
A Novel Reduction from #SAT to #2SAT Based on Symmetry:
Simply Drop the Large Clauses∗

Bannach, Max†

max.bannach@esa.int
Erik D. Demaine‡

edemaine@mit.edu
Timothy Gomez†
tagomez7@mit.edu

Markus Hecher§

hecher@cril.fr

Abstract. The counting problem #2sat is complete for #P under Turing (many-call) reductions, which
dates back to the seminal work by Valiant from 1979. Arguably, this reduction is the opposite from being simple
as it is a sophisticated chain of transformation from #sat, via several variations of the problem of computing
the permanent, to the task of counting matchings in graphs, and then finally to #2sat. In contrast, we give a
simple reduction that makes only two calls instead of polynomially many calls. Our reduction is based on the
inclusion-exclusion principle from #sat to weighted #2sat with weights in {−1, 1}. From there, we map the
computation of such weighted model counting problems to the subtraction of two unweighted model counting
problems using parity constraints. We can encode these parity constraints using almost solely binary clauses and
very few clauses of size four. Then, thanks to the subtraction and the symmetry between the two formulas, these
clauses of size four can simply be omitted without changing the overall result of the computation — thus leading
to a surprisingly simple reduction from #sat to two calls of #2sat.

Apart from the fact that the reduction is simple, it also improves the construction by Valiant in various ways.
First, it is computable either in logspace or linear time and, hence, also produces formulas that are linearly bounded
by the input formula (whereas the construction of Valiant produces formulas of polynomial size). Furthermore,
the construction can easily be adapted to preserve structural parameters like the input’s treewidth, yielding a
simple proof of the fact that #sat can be solved in time 2k poly(|φ|) on formulas of incidence treewidth k (the
current proof of this fact requires an involved algorithm based on Möbius and Zeta transformations). Finally, our
technique can be used to improve and simplify in the sparsification lemma from #dsat to #2sat (current proofs
are based on block interpolation and are quite involved).

1 Introduction The complexity class #P is the canonical class in the realm of counting problems that
contains many natural problems like #sat1. In contrast to classical complexity classes like NP that appear to be
robust, #P is relatively fragile in the following sense: Many problems that are complete for #P are only complete
for the class under Turing (many-call) reductions, but are not under many-one reductions. An example is the
problem #dnf, which asks to count the number of satisfying assignments of a propositional formula in disjunctive
normal form. It is trivially in #P and can be shown to be complete by the following Turing reduction from #sat:
Given any cnf φ, its negation ¬φ is a dnf and, if φ has n variables, we clearly have:

#(φ) = 2n −#(¬φ).

Note how we have to perform a subtraction after the evaluation of #(¬φ) (the #dnf call) and, hence, it is indeed
not a many-one reduction. We might be tempted to think that such a little subtraction is not a big deal, but it
turns out that #dnf lies in a complexity class called spanL [1], which is a strict subset of #P unless NP = RP, as
already #SAT is expected to be hard to approximate [30, 11], which is in contrast to spanL [2]. Therefore, there

∗Authors are ordered alphabetically. The full version of the paper can be accessed at https://arxiv.org/abs/2506.06716. We thank
all anonymous reviewers for their feedback. Research was partly funded by the Austrian Science Fund (FWF), grant J4656. Part of
the research was carried out while Hecher was a postdoc at MIT and while he was at UC Berkeley while visiting the Simons institute
for the theory of computing (part of the program Logic and Algorithms in Database Theory and AI).

†European Space Agency, AI and Data Science Section, Noordwijk, The Netherlands.
‡Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Lab, USA.
§Univ. Artois, CNRS, UMR 8188, Centre de Recherche en Informatique de Lens (CRIL), France.
1The problem #sat asks to count the number of satisfying assignments of a propositional formula.

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/2506.06716

is no many-one reduction from #sat to #dnf unless NP = RP; but it is enough to perform arithmetic, e.g., a
small subtraction in a post-processing step on top of the obtained count.

Another problem that is famously complete for #P under Turing reductions is #2sat, the problem of counting
the models of a cnf φ in which every clause contains at most two variables. In his seminal work [28, 29], Valiant
proved that #2sat is complete for #P by reducing #sat to the computation of the permanent of an integer matrix,
which he reduced to the computation of the permanent of a binary matrix, which can be reduced to counting the
number of perfect matchings in bipartite graphs, which in turn can be reduced to counting all matchings in bipartite
graphs, which finally reduces to #2sat. As for #dnf, this chain of reductions must be a Turing reduction unless
NL = NP and, indeed, many steps in Valiant’s reduction are Turing reductions: Almost each step in the chain
produced a polynomial number of instances of the next step, and the results of all of these instances need to be
connected in a non-trivial manner using division and modulo operations. From a complexity-theoretic perspective,
this may be concerning as we saw that already a little subtraction in the post-processing step can change the
complexity of the problem — we may wonder how much of the complexity of #2sat is obscured by this reduction?

This reduction is not only relevant from a complexity-theoretic perspective, but becomes increasingly
important in practical applications. Model counting recently proved very useful in the verification and simulation
of quantum circuits [22, 23] and practical tools are actively developed [12]. To that end, Valiant’s reduction was,
for instance, rephrased in graphical languages like the ZH-calculus leading to small improvements [17]. But also
from a classroom perspective we can argue that Valiant’s reduction is not optimal, as it easily fills a whole lecture
without providing a lot of insights into the aspects that actually make #2sat hard.

1.1 Contribution: A Simple Reduction from #SAT to #2SAT Our main contribution is an
elementary simpler reduction from #sat to #2sat based on the inclusion-exclusion principle, whose main
ingredient is given in Section 3. The correctness of the reduction is intuitively easy to grasp, making it well suited
to be presented within a lecture about the topic. But the reduction also significantly improves the reduction by
Valiant in various directions: Given a formula φ, we produce only two formulas ψ1 and ψ2 such that:

#(φ) = #(ψ1)−#(ψ2).

There is no polynomial number of instances produced, and the results of the two #2sat calls can be combined by
a simple minus. Furthermore, ψ1 and ψ2 are easy to compute (in complexity-theoretic language in logspace, but
conceptually it is also an easy construction); and both formulas are almost identical (they only differ in a single
literal indicating whether the formula operates in “even mode” or “odd mode.”). Since any #sat problem can be
substituted by 2n−#dnf, as discussed in the introduction, this yields the following characterization (with slight
abuse of notation):

#sat = #2sat − #2sat = (2n − #2dnf)− (2n − #2dnf) = #2dnf − #2dnf.

This is interesting since the expressive powers of #2sat and #2dnf are incomparable, unless we obtain2

RP = NP [27, Theorem 2].

1.2 Simplified Proofs and Consequences Instead of advanced algebraic techniques, our proofs only
rely on parity constraints and symmetry. We obtain the following known results as simple consequences of our
reduction, as detailed in Section 4.

1. #P-hardness of #2sat. Previously, only complicated reductions were known [28, 29] which went through
many problems as described above. Many of these steps were Turing reductions and only guarantee
polynomially many calls. It turns out that a surprisingly simple #2sat or #2dnf call is sufficient, that
only uses arithmetic post-processing (AC0).

2. Efficient algorithm for #sat parameterized by incidence treewidth k, proving a runtime decrease from
4k poly(|φ|) to 2k poly(|φ|). In contrast to primal treewidth, for which such an algorithm has been known
for more than a decade [25], obtaining a 2k-algorithm for incidence treewidth had been open for a long time.
In 2020 it was solved with advanced algebraic techniques, e.g., Möbius and Zeta transforms [26].

2The result follows from inapproximability of counting independent sets [27, Theorem 2], since independent sets can be trivially
counted via #2sat using one clause per edge, but #2dnf can be efficiently approximated [2].

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited

3. Sparsification from #dsat to sparse #2sat. Previously, a sparsification lemma from #dsat to sparse
#dsat has been developed for d ≥ 2 [10]. Later, this has been extended to establish a sparse lower bound
directly for #2sat, but this relies on Turing reductions and the block interpolation technique [9]. Our
approach provides a substantially simpler proof, relies on basic combinatorics, and is based on a many-one
reduction plus AC0 post-processing.

1.3 Related Work Recent work [3] contains more involved proofs and general variants for the presented
reduction, but at the cost of losing simplicity. The complexity of #2sat is an active field of research, dating
back to the first proof of its #P-completeness by Valiant [28, 29]. This problem was studied in parameterized
settings by Luna et al. [18], and Ita, Bello, and Rodríguez [15]. The problem was also studied in the context of
binary patterns [19] and plays an important role in the simulation of quantum systems [17]. There is work on
counting complexity for generalized #SAT [13] as well as for using subtraction with counting perfect matchings [8].
Implementing faster algorithms for this fragment of model counting is also an active line of research, e.g., with
new bottom-up algorithms [16], or algorithms specialized for formulas with certain structures [20, 21]. There are
also proof formats of different expressiveness [4].

1.4 Structure of this Article In the next section, we introduce the necessary notation and provide the
simplest version of our reduction, which maps a #sat instance to a single weighted #2sat simulating the inclusion-
exclusion principle. We then illustrate in Section 3 how we can reduce from #sat the result of two (unweighted)
#2sat instances, which implies the reduction of our main contribution. We discuss various complexity-theoretic
and algorithmic implications of our reduction in Section 4 and conclude in Section 5.

2 Warmup: From #SAT to Weighted #2SAT Let us make notions more precise. Unless stated
otherwise, we consider propositional formulas only in conjunctive normal form (cnf), i.e., as conjunction of
clauses (disjunctions of literals). For readability, we denote 2-cnf clauses as implications of the form x → y,
which is equivalent to ¬x ∨ y. An assignment β ⊆ 2vars(φ) is a set of variables that are assigned to true. A
weighted cnf (a wcnf) is a cnf φ together with a mapping w : lits(φ) → Z that assigns a number to every literal
over vars(φ). The weighted model counting problem #sat[Z] asks, given a wcnf (φ,w), to compute the sum of
products:

#(φ,w) =
∑
β|=φ

∏
x∈β

w(x) ·
∏

y∈(vars(φ)\β)

w(¬y).

Here, the sum ranges over the models (satisfying assignments) of φ. The model counting problem (#sat) is the
special case in which w assigns “1” to very literal, so the above formula simplifies to:

#(φ,w) = #(φ) =
∑
β|=φ

1 = |{β | β |= φ }|.

The basic principle of our reduction from #sat to #2sat (evaluate #(φ) for a cnf where every clause
contains at most two literals) is visualized via a reduction from #sat to #2sat[Z] (compute #(φ,w) for a wcnf
in which every clause contains at most two literals). Our construction utilizes the inclusion-exclusion principle
via the weight function, requiring only weights “1” and “-1” (crucial).

2.1 Simulating Inclusion-Exclusion via Negative Weights Central to our reduction is the idea of
reasoning in the inverse, namely, we count in how many ways an assignment β ̸|= φ can falsify clauses. Whenever
this number is even, we will count it positively, while we will subtract it if an odd number of clauses is falsified.
Since we count not only the clauses that are indeed falsified, but all the combinations as well, the inclusion-
exclusion principle will cancel out these counts and leave us with the number of models of the input formula.

To be a bit more precise, let φ =
∧m
i=1 ci be the given (unweighted) cnf for which we wish to compute #(φ).

Our first goal is to compute a 2-wcnf (ψ,w) such that

#(φ) = #(ψ,w).

For every clause c of φ we introduce a fresh variable c. with the semantics “we wish to declare c being falsified.”
The variable c. will control whether we count clause c for an assignment β that falsifies φ, but c. is not implied by

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited

the falsification of c. We easily encode this in formula ψ, which is defined by the following binary clauses:∧
ℓ∈c

(c. → ¬ℓ) for every clause c of φ(2.1)

So, if c. is set to true, all literals in c must be false and, hence, c is falsified. The “trick” is to count the parity of
the number of ways we can set c. variables to true: We introduce weight function w by w(c.) = −1 and w(¬c.) = 1
for clauses c ∈ φ, and w(x) = w(¬x) = 1 for variables x ∈ vars(φ). We obtain:

Proposition 2.1. Let φ =
∧m
i=1 ci be a cnf and ψ =

∧m
i=1

∧
ℓ∈ci(ci. → ¬ℓ) for fresh variables c1. , . . . , cm. be a

wcnf with w(ci.) = −1 for all i ∈ {1, . . . ,m} and w(ℓ) = 1 for all other literals. Then #(φ) = #(ψ,w).

Proof. Fix any assignment β of vars(φ) and distinguish two cases. In the first case β |= φ and, thus, β
contributes 1 to #(φ). If we extend β to an assignment of ψ, we are forced to set all ci. to false (as β does not
falsify any clause). Hence, β also contributes exactly 1 to #(ψ,w).

Otherwise, β ̸|= φ and, thus, β does not contribute to #(φ). We can extend β by setting all ci. to false (adding
+1 to #(ψ,w)); but for any clause cj falsified by β, we can extend β by setting cj. to true and all ci. with i ̸= j

to false (subtracting 1 from #(ψ,w)). For each pair of falsified clauses, β contributes 1 to #(ψ,w) (−1’s cancel
out), for every triple we subtract 1 again, and so on. Precisely, if β falsifies k > 0 clauses in φ, it contributes a
total of 0 = 1+Σki=1(−1)i ·

(
k

i

)
︸ ︷︷ ︸

−1

to the count #(ψ,w).

Example 2.2. Consider formula φ = c1∧c2∧c3 with c1 = (¬x∨z), c2 = (¬x∨y∨z), and c3 = (y∨z). Below
left, we show the truth table of φ revealing #(φ) = 5; in the center we show formula ψ of Proposition 2.1. Satisfying
assignments like β2 = {¬x, y,¬z} falsify no clause in φ and only extend to model β̃2 = {¬x, y,¬z,¬c1. ,¬c2. ,¬c3. } of
ψ, contributing 1 to weighted count #(ψ,w). Unsatisfying assignments like β1 = {¬x,¬y,¬z} extend to multiple
models β̃1 of ψ, totaling to 0 (below right):

x y z #(φ)

β1 0 0 0 0
β2 0 1 0 1
β3 1 0 0 0
β4 1 1 0 0
β5 0 0 1 1
β6 0 1 1 1
β7 1 0 1 1
β8 1 1 1 1

Total 5

c1. → x

c1. → ¬z

c2. → x

c2. → ¬y
c2. → ¬z

c3. → ¬y
c3. → ¬z

Satisfying assignments β̃1 of ψ
∏
ℓ∈β̃1

w(ℓ)

¬x, ¬y, ¬z, ¬c1. , ¬c2. , ¬c3. 1

¬x, ¬y, ¬z, c1. , ¬c2. , ¬c3. −1
¬x, ¬y, ¬z, ¬c1. , c2. , ¬c3. −1
¬x, ¬y, ¬z, ¬c1. , ¬c2. , c3. −1

¬x, ¬y, ¬z, c1. , c2. , ¬c3. 1
¬x, ¬y, ¬z, ¬c1. , c2. , c3. 1
¬x, ¬y, ¬z, c1. , ¬c2. , c3. 1

¬x, ¬y, ¬z, c1. , c2. , c3. −1

Total 0

From this, we immediately obtain that #2sat[Z] is #P-complete, even under many-one reductions.

Corollary 2.3. Under parsimonious many-one reductions, #2sat[Z] is #P-complete.

3 Main Contribution: From #SAT to #2SAT The inclusion-exclusion reduction above provides us
with a blueprint for our reduction. Now, the goal is to reduce #sat directly to #2sat. How do we get rid of
these negative weights? Let again φ =

∧m
i=1 ci be any given cnf, and let (ψ,w) be the 2-wcnf introduced in and

below Equation (2.1). By the design of w, a model of ψ has a weight of +1 if the number of ci. set to true is even,
and a weight of −1 otherwise. This leads to the following observation on translating #sat to #2sat:

(3.1) #(φ) = #(ψ,w) = #
(
ψ ∧ ¬

m⊕
i=1

ci.
)
−#

(
ψ ∧

m⊕
i=1

ci.
)
.

Note that the two model counts on the right are unweighted. That is, to conclude the reduction we only need
binary formulas to express

⊕m
i=1 ci. . For this, we define a sequential parity counter next.

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited

3.1 How to Encode Sequential Parity Counters? For the sake of generality, let ℓ1, . . . , ℓp be any set
of ordered literals. We describe a parity counter formula

⊕p
i=1 ℓi by introducing auxiliary variables e0, . . . , ep such

that ei indicates that an even number of literals up to i is satisfied (including ℓi). To implement the semantics of
the parity counter, we use further auxiliary variables oℓi , oℓ̄i , eℓi , eℓ̄i to cover all four cases of having satisfied an
odd number of literals up to i (due to ℓi or ¬ℓi) or an even number up to i (due to ℓi or ¬ℓi), respectively. The
formula

⊕p
i=1 ℓi contains the clause (e0) (initially zero literals are satisfied, i.e., an even number) and for every

i ∈ {1, . . . , p} we introduce the following set of four (pairwise excluding) sets of clauses:

Case Imply the Literal Update the Parity Counter

Case 1: Odd due to Literal ℓi oℓi → ℓi oℓi → ei−1 oℓi → ¬ei
Case 2: Odd due to Literal ¬ℓi oℓ̄i → ¬ℓi oℓ̄i → ¬ei−1 oℓ̄i → ¬ei
Case 3: Even due to Literal ℓi eℓi → ℓi eℓi → ¬ei−1 eℓi → ei

Case 4: Even due to Literal ¬ℓi eℓ̄i → ¬ℓi eℓ̄i → ei−1 eℓ̄i → ei

In each of the four cases, the first clause states that if we become odd or even by literal ℓi (or ¬ℓi), the literal
ℓi must indeed be satisfied (or falsified, respectively). The last two columns describe how the corresponding case
modifies the parity. For instance, in Case 1 we have an odd number of satisfied literals up to i (including ℓi) since
ℓi is satisfied. Hence, up to i − 1 we must have seen an even number of satisfied literals (second clause in this
row) and now we are odd, i.e., not even (last clause).

Definition 3.1 (Sequential Parity Counter Encoding). For ordered literals ℓ1, . . . , ℓp, we define

¬
p⊕
i=1

ℓi = e0 ∧ ep ∧
p∧
i=1

[
(oℓi → ℓi) ∧ (oℓi → ei−1) ∧ (oℓi → ¬ei)

∧ (oℓ̄i → ¬ℓi) ∧ (oℓ̄i → ¬ei−1) ∧ (oℓ̄i → ¬ei)
∧ (eℓi → ℓi) ∧ (eℓi → ¬ei−1) ∧ (eℓi → ei)

∧ (eℓ̄i → ¬ℓi) ∧ (eℓ̄i → ei−1) ∧ (eℓ̄i → ei)

∧ (oℓi ∨ oℓ̄i ∨ eℓi ∨ eℓ̄i)
]
.

Furthermore,
p⊕
i=1

ℓi is the same formula as ¬
p⊕
i=1

ℓi, but with the singleton “ep” clause negated.

Lemma 3.2 (Correctness of Parity Counter Encoding). Let ℓ1, . . . , ℓp be ordered literals. Then, we have
¬
⊕p

i=1 ℓi ≡ ¬(ℓ1 ⊕ ℓ2 ⊕ · · · ⊕ ℓp) and
⊕p

i=1 ℓi ≡ (ℓ1 ⊕ ℓ2 ⊕ · · · ⊕ ℓp), where (a⊕ b) is an exclusive-or, as defined
in the usual meaning by (a ∨ b) ∧ (¬a ∨ ¬b).

Proof. The proof is by induction over i (showing that the xor of the first i literals is computed correctly) with
the induction hypothesis given by the trivial case i = 0 (i.e., the parity counter has not yet processed any literal),
which is correctly realized as e0 is a clause. For the induction step, consider any i > 0 and distinguish the two
cases that ℓi is true or false. If ℓi is true, only Cases 1 and 3 can be relevant (i.e., only oℓi or eℓi can be set to
true), as the other cases imply ¬ℓi and thus yield a contradiction. By the induction hypothesis, we can assume
that ei−1 is set correctly. Assume without loss of generality that ei−1 is true (the other case is symmetric) and
observe that, therefore, only Case 1 is applicable (Case 3 implies ¬ei−1). Hence, the counter correctly implies
¬ei. Note that by the red clause (clause of size four), at least one case must be selected.

The other two cases (becoming odd or even by ¬ℓi) work identically and we can, thus, conclude that the
counter correctly sets ei to true if and only if an even number of the literals ℓ1, . . . , ℓi is true. Both statements of
the theorem follow immediately.

This lemma alone does not help much due to the red clause, which is clearly not binary. However, it turns
out — almost magically — that if we utilize the lemma in Equation (3.1), we can drop the red clauses and still
obtain the correct result! Although the parity counter will, of course, make errors without the red clause, it will
make exactly the same number of errors in both cases and, therefore, these errors cancel out in Equation (3.1).

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited

3.2 Reduction to #2SAT More precisely, our reduction takes φ and works as follows. First, we construct
ψ as in Equation (2.1). Then, we define

(3.2) ψ1 = ψ ∧ ξ and ψ2 = ψ ∧ ξ′,

where ξ is the party counter ¬
⊕|φ|

i=1 c. i from Definition 3.1 but without the red clause, and ξ′ is
⊕|φ|

i=1 c.i without
the red clause. It remains to prove:

(3.3) #(φ) = #(ψ1)−#(ψ2).

Observe that both ψ1 and ψ2 are almost identical and differ only in a single clause (a single literal). We show
that because of this symmetry, the unwanted models of ψ1 and ψ2 systematically cancel each other out. We refer
to these unwanted models by rogue, which are defined as follows.

Definition 3.3 (Rogue Models). Let φ be a formula and let ψ1, ψ2 be constructed as above. A model β of
ψ1 or ψ2 is rogue at 1 ≤ i ≤ |φ| if β ∩ {oci , oci , eci , eci} = ∅, i.e., if it violates the red clause.

3.3 Correctness by Symmetry Indeed, we can establish a bijection between these rogue models, if
defined carefully. This is ensured by the following construction, which uniquely defines for every rogue model of
ψ1 the corresponding unique symmetric rogue model of ψ2. Intuitively, if a model is rogue at some i, we do not
decide for a case, so we can freely switch the parity merit at i (swapping even by odd and vice versa).

Definition 3.4 (Symmetric Rogue Model). Let φ be a formula and β be a model of ψ1 (ψ2) that is rogue
at some largest 1 ≤ i ≤ |φ|, so β is not rogue at any j > i. Then the symmetric rogue model β′ of ψ2 (ψ1) is
obtained from β by (1) swapping parity: replacing for every i′ ≥ i, ei′ ∈ β by ei′ /∈ β′ and vice versa: ei′ /∈ β by
ei′ ∈ β′; (2) swapping parity of case: replacing for every j > i:

• if ocj is in β, then replace ocj by ecj in β′; • if ocj is in β, then replace ocj by ecj in β′;

• if ecj is in β, then replace ecj by ocj in β′; • if ecj is in β, then replace ecj by ocj in β′.

Before we show correctness, we will briefly clarify these concepts using our running example.

Example 3.5. Recall the formula φ = c1 ∧ c2 ∧ c3 with c1 = (¬x ∨ z), c2 = (¬x ∨ y ∨ z), and c3 = (y ∨ z)
from the previous example. As we have seen, formula ψ according to Equation (2.1) is:

ψ = (c1. → x) ∧ (c1. → ¬z) ∧ (c2. → x) ∧ (c2. → ¬y) ∧ (c2. → ¬z) ∧ (c3. → ¬y) ∧ (c3. → ¬z).

The encoding of
⊕3

i=1 c. i due to Definition 3.1 is given by e0 ∧ ¬ep and the following set of clauses:

oc1. → c1. oc1. → e0 oc1. → ¬e1
oc1. → ¬c1. oc1. → ¬e0 oc1. → ¬e1
ec1. → c1. ec1. → ¬e0 ec1. → e1

ec1. → ¬c1. ec1. → e0 ec1. → e1

(oc1. ∨ oc1. ∨ ec1. ∨ ec1.)

i = 1

oc2. → c2. oc2. → e1 oc2. → ¬e2
oc2. → ¬c2. oc2. → ¬e1 oc2. → ¬e2
ec2. → c2. ec2. → ¬e1 ec2. → e2

ec2. → ¬c2. ec2. → e1 ec2. → e2

(oc2. ∨ oc2. ∨ ec2. ∨ ec2.)

i = 2

oc3. → c3. oc3. → e2 oc3. → ¬e3
oc3. → ¬c3. oc3. → ¬e2 oc3. → ¬e3
ec3. → c3. ec3. → ¬e2 ec3. → e3

ec3. → ¬c3. ec3. → e2 ec3. → e3

(oc3. ∨ oc3. ∨ ec3. ∨ ec3.)

i = 3

We obtain the following counts:

#
(
ψ ∧ ¬

3⊕
i=1

c. i
)
= 11 #

(
ψ ∧

3⊕
i=1

c. i
)
= 6 #

(
ψ ∧ ¬

3⊕
i=1

c. i
)
−#

(
ψ ∧

3⊕
i=1

c. i
)
= 11− 6 = 5 = #(φ).

Let now ξ and ξ′ be the encodings of ¬
⊕3

i=1 c. i and
⊕3

i=1 c. i without the red clauses, respectively. Then, by
systematic analysis or utilizing code writing talent, we obtain:

#
(
ψ ∧ ξ) = 232 #

(
ψ ∧ ξ′

)
= 227 #

(
ψ ∧ ξ

)
−#

(
ψ ∧ ξ′

)
= 232− 227 = 5 = #(φ).

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited

It turns out that these definitions are sufficient to show that our reduction is correct, i.e., that Equation (3.3)
holds. This is established via the following two lemmas, which we use to prove correctness.

Lemma 3.6 (Non-Rogue Models). Let φ be a formula and let ψ1, ψ2 be defined as before. We have:

1. For every model β of ψ1 or ψ2 that is not rogue, β ∩ vars(φ) is an interpretation of φ that invalidates at
least k := |{ c ∈ φ | c. ∈ β }| clauses.

2. The value k is odd iff β is a model of ψ2.

Proof. By the construction of ψ from φ in Equation (2.1), we know that β invalidates (at least) k clauses.
By Lemma 3.2 and since β is not rogue, k is odd (even) iff β is a model of ψ2 (ψ1), respectively.

Lemma 3.7 (Well-Defined: Rogue Bijection). Let φ be a formula and let ψ1, ψ2 be defined as before. Then,
the symmetric rogue model β′ of any rogue model β of ψ1 is a model of ψ2 (and vice versa). Further, the symmetric
rogue model of the symmetric rogue model β′ of ψ1 (ψ2) is β.

Proof. Let β be rogue at 1 ≤ i ≤ |φ| such that there is no i < j ≤ |φ| at which β is rogue. By definition, we
have β ∩{oci , oci , eci , eci} = ∅. Note that therefore, by construction of ψ1, we can switch the parity at i, but since
there is no j > i where β is rogue at j, all parities at j > i are determined accordingly. So we can construct β′

from β, where for every i′ ≥ i we (i) replace ei′ ∈ β with ei′ /∈ β′ and (ii) replace ei′ /∈ β with ei′ ∈ β′. This just
swaps the merit of parity, but we also need to swap the reason, so for every j > i, we swap ocj ∈ β by ecj ∈ β′,
ocj ∈ β by ecj ∈ β′, ecj ∈ β by ocj ∈ β′, and ecj ∈ β by ocj ∈ β′. Indeed, this is the result of ensuring consistency
in β′ due to (i) and (ii) above. To sum up, β′ is precisely defined as

β′ =
[
β ∩ (vars(ψ1) \ {ei′ , oci′ , oci′ , eci′ , eci′ | i

′ ≥ i})
]

∪ {ei′ | ei′ /∈ β, i ≤ i′ ≤ |φ|}
∪ {ocj | ecj ∈ β, j > i} ∪ {ocj | ecj ∈ β, j > i}
∪ {ecj | ocj ∈ β, j > i} ∪ {ecj | ocj ∈ β, j > i}.

It is easy to see that, therefore, the final parity at |φ| switches from even to odd when comparing β with β′.
Consequently, by the symmetric construction of ψ1 and ψ2 the result follows. Indeed, by the construction in
Definition 3.4, the symmetric rogue model of the symmetric rogue model β′ is β.

Both lemmas are sufficient to establish correctness, which we show below.

Theorem 3.8 (Correctness). Equation (3.3) is correct for any formula φ, i.e., #(φ) = #(ψ1)−#(ψ2).

Proof. The construction simulates the principle of inclusion-exclusion. We count the models of φ as:

#(φ) = 2n −
∑

β⊆vars(φ),∃c∈φ,
β ̸|={c}

1 +
∑

β⊆vars(φ),∃c,c′∈φ,
c̸=c′,β ̸|={c} and β ̸|={c′}

1 . . .
∑

β⊆vars(φ),
̸∃c∈φ,β|={c}

(−1)|φ| =
∑

β⊆vars(φ),0≤k≤|φ|,
β does not satisfy ≥ k clauses in φ

(−1)k.

Therefore, we split this term into two parts, where we take interpretations not satisfying at least k clauses with
k being even (ψ1) and then subtract those interpretations with k being odd (ψ2). We refer to those interpretations
where k is even by

E = {β ⊆ vars(φ) | 0 ≤ n ≤ |φ|, β does not satisfy ≥ k clauses in φ, k ≡ 0(mod2)}.

The interpretations with k being odd are referred to by

O = {β ⊆ vars(φ) | 0 ≤ k ≤ |φ|, β does not satisfy ≥ k clauses in φ, k ≡ 1(mod2)}.

By Lemma 3.6, every model in E can be uniquely extended to a non-rogue model of ψ1. By Lemma 3.2, for
every non-rogue model of ψ1, its restriction to vars(φ) is in E. In addition, models of ψ1 are either rogue (say, in
R) or in E, i.e., |E|+ |R| = #(ψ1). Analogously, for ψ2 we can show that |O|+ |R′| = #(ψ2), for some set R′. By
Lemma 3.7, there is a bijection between the rogue models R of ψ1 and the rogue models R′ of ψ2. Consequently,
#(φ) = |E| − |O| =

(
|E|+ |R|

)
−
(
|O|+ |R′|

)
= #(ψ1)−#(ψ2).

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited

4 Complexity-Theoretic and Algorithmic Implications From the simple construction presented in
the previous section, we immediately obtain simpler, more fine-grained precise hardness proofs for counting on
2-cnf or 2-dnf formulas.

4.1 Simplified Hardness In contrast to Corollary 2.3, our reduction must not be parsimonious (unless
NL = NP). However, a single call is still sufficient (even with very limited post-processing).

Corollary 4.1 (#2sat Hardness). #2sat is #P-hard. This even holds for a single #2sat instance with
AC0 post-processing power.

Proof. The first part follows from the correctness of the #sat reduction to #2sat as shown in Theorem 3.8,
since a single #3sat instance can parsimoniously simulate a Turing machine [28, Lemma 3.2].

The second part is a simple extension. Without loss of generality, ψ1 and ψ2 do not share variables, which
works by renaming variables from v to v′ in ψ2. We merge both formulas and use fresh variable s to create clauses
s→ v and ¬s→ v′ for every v ∈ vars(ψ1) \ {e0, e|φ|} and v′ ∈ vars(ψ2) \ {e′0, e′|φ|}. This ensures that if ¬s holds,
we obtain models of ψ1 and if s holds, we obtain models of ψ2.

Further, we use | vars(ψ1)|+1 fresh variables aj , and clauses s → ¬aj for every 1 ≤ j ≤ | vars(ψ1)|+1. This
results in multiplying every model of ψ1 by a factor 2| vars(ψ1)|+1, as variables aj are free if ¬s holds. Hence, the
resulting count is of the form c1 · 2| vars(ψ1)|+1 + c2, where c1 = #(ψ1) and c2 = #(ψ2). We extract c1 and c2 by
shifting, followed by subtraction c1 − c2, both of which work in AC0.

Since #2dnf is the inverse problem of #2sat, in Equation (3.3), we can also replace #(ψ1) − #(ψ2) by
[2vars(ψ1) −#(¬ψ1)]− [2vars(ψ2) −#(¬ψ2)], which simplifies to #(¬ψ2)−#(¬ψ1).

Corollary 4.2 (#2dnf Hardness). #2dnf is #P-hard, even for a single #2dnf instance with AC0 post-
processing power.

4.2 Simplified Treewidth-Based Algorithm Given the simplicity of our reduction, we can easily extend
it to obtain efficient upper bounds for treewidth that are tight assuming the strong exponential time hypothesis
(SETH) [14]. The runtime bound of the resulting algorithm is a corollary of our reduction and subsumes a recent
paper [26] that uses algebraic techniques based on the Möbius and Zeta transforms, and covering products.

A tree decomposition (T, χ) of a graph G is a rooted tree T and a mapping χ : V (T) → 2V (G), called bag, such
that (1) for every v ∈ V (G) the set {x | v ∈ χ(x) } is non-empty and connected in T ; (2) for every {u, v} ∈ E(G)
there is a node x ∈ V (T) with {u, v} ⊆ χ(x). The width of a tree decomposition relates to the maximum bag size,
i.e., maxx∈V (T) |χ(x)|−1. The treewidth of G is the minimum width among every decomposition of G; children(t)
is the set of child nodes of a node t in T .

We observe that while the reduction and correctness of Section 3.2 are carried out along a path, they can
easily be extended to tree decompositions. For this we need the incidence graph Iφ of a cnf formula φ, which is
a bipartite graph whose vertices are for clauses and variables of φ with an edge between a variable vertex v and
a clause vertex c., whenever variable x appears in clause c. For φ we let itw(φ) be the treewidth of Iφ. We obtain
the following parameter-awareness result of our reduction.

Lemma 4.3 (Treewidth-Aware Reduction). There is a reduction that reduces any cnf formula φ to 2-cnf
(2-dnf) formulas ψ1, ψ2 such that #(φ) = #(ψ1) − #(ψ2) and we additively preserve incidence treewidth, i.e.,
itw(ψ1) = itw(ψ2) ≤ itw(φ) + 8.

Proof. Without loss of generality, we may assume a tree decomposition T = (T, χ) of the incidence graph Iφ
of size linear in |φ|, where nodes have at most two child nodes (these nodes t are called join nodes; their χ(t) are
identical to both child bags of t) in T [6].

Then, each clause c ∈ φ can be assigned to a unique non-join node t = δ(c) in T containing c. ∈ χ(t)
(χ(t) might not contain all variables of c). Indeed, if there are not enough decomposition nodes, one can easily
add intermediate copy nodes of a node with identical bags, allowing to assign at most one clause per node.
Decomposition nodes (except join nodes) that do not have an assigned clause can be assigned a fresh dummy
clause c′ = x′∨x′ for some fresh x′, which increases bag sizes by at most +2. We assume that join nodes do not
get assigned such a clause, which will make the construction easier.

However, for join nodes t we slightly modify the four cases constructed in the reduction (see Section 3.2 and
Definition 3.1). Instead of case decision based on clause variables c., we decide based on the parity of t and the

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited

parity of the first (left-most) child node t′; from this we infer parity of the other child node t′′, which then still
requires four cases.

Case Imply the Literal Update the Parity Counter

Case 1: Odd due to Literal et′ oet′ → et′ oet′ → ¬et′′ oet′ → ¬et
Case 2: Odd due to Literal ¬et′ oēt′ → ¬et′ oēt′ → et′′ oēt′ → ¬et
Case 3: Even due to Literal et′ eet′ → et′ eet′ → et′′ eet′ → et

Case 4: Even due to Literal ¬et′ eēt′ → ¬et′ eēt′ → ¬et′′ eēt′ → et

For showing correctness, it suffices to consider some canonical root-to-leaf path (say the left-most one) in the
tree decomposition that has a node t where the rogue model M is rogue at t. Note that this is not a static path,
but the smallest one with a node t where M is rogue at t. Then, the symmetric rogue model of Definition 3.4
on tree decompositions considers for every rogue model its canonical path; correctness works analogously to the
proof of Theorem 3.8.

It remains to show treewidth preservation, which we can easily demonstrate by constructing from T a tree
decomposition T ′ = (T ′, χ′) of Iψ1 (Iψ2). Intuitively, the fresh clauses we construct (say, p many) are only over
variables in bags and child bags in T ; T ′ is obtained from T by replacing every node in t by a path t1, . . . , tp
comprising of p copies of t. Thus, each freshly constructed clause c′i can be placed in one of these copies. Formally,
for every node t in T and i ∈ {1, . . . , p} we define

χ′(ti) = χ(t) ∪ {c′i, et}
∪ {et′ | t′ ∈ children(t)} ∪ {ec, ec̄, oc, oc̄ | c ∈ χ(t) where t = δ(c)}
∪ {eet′ , eēt′ , oet′ , oēt′ | | children(t)| = 2 and t′ is the left-most child of t}.

Therefore, |χ′(ti)| ≤ |χ(t)|+ 2 + 2 + 4, concluding the proof.

This is already enough to obtain an algorithm that runs in 2k poly(|φ|) for the incidence treewidth k, as we
go via a known algorithm for the primal graph. The primal graph Pφ of φ has as vertices the variables vars(φ)
with an edge between two variables if they appear in a clause in φ; the primal treewidth tw(φ) corresponds to the
treewidth of Pφ.

Corollary 4.4 (SAT Incidence Treewidth Runtime 2k). #sat for formulas φ can be solved in time
2k · poly(|φ|), where k = itw(φ) is the treewidth of the incidence graph of φ.

Proof. By Lemma 4.3, we can reduce a cnf φ to 2-cnfs ψ1 and ψ2 with itw(ψi) ≤ itw(φ) + 8. In the
incidence graph of a 2-cnf formula, all vertices corresponding to clauses have maximum degree 2. By the almost
simplicial rule, contracting such a vertex to one of its neighbors cannot increase the treewidth past 2 [7]. However,
contracting all vertices corresponding to a clause to one of their neighbors yields exactly the primal graph, hence,
we have tw(ψi) ≤ itw(ψi) + 1 ≤ itw(φ) + 9. Finally, we compute #(ψi) by dynamic programming over a tree
decomposition of the primal graph, requiring O

(
2tw(ψi)|ψi|

)
arithmetic operations [5, 25].

4.3 Sparsification and Lower Bound for #2SAT Many #P-hardness reductions from #sat increase
size by a linear factor of n + m where n is the number of variables and m is the number of clauses. There, if
we want to preserve lower bounds, we must get a 2o(n) bound even when m = O(n); we call instances with this
property sparse instances. It turns out that our approach sketched above preserves sparsity. This allows us to
define a sparsification lemma for #2sat and #2dnf, which improves an existing sparsification result [10, Lemma
A.1].

By applying the simple symmetric reduction sketched in this paper, we obtain a fine-grained sparsification for
counting. This provides a sparsification corollary for counting, which is not based on Turing reductions and also
does not require advanced techniques like block interpolation [9]. Block interpolation is a special kind of multi-call
Turing reduction which (1) uses an oracle to evaluate some multivariate polynomial f(x) on n+1 points and (2)
use Lagrange interpolation to get the coefficients of the function. Thus in order to use this technique we must
design some sets of gadgets to reduce each point to a different instance of #2sat, make n + 1 oracle calls, then
perform complicated arithmetic with the answers. Instead, we obtain a variant that, together with Corollary 4.1,
only reduces to sparse counting with AC0 post-processing.

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited

Corollary 4.5 (Sparsification Corollary for #2sat/#2dnf). Let d ≥ 2. For every k ∈ N and d-cnf
formula γ with n variables, there exists t ∈ N such that in time t · poly(n) we obtain formulas γi1 and γi2 for every
i ∈ [t] and

1. #(γ) =
∑
i∈[t][#(γi1)−#(γi2)],

2. t ≤ 2
n
k ,

3. γi1, γi2 are 2-cnf (2-dnf) formulas in which each variable occurs at most 3 times.

Proof. By [10, Lem. A.1], there is a formula β =
∨
i∈[t] γi such that #(γ) =

∑
i∈[t] #(γi) and γi in 3-cnf.

Claims (1), (3) are modifications of [10, Lem. A.1] that follow from applying the reduction of Section 3.2 on every
γi, which is correct by Theorem 3.8. The restriction to degree 3 in the 2-cnf easily works with copies xi for every
variable x and known 2-cnf connector gadgets [24] that are cycles of the form x → x1, x1 → x2, . . ., xk → x.
Indeed, this enforces equivalence among all copies and each copy can now host one original clause. The 2-dnf
claim follows by the observation above Corollary 4.2.

This result immediately provides the following sparse lower bound based on #ETH [10] without the need for
block interpolation [9], additionally improving from degree O(1) to degree 3.

Corollary 4.6 (#ETH LB for #2sat). Under #ETH we cannot solve #2sat in time 2o(n) · poly(n), where
n is the number of variables, variables occur ≤ 3 times, and even with m = O(n) clauses.

Proof. The result follows from Corollary 4.5 by reducing from #3sat, which under #ETH cannot be solved
in time 2o(n) · poly(n). Indeed, a 2o(m) · poly(n) runtime for #2sat would contradict #ETH.

It turns out that the construction in Section 3 can be extended to monotone #2sat as well as to monotone
#2dnf. However, this requires extensions of the concept of rogue models, which results in a more involved
construction of the symmetric rogue model, but comes at the cost of losing simplicity [3].

5 Conclusion and Outlook In this article, we presented a new, remarkably simple reduction from #sat
to two calls of #2sat, thus providing a simplified proof that the latter problem is #P-complete under Turing
reductions. The main idea of our reduction was to use a pipeline that “almost” works — namely, first reducing
to weighted #2sat and then shifting the weights into subtraction using parity constraints. While this is a
straightforward construction, it only “almost” works because the parity constraints apparently require at least
some non-binary clauses. In fact, we are not aware of any direct technique to implement these parity constraints
without the introduction of these clauses. The main “trick” of our new proof is the observation that, since both
formulas are almost identical, these non-binary clauses can simply be omitted. While this introduces bugs in the
parity constraints (they will overcount), these bugs are “symmetric” in both formulas in the sense that both over
count by exactly the same amount — hence, the errors we introduce by omitting the non-binary clauses cancel
out.

The simplicity of the construction also unlocks various corollaries, or simplifies the original proofs of them.
First, since our reduction is logspace and linear time computable, it strengthens the formulas for which #2sat
is already hard for #P. Second, it is relatively easy to see that our reduction preserve all kinds of structural
parameters of the input. In particular, our reduction preserves the input’s incidence treewidth, leading to a new
and simple proof of the fact that #sat can be solved in time 2k poly(|φ|) on formulas of incidence treewidth k.
Finally, we obtained an improved version of the sparsification lemma from #dsat to sparse #2sat.

References

[1] C. Àlvarez and B. Jenner, A Very Hard Logspace Counting Class, Theor. Comput. Sci., 107 (1993),
pp. 3–30, https://doi.org/10.1016/0304-3975(93)90252-O.

[2] M. Arenas, L. A. Croquevielle, R. Jayaram, and C. Riveros, #NFA Admits an FPRAS: Efficient
Enumeration, Counting, and Uniform Generation for Logspace Classes, J. ACM, 68 (2021), pp. 48:1–48:40,
https://doi.org/10.1145/3477045.

[3] M. Bannach, E. D. Demaine, T. Gomez, and M. Hecher, #P is Sandwiched by One and Two #2DNF
Calls: Is Subtraction Stronger Than We Thought?, in 40th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS 2025), IEEE, 2025, pp. 31–43, https://doi.org/10.1109/LICS65433.2025.00010. In
Press. Available at https://arxiv.org/abs/2506.06716.

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited

https://doi.org/10.1016/0304-3975(93)90252-O
https://doi.org/10.1145/3477045
https://doi.org/10.1109/LICS65433.2025.00010
https://arxiv.org/abs/2506.06716

[4] O. Beyersdorff, J. K. Fichte, M. Hecher, T. Hoffmann, and K. Kasche, The Relative Strength of
#SAT Proof Systems, in 27th International Conference on Theory and Applications of Satisfiability Testing
(SAT 2024), S. Chakraborty and J. R. Jiang, eds., vol. 305 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2024, pp. 5:1–5:19, https://doi.org/10.4230/LIPICS.SAT.2024.5.

[5] H. L. Bodlaender, P. S. Bonsma, and D. Lokshtanov, The Fine Details of Fast Dynamic Programming
over Tree Decompositions, in 8th International Symposium on Parameterized and Exact Computation (IPEC
2013), 2013, pp. 41–53, https://doi.org/10.1007/978-3-319-03898-8_5.

[6] H. L. Bodlaender and T. Kloks, Efficient and Constructive Algorithms for the Pathwidth and Treewidth
of Graphs, Journal of Algorithms, 21 (1996), pp. 358–402.

[7] H. L. Bodlaender, A. M. C. A. Koster, F. van den Eijkhof, and L. C. van der Gaag,
Pre-processing for Triangulation of Probabilistic Networks, in 17th Conference in Uncertainty in Artificial
Intelligence (UAI 2001), 2001, pp. 32–39.

[8] R. Curticapean, Parity Separation: A Scientifically Proven Method for Permanent Weight Loss, in 43rd
International Colloquium on Automata, Languages, and Programming (ICALP 2016), I. Chatzigiannakis,
M. Mitzenmacher, Y. Rabani, and D. Sangiorgi, eds., vol. 55 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016, pp. 47:1–47:14, https://doi.org/10.4230/LIPICS.ICALP.2016.47.

[9] R. Curticapean, Block Interpolation: A Framework for Tight Exponential-Time Counting Complexity, Inf.
Comput., 261 (2018), pp. 265–280, https://doi.org/10.1016/J.IC.2018.02.008.

[10] H. Dell, T. Husfeldt, D. Marx, N. Taslaman, and M. Wahlen, Exponential Time Complexity
of the Permanent and the Tutte Polynomial, ACM Trans. Algorithms, 10 (2014), pp. 21:1–21:32, https:
//doi.org/10.1145/2635812.

[11] M. E. Dyer, L. A. Goldberg, C. S. Greenhill, and M. Jerrum, The Relative Complexity of Approxi-
mate Counting Problems, Algorithmica, 38 (2004), pp. 471–500, https://doi.org/10.1007/S00453-003-1073-Y.

[12] J. K. Fichte, M. Hecher, and F. Hamiti, The Model Counting Competition 2020, ACM J. Exp.
Algorithmics, 26 (2021), pp. 13:1–13:26, https://doi.org/10.1145/3459080.

[13] M. H. Group, J. Brunner, E. D. Demaine, J. Diomidova, T. Gomez, M. Hecher, F. Stock, and
Z. Zhou, Easier Ways to Prove Counting Hard: A Dichotomy for Generalized #SAT, Applied to Constraint
Graphs, in 35th International Symposium on Algorithms and Computation (ISAAC 2024), J. Mestre and
A. Wirth, eds., vol. 322 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024, pp. 51:1–51:14,
https://doi.org/10.4230/LIPICS.ISAAC.2024.51.

[14] R. Impagliazzo and R. Paturi, On the Complexity of k-SAT, Journal of Computer and System Sciences,
62 (2001), pp. 367–375.

[15] G. D. Ita, P. Bello, and M. Rodríguez, The Computation of #2SAT by a Fixed-Parameter Tractable
Algorithm, in Proceedings of the Eleventh Latin American Workshop on Logic/Languages, Algorithms and
New Methods of Reasoning, Puebla, Mexico, November 15, 2018, 2018, pp. 101–113.

[16] G. D. Ita, J. R. Marcial-Romero, and J. A. H. Servín, A Bottom-Up Algorithm for Solving #2SAT,
Log. J. IGPL, 28 (2020), pp. 1130–1140, https://doi.org/10.1093/JIGPAL/JZAA009.

[17] T. Laakkonen, K. Meichanetzidis, and J. van de Wetering, A Graphical #SAT Algorithm for
Formulae with Small Clause Density, in Proceedings of the 21st International Conference on Quantum
Physics and Logic, QPL 2024, Buenos Aires, Argentina, July 15-19, 2024, 2024, pp. 137–161, https:
//doi.org/10.4204/EPTCS.406.7.

[18] G. D. I. Luna, F. Z. Flores, and A. Rangel-Huerta, A Note for Parametric Complexity of #2SAT,
in Proceedings of the Seventh Latin American Workshop on Non-Monotonic Reasoning, LANMR 2011,
Toluca, Estado de México, México, November 7-8, 2011, 2011, pp. 95–104, https://ceur-ws.org/Vol-804/09_
LANMR11.pdf.

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited

https://doi.org/10.4230/LIPICS.SAT.2024.5
https://doi.org/10.1007/978-3-319-03898-8_5
https://doi.org/10.4230/LIPICS.ICALP.2016.47
https://doi.org/10.1016/J.IC.2018.02.008
https://doi.org/10.1145/2635812
https://doi.org/10.1145/2635812
https://doi.org/10.1007/S00453-003-1073-Y
https://doi.org/10.1145/3459080
https://doi.org/10.4230/LIPICS.ISAAC.2024.51
https://doi.org/10.1093/JIGPAL/JZAA009
https://doi.org/10.4204/EPTCS.406.7
https://doi.org/10.4204/EPTCS.406.7
https://ceur-ws.org/Vol-804/09_LANMR11.pdf
https://ceur-ws.org/Vol-804/09_LANMR11.pdf

[19] G. D. I. Luna and J. R. Marcial-Romero, Computing #2SAT and #2UNSAT by Binary Patterns,
in Pattern Recognition - 4th Mexican Conference, MCPR 2012, Huatulco, Mexico, June 27-30, 2012.
Proceedings, 2012, pp. 273–282, https://doi.org/10.1007/978-3-642-31149-9_28.

[20] M. A. L. Medina, J. R. Marcial-Romero, G. D. I. Luna, and J. A. H. Servín, A Linear Time
Algorithm for Counting #2SAT on Series-Parallel Formulas, in Advances in Soft Computing - 19th Mexican
International Conference on Artificial Intelligence, MICAI 2020, Mexico City, Mexico, October 12-17, 2020,
Proceedings, Part I, 2020, pp. 437–447, https://doi.org/10.1007/978-3-030-60884-2_33.

[21] M. A. L. Medina, J. R. Marcial-Romero, J. A. H. Servín, and G. D. Ita, Model Counting for
#2SAT Problem in Outerplanar Graphs, in Proceedings of the Eleventh Latin American Workshop on
Logic/Languages, Algorithms and New Methods of Reasoning, Puebla, Mexico, November 15, 2018, 2018,
pp. 76–87.

[22] J. Mei, M. M. Bonsangue, and A. Laarman, Simulating Quantum Circuits by Model Counting, in
Computer Aided Verification - 36th International Conference, CAV 2024, Montreal, QC, Canada, July 24-27,
2024, Proceedings, Part III, 2024, pp. 555–578, https://doi.org/10.1007/978-3-031-65633-0_25.

[23] J. Mei, T. Coopmans, M. M. Bonsangue, and A. Laarman, Equivalence Checking of Quantum Circuits
by Model Counting, in Automated Reasoning - 12th International Joint Conference, IJCAR 2024, Nancy,
France, July 3-6, 2024, Proceedings, Part II, 2024, pp. 401–421, https://doi.org/10.1007/978-3-031-63501-4_
21.

[24] A. Pilz, Planar 3-SAT with a Clause/Variable Cycle, Discret. Math. Theor. Comput. Sci., 21 (2019),
https://doi.org/10.23638/DMTCS-21-3-18.

[25] M. Samer and S. Szeider, Algorithms for Propositional Model Counting, J. Discrete Algorithms, 8 (2010),
pp. 50–64, https://doi.org/10.1016/j.jda.2009.06.002.

[26] F. Slivovsky and S. Szeider, A Faster Algorithm for Propositional Model Counting Parameterized by
Incidence Treewidth, in 23rd International Conference on the Theory and Applications of Satisfiability Testing
(SAT 2020), L. Pulina and M. Seidl, eds., vol. 12178 of Lecture Notes in Computer Science, Springer, 2020,
pp. 267–276, https://doi.org/10.1007/978-3-030-51825-7_19.

[27] A. Sly, Computational Transition at the Uniqueness Threshold, in 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science, IEEE, 2010, pp. 287–296.

[28] L. G. Valiant, The Complexity of Computing the Permanent, Theor. Comput. Sci., 8 (1979), pp. 189–201,
https://doi.org/10.1016/0304-3975(79)90044-6.

[29] L. G. Valiant, The Complexity of Enumeration and Reliability Problems, SIAM J. Comput., 8 (1979),
pp. 410–421, https://doi.org/10.1137/0208032.

[30] D. Zuckerman, On Unapproximable Versions of NP-Complete Problems, SIAM J. Comput., 25 (1996),
pp. 1293–1304, https://doi.org/10.1137/S0097539794266407.

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited

https://doi.org/10.1007/978-3-642-31149-9_28
https://doi.org/10.1007/978-3-030-60884-2_33
https://doi.org/10.1007/978-3-031-65633-0_25
https://doi.org/10.1007/978-3-031-63501-4_21
https://doi.org/10.1007/978-3-031-63501-4_21
https://doi.org/10.23638/DMTCS-21-3-18
https://doi.org/10.1016/j.jda.2009.06.002
https://doi.org/10.1007/978-3-030-51825-7_19
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1137/0208032
https://doi.org/10.1137/S0097539794266407

	Introduction
	Contribution: A Simple Reduction from #SAT to #2SAT
	Simplified Proofs and Consequences
	Related Work
	Structure of this Article

	Warmup: From #SAT to Weighted #2SAT
	Simulating Inclusion-Exclusion via Negative Weights

	Main Contribution: From #SAT to #2SAT
	How to Encode Sequential Parity Counters?
	Reduction to #2SAT
	Correctness by Symmetry

	Complexity-Theoretic and Algorithmic Implications
	Simplified Hardness
	Simplified Treewidth-Based Algorithm
	Sparsification and Lower Bound for #2SAT

	Conclusion and Outlook

