding voter when the leximin rule is used, but it can increase the

satisfaction of the free-riding voter.

Proof. It follows directly from Theorem 3 that free-riding can

increase the satisfaction of the free-riding voter. Let us show that it

can never decrease the satisfaction of the free-riding voter. Let E

be an election, w̄ be the outcome of E under the leximin rule, and

consider a voter v∗ such that v∗ can free-ride in issue k . Finally,
let E∗

be the election after v∗ free-rides and w̄∗
the outcome of E∗

under the leximin rule. In the following we write N E
i (w̄) = {v ∈

N | satE (v, w̄) = i}. Now, asv∗ free-rides, i.e., the winner in issue k
is the same in w̄ and w̄∗

, we know that v∗ approves the winner of
issue k in her honest ballot in E and does not approve the winner

of issue k in her free-riding ballot in E∗
. It follows the satisfaction

of v∗ with w̄∗
resp. w̄ in E is higher by one than in E∗

, i.e.,

satE∗ (v∗, w̄∗) = satE (v
∗, w̄∗) − 1 as well as

satE∗ (v∗, w̄) = satE (v
∗, w̄) − 1. (1)

All other voters submit the same ballot in E and E∗
. Hence, for all

v , v∗ we have

satE∗ (v, w̄∗) = satE (v, w̄
∗) as well as

satE∗ (v, w̄) = satE (v, w̄). (2)

Now assume for the sake of a contradiction that satE (v
∗, w̄) >

satE (v
∗, w̄∗), i.e., free-riding led to a lower satisfaction for v∗ with

respect to her honest ballot.

As w̄∗
is the winning outcome of E∗

, we know that w̄∗ ≻ w̄
according to the leximin order in E∗

. In other words, there is a j

such that |N E∗

j (w̄∗)| < |N E∗

j (w̄)| and |N E∗

ℓ
(w̄∗)| = |N E∗

ℓ
(w̄)| for

all ℓ < j. We claim that the deciding index j cannot be smaller

than satE∗ (v∗, w̄∗) as for all smaller indices ℓ < satE∗ (v∗, w̄∗) it

follows from satE (v
∗, w̄) > satE (v

∗, w̄∗) that v∗ is not in N E
ℓ
(w̄∗),

N E∗

ℓ
(w̄∗), N E

ℓ
(w̄) and N E∗

ℓ
(w̄). Therefore, it follows from (2) that

|N E
ℓ
(w̄∗)| = |N E∗

ℓ
(w̄∗)| and |N E

ℓ
(w̄)| = |N E∗

ℓ
(w̄)|. Hence, j <

satE∗ (v∗, w̄∗) would be a contradiction to the assumption that w̄ is

the leximin outcome of E and hence leximin preferred to w̄∗
in E.

Therefore, we know that |N E∗

ℓ
(w̄∗)| = |N E∗

ℓ
(w̄)| for all ℓ <

satE∗ (v∗, w̄∗) ≤ j and

|N E∗

satE∗ (v∗,w̄∗)
(w̄∗)| ≤ |N E∗

satE∗ (v∗,w̄∗)
(w̄)|.

It follows that also |N E
ℓ
(w̄∗)| = |N E∗

ℓ
(w̄∗)| = |N E∗

ℓ
(w̄)| = |N E

ℓ
(w̄)|

for all ℓ < satE∗ (v∗, w̄∗) ≤ j. Finally, it follows from (1) that v∗

is in N E∗

satE∗ (v∗,w̄∗)
(w̄∗) but not in N E

satE∗ (v∗,w̄∗)
(w̄∗). Moreover, be-

cause we assumed satE (v
∗, w̄) > satE (v

∗, w̄∗), v∗ is neither in

N E∗

satE∗ (v∗,w̄∗)
(w̄) nor in N E

satE∗ (v∗,w̄∗)
(w̄). Therefore, we have

|N E
satE∗ (v∗,w̄∗)

(w̄∗)| + 1 = |N E∗

satE∗ (v∗,w̄∗)
(w̄∗)| ≤

|N E∗

satE∗ (v∗,w̄∗)
(w̄)| = |N E

satE∗ (v∗,w̄∗)
(w̄)|.

However, that means that w̄∗
is leximin preferred to w̄ in E, which

is a contradiction to the assumption that w̄ is the outcome of E. □

It remains an open problem to generalize this result to other

rules based on global optimization. However, we observe that for

most sequential voting rules, free-riding may lead to a decrease in

satisfaction. First, we can show that this holds for all sequential

Thiele rules, except the utilitarian rule.

Proposition 5. Let f : N→ R≥0
be a function for which there is an

i ∈ N such that f (i) > f (i + 1). Then, under the sequential f -Thiele
rule, free-riding can reduce the satisfaction of the free-riding voter.



Proof. Consider a sequential f -Thiele rule such that f (i) >
f (i + 1) and consider the following election with nine voters, i + 4

issues and candidates a, . . . ,д for all issues. We assume alphabetic

tie-breaking. The approvals for each issue are given by these tuples:

A1 = · · · = Ai−1 = ({a}, {a}, {a}, {a}, {a}, {a}, {a}, {a}, {a})

Ai = ({a}, {a}, {a}, {b}, {b}, {c}, {d}, {e}, { f })

Ai+1 = ({b}, {a}, {c}, {b}, {b}, {a}, {a}, {a}, {b})

Ai+2 = ({b}, {a}, {c}, {b}, {e}, {a}, { f }, {a,b}, {д})

Ai+3 = ({b}, {c}, {d}, {e}, {b}, { f }, {a}, {a}, {д})

Then, {a} is clearly the winner for the first i − 1 issues. Thus, all

voters have a satisfaction of i − 1 before issue i and a wins on issue

i as it has the most supporters. In issue i + 1, a and b increase the

Thiele score by f (i + 1) + 3f (i), while c increases the score only
by f (i + 1). By tie-breaking, a wins again. Then, in issue i + 2, a
increases the score by f (i+2)+2f (i+1), b by f (i)+2f (i+1), while

all other candidates by at most f (i). As f (i) > f (i + 1) ≥ f (i + 2)

(together with the tie-breaking rule if f (i + 1) = 0), it follows that

b wins in issue i + 2. Finally, in issue i + 3, a increases the score

by f (i + 1) + f (i + 2), b by f (i) + f (i + 2) and all other candidates

increase the score by at most f (i). Hence b wins.

Now assume voter 1 changes her preferences and free-rides in

issue i . It is straightforward to check that a remains the winner for

issue i , but winner in issue i + 1 changes to b while a now wins

for issue i + 2 and i + 3. Therefore, 1 now additionally approves

of the winner on issue i + 1 but does not approve the winners of

issues i + 2 and i + 3 any more. Hence, free-riding led to a lower

satisfaction for the free-riding voter. □

The same holds for the following large class of sequential OWA

rules, as well as the sequential egalitarian rule.

Proposition 6. Consider a sequential α-OWA rule such that there

exists an n ≥ 8 for which αn is nonincreasing and satisfies α3 > αn−2.

Then, free-riding can reduce the satisfaction of the free-riding voter.

Proposition 7. Free-riding can decrease the satisfaction of the free-

riding voter under the sequential egalitarian rule.

4 COMPUTATIONAL COMPLEXITY
In this section, we will study the computational complexity of

free-riding. Overall, we will show that it is generally hard to do

so. The reason for computational hardness, however, is a different

one for optimization-based rules and for sequential rules. Observe

that, due to the performance of, e.g., modern SAT- or ILP-solvers,

computational hardness (in particular NP-completeness) cannot

be seen as an unbreakable defense against manipulation. However,

the main appeal of free-riding is its simplicity. A manipulator that

is able to solve computationally hard problems has no benefit from

restricting the potential manipulation to free-riding.

4.1 Free-Riding in Optimization-Based Rules
In this section, we study the computational complexity of free-

riding for optimization-based rules. As our goal is to show that

free-riding is hard, we start from a more fundamental problem:

outcome determination. Indeed, any hypothetical free-rider needs

to decide if, by voting dishonestly, the outcome would be better

than the “truthful” outcome. To do so, she must be able to determine

the outcome of an election. If this step turns out to be intractable,

then we already have a computational barrier against free-riding.

Hence, we study the following problem:

R-Outcome Determination

Input: An election E = (N , Ā, C̄), an issue i and a candi-

date c ∈ Ci .
Question: Does c win in issue i under R?

In the following, we assume that for all f -Thiele rules, f is poly-

time computable.
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Similarly, we assume that, for a given α-OWA

rule and n voters, we can retrieve αn in polynomial time. Now, we

show that outcome determination is hard for both families of rules.

Theorem 8. R-Outcome Determination is NP-hard for every f -
Thiele rule distinct from the utilitarian rule.

Theorem 9. R-Outcome Determination is NP-hard for every α-
OWA rule such that, for all n, αn is nonincreasing and α1 > αn .

Proof (Sketch). Fix a rule R satisfying the condition of the the-

orem. We show hardness by a reduction from CubicVertexCover,

a variant of VertexCover where every node has a degree of ex-

actly three [2]. Consider an instance (G,k) of this problem. Here,

G = (V ,E) is a graph with n nodes andm edges where each node

has a degree of exactly three, and k ∈ N. We assume w.l.o.g. that

k < n. We construct an instance of R-Outcome Determination

with (k + 1) issues and 3m voters. As α1 > α3m , there are two cases:

(1) There is a p ∈ [2m] such that αp > αp+1, or

(2) There is a p > 2m with p < 3m such that α1 = αp > αp+1.

We sketch the proof for the first case. The full proof can be found

in the full version of the paper. We construct an instance (E,k +
1, cd1

) of R-Outcome Determination. Here, we have one voter

ve for each edge e ∈ E, and two sets of dummy voters, {d1, . . . ,dp }
and {w1, . . . ,w2m−p }. In the first k issues, there is one candidate

cη for each node η ∈ V , plus one dummy candidate cdi for each
dummy voterdi . Here, each edge-voterve approves of the two node-
candidatesvη andvη′ such that e = {η,η′}. Moreover, each dummy

voter di approves only of dummy candidate cdi , and all dummy

candidateswi approve of all candidates. In the last issue, there is

one candidate cv for all voters v ∈ N \ {wi }i ∈[2m−p], and every

suchv only approves of cv . Finally, here, all voters in {wi }i ∈[2m−p]
approve of all candidates.

The tie-breaking is defined as follows. We assume that each issue

i is associated with a total ordering ≻i such that:

(1) If i ∈ {1, . . . ,k}, then node-candidates are preferred over

other candidates, and cdn ≻i · · · ≻i cd1
;

(2) If i = k + 1, then all candidates cve (with e ∈ E) are preferred
over other candidates, and cd1

≻i · · · ≻i cdn ;

We compare outcomes w̄ and w̄ ′
lexicographically, starting with

issue 1. We want to show that (G,k) is a yes-instance if and only

if (E,k + 1, cd1
) is. Suppose that there exists a vertex cover for G

with size at most k . Then, it can be shown that all edge-voters

must win at least one issue in [k], as increasing the satisfaction of a

voter from 0 to 1 increases the OWA score more than increasing the

6
This is justified by the fact that all relevant values of f can be computed ahead of

time and stored in a look-up table.



satisfaction of a voter that has already positive satisfaction and edge

voters are preferred in the tie-breaking. Let us show that cd1
wins

in k + 1 if all edge-voters win at least once in issue in [k]. If voter
d1 never won an issue in [k], then it means she has a satisfaction

of 0. Since all edge-voters and all the wi won at least once, there

are at leastm + 2m − p = 3m − p voters with a satisfaction of at

least 1. Therefore, d1 occupies a position within the first p entries

of the satisfaction vector, whereas all edge-voters occupy a position

within the last 4m−p entries. Since αp > αp+1, in this case choosing

in issue k+1 candidate cd1
will yield a greater score than choosing a

voter-candidate cve for any edge e ∈ E. Finally, since cd1
dominates

in the tie-breaking every other candidate cdj in issue k + 1, here we

must choose cd1
. On the other hand, suppose that d1 wins at least

one issue i ∈ [k]. Suppose – towards a contradiction – that cd1
is not

selected in issue k + 1. Let cv (for some voter v ∈ N \ {wi }i ∈[2m−p]
distinct from d1) be the candidate winning issue k + 1. Observe that

if we make cd1
win in issue k+1 and make some candidate approved

by v win in issue i , we would obtain a score that is higher or equal

than before, and this would surely be preferred by tie-breaking:

contradiction. We conclude that cd1
must win in the final issue.

Now, suppose that there exists no vertex cover forG with size at

most k . Then, there is one edge-voter that never wins an issue in

[k] (otherwise, some vertex cover would exist). By tie-breaking, this

edge-voter would decide the last issue, i.e., cd1
would not win. □

In light of this, one could conclude that free-riding is unfeasible

for optimization-based rules. Still, one could argue – especially since

we use worst-case complexity analysis – that sometimes the fact

that a certain candidate wins can still be known (or guessed). For

example, when a candidate receives an extremely disproportionate

support, or when some external source (i.e., a polling agency having

the computational power to solve R-Outcome Determination)

communicates the projected winners. In this case, the manipulator

would need to solve a slightly different, potentially easier, problem:

Given that some candidate that I approve of wins in this specific issue,

can I deviate from my honest approval ballot, without making this

candidate lose? Motivated by this, we study the following problem:

R-Free-Riding Recognition

Input: An election E = (N , Ā, C̄), an issue i , a candidate
c ∈ Ci such that c ∈ R(E)i , and a voterv such that

c ∈ Ai (v).
Question: Can v free-ride in E on issue i?

We define Generalized R-Free-Riding Recognition analo-

gously. Luckily, the picture does not change: this problem is still

computationally hard for essentially the same families of rules.

Theorem 10. (Generalized) R-Free-Riding Recognition is NP-
hard for every f -Thiele rule distinct from the utilitarian rule.

Theorem 11. (Generalized) R-Free-Riding Recognition is NP-
hard for every α-OWA rule for which there is a c ≥ 3 such that,

for every n ∈ N, there is a nonincreasing vector α of size ℓ (with

3n ≤ ℓ ≤ cn) such that α1 > αℓ and α3n > 0.

Proof. We show hardness by a reduction from CubicVertex-

Cover. Consider an instance (G,k) of this problem. Here,G = (V ,E)
is a graph with n nodes andm edges where each node has a degree

of exactly three, and k ∈ N. By the condition of the theorem, we

know there is an ℓ ≥ 3m (polynomial in the size ofm) such that

α = (α1, . . . ,αℓ) contains at least 3m non-zero entries and α1 > αℓ .
We will construct an instance of R-Free-Riding Recognition with

(k + 1) issues and ℓ voters. Since α1 > αℓ , we can distinguish essen-

tially the same two cases as in the proof of Theorem 9. We treat here

the first case. The second case and the treatment of the generalized

problem are similar, and a full proof can be found in the full version

of the paper.

We construct an instance (E,k + 1,ve∗ , cd1
) of R-Free-Riding

Recognition (here, e∗ ∈ E is some edge, it does not matter which).

The construction is similar to the one shown in the first case of the

proof of Theorem 9. However, here, in issue k+1 voterve∗ approves
only of cd1

, and we have ℓ −m − p dummy voters wi instead of

3m − p. The latter change makes no difference in our construction.

First, note that (E,k + 1,ve∗ , cd1
) is indeed a legal instance of

R-Free-Riding Recognition, as surely cd1
wins in issue k + 1.

If (G,k) is a yes-instance then we have already shown that this

candidate wins, and here it is only receiving increased support. If

it is a no-instance, then cd1
will be supported by one voter that

never won in the first k issues (namely, d1), as well as by ve∗ . Since
αp+m ≥ α3m > 0 and since the edge-voters together with the

dummy voters di occupy at most the first p +m positions of the

satisfaction vector, ve∗ will break the tie in favour of cd1
.

Now, if (G,k) is a yes-instance of CubicVertexCover, then ve∗

can free-ride in the last issue: if she votes for her voter-candidate,

then we have an election identical to the one constructed in the

first case of the proof of Theorem 9, and we have already shown

there that cd1
wins if (G,k) has a vertex cover.

If (G,k) is a no-instance, then there are two cases: either ve∗

won in some issue in [k] or not. If she did, there will be at least one
voter ve (with e ∈ E \ {e∗}) that never did, whose voter-candidate
will get at least the same score as cd1

(since ve∗ does not approve
of the latter when she free-rides): cd1

cannot win here. If she did

not, there are again two cases: either ve∗ approves of some dummy

candidate cdi (with i > 1) or of some cve (where e ∈ E). In the first

case, cdi would get a strictly higher score than cd1
, while in the

second case cve would get at least the same score as cd1
(and win by

tie-breaking). In all cases, cd1
loses: no free-riding is possible. □

Theorem12. (Generalized)R-Free-Riding Recognition is coNP-
hard for every α-OWA rule for which there is a c ≥ 2 such that,

for every n ∈ N, there is a nonincreasing vector α of size ℓ (with

n < ℓ ≤ cn) such that α1 > αℓ and αℓ−n+1
= 0.

Theorems 10, 11 and 12 strengthen our previous observations.We

conclude that free-riding is generally unfeasible for optimization-

based rules, since the manipulator cannot even decide efficiently

whether free-riding is possible. Next, we tackle sequential rules.

4.2 Free-Riding in Sequential Rules
In this section, we study the complexity of free-riding for sequen-

tial rules. First of all, observe that the computational barriers we

exhibited in the previous section are not applicable here. Indeed,

the outcome of a sequential rule is always poly-time computable:

for every round, we can just iterate over all the candidates involved

in that issue and pick the one maximizing the score up to that point.



However, although voters can easily verify if free-riding is pos-

sible, it might be still hard to judge its long-term consequences. If

this is unfeasible, voters might be discouraged from free-riding (as

it can have negative consequences). Hence, we study the following:

R-Free-Riding

Input: An election E = (N , Ā, C̄) and a voter v ∈ N .

Question: Is there an election E∗
such that v can free-ride in

E via E∗
and satE (v,R(E)) < satE (v,R(E

∗))?

The problem of Generalized R-Free-Riding is defined analo-

gously. Now, we show that free-riding is NP-complete for a large

class of sequential f -Thiele rules and the egalitarian rule.

Theorem 13. R-Free-Riding is NP-complete for every sequential f -
Thiele rule for which there exists a ℓ ∈ N such that (i) for all j, j ′ ∈ [ℓ]

it holds f (j) = f (j ′) and (ii) f is strictly decreasing on N \ [ℓ − 1].

The conditions of Theorem 13 apply to all functions that are

constant up to a certain number ℓ, and from ℓ on become strictly

decreasing. This is the case, e.g., for the sequential PAV rule.

Theorem 14. R-Free-Riding is NP-complete for the sequential egal-

itarian rule.

Proof (Sketch). Membership is clear. To show hardness, we

reduce from 3-SAT [22] and sketch the proof of its correctness. The

full proof can be found in the full version of the paper.

Let ϕ be a 3-CNF with n variables and m clauses. We assume

w.l.o.g. that ϕ is not satisfied by setting all variables to false and

that each clause Cj contains exactly three literals. We construct an

instance of R-Free-Riding with 2(n + 1) voters and 5n + 1 rounds.

In particular, we will have two voters vi and v̄i for each variable

xi , a voter u, and a distinguished voter v , the manipulator.

In all rounds except for 5n + 1, there are two candidates, c and
c̄ . We assume that c always loses in ties (also in the final round).

We group the first 4n rounds into n quadruples, e.g., quadruple 1

consists of rounds (1, 2, 3, 4). In the first round of any such quadruple

i , all voters approve of c̄ . In the second round of i , voters v and v̄i
vote for c , while voters u and vi vote for c̄ ; everyone else approves
of both. In the third round of i , voters v and u approve of c and c̄ ,
respectively, and everyone else approves of both. In the final round

of i , voter v votes for both c and c̄ , while everyone else votes for
c . Next, in all rounds from 4n + 1 to 5n − 1, v approves of c̄ , u of

both candidates, and everyone else of c . In round 5n, v votes for c̄ ,
whereas every one else votes for c . Finally, in round 5n + 1, there

arem + 1 candidates, namely c, c1, . . . , c j . Here, u approves of all

candidates, voter vi (resp. v̄i ) approves of c and of all candidates c j
such that xi < Cj (resp. x̄i < Cj ). Finally, voter v approves only of c .

We show correctness as follows. First, we observe that v can

free-ride only in the first round of every quadruple: everywhere

else, either she is losing, or her vote changes the outcome. Secondly,

in all quadruples, if v votes truthfully in the first round, c and c̄
win the second and third rounds, respectively; if she free-rides, the

opposite happens. Note that, regardless of whether v free-rides or

not, she will be satisfied with three rounds per quadruple (w.r.t.

her honest preferences), and she will win as many rounds as u.
Next, let ℓ be the (calculated) satisfaction of v and u after round 4n.
We can show that, for all pairs of voters vi and v̄i , one voter won
s := ℓ + n − 1 rounds, while the other won s + 1 rounds, depending

on whether c or c̄ wins in the second round of quadruple i . Then,
one can show that in all rounds from 4n + 1 to 5n − 1 only v and u
win, and only v wins in round 5n. Hence, before round 5n + 1, all

voters have satisfaction either s (including u) or s + 1 (including v).
We can interpret c winning in the second round of quadruple i

as setting xi to true. Crucially, voter vi (resp. v̄i ) has satisfaction
s + 1 if c̄ (resp. c) wins there, and s otherwise. We claim that c wins
round 5n + 1 iff this assignment satisfies ϕ. Briefly, if a clause Cj
contains at least one satisfied literal, the minimal satisfaction if c j
wins would be s; otherwise, it would be s + 1. Since c also gives a

minimal satisfaction of s + 1 and loses all ties, our claim follows.

Finally, observe that the (true) satisfaction of v from the first

5n rounds is exactly 4n, irrespectively of whether she free-rides

or not. If v never free-rides, c̄ wins in the second round of every

quadruple, and since we assumed thatϕ is not satisfied by setting all

variables to false,v loses the last round. Hence,v can only raise her

satisfaction to 4n+ 1 by winning the last round. To do so, she needs

to force a satisfying assignment for ϕ by free-riding. It follows that

ϕ is satisfiable if and only if v can manipulate via free-riding. □

We now consider the weaker notion of generalized free-riding.

With this, we prove NP-completeness for a broader class of rules.

Theorem15. GeneralizedR-Free-Riding isNP-complete for every

sequential f -Thiele rule distinct from the utilitarian rule such that

f (i) > 0 holds for every i ∈ N.

Theorem 16. Generalized R-Free-Riding is NP-complete for ev-

ery sequential α-OWA rule such that, for all n, α = (α1, . . . ,αn ) is
nonincreasing and α1 > αn .

5 NUMERICAL SIMULATIONS
So far, we have seen that sequential Thiele and OWA rules are

generally susceptible to free-riding. However, we have seen that

free-riding can be detrimental to the free-rider, i.e., her satisfaction

can decrease. In this section, we use numerical simulations to shed

more light on the risk of free-riding with sequential rules.

We use the following setup. We assume that voters and can-

didates are points in a 2-dimensional space; this is known as the

2d-Euclidean model [10, 18, 19, 23]. We sample both candidates

and voters from a uniform distribution on a unit square. Voters’

points are the same for all issues, candidates are sampled separately

for each issue. A voter approves the closest candidate as well as

any candidate that is similarly close (within +20% distance). We

consider multi-issue elections with n = 20 voters, k = 20 issues,

and 4 candidates per issue. Our results are based on 1000 elections.

In our experiments, we consider a subclass of Thiele methods and

a subclass of OWA rules. For better comparison, we parameterize

both classes with a parameter x (albeit this parameter has a different

interpretation in both classes). We consider f -Thiele rules with

fx (i) = i
−x

for x ∈ {0, 0.25, 0.5, . . . }. Note that for x = 0 this is the

utilitarian rule, for x = 1 it is PAV, and for increasing x it approaches

the leximin rule. Further, we consider α-OWA rules with

αx = ( 1, . . . , 1︸  ︷︷  ︸
n−x many

,
1

kn
,

1

k2n2
, . . . ) for x ∈ {0, 1, 2, . . . }.

Note that also this class contains the utilitarian rule (x = 0) and the

leximin rule (x = n − 1).
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Figure 1: Results of the numerical simulations.

Within this model, we answer three questions: (Q1) How many

voters have the possibility to increase their satisfaction by free-

riding? (Q2) For how many voters can free-riding lead to a worse

outcome? (Q3) What is the average risk of free-riding? Let us make

these three questions precise. For each multi-issue election, we

iterate over all voters and all issues and check whether free-riding

is possible (Definition 1). That is, we only consider free-riding in

single issues (and not repeated free-riding in more than one issue).

Note that for a fixed occurrence of free-riding (i.e., in a specific

issue, by a specific voter) it is computationally easy to determine the

outcome when using sequential Thiele or sequential OWA rules.

Given an election, a voter, and an issue, we speak of successful

free-riding if the voter can free-ride and this increases her satisfac-

tion; we speak of harmful free-riding if the voter can free-ride but

this decreases her satisfaction. Note that free-riding can also be

neutral (with no change in satisfaction).

Figure 1 shows our results. We answer Q1 by displaying the

proportion of voters with the possibility of successful free-riding

(in at least one issue), averaged over all elections. Analogously,

Q2 corresponds to the proportion of voters with the possibility of

harmful free-riding (in at least one issue), averaged over all elections.

We note that voters can have both the possibility of successful and

harmful free-riding (on separate issues). Finally, for Q3, we define

the risk of a voter in an election as the number of issues where

harmful free-riding occurs divided by the number of issues where

either successful or harmful free-riding occurs. Figure 1 shows

the risk averaged over all voters (for whom successful or harmful

free-riding is possible) and over all elections.

Let us discuss Figure 1. We clearly see that rules closer to the

utilitarian rule (x = 0) are less susceptible to free-riding than those

closer to leximin (larger values of x ). We also see that – as expected

– the utilitarian rule is the only rule where free-riding is not possible

(cf. Proposition 2). We note that this increase in susceptibility (with

distance to the utilitarian rule) has also been observed by Barrot

et al. [6] for arbitrary manipulations. Both the proportion of voters

that can successfully free-ride and those with the possibility of

harmful free-riding grow with parameter x . The most important

conclusion from this experiment is that the risk of free-riding is

considerable (3.7% for sequential PAV, 17.2% for sequential leximin).

This shows that harmful free-riding is not merely a theoretical

possibility, but might be a phenomenon that indeed decreases the

temptation of free-riding.

Finally, we briefly describe the impact of our chosen model pa-

rameters. Increasing the number of voters decreases the chance

of voters being pivotal. Consequently, we would see a decrease in

both successful and harmful free-riding. For a larger number of

voters, it would make sense to move to a model where groups of

voters free-ride. This requires additional assumptions about voter

coordination (cf. the framework of iterative voting [35]). Varying

the number of candidates leads to comparable results. Increasing

the number of issues significantly increases the possibility of both

successful and harmful free-riding, as effects may materialize only

in the long run. In general, further simulations indicate that the

general pervasiveness of harmful free-riding does not depend on

our chosen parameter values.

6 DISCUSSION AND RESEARCH DIRECTIONS
We have seen that free-riding is an essentially unavoidable phe-

nomenon in multi-issue voting (Theorem 3). However, we have also

shown that there are computational issues to overcome for voters

that would like to assess the consequences of free-riding. In partic-

ular for sequential voting rules, we have observed the possibility

of negative outcomes for free-riders. Numerical simulations show

that the frequency of harmful free-riding is non-negligible. This led

us to the conclusion that it is less obvious how and when to free-

ride than it seems at first sight. Another detriment to free-riding

comes from the social context. In small groups, it may be obvious

to other group members that free-riding takes place and thus can

entail negative social consequences. Consequently, free-riding in

real-world applications of multi-issue decision making may be less

relevant than the theoretical possibility would suggest.

We conclude this paper with specific technical open problems.

First, we would like to point out that many of our hardness proofs

use several candidates per issue. Do all of these results still hold

for binary elections? Second, our classification of sequential OWA

rules with potentially harmful free-riding is not complete. Are there

sequential OWA rules where free-riding is never harmful except for

the utilitarian rule? Third, all our results apply to resolute rules, i.e.,

rules returning exactly one outcome. This condition can be lifted

by introducing set extensions for comparing sets of outcomes (as

done by Barrot et al. [6]). Would this change affect our conclusions?

Finally, there are further voting rules to be considered, such as rules

based on Phragmén’s ideas [12, 37].
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A PROOFS FROM SECTION 2
Proposition 1. The OWA rule defined by α = (1, 1

kn ,
1

k2n2
, . . . ) is

equivalent to the leximin rule.

Proof. Assume that w̄ ≻ w̄ ′
, i.e., for s(w̄) = (s1, . . . , sn ) and

s(w̄ ′) = (s ′
1
, . . . , s ′n ), there exists an index j ∈ [n] such that s1 = s

′
1
,

. . . , sj−1 = s
′
j−1

and sj > s ′j . Then

OWAα (w̄) − OWAα (w̄
′)

= α · s(w̄) − α · s(w̄ ′)

= (sj − s ′j︸ ︷︷ ︸
≥1

) ·
1

(kn)j−1
+

n∑
ℓ=j+1

(sℓ − s ′ℓ︸ ︷︷ ︸
≥−k

) ·
1

(kn)ℓ−1

≥
1

(kn)j−1
− k

n∑
ℓ=j+1

1

(kn)ℓ−1

≥
1

(kn)j−1
− k(n − 1)

1

(kn)j
> 0.

This argument is symmetric in w̄ and w̄ ′
, so we have shown

that w̄ ≻ w̄ ′
iff OWAα (w̄) − OWAα (w̄

′) > 0. Thus, a maximal

element with respect to ≻ achieves a maximum OWAα -score and

vice versa. □

B PROOFS FROM SECTION 3
Theorem 3. Every (sequential) Thiele and (sequential) OWA rule

except the utilitarian rule can be manipulated by free-riding.

Proof. First, let R be a sequential f -Thiele Rule different from
the utilitarian rule. Then, there exists a k such that f (k − 1) > f (k).
Consider a k + 1 issue election with four voters and two candidates

a and b such that for the first k issues all voters only approve

candidate a. Moreover, on issue k + 1 voters 1 and 2 approve b
while voter 3 and 4 approve a. Assume further that a is preferred

to b in the tie-breaking order. Clearly, a wins in the first k issues.

Hence in issue k + 1 all voters have weight f (k) which means both

candidates have a score of 2f (k). By tie-breaking a wins. We claim

that voter 1 can manipulate by changing her vote in one of the first

k issues to {b}. Let i be the issue on which 1 manipulates. Then, in

issue i , candidate a has a score of 3f (i − 1) while b has a score of

f (i − 1). Now, f (i − 1) > f (k) implies that f (i − 1) > 0. Therefore

3f (i − 1) > f (i − 1), which means a still wins in issue i . It is clear
that a also wins in the other issues until k + 1. In issue k + 1, a has a

score of 2f (k)while b has a score of f (k)+ f (k −1). By assumption,

this means that b wins on issue k+1. Therefore, voter 1 did free-ride

successfully.

Now, let R be a f -Thiele Rule different from the utilitarian rule.

Then, again, there exists a k such that f (k − 1) > f (k). Consider
the same k + 1 issue election with four voters and two candidates

a and b as for sequential Thiele rules. Clearly, selecting b in one

of the first k rounds just reduces the score of all voters, hence in

any optimal outcome a wins in the first k issues. Letting a or b win

on issue k + 1 increases the score of the outcome by 2f (k) for both
candidates. We can assume that a wins by tie-breaking. We claim

that voter 1 can manipulate by changing her vote in one of the first

k issues to {b}. Assume that 1 manipulates on issue k . Then, it is
still clearly best to let a win in the first k − 1 issues. This leads to

score of S := 4

∑k−1

i=1
f (i). Let us now consider the score of four

possible outcomes on issue k and k + 1. The outcome (a, . . . ,a,a)
has score of S + 3f (k − 1) + 2f (k), the outcome (a, . . . ,a,b) has
score of S + 3f (k − 1) + f (k) + f (k − 1), the outcome (a, . . . ,b,a)
has score of S + f (k − 1) + 2f (k − 1) and the outcome (a, . . . ,b,b)
has score of S + f (k − 1) + f (k) + f (k − 1). As, f (i − 1) > f (k) this
implies that (a, . . . ,a,b) is the winning outcome. Therefore, voter

1 did free-ride successfully.

Now, let R be an OWA-Rule that is not the utilitarian rule. Then

there exists a k for which the vector α for k voters satisfies α1 > αk .
Consider an election with 2 issues and k voters. In each issue there

are k candidates a1, . . . ak . In the first issue, voters 1 and 2 approve

a1. Every other voter i approves ai . In the second issue voter 1 ap-

proves a1, voter 2 approves a2 and all other voters approve both a1

and a2. We assume that candidates with a lower index are preferred

by the tie-breaking, which is applied lexicographically. Selecting a

candidate other than a1 in the first issue leads to satisfaction vector

(0, 1, . . . , 1︸  ︷︷  ︸
k−2 times

, 2)

independently of whether a1 or a2 is selected in issue 2. On the

other hand, selecting a1 in issue 1 leads to satisfaction vector

(1, 1, . . . , 1︸  ︷︷  ︸
k−2 times

, 2)

independently of whether a1 or a2 is selected in issue 2. This means

(a1,a1) and (a1,a2) lead to the highest OWA score. By tie-breaking,

(a1,a1)wins. Now, we claim that voter 2 can free-ride by approving

a2 instead of a1 in the first issue. We know that k ≥ 2 as otherwise

α1 > αk would not be possible. Assume first, that a candidate

other than a1 or a2 is selected in the first issue. This still leads to a

satisfaction vector of

(0, 1, . . . , 1︸  ︷︷  ︸
k−2 times

, 2)

independently of whether a1 or a2 is selected in issue 2. Choosing

a1 in both issues leads to a satisfaction vector of

(0, 1, . . . , 1︸  ︷︷  ︸
k−2 times

, 2)

Choosing a1 in issue 1 and a2 in issue 2 leads to the following vector

(1, . . . , 1︸  ︷︷  ︸
k times

)

Choosing a2 both times or first a2 and then a1 is symmetric. As

α1 > αk we know that

α · (1, . . . , 1︸  ︷︷  ︸
k times

) =

k∑
i=1

αi > αk − α1 +

k∑
i=1

αi = α · (0, 1, . . . , 1︸  ︷︷  ︸
k−2 times

, 2)

It follows that (a1,a2) and (a2,a1) are the outcomes maximizing

the OWA score. By tie-breaking, (a1,a2) is the winning outcome. It

follows that 2 did successfully free-ride.

Finally, let R be a sequential OWA-Rule that is not the utilitarian

rule. Then there exists a k for which the vector α for k voters

satisfies α1 > αk . Consider the same election with 2 issues and k
voters as for OWA rules. We assume that candidates with a lower



index are preferred by the tie-breaking. In the first issue a1 has to

be selected, as no other candidate can have a higher OWA score.

Then, as before (a1,a1) and (a1,a2) lead to the highest possible

score on when looking at the second issue. By tie-breaking, (a1,a1)

wins. Now, we claim that voter 2 can free-ride by approving a2

instead of a1 in the first issue. After the free-riding, all candidates

are tied for the first issue, hence a1 wins by tie-breaking. However,

then following the discussion above, a2 needs to be selected in the

second issue. It follows that 2 did successfully free-ride. □

Proposition 6. Consider a sequential α-OWA rule such that there

exists an n ≥ 8 for which αn is nonincreasing and satisfies α3 > αn−2.

Then, free-riding can reduce the satisfaction of the free-riding voter.

Proof. Consider an election with 4 issues and n voters. In each

issue the candidate set is a subset of {a1, . . . an }. The specific set
of candidates is defined as all candidates that receive at least one

approval according to the following description:

Issue 1 Voter 3, . . .n − 3 and n approve an . Every other voter

i approves ai .
Issue 2 Voter 1, 2, 3 approve an , voters n − 2,n − 1,n approve

a1. Every other voter i approves ai .
Issue 3 Voter 1 and voter 4 approve a4, voter n − 1 and n ap-

prove an , Every other voter i approves ai .
Issue 4 Voter 2 and 3 approve a2, voter n − 2 and n approve an

and every other voter i approves ai .

We assume that candidates with a higher index are preferred by

the tie-breaking.

Let us determine the outcome of this election. In the first issue

an has to be selected, as no other candidate can have a higher OWA

score. This leads to the following satisfaction vector:

(0, 0, 0, 0, 1, . . . , 1︸  ︷︷  ︸
n−4 times

)

In the second issue selecting a1 or an both lead to a satisfaction

vector of

(0, 0, 1, . . . , 1︸  ︷︷  ︸
n−3 times

, 2)

Selecting any other candidate leads to a satisfaction vector of

(0, 0, 0, 0, 1, . . . , 1︸  ︷︷  ︸
n−5 times

, 2)

Clearly, it is again the case that no candidate can have a higher

OWA score than an . Hence an wins again.

In the third issue, selecting any candidate other than a4, a3, an−2

or an leads to a satisfaction vector of

(0, 0, 1, . . . , 1︸  ︷︷  ︸
n−4 times

, 2, 2)

Selecting a3 leads to a satisfaction vector of

(0, 0, 1, . . . , 1︸  ︷︷  ︸
n−3 times

, 3)

Selecting a4 leads to a satisfaction vector of

(0, 0, 1, . . . , 1︸  ︷︷  ︸
n−5 times

, 2, 2, 2)

Selecting an−2 leads to a vector of

(0, 1, . . . , 1︸  ︷︷  ︸
n−2 times

, 2)

Finally, selecting an leads to a vector of

(0, 1, . . . , 1︸  ︷︷  ︸
n−3 times

, 2, 2)

As α2 ≥ α3 > αn−2 ≥ αn selecting an leads to a higher OWA-score

than selecting a candidate ai with i < n − 2. Moreover, the OWA-

score of an−2 cannot be higher than the score of an . Hence, an wins

in issue three.

In the fourth issue, selecting any candidate other than a2 or an
leads to a satisfaction vector of

(0, 1, . . . , 1︸  ︷︷  ︸
n−4 times

, 2, 2, 2)

Selecting a2 leads to a satisfaction vector of

(0, 1, . . . , 1︸  ︷︷  ︸
n−4 times

, 2, 2, 3)

Selecting an leads to a satisfaction vector of

( 1, . . . , 1︸  ︷︷  ︸
n−2 times

, 2, 3)

As α1 ≥ α3 > αn−2 selecting an leads to the highest OWA score.

Now, we claim that voter n can free-ride by approving any other

candidate in the first issue. Indeed, if voter n approves any other

candidate it is still the case that no candidate can have a higher

OWA score than an . Let us consider how the other issues change:

In the second issue selecting a1 leads to a satisfaction vector of

(0, 0, 1, . . . , 1︸  ︷︷  ︸
n−2 times

)

Selecting an leads to a satisfaction vector of

(0, 0, 0, 1, . . . , 1︸  ︷︷  ︸
n−4 times

, 2)

Selecting any other candidate leads to a satisfaction vector of

(0, 0, 0, 0, 0, 1, . . . , 1︸  ︷︷  ︸
n−6 times

, 2)

As α3 > αn we know that the OWA score of a1 is higher than that

of an which is at least as high as the OWA score of every other

candidate.

In the third issue, selecting any candidate other than a4, a2 or

an leads to a satisfaction vector of

(0, 0, 1, . . . , 1︸  ︷︷  ︸
n−3 times

, 2)

Selecting a2 leads to a satisfaction vector of

(0, 1, . . . , 1︸  ︷︷  ︸
n−1 times

)



Selecting a4 leads to a satisfaction vector of

(0, 1, . . . , 1︸  ︷︷  ︸
n−2 times

, 2)

Finally, selecting an leads to a vector of

(0, 0, 1, . . . , 1︸  ︷︷  ︸
n−4 times

, 2, 2)

As α2 ≥ α3 > αn−1 selecting a4 leads to a higher OWA-score than

selecting a candidate ai with i , 2, 4. Moreover, the OWA-score of

a2 cannot be higher than the score of a4. Hence, a4 wins in issue

three.

In the fourth issue, selecting any candidate other than a2, a4, or

an leads to a satisfaction vector of

(0, 1, . . . , 1︸  ︷︷  ︸
n−3 times

, 2, 2)

Selecting a2 leads to a satisfaction vector of

( 1, . . . , 1︸  ︷︷  ︸
n−2 times

, 2, 2)

Selecting a4 leads to a satisfaction vector of

(0, 1, . . . , 1︸  ︷︷  ︸
n−2 times

, 3)

Selecting an leads to a satisfaction vector of

(0, 1, . . . , 1︸  ︷︷  ︸
n−4 times

, 2, 2, 2)

As α1 > αn−2 selecting a2 leads to the highest OWA score. However,

this decreases the satisfaction of voter n with respect to the honest

ballots, to 2. □

Proposition 7. Free-riding can decrease the satisfaction of the free-

riding voter under the sequential egalitarian rule.

Proof. Consider an election with 5 issues and 5 voters. In each

issue there are 3 candidates a, b and c . We assume that tie-breaking

always prefers a. The approval sets are given as follows:

Issue 1 Issue 2 Issue 3 Issue 4 Issue 5

Voter 1 {b} {a} {b} {b} {b}
Voter 2 {b} {a} {a} {b} {a}
Voter 3 {b} {a} {a} {c} {b}
Voter 4 {a} {a} {b} {a} {b}
Voter 5 {a} {a} {b} {a} {b}

Let us determine the winners under the sequential egalitarian

rule: In the first issue, every option leads to a minimal satisfaction

of 0. Therefore, a is winning by tie-breaking. Then, in the second

issue, a must be winning as it raises the minimal satisfaction to 1.

In the third issue, again, no alternative can increase the minimal

satisfaction and therefore a wins by tie-breaking. This leads to a

situation where every voter except 1 has a satisfaction of 2 while 1

has a satisfaction of 1. Hence, in issue four, b must be the winner, as

it increases the minimal satisfaction to 2. Finally, in the fifth issue,

electing b leads to a minimal satisfaction of 3, which is better than

electing a. We observe that voter 1 has a satisfaction of 3 in the end.

Now, we claim that voter 1 can free-ride on issue two. If voter 1

approves b instead, then all candidates lead to the same minimal

satisfaction of 0. Hence, a wins by tie-breaking. If voter 1 decides

to free-ride on issue two, this changes the winners of the following

issues as follows: In issue three, b must now be the winner, as it

increases the minimal satisfaction to 1. Then, in issue four and five,

no candidate increases the minimal satisfaction and hence a wins

both issues by tie-breaking. However, this decreases the satisfaction

of voter 1 with respect to the honest ballots, to 2. □

C PROOFS FROM SECTION 4
Theorem 8. R-Outcome Determination is NP-hard for every f -
Thiele rule distinct from the utilitarian rule.

Proof. Fix an f -Thiele rule R distinct from the utilitarian rule.

We show hardness by a reduction from CubicVertexCover. In the

following, let ℓ be the smallest ℓ such that f (ℓ) > f (ℓ + 1) (such an

ℓ must exist by virtue of R not being the utilitarian rule).

Consider an instance (G,k) of CubicVertexCover. Here, k is

a natural number and G = (V ,E) is an undirected graph with n
nodes andm edges where every node has a degree of 3. We assume

w.l.o.g. that k < m. We will construct an instance (E, ℓ + k, cd1
) of

R-Outcome Determination, where E = (N , Ā, C̄) is an election

with (ℓ + k) issues and 2m voters. Observe in particular that ℓ does

not depend on (G,k).
We construct the instance as follows. We have one voter ve for

every edge e ∈ E, plusm extra dummy voters {d1, . . . ,dm }. In the

first ℓ − 1 issues, there are two candidates c and c ′, and all voters

approve of both. In the next k issues, there is one candidate cη for

every node η ∈ V , plus one candidate cdi for every dummy voter

di . In all of these issues, every edge voter ve approves of the two
candidates cη and cη′ such that e = {η,η′}. Furthermore, every

dummy candidate di approves of only cdi . Finally, in the last issue,

there is one candidate cv for every voter v ∈ N , and every such

voter only approves of cv .
To deal with ties, we assume that each issue i is associated with

a total ordering ≻i such that:

(1) If i ∈ {ℓ, . . . , ℓ + k − 1}, then node-candidates are preferred

over other candidates, and cdn ≻i · · · ≻i cd1
;

(2) If i = ℓ+k , then all candidates cve (with e ∈ E) are preferred
over other candidates, and cd1

≻i · · · ≻i cdn ;

We compare outcomes w̄ and w̄ ′
with w̄ = (w1, . . . ,wℓ+k ) and

w̄ ′ = (w ′
1
, . . . ,w ′

ℓ+k ) lexicographically, that is w̄ ≻ w̄ ′
if there

exists an index j ∈ [ℓ +k] such thatw1 = w
′
1
, . . . ,w j−1 = w

′
j−1

and

w j > w ′
j . Among the outcomes with maximal scores, we return the

maximal outcome according to ≻.

We want to show that (G,k) is a yes-instance if and only if

(E, ℓ + k, cd1
) is. First, note that all voters have a satisfaction of at

least ℓ − 1 (because of the first ℓ − 1 issues). Next, let us show the

following, useful claim:

Claim 1. Let w̄ be an outcome of the election E, let E[−1] be the

election that only differs from E in that issue ℓ + k is missing and let

w̄[−1] be w̄ restricted to E[−1]. Then

Thielef (w̄) =Thielef (w̄[−1]) + f (ℓ)



Proof: First, note that at most one dummy voter can win in each is-

sue in {ℓ, . . . , ℓ+k−1}. As there arem dummy voters and k < m, at

least one voter will win no issue in {ℓ, . . . , ℓ+k−1}. Thus, whatever

outcome we fix for issue 1 to ℓ+k−1, there will be at least one voter

with satisfaction ℓ − 1. Now, in issue ℓ + k every outcome increases

the satisfaction of one voter by one. As f (ℓ) > f (ℓ + 1) ≥ f (ℓ∗) for
ℓ∗ ≥ ℓ + 1, it is always optimal to pick a candidate corresponding

to a voter with satisfaction ℓ − 1 in E[−1]. ⋄

Using this fact, we show that cd1
wins in the last issue if and

only if the candidates selected in issues ℓ to ℓ + k − 1 correspond

to a vertex cover of G.
Let w̄ be the winning outcome and assume that the winners of

issue ℓ to ℓ + k − 1 correspond to a vertex cover of G, i.e., that
V [w̄] := {η ∈ V | ∃i ≤ k − 1 s.t.wℓ+i = cη } is a vertex cover.

Then, clearly, every edge voter ve has a satisfaction of at least ℓ in

E[−1]. As we observed above, this means no candidate cve can be

winning in the last issue. Moreover, cdi does not win in issues ℓ to

ℓ + k − 1: choosing this candidate cannot give a higher score than

choosing another dummy candidate cdi (with i > 1) for a voter

di with satisfaction ℓ − 1, as every such candidate is approved by

exactly one dummy voter. Moreover, the outcome where we replace

cd1
by cdi will always be preferred by our tie-breaking. Therefore,

d1 has satisfaction ℓ − 1 in E[−1]. It follows that cd1
must win in

the last issue: Selecting a candidate cve leads to a worse score, and

selecting a candidate cdi for i > 1 does not lead to a higher score

but to an outcome that is less preferred by the tie-breaking.

Now assume that the winners of issues ℓ to ℓ + k − 1 do not

correspond to a vertex cover of G. Then there is one edge voter ve
with satisfaction ℓ− 1 in E[−1]. Hence, selecting cd1

in the last issue

cannot lead to a higher score than selecting cve , and the latter is

preferred lexicographically. Thus, cd1
does not win in the last issue.

It remains to show that if there is a vertex cover ofG with at most

k vertices, then V [w̄] is a vertex cover for the winning outcome w̄ .

Assume a vertex cover ofG of size at most k exists. Further, assume

for the sake of a contradiction that V [w̄] is not a vertex cover.

If V [w̄] is not a vertex cover, then for every issue i ∈ {ℓ, . . . , ℓ +

k − 1} the winner must be a vertex candidate cη . Assume otherwise

that there is an issue i ∈ {ℓ, . . . , ℓ + k − 1} where a candidate cdj
wins. We observe that because w̄ does not correspond to a vertex

cover, there is at least one voter ve that has satisfaction ℓ − 1 in

E[−1]. Then wi contributes at most f (ℓ) to the score of w̄ . If the

winner in the last round is not cve we can replace cdj by cη which

would contribute at least f (ℓ) to the score and be preferable by

tie-breaking. If the winner in the last round is cve , then we can

replace cdj in issue i by cη and cve in the last issue by any other

candidate corresponding to a voter with satisfaction ℓ − 1 without

the last issue. The score of the resulting outcome is at least as good

as the score w̄ and it is preferred by tie-breaking.

Now, let Eℓw̄ := {ve ∈ N | e ∈ E ∧ satE[−1]
(ve , w̄[−1]) ≥ ℓ} be the

set of edge-voters with satisfaction at least ℓ in w̄[−1]. We define

Eℓ+1

w̄ ⊆ Eℓw̄ analogously. Now, we observe that∑
ve ∈Eℓ

w̄

(
satE[−1]

(ve , w̄[−1]) − (ℓ − 1)

)
=

|Eℓw̄ | +
∑

ve ∈Eℓ+1

w̄

(
satE[−1]

(ve , w̄[−1]) − ℓ
)
= 3|V [w̄]| = 3k

because the set contains k nodes and each node has degree 3.

Finally, any outcome w̄∗
on E[−1] in which on every issue in

{ℓ, . . . , ℓ + k − 1} a vertex candidate cη wins has the following

Thiele score:∑
v ∈V

(
ℓ−1∑
i=1

f (i)

)
+ |Eℓw̄ | f (ℓ) +

∑
ve ∈Eℓ+1

w̄

satE[−1]
(ve ,w̄[−1])∑

i=ℓ+1

f (i)

︸                              ︷︷                              ︸
3k−|Eℓ

w̄ | addends

As f (ℓ) > f (ℓ + 1), this function is maximized by maximizing |Eℓw̄ |.

As a vertex cover exists, we know that we can reach |Eℓw̄ | = m.

Hence, the outcome maximizing the Thiele score must do so, which

means that it must be a vertex cover. □

Theorem 9. R-Outcome Determination is NP-hard for every α-
OWA rule such that, for all n, αn is nonincreasing and α1 > αn .

Proof. Fix a rule R satisfying the condition of the theorem. We

show hardness by a reduction from CubicVertexCover. Consider

an instance (G,k) of this problem. Here, G = (V ,E) is a graph with

n nodes andm edges where each node has a degree of exactly three,

and k ∈ N. We assume w.l.o.g. that k < n. We construct an instance

of R-Outcome Determination with (k + 1) issues and 3m voters.

As α1 > α3m , there are two cases:

(1) There is a p ∈ [2m] such that αp > αp+1, or

(2) There is a p > 2m with p < 3m such that α1 = αp > αp+1.

In the following, we treat these cases separately.

First case. We construct an instance (E,k+1, cd1
) of R-Outcome

Determination. Here, we have one voter ve for each edge e ∈ E,
and two sets of dummy voters, {d1, . . . ,dp } and {w1, . . . ,w2m−p }.

In the first k issues, there is one candidate cη for each node η ∈ V ,

plus one dummy candidate cdi for each dummy voter di . Here, each
edge-voterve approves of the two node-candidatesvη andvη′ such
that e = {η,η′}. Moreover, each dummy voter di approves only of

dummy candidate cdi , and all dummy candidates wi approve of

all candidates. In the last issue, there is one candidate cv for all

voters v ∈ N \ {wi }i ∈[2m−p], and every such v only approves of cv .
Finally, here, all voters in {wi }i ∈[2m−p] approve of all candidates.

We use the following tie-breaking mechanism, which is essen-

tially identical to the one used in the proof of Theorem 8.We assume

that each issue i is associated with a total ordering ≻i such that:

(1) If i ∈ {1, . . . ,k}, then node-candidates are preferred over

other candidates, and cdn ≻i · · · ≻i cd1
;

(2) If i = k + 1, then all candidates cve (with e ∈ E) are preferred
over other candidates, and cd1

≻i · · · ≻i cdn ;

We compare outcomes w̄ and w̄ ′
with w̄ = (w1, . . . ,wℓ+k ) and

w̄ ′ = (w ′
1
, . . . ,w ′

ℓ+k ) lexicographically, that is w̄ ≻ w̄ ′
if there

exists an index j ∈ [ℓ +k] such thatw1 = w
′
1
, . . . ,w j−1 = w

′
j−1

and

w j > w ′
j . Among the outcomes with maximal scores, we return the

maximal outcome according to ≻.

We want to show that (G,k) is a yes-instance if and only if

(E,k + 1, cd1
) is. Suppose that there exists a vertex cover forG with

size at most k . First, we show that all edge-voters must win at least



one issue in [k]. Then, we show that, if all edge-voters win at least

one issue in [k], then cd1
wins in issue k + 1.

Let us show that all edge-voters win at least one issue in [k]. Let
w̄ = R(E), and assume towards a contradiction that some edge-

voter ve never win any issue in [k]. Assume that some dummy

candidate cdj wins some issue i ∈ [k + 1]. Ifve never wins at all, we

can make cη (for some η ∈ e) win in issue i and obtain an outcome

that has a greater or equal score (as α is nonincreasing) and is

preferred lexicographically. If ve wins in issue k + 1, we can make

a similar argument by making cη win issue i and cdj win issue

k + 1. Hence, in the following, we assume w.l.o.g. that no dummy

candidate wins in w̄ .

Next, let w̄∗
be some outcome where all edge-voters win at least

one issue in [k] (which is possible, because (G,k) is a yes-instance),
no dummy voter wins any issue in [k] while each node-candidate

is chosen at most once (which is possible, since k < n), and some

dummy voter wins in issue k + 1. We will show that w̄∗
leads to a

strictly higher score than w̄ .

First, observe that, in both outcomes, since each time a node-

candidate is selected exactly three edge-voters approve of it, the

total satisfaction (ignoring the dummy voterswi ) will be 3k +1 (the

extra 1 comes from the last issue). Next, let s = (s1, . . . , sm+p ) and
s∗ = (s∗

1
, . . . , s∗m+p ) be the sorted satisfaction vectors (ignoring the

dummy voters in {wi }i ∈[2m−p]) when w̄ and w̄∗
are the outcomes,

respectively. Furthermore, let i1, i2 and i3 be the three smallest

indexes such that si1 = 1, si2 = 2, and si3 = 3 hold. If any of these

indexes is undefined, we set it tom + p + 1. Moreover, we define

i∗
1
and i∗

2
analogously for s∗ (observe that no voter here can have

satisfaction greater than 2). Clearly i∗
1
= p < i1, as w̄ satisfies once

at most 3m −p voters, whereas w̄∗
satisfies once exactly 3m −p + 1

voters. We get that:

OWAα (w̄) < OWAα (w̄
∗)

α · s < α · s∗

m+p∑
i=i1

αi +

m+p∑
i=i2

αi +

m+p∑
i=i3

(si − 2)αi <

m+p∑
i=p

αi +

m+p∑
i=i∗

2

αi

m+p∑
i=i2

αi +

m+p∑
i=i3

si∑
j=3

αi <

i1−1∑
i=p

αi +

m+p∑
i=i∗

2

αi

If i∗
2
< i2, we obtain:

m+p∑
i=i3

si∑
j=3

αi <

i1−1∑
i=p

αi +

i2−1∑
i=i∗

2

αi

Since i1 − 1 ≤ i2 − 1 < i3, every addend appearing on the left-hand

side is smaller or equal to every addend appearing on the right. In

particular, αp is positive and strictly greater than all the addends on

the left side (as p < i3). Furthermore, since

∑
i si =

∑
i s

∗
i = 3k + 1,

there is the same number of addends being summed on both sides. It

follows that OWAα (w̄) < OWAα (w̄
∗). If, on the other hand, i∗

2
≥ i2,

we obtain:

i∗
2
−1∑

i=i2

αi +

m+p∑
i=i3

si∑
j=3

αi <

i1−1∑
i=p

αi

Since i1 − 1 < i2 and i1 − 1 < i3, by similar arguments as above,

we conclude that OWAα (w̄) < OWAα (w̄
∗). But this is impossible,

as we assumed that w̄ is the outcome. We have finally reached the

required contradiction: it cannot be that some edge-voter ve loses

all issues in [k].
Now, let us show that cd1

wins in k + 1 if all edge-voters win at

least once in issue in [k]. If voter d1 never won an issue in [k], then
it means she has a satisfaction of 0. Since all edge-voters and all

the wi won at least once, there are at leastm + 2m − p = 3m − p
voters with a satisfaction of at least 1. Therefore, d1 occupies a

position within the first p entries of the satisfaction vector, whereas

all edge-voters occupy a position within the last 4m − p entries.

Since αp > αp+1, in this case choosing in issue k + 1 candidate cd1

will yield a greater score than choosing a voter-candidate cve for

any edge e ∈ E. Finally, since cd1
dominates in the tie-breaking

every other candidate cdj in issue k + 1, here we must choose cd1
.

On the other hand, suppose that d1 wins at least one issue i ∈ [k].
Suppose – towards a contradiction – that cd1

is not selected in issue

k + 1. Let cv (for some voterv ∈ N \ {wi }i ∈[2m−p] distinct from d1)

be the candidate winning issue k + 1. Observe that if we make cd1

win in issue k + 1 and make some candidate approved by v win in

issue i , we would obtain a score that is higher or equal than before,

and this would surely be preferred by tie-breaking: contradiction.

We conclude that cd1
must win in the final issue.

Finally, suppose that there exists no vertex cover forG with size

at most k . Then, surely there is one edge-voter that never wins

an issue in [k] (otherwise, some vertex cover would exist). By tie-

breaking, this edge-voter would decide the last issue, i.e., cd1
would

not win.

Second case. Here, we can assume that α1 = · · · = αp = 1 > αp+1.

We construct an instance (E,k + 1, c) of R-Outcome Determi-

nation. Here, we have one voter ve for each edge e ∈ E, and
three sets of dummy voters: {d1, . . . ,dp−2m+1}, {a1, . . . ,am }, and

{w1, . . . ,w3m−p−1}. In the first k issues, there is one candidate cη
for each nodeη ∈ V , plus one dummy candidate cdi for each dummy

voter di . Here, each edge-voter ve (with e = {η,η′}) approves of
every node-candidate vη where η < e . Furthermore, each dummy

voterdi approves only of dummy candidate cdi . Every other dummy

candidate approves of all candidates. In the last issue, there are two

candidates c and c ′. All dummy candidates di and wi approve of

both, every edge-voters approves only of c , while every dummy

voter ai approves only of c ′.
We assume a tie-breaking mechanism almost identical to the one

used in the proof of Theorem 8. However, here, in the last issue, c
loses against c ′.

First, suppose that there exists a vertex cover for G with size

at most k . Since every dummy candidate cdi is always approved
only by one voter and α1 = αp = 1, it is easy to see that any

outcome where at least one such dummy candidate wins in the

first k issues cannot have maximal score. Now, observe that, in

total, the edge-voters will receive exactly a score of k(m − 3) for

the first k issues (as every time we select some node-candidate,

m − 3 voters approve of it). This does not depend on which node-

candidates we select; thus, to determine the outcome with the

greatest score, we can focus on the last issue. First, observe that

if the node-candidates selected in the first k issues correspond

to a vertex cover, no edge-voter will have won more than k − 1



issues within the first k issues (as every edge-voter loses at least

once). Now, focusing on the last issue, note that the last 4m − p − 1

positions of the satisfaction vector will be occupied by dummy

voters in {a1, . . . ,am }, and {w1, . . . ,w3m−p−1} (as they all have a

satisfaction of at least k). Thus, if c wins in the last round, we get

an extra score of

∑p−m+1

i=p−2m+2
αi = m; if c ′ wins, we get a score of∑p+1

i=p−m+2
αi = (m−1)+αp+1. Asαp+1 < 1, here c wins. Similarly, if

the node-candidates selected in the first k issues do not correspond

to a vertex cover, we would still get a score of (m − 1) + αp+1 for c ′

winning in the last round. So we have that c wins in the last issue

if a vertex cover of size k exists.

Now, suppose that there exists no vertex cover forG with size

at most k . Consider any outcome w̄ . Then, surely there is one edge-

voter that wins all issues in [k] (otherwise, if every edge-voter loses
at least once, then some vertex cover would exist). In issue k + 1,

ignoring the voters supporting both candidates, both c and c ′ have
exactlym voters supporting them, and in case either c or c ′ wins,
the last 3m − p − 1 positions of the satisfaction vectors would be

occupied by the dummy voterswi (that have all satisfaction k+1). If

c ′ wins, then we get an extra score of
∑p+1

i=p−m+2
αi = (m−1)+αp+1

(recall that all voters approving only of c ′ have a satisfaction of at

least k , if we ignore the last issue). If c wins, we get at most the

same score (as at least one voter has satisfaction k , she will occupy
the (p + 1)-position in the satisfaction vector). By tie-breaking, c
cannot win in w̄ .

This concludes the proof. □

Theorem 10. (Generalized) R-Free-Riding Recognition is NP-
hard for every f -Thiele rule distinct from the utilitarian rule.

Proof. We show the hardness of R-Free-Riding Recognition

by a reduction from CubicVertexCover. Again, let ℓ be the small-

est ℓ where f (ℓ) > f (ℓ + 1) holds, and consider an instance (G,k)
of CubicVertexCover. Here, k ∈ [m − 1], and G = (V ,E) is an
undirected graph with n nodes and m edges where every node

has degree of 3. We construct an instance (E, ℓ + k, cd1
,d2) of R-

Free-Riding Recognition, where E = (N , Ā, C̄) is an election with

(ℓ + k) issues and 2m voters. We use a construction similar to the

one in the proof of Theorem 8, except for the fact that, on issue

ℓ + k , voter d2 approves only of cd1
.

First, suppose that (G,k) is a yes-instance. By the same argu-

ments used in the proof of Theorem 8, we know that cd1
wins in

issue ℓ + k (the fact that now d2 also approves of it is irrelevant).

Moreover, if d2 votes for cd2
in the last issue, we obtain the same

election constructed in the proof of Theorem 8. We have already

shown that here cd1
wins the final issue: hence, d2 can free-ride.

Now, suppose that (G,k) is a no-instance. Let us first show that

cd1
is still selected for issue ℓ + k . Clearly, at least one edge-voter

does not win any issue in ℓ, . . . , ℓ + k (otherwise, a vertex cover

would exist). Towards a contradiction, suppose that in R(E) some

dummy candidate cdj is winning some issue i ∈ {ℓ, . . . , ℓ + k − 1}.

Then, at least one edge-voter must have satisfaction ℓ − 1 (for if

all edge-voters were to have satisfaction at least ℓ, we could cover

all but one edge with k − 1 nodes). So let ve be some edge-voter

with satisfaction ℓ − 1 in R(E). If we select cη (for some η ∈ e)
in i instead of cdj , we would increase the total score by at least

f (ℓ) (contributed by ve ) and decrease it by f (ℓ∗) for some ℓ∗ ≥ ℓ

(contributed by dj ). Since f (ℓ∗) ≤ f (ℓ), this new outcome cannot

have a lower score than R(E), and would be preferred to it by the

tie-breaking. Contradiction: we conclude that no dummy voter dj
can win in ℓ, . . . , ℓ + k − 1. This implies, in particular, that neither

d1 nor d2 win any issue in ℓ, . . . , ℓ + k − 1. Therefore, selecting

cd1
for issue ℓ + k contributes 2f (ℓ) to the total score, whereas

selecting any other candidate can contribute at most f (ℓ). Since
f (ℓ) > f (ℓ + 1) ≥ 0, cd1

must win in the final issue.

It remains to show that d2 cannot free-ride. Suppose that d2 does

not approve of cd1
. Consider some edge-voterve that never wins in

ℓ, . . . , ℓ + k − 1 (which, as argued above, must exist). Choosing cve
in the final issue contributes at least f (ℓ) to the total score, whereas
choosing cd1

can contribute at most f (ℓ). By tie-breaking, cd1
does

not win in the final issue, that is, d2 cannot free-ride.

To conclude, observe that the same construction can be used

to show hardness for Generalized R-Free-Riding Recognition.

Indeed, here d2 only approves of cd1
, and hence free-riding and

generalized free-riding coincide. □

Theorem 11. (Generalized) R-Free-Riding Recognition is NP-
hard for every α-OWA rule for which there is a c ≥ 3 such that,

for every n ∈ N, there is a nonincreasing vector α of size ℓ (with

3n ≤ ℓ ≤ cn) such that α1 > αℓ and α3n > 0.

Proof. We show the hardness of R-Free-Riding Recognition

by a reduction from CubicVertexCover. Consider an instance

(G,k) of this problem. Here, G = (V ,E) is a graph with n nodes

andm edges where each node has a degree of exactly three, and

k ∈ N. By the condition of the theorem, we know there is an ℓ ≥ 3m
(polynomial in the size ofm) such that α = (α1, . . . ,αℓ) contains
at least 3m non-zero entries and α1 > αℓ . We will construct an

instance of R-Free-Riding Recognition with (k + 1) issues and ℓ

voters. Since α1 > αℓ and α3m > 0, there are two cases:

(1) There is a p ∈ [2m] such that αp > αp+1 and αp+m > 0, or

(2) There is a p ∈ {2m + 1, . . . , ℓ − 1} such that α1 = αp > αp+1.

We treat them separately.

First case. We construct an instance (E,k+1,ve∗ , cd1
) of R-Free-

Riding Recognition (here, e∗ ∈ E is some edge, it does not matter

which). The construction is similar to the one shown in the first

case of the proof for Theorem 9. However, here, in issue k + 1 voter

ve∗ approves only of cd1
, and we have ℓ −m − p dummy voterswi

instead of 3m − p. The latter change makes no difference in our

construction.

First, note that (E,k + 1,ve∗ , cd1
) is indeed a legal instance of

R-Free-Riding Recognition, as surely cd1
wins in issue k + 1.

If (G,k) is a yes-instance then we have already shown that this

candidate wins, and here it is only receiving increased support. If

it is a no-instance, then cd1
will be supported by one voter that

never won in the first k issues (namely, d1), as well as by ve∗ . Since
αp+m > 0 and since the edge-voters together with the dummy

voters di occupy at most the first p +m positions of the satisfaction

vector, surely ve∗ will break the tie in favour of cd1
.

Now, if (G,k) is a yes-instance of CubicVertexCover, then ve∗

can free-ride in the last issue: if she votes for her voter-candidate,

then we have an election identical to the one constructed in the



first case of the proof of Theorem 9, and we have already shown

there that cd1
wins if (G,k) has a vertex cover.

If (G,k) is a no-instance, then there are two cases: either ve∗

won in some issue in [k] or not. If she did, there will at least some

voter ve (with e ∈ E \ {e∗}) that never did, whose voter-candidate
will get at least the same score as cd1

(since ve∗ does not approve
of the latter when she free-rides): cd1

cannot win here. If she did

not, there are again two cases: either ve∗ approves of some dummy

candidate cdi (with i > 1) or of some cve (where e ∈ E). In the first

case, cdi would get a strictly higher score than cd1
, while in the

second case cve would get at least the same score as cd1
(and win

by tie-breaking). In all cases, cd1
loses: no free-riding is possible.

Second case. We construct another instance (E,k + 1,a1, c) of
R-Free-Riding Recognition. The construction is similar to the

one shown in the second case of the proof for Theorem 9. However,

here, in issue k +1 voter a1 approves only of c , and we have ℓ−p−1

dummy voterswi instead of 3m − p − 1. The latter change makes

no difference in our construction.

First, note that (E,k + 1,a1, c) is a legal instance of R-Free-

Riding Recognition. Consider how the election is constructed,

and recall that no dummy voter di can ever win here. In the last

issue, c ′ receives the support ofm − 1 voters, whereas c receives
the support ofm + 1 voters. Since the last ℓ − p − 1 positions are

occupied by voterswi (who approve of all candidates and have a

satisfaction of k + 1), and since α1 = αp = 1, c wins here.
If a1 free-rides in k+1, she must vote only for c ′. Here, we obtain

a construction identical to the one shown in the second case of the

proof Theorem 9, and we have already shown there c wins if and
only if (G,k) is a yes-instance.

Finally, observe that, in both cases, the same construction can be

used to show hardness for Generalized R-Free-Riding Recogni-

tion. Indeed, here the manipulator only approves of one alternative,

and hence free-riding and generalized free-riding coincide. This

concludes the proof. □

Theorem12. (Generalized)R-Free-Riding Recognition is coNP-
hard for every α-OWA rule for which there is a c ≥ 2 such that,

for every n ∈ N, there is a nonincreasing vector α of size ℓ (with

n < ℓ ≤ cn) such that α1 > αℓ and αℓ−n+1
= 0.

Proof. We show the hardness of R-Free-Riding Recognition

by a reduction from VertexCover [22]. Consider an instance of

this problem, (G,k), where G has n nodes and m edges. By the

condition of the theorem, we know there is an ℓ > m (polynomial

in the size of m) such that α = (α1, . . . ,αℓ) contains at least m
zeros and at least one non-zero value. We will construct an instance

(E,k +1,d1, cd1
) of R-Free-Riding Recognition with ℓ voters and

k+1 issues. Here, let p be the unique value such that αp > αp+1 = 0.

In E, there is one voter ve for each edge e ∈ E, p dummy voters

d1, . . . ,dp , and ℓ −m − p dummy voters w1, . . . ,wℓ−m−p . In all

issues, all voterswi approve of all candidates (so they always have

satisfaction k + 1, and occupy the last ℓ −m − p positions of the

satisfaction vector). In the first k issues, there is one candidate cη
for each node η ∈ V , plus one candidate cdi for every dummy voter

di . Here, each edge-voter ve approves of the two node-candidates

vη and vη′ such that e = {η,η′}, while every di approves of cdi . In

the last issue, there is one candidate c , plus one candidate cv for all

voters v ∈ N , and any such v approves only of cv . In the case of

ties, we assume that in the last issue cd1
dominates all candidates

and that cd1
is dominated by all other candidates in all other issues.

We will show that (E,k + 1,d1, cd1
) is a legal instance of R-Free-

Riding Recognition (i.e., that cd1
wins in issue k+1). Furthermore,

we will show that (G,k) is a yes-instance if and only if (E,k +
1,d1, cd1

) is a no-instance.

Suppose (G,k) is a no-instance of VertexCover. We show that

cd1
wins in issue k + 1 and that d1 can free-ride here. First, observe

that if any dummy candidate cdi wins in issue k + 1, then the total

satisfaction will be 0 (as we cannot give a satisfaction of at least 1

to all edge-voters in the other k issues, since (G,k) is a no-instance).
On the other hand, if any candidate cve (for some edge e wins), then
the total satisfaction will still be 0: otherwise, that would mean that

we could cover the remaining edges in E \ {e} with k − p nodes,

but that is impossible (otherwise, we could cover all edges with k
nodes). By tie-breaking, cd1

wins in the final issue. Observe that if

d1 votes for c , we obtain the same effects: d1 can free-ride.

Suppose (G,k) is a yes-instance of VertexCover. We show that

cd1
wins in issue k + 1, but d1 cannot free-ride here. Clearly, at least

m+ 1 voters (ignoring the dummy voterswi ) need to win here: was

not this the case, the total score would be zero, but the outcome

where all edge-voters win in the first k issues and some dummy

candidate wins in the last issue has a greater satisfaction (regardless

of whether d1 free-rides or not). If d1 never wins in the first k issues,

then it is clear that she must win in issue k + 1: satisfying in this

issue some voter that has never won surely will maximize the score

(since this voter will be within the first p entries of the vector),

and cd1
is preferred in the tie-breaking mechanism. If, on the other

hand, cd1
wins in some issue i ∈ [k], but loses to some candidate cv

(withv , d1) in issue k +1, then we could obtain an outcome with a

score greater or equal by making cd1
win in issue k + 1, and making

some candidate approved by v win in issue i . Since this would be

preferred in the tie-breaking, cd1
wins in k+1. Now, suppose that d1

does not approve of cd1
in issue k + 1 (i.e., she attempts to free-ride).

If cd1
never wins in any issue in [k], then clearly it cannot win in

k + 1: picking some candidate that now d1 approves for in the last

issue would give a greater score. If, on the other hand, cd1
wins in

some issue in i ∈ [k] and also in k + 1, we can obtain an outcome

with a greater or equal score (and preferred in the tie-breaking) by

making some node-candidate win in issue i and some candidate

approved by d1 in issue k + 1. Therefore, d1 cannot free-ride here.

Finally, observe that the same construction can be used to show

hardness for Generalized R-Free-Riding Recognition. Indeed,

here d1 only approves of cd1
, and hence free-riding and generalized

free-riding coincide. This concludes the proof. □

Theorem 13. R-Free-Riding is NP-complete for every sequential f -
Thiele rule for which there exists a ℓ ∈ N such that (i) for all j, j ′ ∈ [ℓ]

it holds f (j) = f (j ′) and (ii) f is strictly decreasing on N \ [ℓ − 1].

Proof. Fix an f -Thiele rule R satisfying the conditions of the

theorem. First, notice that R-Free-Riding is in NP, as, given an

insincere approval ballot for the manipulator, we can check whether

it improves her satisfaction in polynomial time and whether it is a

case of free-riding.



Now, we show hardness by a reduction from 3-SAT. Let ϕ be a

3-CNF with n variables andm clauses. We refer to the j-th clause as

Cj . We assume w.l.o.g. that ϕ is not satisfied by setting all variables

to false and that each clause contains exactly three literals. Further-

more, let k ∈ N be the smallest k such that f (k + 1) < f (k). As R
is not the utilitarian rule, such a k surely exists, and is constant in

the size of ϕ (as f does not depend on the number of either the

voters or the issues). Moreover, let ℓ ∈ N be the smallest ℓ such

that f (k + 1)(ℓ + 1) < f (k)ℓ. Again, note that ℓ can be large, but

does not depend on the instance. We will construct an instance of

R-Free-Riding with 3n(ℓ + 1) + 5 voters and k + 3n rounds.

For each variable xi , we have three voters si , vi and v̄i , 3ℓ vot-

ers r i
1
, t i

1
,wi

1
, . . . , r i

ℓ
, t i
ℓ
,wi

ℓ
. Furthermore, we have four additional

voters a,u1,u2,u3. Finally, we have a distinct voter v , who will try

to free-ride.

In the first k − 1 rounds, there are two candidates, c and c̄ , and
every voter approves of both candidates. Here, v cannot increase

her satisfaction by manipulating, and all voters win in each round.

Thus, the satisfaction of every voter after the first k − 1 rounds will

be exactly k − 1.

Now, focus on rounds from k to k + 3n − 1. We subdivide this

set of rounds into triples; that is, the first triple is k,k + 1,k + 2,

the second k + 3,k + 4,k + 5, and so on. We refer to the j-th round

of triple i as round (i, j); for example, round (2, 3) corresponds to

round k + 5. In each the first round of every triple, there is one

candidate c , plus one candidate cv∗ for every voter v∗ ∈ N . In the

second and third rounds, we additionally have a voter c̄ . We assume

that, if there is a tie, c wins against every voter-candidate, but loses

against c̄ every other voter.

For every triple i , in round (i, 1), voters a,v, si approve of can-
didate c . Every other voter approves only of her voter-candidate.

In round (i, 2), voters v,vi , r
i
1
, . . . , r i

ℓ
and a, v̄i , t

i
1
, . . . , t i

ℓ
vote for

c and c̄ , respectively. The rest of the voters vote for their voter-

candidate. In round (i, 3), voters v, t i
1
, . . . , t i

ℓ
and wi

1
, . . . ,wi

ℓ
vote

for c and c̄ , respectively. Again, the rest of the voters vote for their
voter-candidate.

First, note that whoever votes for a voter-candidate never wins.

We show this by induction. In round k , every voter has satisfaction

k − 1, and hence the candidates approved most often will win; this

cannot be any voter-candidate, as c is the most approved. Now,

suppose this holds up to a round i . In round i + 1, we know that

there is at least one voter voting for c that has never won since

round k−1, as she always voted for her voter-candidate up to round

i; for example, voters si , vi or w
i
1
in the cases where round i + 1

is the first, second or third round of the triple, respectively. Such

voters contribute to the score of c with a value of f (k − 1). Since no

voter-candidate can have a score greater than f (k − 1), our claim

follows.

Consequently, in every round (i, 1), voter v can free-ride by

voting for her voter-candidate. We claim that if v free-rides in (i, 1)
then she wins in round (i, 2) and loses in round (i, 3); if she does not,
the opposite happens. Furthermore, we claim that at the beginning

of every triple, v and a have the same satisfaction. We show both

claims by induction.

Consider round (1, 1). If v does not free-ride, c wins, and the

satisfaction of a and v will be k . Now consider round (1, 2). The

approval score of both c and c̄ is f (k + 1)+ f (k)+ f (k)ℓ, and hence
c̄ wins by tie-breaking. Thus, in the next round, the approval score

of c will be f (k)ℓ + f (k + 1), and of the score of c̄ will be f (k)ℓ;
hence, c wins. Now, suppose thatv free-rides. Then, her satisfaction

after round (1, 1) will be k − 1. Hence, the approval score of c would
increase to 2f (k) + f (k)ℓ, making it the winner. Hence, in round

(1, 3) the scores of c and c̄ would be f (k + 1)(ℓ + 1) and f (k)ℓ,
respectively. As we assume f (k + 1)(ℓ + 1) < f (k)ℓ, here we have
that c̄ wins, as desired. Observe that in both cases v and a won the

same number of rounds.

Now suppose the claim holds up to triple i . Then, let s be the
satisfaction of v and a at the beginning of triple i + 1. Observe

that if v does not free-ride in (i + 1, 1), then in round (i + 1, 2) the

approval score of c and c̄ is f (s + 2) + f (k) + f (k)ℓ, and hence c̄
wins by tie-breaking. Thus, in round (i + 1, 3), the score of c will be
f (k)ℓ + f (s + 2), and of the score of c̄ will be f (k)ℓ; hence, c wins.
If v does free-ride, then in round (i + 1, 2) the approval score of c
raises to f (s + 1)+ f (k)+ f (k)ℓ, making it the winner. Furthermore,

in round (i +1, 3), the scores of c and c̄ would be f (k +1)ℓ+ f (s +2)

and f (k)ℓ, respectively. Clearly, c̄ wins here. Observe again that v
and a won the same number of rounds.

Let us move to the final round. Here, there arem + 1 candidates,

namely c, c1, . . . , cm . Here, each votervi votes for c j if xi ∈ Cj (and

similarly for v̄i and x̄i ). Furthermore,v,u1,u2,u3 vote for c , a votes

for all voters except for c , and everyone else votes for all candidates.
We can interpret c (resp. c̄) winning in round (i, 2) as setting xi to
true (resp. false). We claim that this assignment satisfies ϕ if and

only if c wins in the final round.

Indeed, let α be the score contributed by the voters who vote for

all candidates. Furthermore, let β be the score contributed by v or

by a, which are the same (as shown before). Observe that u1,u2,u3

won exactly k − 1 rounds. Furthermore, vi won exactly k rounds if

c won in round (i, 2), and k − 1 otherwise (and conversely for v̄i
and c̄).

Thus, the score of c in the final round will be α + β + 3f (k).
Furthermore, given a clause Cj , if all of its literals are unsatisfied,

the score of c j will also be α +β+3f (k). By our rule on tie-breaking,

here c j wins. If, on the other hand, some literals in Cj are satisfied,

the score of c j will be at most α + β + 2f (k) + f (k + 1). Hence, if

all clauses are satisfied, c wins, as desired.
Now, observe that v can free-ride only in every first round of

every triple, but not elsewhere. Indeed, in the first k − 1 rounds,

whateverv votes for will be the winner. Furthermore, in the second

and third rounds of every triple,v is either losing (and hence cannot

free-ride) or her weight is breaking a tie between c and some other

candidate (which means that, if she were to vote for some other

candidate instead, c would no longer win). Observe also that, as

shown earlier, v will win all the k − 1 first rounds, plus two rounds

per triple (irrespective of whether she free-rides or not). Therefore,

the only way that v can raise her satisfaction is by making c win
in the last round by forcing a satisfying assignment for ϕ by free-

riding. It follows that v can free-ride if and only if ϕ is satisfiable,

and we are done. □

Theorem 14. R-Free-Riding is NP-complete for the sequential egal-

itarian rule.



Proof. First, note that, for the egalitarian rule, R-Free-Riding

is in NP. Indeed, given an insincere approval ballot for the ma-

nipulator, we can check whether it improves her satisfaction in

polynomial time and whether it is a case of free-riding.

Now, we show hardness by a reduction from 3-SAT. Let ϕ be a

3-CNF with n variables andm clauses. We refer to the j-th clause as

Cj . We assume w.l.o.g. that ϕ is not satisfied by setting all variables

to false and that each clause contains exactly three literals. We

construct an instance of R-Free-Riding with 2(n + 1) voters and

5n + 1 rounds. In particular, we will have two voters vi and v̄i
for each variable xi , a voter u, and a distinguished voter v , the
manipulator.

Let us start with the first 4n rounds. We subdivide this set of

rounds into quadruples; that is, the first quadruple consists of

rounds 1, 2, 3 and 4, the second are the rounds 5, 6, 7 and 8, and

so on. We refer to the j-th round of quadruple i as round (i, j); for
example, round (2, 3) corresponds to round 7. In each round of

every quadruple, there are two candidates c and c̄ . Here (and in all

subsequent rounds), we assume that if there is a tie c loses.
Consider a generic quadruple i . In round (i, 1), all voters vote for

c̄ . In round (i, 2), voters v and v̄i vote for c , while voters u and vi
vote for c̄ . Everyone else approves of both. Furthermore, in round

(i, 3), voters v and u approve of c and c̄ , respectively; everyone else
approves of both. Finally, in round (i, 4), voter v approves of both c
and c̄ , while everyone else approves only of c .

For each quadruple i , we claim that (i) v can free-ride (only) in

round (i, 1) (ii) ifv does not free-ride, the winners in this quadruple

are (c̄, c̄, c, c) and (iii) if v free-rides, the winners in this quadruple

are (c̄, c, c̄, c̄). We show so by induction over the quadruples.

Consider quadruple 1. Observe that, by tie-breaking, c̄ wins in
round (1, 1) (irrespectively of what v votes for). Hence, here v can

free-ride. Suppose that she votes truthfully. Thus, in the next round,

the minimal satisfaction if c or c̄ win is the same (namely, 1). By

tie-breaking, c̄ wins. Now, up to here, every voter has satisfaction 2,

save for v and v̄1, who have satisfaction 1. In the next round, then,

the minimal satisfaction if c or c̄ win is 2 and 1, respectively; hence,

c wins. Finally, in round (1, 4), the minimal satisfaction of c winning
is 3, whereas the minimal satisfaction in case c̄ wins is 2 (namely,

of voter u); hence, c wins. With a similar line of reasoning, one can

show that (c̄, c, c̄, c̄) is the result if v does free-ride. Observe that

v can indeed free-ride only in round (1, 1): in every other round,

either she is losing, or her vote would change the outcome.

Now, suppose this property holds up to quadruple i , and consider
quadruple i + 1. If this holds, observe that no voter vj or v̄j can
have won fewer rounds than v or u, and v and u won the same

number of rounds. Therefore, at the beginning of each quadruple,

v and u are among the voters with the lowest satisfaction. Let this

minimal satisfaction be s .
Again, observe that v can free-ride in round (i + 1, 1). Suppose

she votes truthfully. Then, she and u will have the same satisfaction

of s + 1 in round (i + 1, 2), and c̄ will win by tie-breaking. Next, in

round (i + 1, 3), v will have the minimal satisfaction of s + 1, and

hence c will win. Finally, in round (i + 1, 4), if c wins the minimal

satisfaction will be s + 3, whereas if c̄ wins it will be s + 2 (namely,

of u); hence c wins. With similar arguments, we could show that

(c̄, c, c̄, c̄) is the result if v does free-ride. Observe that v can indeed

free-ride only in round (i + 1, 1): in every other round, either she is

losing, or her vote would change the outcome.

Now, let us consider round 4n + 1 to round 5n − 1. From the

previous discussion we know that, in each quadruple i , all voters
vj and v̄j (with j , i) win the same amount of rounds (either 3 or

4, depending on whether v free-rides or not). Let this number be ℓi .

Furthermore, one voter invi and v̄i wins ℓi rounds, while the other
wins ℓi − 1 rounds. Finally, both v and u won exactly ℓi − 1 rounds.

Thus, we can partition the voters vi and v̄i into two groups, with a

satisfaction differing of exactly 1 point. Let s be the satisfaction of

the voters in the group with the lowest satisfaction. Observe that

the satisfaction of v and u will be exactly s + 1 − n, because in each

quadruple i , both v and u lose exactly one round (compared to the

voters vj and v̄j with i , j). So then, in each of the rounds from

4n + 1 to 5n − 1, there are two candidates: c and c̄ . Here, v approves

of c̄ , u of both candidates, and everyone else only of c . Observe
that v and u win every such round, as v always has a strictly lower

satisfaction than the rest of the voters, and u always approves of all

candidates. Furthermore, v can’t free-ride here: as she always has

the lowest satisfaction, she is always pivotal, and hence her vote

decides the outcome. Thus, after these rounds, both v and u will

have satisfaction s .
In round 5n, there are two candidates: c̄ and c . Here, v votes

for c̄ , whereas every one else votes for c . If either candidate wins,
the minimal satisfaction will be s , and thus c̄ wins by tie-breaking.

Furthermore, v cannot free-ride: if she were to vote for c , then c
would win.

Finally, in round 5n + 1, we know that v has satisfaction of s + 1

and u of s . Furthermore, if vi has satisfaction s if c won in round

(i, 1) and s + 1 otherwise (and similarly for v̄i and c̄). In this round,

there arem+1 candidates, namely c, c1, . . . , cm . Here,u approves of

all candidates, voter vi (resp. v̄i ) approves of c and of all candidates
c j such that xi < Cj (resp. x̄i < Cj ). Finally, voter v approves of c .

Observe that we can interpret c winning in round (i, 2) as setting
xi to true (and conversely for c̄); we claim that this assignment

satisfies ϕ if and only if c wins in this final round. To see this,

observe that if c wins the minimal satisfaction will be s + 1 (all

voters approve of c). Now, consider a clauseCj and its candidate c j .
If all literals in Cj are unsatisfied, then the corresponding voters

have all (up to this round) satisfaction s + 1. Hence, if c j would win,
the minimal satisfaction will be at least s + 1, as all other voters

(except v) approve of it, and v has satisfaction at least s + 1. Hence,

c j would win by tie-breaking. Conversely, if at least one literal in

Cj is satisfied, there is at least one voter with satisfaction s that
does not vote for c j : hence, c j loses against c . Our claim follows.

Now, observe that, if v were to always vote truthfully, her true

satisfaction would be 4n (she would win three rounds per quadru-

ple, all rounds from 4n + 1 to 5n, and lose the last round, by the

assumption that setting all variables to false does not satisfy ϕ).
Observe also that, as we discussed before, she can only free-ride

in the first round of every quadruple. Therefore, the only way she

can raise her satisfaction to 4n + 1 is by winning the last round

(observe that if she free-rides in some quadruple, she still truly wins

three rounds). To do so, she has to force a satisfying assignment for

ϕ by free-riding. It follows that v can free-ride if and only if ϕ is

satisfiable, and so we are done. □



Theorem15. GeneralizedR-Free-Riding isNP-complete for every

sequential f -Thiele rule distinct from the utilitarian rule such that

f (i) > 0 holds for every i ∈ N.

Proof. Fix an f -Thiele rule R satisfying the conditions of the

theorem. First, notice that Generalized R-Free-Riding is in NP,
as we can guess an insincere approval ballot for the manipulator

and check whether it improves her satisfaction (and is an instance

of generalized free-riding) in polynomial time.

Now we show hardness by a reduction from 3-SAT. In the fol-

lowing, recall that, in every round i , a voter v gives each of her

approved candidates an extra score of f (sat(v, w̄i−1

1
) + 1), where

w̄i−1

1
= w1, . . .wi−1, and the candidate with the highest score wins.

Then, letϕ be a 3-CNFwithn variables andm clauses.We assume

w.l.o.g. that ϕ is not satisfied by setting all variables to true and

that each clause contains exactly three literals. Furthermore, let

k ∈ N be the smallest k such that f (k + 1) < f (k). As R is not the

utilitarian rule, such a k indeed exists and is constant in the size of

ϕ. We construct a Generalized R-Free-Riding instance with k +n
rounds as follows: For every variable xi there are 4 voters v1

i , v
2

i ,

v̄1

i and v̄2

i . Furthermore, we add nine voters v1

0
, v2

0
, w , u1, . . . ,u6.

Finally, we add another voter v , who will be the distinguished

voter that tries to manipulate. In the first k − 1 rounds, there are

two candidates c and c̄ . In the following n rounds, there are three

candidates c0, c and c̄ plus one candidate cv∗ for every v∗ ∈ N .

In round k + n, we havem + 1 candidates c, c1, c2 . . . , cm plus one

candidate cv∗ for every v∗ ∈ N . We assume that if ties need to be

broken between c0 and another candidate, then c0 is selected and if

a tie between c and a candidate other than c0 needs to be broken,

then c wins.
In the first k − 1 rounds, all voters approve both candidates.

Hence, v cannot increase her satisfaction by manipulating, and all

voters win in each round. Thus, the satisfaction of every voter after

the first k − 1 rounds will be exactly k − 1.

We continue with n rounds such that, in round i , v1

0
and v2

0

approve c0, v
1

i and v
2

i approve c , v̄
1

i and v̄
2

i approve c̄ , v approves

both c and c̄ and w approves c, c̄ and c0. Finally, all other voters

v∗ ∈ N only approve their candidate cv∗ except in round k , where
u1 and u2 additionally approve c0, c and c̄ .

Then, in round k + n, v and u1, . . . ,u6 approve c . Furthermore,

for every candidate ci with 1 ≤ i ≤ m, v̄1

j and v̄
2

j approve ci if and

only if variable x j appears positively inCi andv
1

j andv
2

j approve ci
if and only if variable x j appears negatively in Ci . Additionally,w
approves c1, . . . , cm . All other voters approve only their candidate.

We claim that in rounds k to k + n − 1 (i) c wins if v approves c
and c̄ (i.e., v does not misrepresent her preferences), (ii) either c or
c̄ becomes the winner if v approves only one of these candidates,

and (iii) c0 wins if v approves neither c nor c̄ . We show the claim

by induction. Up until round k − 1, all voters have gathered the

same satisfaction k −1, and hence in round k each voter contributes

to the score of their approved candidates with the same value of

f (k). The only candidates that are approved by more than one voter

are c0, c and c̄ , where c0 is approved by five voters, while c and

c̄ are both approved by six voters. Therefore, by our assumption

about tie-breaking, c is the winner in round k . Furthermore, if v
misrepresents her preferences and votes only for either c (resp. c̄),

then c (resp. c̄) is the unique winner in roundk . Finally, ifv approves

neither c nor c̄ , then c0 wins by our assumption on tie-breaking.

Observe that v is not allowed to make c0 win, by the definition of

generalized free-riding.

Now assume the claim holds for rounds k, . . . i − 1. Then, in

round i the only candidates that are approved by more than one

voter are again c0, c and c̄ . To be more precise, c0 is approved by

v1

0
,v2

0
andw , c is approved byv1

i ,v
2

i ,w andv and c̄ by v̄1

i , v̄
2

i ,w and

v . Crucially,v1

0
,v2

0
,v1

i ,v
2

i , v̄
1

i and v̄
2

i have not won in any of rounds

k, . . . i − 1, as they never approved of c or c̄ in these rounds; hence,

their satisfaction at this point is still k − 1. Now, let si−1

v and si−1

w
be the satisfaction of v andw up to round round i − 1, respectively.

Then, both c and c̄ have a score of 2f (k)+ f (si−1

v + 1)+ f (si−1

w + 1),

c0 has score 2f (k) + f (si−1

w + 1) whereas all other alternatives can

have a maximal score of f (k). As we know that f (si−1

v + 1) > 0,

this implies, by our assumption about tie-breaking, that c is the
winner in round i . Furthermore, as before, if v misrepresents her

preferences, she can make c resp. c̄ the unique winner and if she

approves neither c nor c̄ , then c0 wins by our assumption on tie-

breaking. Observe again that c0 cannot win here, by definition of

generalized free-riding.

We can interpret the winners in the rounds k, . . .k + n − 1 as a

truth assignment T by setting xi to true if c wins in round i and
to false if c̄ wins in round i (observe that c0 can never win by the

previous arguments). Then, we claim that c wins in round k + n
if and only if Cj is satisfied by this truth assignment: All voter-

candidates cv∗ are approved by at most one voter with satisfaction

k − 1, and hence have a score of at most f (k). The satisfaction of v1

j
and v2

j is k − 1 if x j is set to false in T and k if x j is set to true in T .

Similarly, the satisfaction of v̄1

j and v̄
2

j is k −1 if x j is set to true inT

and k if x j is set to false inT . Finally, the satisfaction ofw is k+n−1.

Hence, the approval score of ci is 6f (k) + f (k + n) if all literals in
Cj are set to false and at most 4f (k) + 2f (k + 1) + f (k + n) if at
least one literal is set to true. On the other hand, the satisfaction

of u1 and u2 is k , the satisfaction of u3, . . . ,u6 is k − 1 and the

satisfaction of v is k + n − 1. Hence, the approval score of c is

4f (k) + 2f (k + 1) + f (k + n). As we assumed f (k + 1) < f (k), we
get that 4f (k)+ 2f (k + 1)+ f (k +n) < 6f (k)+ f (k +n). Therefore,
if there is a clauseCi for which no literal is set to true, then ci has a
higher approval score than c and hence, c is not a winner in round

k + n. On the other hand, if for every clause at least one literal is

set to true, then c1, . . . , cm have at most the same score as c and c
wins by tie-breaking.

Now, the honest ballot ofv leads to the truth assignment in which

every variable is set to true by tie-breaking. By assumption, this

assignment does not satisfy ϕ and hence c does not win in round

k+n. By construction, the satisfaction ofv equalsk+n−1 in this case.

Moreover, asv cannot manipulate in the first k − 1 rounds, the only

way that v can gain more satisfaction is by forcing the winners

in rounds k, . . .k + n − 1 to form a satisfying truth assignment

without allowing c0 to win any round. Hence, v can manipulate via

generalized free-riding if and only if ϕ is satisfiable. □

Theorem 16. Generalized R-Free-Riding is NP-complete for ev-

ery sequential α-OWA rule such that, for all n, α = (α1, . . . ,αn ) is
nonincreasing and α1 > αn .



Proof. Fix an α-OWA rule R satisfying the conditions of the

theorem. First, notice that Generalized R-Free-Riding is in NP,
as we can guess an insincere approval ballot for the manipulator

and check whether it improves her satisfaction (and is an instance

of generalized free-riding) in polynomial time.

Next, we show hardness by a reduction from 3-SAT. Let ϕ be a

3-CNF with n variables andm clauses. We refer to the j-th clause as

Cj . We assume w.l.o.g. that ϕ is not satisfied by setting all variables

to false and that each clause contains exactly three literals. We will

construct an instance of Generalized R-Free-Riding with 2n + 5

voters. More specifically, there are two voters vi and v̄i for each
variable xi , four voters u1, . . . ,u4, plus one distinguished voter v
who will try to manipulate.

Given the weight vector α = (α1, . . . ,α2n+5), we distinguish

three (not necessarily exclusive) cases:

(1) α2 > αn+5, or

(2) αn+1 > α2n+5, or

(3) α2 = α2n+5.

Note that, since α1 > α2n+5, at least one case must be true. In the

following, we will give a different reduction for each of the three

cases.

First case: α2 > αn+5. We construct an instance with n+2 rounds

as follows. In the first n + 1 rounds, there are two candidates: c and
c̄ . In the last round, there arem+ 1 candidates, namely c, c1, . . . , cm .

We assume that, in the case of ties, c always loses.
In the first round, everybody votes for c̄ except forv andu1, who

vote for c . Here, c̄ wins by tie-breaking, and v cannot manipulate.

In each round i with i ∈ {2, . . . ,n + 1}, voter vi votes for can-
didate c̄ , voter v̄i for candidate c; everyone else votes for both

candidates. We claim that v can manipulate in every such round

i and force the win of either c or c̄ . We show so by induction. In

round 2, suppose that v votes only for c (the case where she votes
for c̄ is analogous). Then, if c were to win, the satisfaction vector

would be of form (1, 1, 1, 2, . . . , 2) (everyone but v1 wins). On the

other hand, if c̄ wins, then it would be of form (0, 1, 1, 2, . . . , 2)

(everyone but v̄1 and v win). Hence, c wins. Observe that if v votes

truthfully, c̄ wins by tie-breaking. Now, suppose this holds up to

a round i . Before round i + 1, v has won i − 1 rounds (all but the

first one), whereas voters u1, . . . ,u4, as well as any pair of voters

vj , v̄j (with j ≥ i) have won i rounds. Furthermore, for every pair

vj , v̄j (with j < i), exactly one voter won i − 1 rounds while the

other i rounds. Suppose again that v votes for c (the case where
she votes for c̄ is similar). Then, observe that, if c or c̄ win,s the
satisfaction vectors (excluding v) would be completely symmetric

(and every voter would have at least a score of i); however, if c̄ wins,
v would have a satisfaction of i − 1, whereas if c wins, she would
get a satisfaction of i . Hence, since α1 > 0, here c wins. Observe
again that if v votes truthfully, then c̄ wins.

Consider the final round. Up to here,v andu1 have won n rounds

(they lost the first round), while u2,u3,u4 have won n + 1 rounds.

Furthermore, every voter vi has won n rounds if c won in round

i + 1 and n + 1 times otherwise (and conversely for v̄i and c̄). In
this round, voters u1, . . . ,u4 approve of all candidates but c , voter
vi (resp. v̄i ) approves of c and every candidate c j such that xi < Cj
(resp. x̄i < Cj ). Finally, voter v approves of c . Observe that we can

interpret c winning in round i+1 as setting xi to true, and c̄ winning
as setting xi to false. We claim that c wins in the last round if and

only if this assignment satisfies ϕ. To see this, consider that, if c
were to win, the satisfaction vector would be:

(n,n + 1, . . . ,n + 1︸             ︷︷             ︸
n+4 times

,n + 2, . . . ,n + 2︸             ︷︷             ︸
n times

)

Let’s call this vector s . Consider now a candidate c j and its corre-

sponding clauseCj . If all three of its literals are unsatisfied, then the

corresponding voters all have satisfaction n + 1. Hence, if c j were
to win in this case, the satisfaction vector would again be exactly s .
By our assumptions on tie-breaking, here c j would win against c .
Furthermore, suppose that either one, two, or three of the literals

have been satisfied. Then, the vectors are, respectively:

(n,n,n + 1, . . . ,n + 1︸             ︷︷             ︸
n+2 times

,n + 2, . . . ,n + 2︸             ︷︷             ︸
n+1 times

)

(n,n,n,n + 1, . . . ,n + 1︸             ︷︷             ︸
n times

,n + 2, . . . ,n + 2︸             ︷︷             ︸
n+2 times

)

(n,n,n,n,n + 1, . . . ,n + 1︸             ︷︷             ︸
n−2 times

,n + 2, . . . ,n + 2︸             ︷︷             ︸
n+3 times

)

Let these vectors be s1, s2 and s3, respectively. One can show that

if α2 > αn+5 the dot product between α and each of these three

vectors would be strictly lower than the dot product between α and

s . For example:

s · α > s1 · α

α1n +

(n+5∑
i=2

αi (n + 1)

)
+

(
2n+5∑
i=n+6

αi (n + 2)

)
>

(α1 + α2)n +

(n+4∑
i=3

αi (n + 1)

)
+

(
2n+5∑
i=n+5

αi (n + 2)

)
(α2 + αn+5)(n + 1) > α2n + αn+5(n + 2)

α2 > αn+5

The other two cases are similar. Hence, if Cj is satisfied, candidate

c j cannot win against c . Consequently, if all clauses are satisfied,
candidate c wins.

Now, if c wins in the last round, then the satisfaction of v would

be n + 1; if c loses, it would be n. Notice also that v cannot raise

her satisfaction by manipulating in the final round. Furthermore,

if v always submits her true preferences, then by tie-breaking c̄
would win in every round i with i ∈ {2, . . . ,n + 1}. By assumption,

this would not satisfy ϕ, and hence c would not win in the last

round. Therefore, v has an incentive to manipulate in these rounds

to try and choose a satisfying assignment for ϕ. It follows thatv can

manipulate via generalized free-riding if and only if ϕ is satisfiable,

so we are done.

Second case: αn+1 > α2n+5. We construct an instance with n + 2

rounds as follows. In the first n + 1 rounds, there are two candi-

dates, c and c̄ . In the last round, there arem + 1 candidates, namely

c, c1, . . . , cm . We assume that, in the case of ties, c always loses.



In the first round, v,u1, . . . ,u4 approve of c , whereas everyone
else approves of c̄ .

In each round i with i ∈ {2, . . . ,n + 1}, voter vi votes for candi-
date c , voter v̄i for candidate c̄ , and everyone else votes for both

candidates.

In the final round, votersv,u1,u2 approve of c , votervi (resp. v̄i )
approves of candidate c j if xi ∈ Cj (resp. x̄i ∈ Cj ). Finally, voters

u3 and u4 approve of all candidates.

We claim that (i) voters v,u1, . . . ,u4 lose in the first round, and

that in the following n rounds (ii) candidate c̄ wins if v votes truth-

fully and (iii) v can force the win of either c or c̄ by manipulating.

The arguments for this are essentially the same as in the first case.

Now, consider the last round. Up to here, v,u1, . . . ,u4 have won

n rounds (all but the first). Furthermore, every votervi has wonn+1

rounds if c won in round i and n times otherwise (and conversely

for v̄i and c̄). We interpret again c winning in round i as setting xi
to true, and c̄ winning as setting xi to false. We claim that c wins in
the last round if and only if this assignment satisfies ϕ. To see this,

consider that, if c were to win, the satisfaction vector would be:

(n, . . . ,n︸   ︷︷   ︸
n times

,n + 1, . . . ,n + 1︸             ︷︷             ︸
n+5 times

)

Let’s call this vector s . Consider now a candidate c j and its corre-

sponding clause Cj . If all three of its literals are unsatisfied, then

the corresponding voters all have satisfaction n. Hence, if c j were
to win in this case, the satisfaction vector would again be exactly s .
By our assumptions on tie-breaking, here c j would win against c .
Furthermore, suppose that either one, two, or three of the literals

have been satisfied. Then, the vectors are, respectively:

(n, . . . ,n︸   ︷︷   ︸
n+1 times

,n + 1, . . . ,n + 1︸             ︷︷             ︸
n+3 times

,n + 2)

(n, . . . ,n︸   ︷︷   ︸
n+2 times

,n + 1, . . . ,n + 1︸             ︷︷             ︸
n+1 times

,n + 2,n + 2)

(n, . . . ,n︸   ︷︷   ︸
n+3 times

,n + 1, . . . ,n + 1︸             ︷︷             ︸
n−1 times

,n + 2,n + 2,n + 2)

One can show that if αn+1 > α2n+5 the dot product between α and

each of these three vectors would be strictly lower than the dot

product between α and s . The computation is analogous to the one

we did in the first case. Hence, ifCj is satisfied, candidate c j cannot
win against c . Consequently, if all clauses are satisfied, candidate c
wins. With similar arguments as before, we conclude that here v
can manipulate if and only if ϕ is satisfiable.

Third case: α2 = α2n+5. We construct an instance with n + 3

rounds as follows. The rounds 2, . . . ,n + 1 and the last round are

equal to the first case. The first round is almost identical, save for

the fact that u1 also votes for c̄ .
Hence, we know that v loses in the first round and that she can

manipulate in all the following rounds to force a win of either c or c̄ .
Let us focus on round n + 2. We will design this round to make sure

that only v wins, and that she cannot manipulate via generalized

free-riding. We distinguish two sub-cases:

(1) α2 = · · · = α2n+5 = 0. Here, everyone votes for c , save for v ,
who votes for c̄ . There are no other candidates. Observe that,
in case either c or c̄ wins here, the minimal satisfaction will

be n in both cases; c̄ wins by tie-breaking. Furthermore, were

v to vote for c , then c would win (as the minimal satisfaction

for c winning would raise to n + 1).

(2) α2 = · · · = α2n+5 > 0. Here, there is one candidate cv∗ for

every voter v∗ ∈ N , and we assume that in case of ties cv
wins. Furthermore, we assume that all voters vote for their

voter-candidate. We show that here all candidates receive the

same score. Consider any two candidates cy and cz . Let y =
(y1, . . . ,y2n+5) and z = (z1, . . . , z2n+5) be the satisfaction

vectors corresponding to cy and cz winning, respectively.

For both cy and cz , there is surely at least one voter with

satisfaction n that disapproves of them; hence, y1 = z1 =

n. Furthermore, there is exactly one voter approving each

candidate, and hence

∑
2n+5

i=2
yi =

∑
2n+5

i=2
zi . These two facts,

together with the fact that α2 = · · · = α2n+5, imply that α ·

y = α ·z. Hence, every two candidates receive the same score:

by tie-breaking, cv wins. Now, notice that, if v approves of

any other candidate cv∗ distinct from cv , then cv∗ will receive

a strictly greater score than any other candidate (as now two

voters approve of it).

Now, consider the last round. Up to here, v,u1, . . . ,u4 won n + 1

rounds. Furthermore, every voter vi has won n + 1 rounds if c won
in round i and n times otherwise (and conversely for v̄i and c̄). We

interpret again c winning in round i as setting xi to true, and c̄
winning as setting xi to false. We claim that c wins in the last round

if and only if this assignment satisfies ϕ. To see this, consider that,

if c were to win, the satisfaction vector would be:

(n + 1, . . . ,n + 1︸             ︷︷             ︸
n+4 times

,n + 2, . . . ,n + 2︸             ︷︷             ︸
n+1 times

)

Let’s call this vector s . Consider now a candidate c j and its corre-

sponding clauseCj . If all three of its literals are unsatisfied, then the

corresponding voters all have satisfaction n + 1. Hence, if c j were
to win in this case, the satisfaction vector would again be exactly s .
By our assumptions on tie-breaking, here c j would win against c .
Furthermore, suppose that either one, two, or three of the literals

have been satisfied. Then, the vectors are, respectively:

(n,n + 1, . . . ,n + 1︸             ︷︷             ︸
n+2 times

,n + 2, . . . ,n + 2︸             ︷︷             ︸
n+2 times

)

(n,n,n + 1, . . . ,n + 1︸             ︷︷             ︸
n times

,n + 2, . . . ,n + 2︸             ︷︷             ︸
n+3 times

)

(n,n,n,n + 1, . . . ,n + 1︸             ︷︷             ︸
n−2 times

,n + 2, . . . ,n + 2︸             ︷︷             ︸
n+4 times

)

One can show that if α1 > αn+4 (which is implied by α1 > α2n+5

and α2 = α4 = α2n+5) the dot product between α and each of these

three vectors would be strictly lower than the dot product between

α and s . The computation is analogous to the one we did in the

first case. Hence, if Cj is satisfied, candidate c j cannot win against

c . Consequently, if all clauses are satisfied, candidate c wins. With

similar arguments as the first case, we conclude that here v can



manipulate if and only if ϕ is satisfiable. This concludes the proof. □
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