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Abstract

Classical axiomatizations of belief revision include a postulate stating that if
new information is consistent with initial beliefs, then revision amounts to simply
adding the new information to the original knowledge base. This postulate assumes
a conservative attitude towards initial beliefs, in the sense that an agent faced with
the need to revise them will seek to preserve initial beliefs as much as possible. In
this work we look at operators that can assume different attitudes towards original
beliefs. We provide axiomatizations of these operators by varying the aforemen-
tioned postulate and obtain representation results that characterize the new types of
operators using preorders on possible worlds. We also present concrete examples
for each new type of operator, adapting notions from decision theory.

1 Introduction
Belief revision models rational changes of an agent’s epistemic state triggered by the
availability of new, trusted information. In the standard logical approach, an agent’s
epistemic state is represented by propositional formulas, while the standards of ratio-
nality a revision operator is expected to abide by are encoded as logical axioms [1, 12,
17, 9]. Notably, the classical set of revision postulates turn out to define a class of op-
erators that can be looked at in two ways: on the one hand as change, guided by logical
postulates, of propositional theories in response to new data; and on the other hand as
choice functions over possible worlds exploiting plausibility rankings over such inter-
pretations. This correspondence tells us that an agent faced with revision of its initial
beliefs acts as if it chooses from a set of feasible possible worlds the ones it considers
most plausible.

A distinguishing feature of revision operators, as typically axiomatized, is that they
can be assumed to adopt a particular attitude towards initial beliefs, enforced through
what are called the Inclusion and Vacuity postulates in the AGM formulation [9],
or through a single postulate equivalent to their conjunction in the KM axiomatiza-
tion [17]. This attitude articulates the policy by which the agent’s prior information
behaves with respect to new data: thus, in the KM axiomatization, the postulate in
question states that if new information µ is consistent with existing beliefs κ, then the
∗This is an extended version of work accepted for publication at IJCAI 2019 [13].
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result of revision is simply κ ∧ µ. In other words, the agent retains its initial beliefs
and simply supplements them with the new item of information, if it can do so in a
consistent way. This is in line with a view of revision where the information κ with
which the agent starts off represents the possible worlds the agent finds most plausible,
information not to be given up unless challenged by conflicting new data, and spells
out a conservative attitude towards initial beliefs, guided by the desire to preserve them
as much as possible.

In the current work we view such a conservative attitude as one among many that
an agent can have towards its initial beliefs. By varying the postulate responsible for
enforcing this attitude we are able to axiomatize revision operators that embody a wider
range of attitudes towards prior information, and characterize these operators in terms
of the types of preorders they induce on the set of possible worlds. To illustrate these
principles we provide concrete operators, constructed using two ingredients: a notion
of distance between possible worlds and an aggregation function that ranks possible
worlds depending on the initial beliefs. We also show, in each case, how these op-
erators fit into the landscape of new postulates introduced. Without the theoretical
apparatus of the new postulates, the concrete operators put forward would be merely
classified as deviant, since they do not satisfy the traditional blend of Inclusion and
Vacuity. But through the present analysis they can be viewed as encoding distinct and
characterizable stances an agent can take towards its beliefs.

Alternatives to the classical revision postulates have been considered since as far
back as the original publications in the field [12, 16, 14]. However, we believe that
a systematic analysis of the intuition underlying the KM postulate corresponding to
Inclusion and Vacuity, as we perform here, sheds new light on familiar topics.

2 Preliminaries
We assume a finite set P of propositional atoms, from which the set Prop of proposi-
tional formulas is generated using the usual propositional connectives. A propositional
knowledge base κ is a finite set of propositional formulas, which we typically identify
with the conjunction of its formulas

∧
µ∈κ µ. The set of all propositional knowledge

bases is 2Prop. The universe U is the set of all possible interpretations (also called
possible worlds) for formulas in Prop. The models of a propositional formula µ are
the interpretations which satisfy it, and we write [µ] (respectively, [κ]) for the set of
models of µ (respectively, for

⋂
µ∈κ[µ]). If there is no danger of ambiguity, we write

models as words where the letters are the atoms assigned to true, e.g., {{a, b}, {b, c}}
is written as {ab, bc}. For µ1, µ2 ∈ Prop, we say that µ1 entails µ2, written µ1 |= µ2,
if [µ1] ⊆ [µ2], and that they are equivalent, written µ1 ≡ µ2, if [µ1] = [µ2]. A formula
µ (a knowledge base κ) is consistent if [µ] 6= ∅ ([κ] 6= ∅), and complete if it has ex-
actly one model. The set of consistent knowledge bases is 2Propcons . If κ is a propositional
knowledge base, then the dual κ of κ is obtained by replacing every literal appearing
in κ with its negation. If w is an interpretation, the dual interpretation w is P \ w. If
W is a set of interpretations, its dual W is defined as {w | w ∈W}.
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Example 1. If P = {a, b, c} and κ = {a, a → b}, then κ = {¬a,¬a → ¬b}. We
have that [κ] = {ab, abc}, the dual of the interpretation ab is ab = c and [κ] = {c, ∅}.

In Example 1 we obtain that [κ] = [κ]. Though we do not provide a formal proof,
we mention here that this holds more generally, i.e., for any κ ∈ 2Prop, it holds that
[κ] = [κ].

If M is a set, then Bin(M) is the set of binary relations on M. We write <
for the strict part of ≤, i.e., x < x′ if x ≤ x′ and x′ 6≤ x; moreover, x ≈ x′ if
x ≤ x′ and x′ ≤ x. The ≤-minimal elements ofM with respect to ≤ are defined as
min≤M = {x ∈ M | @x′ ∈ M such that x′ < x}. An assignment fromM1 toM2

is a function α :M1 → Bin(M2). We write ≤κ instead of α(κ) if there is no danger
of ambiguity. IfW is a set of interpretations, we denote by ϕW a propositional formula
such that [ϕW ] =W .

3 Revision: Axioms and Characterizations
A propositional revision operator is a function ◦ : 2Propcons × Prop → Prop. The inten-
tion is that κ ◦ µ encodes changes brought to existing held beliefs κ such that new,
trusted information µ is accepted. A sensible revision operator is expected to resolve
inconsistencies between κ and µ and to satisfy certain rationality criteria, presented
below.

3.1 Basic Postulates
If κ, κ1, κ2 ∈ 2Propcons and µ, µ1, µ2 ∈ Prop, we first single out a core set of axioms. Note
that R2 as we write it does not coincide with the second KM postulate. The second KM
postulate shows up in the latter part of this section.

(R1) κ ◦ µ |= µ.

(R2) If µ is consistent, then κ ◦ µ is consistent.

(R3) If κ1 ≡ κ2 and µ1 ≡ µ2, then κ1 ◦ µ1 ≡ κ2 ◦ µ2.

(R4) (κ ◦ µ1) ∧ µ2 |= κ ◦ (µ1 ∧ µ2).

(R5) If (κ ◦ µ1) ∧ µ2 is cons., then κ ◦ (µ1 ∧ µ2) |= (κ ◦ µ1) ∧ µ2.

Postulates R1−5 are part of the standard set of KM postulates [17], saying that a revi-
sion operator incorporates new information µ (R1), returns a consistent output if µ is
consistent (R2), performs its task irrespectively of how beliefs are written down (R3)
and satisfies some coherence constraints when the revision formula is varied (R4−5).
A revision operator is basic if it satisfies R1−5. Throughout the paper, we work only
with basic operators.
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3.2 Basic Assignments
Reflection on postulates R1−5 reveals that an operator ◦ satisfying them chooses among
models of µ and, in doing so, behaves as if it has preferences over units of information.
Formally, this is cashed out by assigning to each consistent knowledge base κ in 2Propcons

a binary relation≤κ on interpretations in U : to revise κ by µ, then, becomes equivalent
to choosing the best models of µ in ≤κ. And, in the same way that revision operators
are expected to satisfy a set of basic properties (postulates R1−5), rankings on U must
satisfy a set of properties, to be introduced in the following, that are conducive to
rational choice.

For an assignment α : 2Propcons → Bin(U), a revision operator ◦ and κ, κ1, κ2 ∈ 2Propcons ,
w1, w2 ∈ U , we first consider the following properties:

(o1) ≤κ is reflexive.

(o2) ≤κ is transitive.

(o3) If κ1 ≡ κ2, then ≤κ1
=≤κ2

.

(o4) ≤κ is total.

(o5) [κ ◦ µ] = min≤κ [µ], for any propositional formula µ.

An assignment is basic if it satisfies properties o1−4. Notice that properties o1−2 im-
ply that ≤κ is a preorder on U . Adding property o4 makes ≤κ total, and o3 adds an
independence of syntax aspect to the assignment. If, on top of this, ≤κ satisfies o5, we
say that the assignment α represents the revision operator ◦ (and that ◦ is represented
by α). The overloading of the term ‘basic’ is intentional: as Theorem 1 shows, prop-
erties o1−5 define a class of rankings on interpretations that fully characterize revision
operators satisfying axioms R1−5.

Theorem 1. A revision operator satisfies postulates R1−5 iff there exists an assignment
α : 2Propcons → U representing it such that, for any κ ∈ 2Propcons ,≤κ satisfies properties o1−5.

Proof. (“⇒”) We first assume we are given an assignment α : 2Propcons → U such that, for
any κ ∈ 2Propcons ,≤κ satisfies properties o1−5. We want to show that the revision operator
◦ represented by it satisfies axioms R1−5. Concretely, we consider the revision operator
◦ such that, for any knowledge base κ and formula µ, we have that:

[κ ◦ µ] = min
≤κ

[µ].

The proof comes to checking, one by one, that axioms R1−5 are satisfied by operator
◦. The argument is not new, and can be extracted from classical works on the subject
[17], but we reproduce it here for completeness.

Axiom R1 follows from the fact that κ ◦ µ is a formula whose set of models is, by
definition, a subset of [µ]. Since [µ] is a finite set and, by properties o1−2, ≤κ is a pre-
order, we then have that min≤κ [µ] 6= ∅, if [µ] 6= ∅. This implies that axiom R2 is satis-
fied. For axiom R3, we have that if κ1 ≡ κ2, then, by property o3, ≤κ1

=≤κ2
. Clearly,

then, if we also have that µ1 ≡ µ2, then it holds that min≤κ1 [µ1] = min≤κ2 [µ2].
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For axiom R4, take w1 ∈ [(κ ◦ µ1) ∧ µ2]: this means that w1 ∈ min≤κ [µ1] ∩ [µ2],
and we want to show that w1 ∈ min≤κ [µ1 ∧ µ2]. Suppose, on the contrary, that w1 /∈
min≤κ [µ1∧µ2]. Since we can derive, from our starting assumption, thatw1 ∈ [µ1∧µ2],
it follows that [µ1 ∧ µ2] 6= ∅, and hence that min≤κ [µ1 ∧ µ2] 6= ∅. Thus there exists
w2 ∈ min≤κ [µ1 ∧ µ2]; since w1 /∈ min≤κ [µ1 ∧ µ2] we then conclude that w2 <κ w1.
But w1 and w2 are both in [µ1] and w1 ∈ min≤κ [µ1], which implies that w1≤κw2. We
have arrived at a contradiction, and thus w1 ∈ min≤κ [µ1 ∧ µ2]. For axiom R5, take
w1 ∈ min≤κ [κ ◦ (µ1 ∧ µ2)]. We want to show that w1 ∈ [(κ ◦µ1)∧µ2]. From the fact
that w1 ∈ min≤κ [κ ◦ (µ1 ∧ µ2)] we infer that w1 ∈ [µ2], so all we have to show is that
w1 ∈ [κ◦µ1]. Suppose, on the contrary, that w1 /∈ [κ◦µ1]: we now use the assumption
that (κ◦µ1)∧µ2 is consistent to conclude that there exists w2 ∈ [(κ◦µ1)∧µ2], which
implies that w2 <κ w1. But, since w1 ∈ min≤κ [κ ◦ (µ1 ∧ µ2)] and w2 ∈ [µ1 ∧ µ2], it
also follows that w1≤κw2. This is a contradiction, and we conclude that w1 ∈ [κ◦µ1].

(“⇐”) For this direction, we must first fix a point on notation: given a set W
of interpretations, we will need to make use of a propositional formula that captures
exactly the set W . More precisely, if w1,. . . ,wn are interpretations, we write ϕ1,...,n

for a propositional formula such that [ϕ1,...,n] = {w1, . . . , wn}.1
Assume, now, that we are given a revision operator ◦ that satisfies axioms R1−5.

We define as assignment α : 2Propcons → U by saying, for any base κ and interpretations
w1 and w2 that:

w1≤κw2 if w1 ∈ [κ ◦ ϕ1,2].

We show next that ≤κ satisfies properties o1−5.
For property o1 (reflexivity), notice that, using axioms R1 and R3, we can conclude

that [κ◦ϕ1] = {w1}, where ϕ1 is a propositional formula such that [ϕ1] = {w1}. This
implies that w1≤κw1.

For property o2 (transitivity), assume there are interpretations w1, w2 and w3 such
that w1≤κw2 and w2≤κw3. We want to show that w1≤κw3. We will do this in two
steps. The first step consists in showing that w1 ∈ [κ ◦ ϕ1,2,3], where ϕ1,2,3 is a
propositional formula such that [ϕ1,2,3] = {w1, w2, w3}. First, notice that, by axioms
R1 and R2, we have that ∅ ⊂ [κ◦ϕ1,2,3] ⊆ [ϕ1,2,3]. In other words, [κ◦ϕ1,2,3] contains
at least one of the interpretations w1, w2 and w3. We will do a case analysis to show
that w1 ∈ [κ ◦ ϕ1,2,3].

Case 1. If w1 ∈ [κ ◦ ϕ1,2,3], the conclusion is immediate.
Case 2. If w2 ∈ [κ ◦ ϕ1,2,3], then (κ ◦ ϕ1,2,3) ∧ ϕ1,2 is consistent. Using axioms

R4−5, this implies that:

(κ ◦ ϕ1,2,3) ∧ ϕ1,2 ≡ κ ◦ (ϕ1,2,3 ∧ ϕ1,2).

We have thatϕ1,2,3∧ϕ1,2 ≡ ϕ1,2, and thus, by axiom R3, it holds that κ◦(ϕ1,2,3 ∧ ϕ1,2) ≡
κ ◦ ϕ1,2. We can thus conclude that:

(κ ◦ ϕ1,2,3) ∧ ϕ1,2 ≡ κ ◦ ϕ1,2.

Since w1 ∈ [κ ◦ ϕ1,2] (because w1≤κw2), we have that w1 ∈ [κ ◦ ϕ1,2,3].

1Such a formula is guaranteed to exist in propositional logic: we can, for instance, take the DNF repre-
sentation of the set {w1, . . . , wn}.
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Case 3. If w3 ∈ [κ ◦ ϕ1,2,3], (κ ◦ ϕ1,2,3) ∧ ϕ2,3 is consistent. Using axioms R4−5,
this implies that:

(κ ◦ ϕ1,2,3) ∧ ϕ2,3 ≡ κ ◦ (ϕ1,2,3 ∧ ϕ2,3),

and by axioms R1−2 again, we have that:

(κ ◦ ϕ1,2,3) ∧ ϕ2,3 ≡ κ ◦ ϕ2,3.

Since w2 ∈ [κ ◦ ϕ2,3] (because w2≤κw3), we get that w2 ∈ [κ ◦ ϕ1,2,3]. We can now
reproduce the reasoning from Case 2 to conclude that w1 ∈ [κ ◦ ϕ1,2,3].

Once we have that w1 ∈ [κ◦ϕ1,2,3], it follows that (κ◦ϕ1,2,3)∧ϕ1,3 is consistent.
So, by axioms R4−5, we have that:

(κ ◦ ϕ1,2,3) ∧ ϕ1,3 ≡ κ ◦ (ϕ1,2,3 ∧ ϕ1,3),

and by axioms R1−2, we have that:

(κ ◦ ϕ1,2,3) ∧ ϕ1,3 ≡ κ ◦ ϕ1,3.

Since w1 ∈ [κ◦ϕ1,2,3] and w1 ∈ [ϕ1,3], we conclude that w1 ∈ [κ◦ϕ1,3]. This implies
that w1≤κw3.

Property o3 follows from the fact that the definition of ≤κ does not depend in any
way on the syntax of κ.

Property o4 follows by axioms R1−2: since, for any two interpretations w1 and w2,
we get that ∅ ⊂ [κ ◦ ϕ1,2] ⊆ [ϕ1,2], we have that w1≤κw2 or w2≤κw1, or both.

For property o5, we show the double inclusion.
(“⊆”) Take, first, w1 ∈ [κ ◦ µ], and some arbitrary interpretation w2 ∈ [µ]. We get

thatw1 ∈ [(κ◦µ)∧ϕ1,2] and, by axioms R4 and R3, it follows thatw1 ∈ [κ◦(µ ∧ ϕ1,2)]
and then that w1 ∈ [κ ◦ ϕ1,2]. Thus, w1≤κw2 and hence, w1 ∈ min≤κ [µ].

(“⊇”) Take, now, w1 ∈ min≤κ [µ]. We want to show that w1 ∈ [κ ◦ µ]. Supopse,
on the contrary, that w1 /∈ [κ ◦ µ]. Since, due to our assumption, it follows that µ is
consistent, we have, by axioms R1−2, that there exists w2 ∈ [κ ◦ µ]. By axiom R5, we
have that:

(κ ◦ µ) ∧ ϕ1,2 |= κ ◦ (µ ∧ ϕ1,2).

By axiom R3, we have that κ ◦ (µ ∧ ϕ1,2) ≡ κ ◦ ϕ1,2. Since w1 /∈ [κ ◦ µ], it follows
that w1 /∈ [κ ◦ ϕ1,2], and hence w2 <κ w1. But we also have that w1 ∈ min≤κ [µ] and
w2 ∈ [µ], which implies that w1≤κw2. We have thus arrived at a contradiction.

Theorem 1 tells us that an agent revising beliefs along the lines of postulates R1−5
behaves as if it ranks interpretations in U in a total preorder ≤κ that depends on initial
beliefs κ, and always picks the minimal models of µ according to ≤κ. Such an agent,
then, behaves like a rational agent, in the sense of rational choice theory [26, 11],
choosing the best elements from a given menu of options: the menu, here, would be
the models of µ, i.e., the possible worlds the agent is allowed to believe in light of new
information, while the best elements are decided with reference to≤κ. Thus, a revision
operator can be seen as a choice function over sets of interpretations: accordingly,
Theorem 1 aligns with standard choice theoretic results [2, 26, 22]. That a similar
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≤κ
abc

ab

b, bc

[κ]

[µ]

Figure 1: Revision scenario of Example 2, showing the relevant section of the preorder ≤κ on
the basis of which the revision result is constructed: only models of µ = b are depicted; the
models of κ among this set are highlighted in grey.

mathematical formalism underlies both belief revision and rational choice is, by itself,
not a new insight, the topic having been studied under various guises [24, 5]. The
main difference is one of interpretation, with ≤κ usually thought of in revision as a
plausibility ranking, i.e., the agent’s assessment as to which possible worlds are more
or less plausible.

Example 2. A doctor knows that the patient has been diagnosed with asthma (a), finds
out that the patient is suffering from shortness of breath (b) and infers that chest pain (c)
is also present: the two often go together in asthma, and such stereotypical examples
are more salient in the doctor’s mind than less frequent, more exotic examples. In
other words, the doctor has initial information κ = a and a plausibility ranking ≤κ
over possible worlds (with respect to the alphabet P = {a, b, c}) depicted in Figure 1.
The doctor then revises by µ = b and settles on a possible state of affairs that is most
plausible according to their plausibility ranking ≤κ, i.e., [κ ◦µ] = min≤κ [µ] = {abc}.
Note that the doctor, in this case, takes the situation represented by a∧ b∧ c to be more
likely than a ∧ b ∧ ¬c.

One way of thinking of postulates R1−5 is that they axiomatize total preorders on in-
terpretations. These preorders nominally depend on κ, but nothing in postulates R1−5
touches on how models of κ should influence these preorders. In other words, there is
as yet no information about the attitude of an agent towards its initial epistemic state,
and postulates R1−5 are consistent with arbitrary attitudes towards κ. How should the
models of κ stand in relation to all other interpretations? Example 2 offers a glimpse
into one possible answer: the agent starts off with some information κ and differentiates
among possible worlds consistent with κ: some of these worlds are more plausible than
others, perhaps as a result of being more salient, or because of a systematic bias [15].
Still, as a whole, models of κ are more plausible than any other interpretations con-
sistent with the new information µ. In other words, the agent is biased towards the
possible worlds consistent with κ. Are there, now, other ways of arranging the models
of κ in ≤κ, ways that span the space of possible such attitudes? We study this question
through the lens of additional axioms.

3.3 Attitudes Towards Initial Beliefs
If κ, κ′ ∈ 2Propcons , µ ∈ Prop, consider the following postulates:

(R6) If κ ∧ µ is consistent, then κ ∧ µ |= κ ◦ µ.
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(R7) If κ ∧ µ is consistent, then κ ◦ µ |= κ ∧ µ.

(R8) If κ ◦ µ |= κ, then κ ◦ µ ≡ µ.

(R9) If µ 6|= κ, then (κ ◦ µ) ∧ κ is inconsistent.

(R10) If κ′ is complete and κ′ |= κ ◦ µ, then κ′ |= (κ ∨ κ′) ◦ µ.

Each of these postulates encodes a particular type of attitude towards initial beliefs,
and they are intended to be thought of in conjunction with the basic set of postulates
R1−5. Some clarification is in order. Postulate R6 models an agent that incorporates
all information in κ ∧ µ, and possibly extends this to cover more ground. Postulate R7

models an agent that reserves the right to drop information from κ if it so sees fit, even
if that information is consistent with µ: we may imagine this is done on the basis of
certain preferences over the information encoded by κ, i.e., the agent is partial towards
certain parts of κ to the detriment of others. Taken together, postulates R6−7 imply that
κ◦µ is equivalent to κ∧µ, when κ∧µ is consistent. This property models an agent who
wants to preserve as much of κ as it can, and does not have any bias towards either of
the models of κ. Postulate R6 can be equated with the Inclusion postulate in the AGM
formulation and R7 corresponds to Vacuity [9], while in the KM axiomatization R6

and R7 are packaged together in one postulate (i.e., KM postulate R2) and presented
alongside R1−5 as the default set of rational properties for revision [17].

Postulates R8−9 focus on the dual knowledge base κ obtained by replacing every
literal in κwith its negated version. If κ is a conjunction of literals, or if it is a complete
(i.e., with exactly one model) formula, then κ will be a formula whose models are
complements of the models of κ.

Example 3. If P = {a, b, c} and κ = {a ∧ b} is a knowledge base over the alphabet
P , then κ = {¬a ∧ ¬b}, and we have that [κ] = {ab, abc}, while [κ] = {∅, c}

Thus, if κ is very specific (e.g., is a conjunction of literals), then κ can be thought of
as the point of view opposite to that of κ, and situations can be imagined in which it is
desirable to put bounds on the revision function in terms of how it treats information
encoded by κ. This is the case if the agent has, or is required to have, a definite opinion
on every item from an agenda, as is typically the case in Judgment Aggregation [8]; if
κ is a ‘vivid’ knowledge base [21]; or, if it encodes something like an agent’s preferred
bundle from a set of available items. In all these cases κ can be required to be a
conjunction of literals or a complete formula.

Postulate R8 says that if κ undergoes revision by a formula µ embodying such
an adverse perspective, then the agent must adopt µ: in other words, the agent has
no room for maneuvering towards a more amenable middle ground. Such a revision
policy makes more sense when considered alongside postulate R9, which specifies that
if the agent has the option of believing states of affairs not compatible with κ, it should
wholeheartedly adopt those as the most plausible stance. Taken together, postulates
R8−9 inform the agent to believe states of affairs compatible with κ only if it has no
other choice in the matter: the models of κ should be part of a viewpoint one is willing
to accept only as a last resort. Postulate R10 is best understood through an example.
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Example 4. An agent intends to go to an art museum, the beach and a concert, i.e.,
κ = {a ∧ b ∧ c}, with P = {a, b, c}. The agent then learns that it only has time for
one of these activities and chooses the art museum, i.e., κ ◦ µ ≡ a ∧ ¬b ∧ ¬c. If the
agent’s initial intentions were less specific, for instance that it would either go to all
three places or only to the art museum (i.e., κ = {(a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c)}), then,
faced with the same new information µ, a ∧ ¬b ∧ ¬c should still feature as one of its
most preferred options.

A clearer view of postulates R6−10 emerges when looking at how they situate the mod-
els of κ in a total preorder ≤κ, for κ, κ′ ∈ 2Propcons , w1, w2, w

′ ∈ U :

(o6) If w1 ∈ [κ], then w1≤κw2.

(o7) If w1 ∈ [κ] and w2 /∈ [κ], then w1<κw2.

(o8) If w1 ∈ [κ], then w2≤κw1.

(o9) If w1 ∈ [κ] and w2 /∈ [κ], then w2<κw1.

(o10) If w′≤κw and [κ′] = {w′}, then w′ ≤κ∨κ′ w.

Properties o6−10 turn out to characterize axioms R6−10 on the semantic level, as per
the following representation result.

Theorem 2. If ◦ is a basic revision operator and α : 2Propcons → U is a basic assignment
that represents it, then, for any κ ∈ 2Propcons and µ ∈ Prop, the following equivalences
hold:

(1) ◦ satisfies axiom R6 iff ≤κ satisfies property o6;

(2) ◦ satisfies axiom R7 iff ≤κ satisfies property o7;

(3) ◦ satisfies axiom R8 iff ≤κ satisfies property o8;

(4) ◦ satisfies axiom R9 iff ≤κ satisfies property o9;

(5) ◦ satisfies axiom R10 iff ≤κ satisfies property o10.

Proof. Recall that we denote by ϕ1,2 a propositional formula for which [ϕ1,2] =
{w1, w2}.

For equivalence 1, we show each direction in turn. (“⇒”) Take, first, an assignment
α satisfying property o6, and the revision operator ◦ represented by it. Let us assume
that κ ∧ µ is consistent, and show that for any w ∈ [κ ∧ µ], it holds that w ∈ [κ ◦ µ]
as well. By property o5, this is equivalent to showing that w ∈ min≤κ [µ]. Take an
arbitrary interpretation w′ ∈ [µ]. Since w ∈ [κ], we can apply property o6 to get that
w≤κw′. Hence w ∈ min≤κ [µ]. (“⇐”) Take a basic revision operator ◦ satisfying R6.
and the assignment α which represents it. To show that ≤κ satisfies property o6, take
two interpretations w1 and w2 such that w1 ∈ [κ]. Then, by axiom R6, we have that
κ ∧ ϕ1,2 |= κ ◦ ϕ1,2. By property o5, it holds that [κ ◦ ϕ1,2] = min≤κ [ϕ1,2] and, since
w1 ∈ [κ ∧ ϕ1,2], it follows that w1 ∈ min≤κ [ϕ1,2]. Thus, w1≤κw2.
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Equivalence 1 is known and can be found in the belief revision literature, where it
is usually bundled up together with Theorem 1 (see, for instance, the proof in [17]).

For equivalence 2, we show again each direction in turn. (“⇒”) Take an assignment
α satisfying property o7 and the revision operator ◦ represented by it. Let us assume
that κ ∧ µ is consistent. Take w ∈ [κ ◦ µ], and suppose w /∈ [κ ∧ µ]. By property o5,
we have that [κ ◦ µ] = min≤κ [µ], and hence w ∈ [µ]. Thus, the fact that w /∈ [κ ∧ µ]
implies that w /∈ [κ]. But, by assumption, it holds that [κ ∧ µ] 6= ∅. Thus, there
exists w′ ∈ [κ ∧ µ] and, by property o7, it follows that w′<κw. But we also have
that w ∈ min≤κ [µ], which implies that it cannot be the case that w′<κw, which is a
contradiction. (“⇐”) Take a basic revision operator ◦ satisfying R7 and the preorder≤κ
that represents it. To show that ≤κ satisfies property o7, take w1 ∈ [κ] and w2 /∈ [κ].
We then have that κ∧ϕ1,2 is consistent and hence, by axiom R7, that κ◦ϕ1,2 |= κ∧ϕ1,2.
Since [κ◦ϕ1,2] is, by axioms R1−2, a non-empty subset of [ϕ1,2] = {w1, w2}, we have
that at least one of w1 and w2 is in [κ ◦ ϕ1,2]. Notice, now, that we cannot have
w2 ∈ [κ ◦ ϕ1,2], since it would follow that w2 ∈ [κ ∧ ϕ1,2] and w2 ∈ [κ], which is a
contradiction. Thus, [κ ◦ ϕ1,2] = {w1}. Since ≤κ represents ◦, we have by property
o5 that [κ ◦ ϕ1,2] = min≤κ [ϕ1,2]. It follows that w1<κw2.

Equivalences 3 and 4 are analogous to 1 and 2, respectively. For equivalence 5,
assume first that axiom R10 holds, and take interpretations w and w′ and a knowledge
base κ′ such that w′≤κw and [κ′] = {w′}. To show that w′ ≤κ∨κ′ w, we must show
that w′ ∈ [(κ ∨ κ′) ◦ ϕw,w′ ], where ϕw,w′ is a formula such that [ϕw,w′ ] = {w,w′}.
This follows immediately by applying axiom R10. Conversely, suppose [κ′] = {w′},
and take w ∈ [κ ◦ µ]. Then, we get that w′≤κw, and we can apply property o10 to
derive the conclusion.

Theorem 2 is better understood through an illustration of how such preorders treat
models of κ. Property o6 says that models of κ are minimal elements in κ, i.e., the
agent considers possible worlds satisfying its beliefs among the most plausible pos-
sible worlds, though possibly not uniquely so (Figure 2-(a)). Property o7 states that
there are no counter-models of κ more plausible than the models of κ, but the models
of κ themselves may not be equally plausible (Figure 2-(b)). Properties o8−9 say that
models of the dual knowledge base κ are the least plausible interpretations in ≤κ (Fig-
ure 2-(c,d)), while property o10 says that if w′ is more plausible than w when the initial
beliefs are κ, then w′ would still be more plausible than w if it were part of the initial
beliefs (Figure 2-(e)).

Together, properties o1−7 define what is more commonly known as a faithful as-
signment, placing all and only models of κ on the lowest level of≤κ. This corresponds
to an agent that holds its initial beliefs to be the most plausible states of affairs [17].
Consequently, Theorem 1 plus equivalences 1-2 from Theorem 2 make up the classical
representation result for belief revision operators [17]. Here we have opted for a more
fine-grained approach to the placement of models of κ in ≤κ, which allows a more
diverse representation of the different types of attitudes an agent can have towards ini-
tial beliefs. Though operators that do not satisfy the classical KM postulate R2 have
been considered before [25, 4], the idea that such deviations correspond to possible
epistemic attitudes and can be axiomatized is, to the best of our knowledge, new.
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• •
w′
w

⇒

≤κ∨κ′

. . .
• •
w′ •
w

(e) o10

Figure 2: Schematic view of prototypical preorders satisfying each of the properties o6−10;
models of κ are in the light gray area, models of κ are in the dark gray area.

3.4 Indifference to Already Held Beliefs
One particular consequence of weakening the KM axiom R2 (axioms R6−7 in the cur-
rent context) is that the following property is not guaranteed to hold anymore:

(RIDF) κ ◦ κ ≡ κ.

This property, called here RIDF (for indifference to already held beliefs), says that revis-
ing with information the agent already believes does not change the agent’s epistemic
state. More generally, the KM standard set of postulates implies that revising by any
formula µ such that κ |= µ results in κ. It quickly becomes apparent that axiom R6 im-
plies RIDF,2 but R7 does not. Thus, if an agent is allowed to rank models of κ unequally,
then RIDF is not guaranteed to hold.

Example 5. If P = {a, b}, take κ = {a ∨ b} and a revision operator that satisfies
axiom R7, and which orders interpretations as follows: a ≈κ b <κ ab <κ ∅. We get
that [κ ◦ κ] = {a, b}, i.e., κ ◦ κ ≡ (a↔ ¬b) 6≡ κ.

This points to a more graded view of what it means to believe κ. Thus, an agent might
have a certain threshold of plausibility, along the lines of what is known in epistemol-
ogy as the Lockean thesis [10], according to which it calibrates its beliefs: anything
above the threshold counts as part of the belief κ and anything below counts as disbe-
lief. This fits with the idea that an agent might assign different degrees of plausibility to
states of affairs consistent with its belief κ: indeed, this is the point of view we endorse
here, in contrast to more standard approaches, which consider that an agent assigns
equal degrees of plausibility to all items of its belief. Thus, incoming information that
confirms an agent’s belief might have the effect of reinforcing parts that are given more
plausibility at the expense of parts that are given less, and this is the kind of situation
we take to be modeled by Example 5.

What would be worrying would be a revision policy that makes an agent cycle be-
tween different viewpoints when confronted repeatedly with the same type of informa-
tion: we will see that for revision operators satisfying R7 this concern is unwarranted,
but we must first introduce some new notation. We write κi for the knowledge base

2The converse is not true: RIDF enforces only that models of κ are equally plausible, but not where they
are placed in ≤κ.
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∅

b, ab

[κ]

≤κ1

∅

a

b

ab

[κ]

≤κ2

a

∅
ab

b

[κ]

Figure 3: Repeated revision by κ cycles between {a} and {∅}.

obtained by revising κ by itself an i number of times. Thus, κ0 = κ and κi+1 = κi ◦κ.
Consider now the following property:

(RSTB) There is n ≥ 1 such that κm ≡ κn, for every m ≥ n.

A revision operator ◦ is stable if it satisfies property RSTB. Stability implies that re-
peated revision by κ ultimately settles (or stabilizes) on a set of models that does not
change through subsequent revisions by κ. The following result proves relevant to the
issue of stability.

Proposition 3. If a revision operator ◦ satisfies axioms R1 and R7, then κi+1 |= κi.

Proof. By axiom R1, we have that κ ◦ κ |= κ, and thus κ1 |= κ0. Applying axiom R7,
we have that (κ ◦ κ)◦κ |= (κ◦κ)∧κ |= κ◦κ. Thus, κ2 |= κ1, and it is straightforward
to see how this argument is iterated to get the conclusion.

If the operator ◦ also satisfies axiom R2 (which, here, says that if the revision formula
is consistent, then the revision result is also consistent), it follows that if κ is consistent,
then κi is consistent, for any i ≥ 0. Thus, combining this fact and Proposition 3, we
get that repeated revision by κ leads to a chain of ever more specific knowledge bases,
i.e., ∅ ⊂ · · · ⊆ [κi+1] ⊆ [κi] ⊆ · · · ⊆ [κ0]. Since a knowledge base has a finite number
of models, it falls out immediately from this that there must be a point at which further
revision by κ does not change anything.

Corollary 4. A basic revision operator ◦ satisfying axiom R7 is stable.

Unfortunately, axioms R8−9 do not guarantee stability. Since these axioms require
only that the agent places the models of κ as the least plausible interpretations, it be-
comes possible that an agent’s plausibility ranking does not hold on to a core set of
interpretations through successive revisions by κ.

Example 6. If P = {a, b}, take κ = {¬b} and a revision operator satisfying R8−9,
which orders interpretations as shown in Figure 3. We have that [κ0] = [κ] = {∅, a},
[κ1] = [κ ◦ κ] = {a}, and [κ2] = [κ1 ◦ κ] = {∅}. By R3, subsequent revisions by κ
cycle between {a} and {∅} ([κ3] = {a}, [κ4] = {∅}), thus never settling on a stable
answer.

The issue of stability suggests another dimension along which revision operators can
be analyzed, with Corollary 4 and Example 6 showing that a revision operator does not
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satisfy it trivially. Example 6, in particular, shows that there is interplay between ≤κ
and ≤κ′ , if κ′ |= κ, which is relevant to the question of whether an operator is stable.
This interplay is reminiscent of topics like iterated revision and kinetic consistency [7,
23], but pursuing it further would take us too far afield of the aims of the current work.

4 Concrete Operators with Varying Attitudes
We now ask: what is a natural way to construct operators with such varying atti-
tudes towards initial information? Our answer builds on ideas found in belief merg-
ing [19, 20], i.e., it defines rankings on interpretations by appeal to two main ingre-
dients. The first is a distance d : U × U → R≥0 between interpretations, defined
such that d(w1, w2) = 0 iff w1 = w2 and d(w1, w2) = d(w2, w1). Given w ∈ U
and κ ∈ 2Propcons such that [κ] = {w1, . . . , wn}, the vector of distances from w to
κ is d(w, κ) = (d(w,w1), . . . , d(w,wn)). For brevity we will omit commas and
simply write d(w, κ) as a string of numbers. We recall two prominent examples of
distance: drastic distance dD works by the all-or-nothing rule: dD(w1, w2) = 0 if
w1 = w2, and 1 otherwise; Hamming distance dH, counts the number of atoms on
which two interpretations differ. The second ingredient is an aggregation function
(more precisely, a family of functions) f : Rn → R, for n ∈ N, mapping a distance
vector d(w, κ) to a number, and used to compare distance vectors. We write

−−−−→
d(w, κ)

and
←−−−−
d(w, κ) for the vectors of distances from w to κ ordered in ascending order and

descending order, respectively. The lexicographic order between two vectors is de-
noted by ≤lex. The minimal and maximal elements of d(w, κ) are min d(w, κ) and
max d(w, κ), respectively, and

∑
d(w, κ) =

∑
wi∈[κ] d(w,wi). The centrality of w

with respect to κ is cen(w, κ) = max d(w, κ) − min d(w, κ). The displacement of
w with respect to κ is dis(w, κ) = min d(w, κ) − min d(w∗, κ), where w∗ is an in-
terpretation such that min d(w∗, κ) is minimal among all the interpretations w′ for
which cen(w′, κ) = cen(w, κ). Finally, the agreeability index of w with respect to κ
is agr(w, κ) = min{min d(w, κ), cen(w, κ) + dis(w, κ)}, while the disagreeability
index of w with respect to κ is dagr(w, κ) = n− agr(w, κ), where n = |P|.

Given a distance d between interpretations and aggregation function f , we write
≤d, fκ for the ranking generated using d and f , and ◦d, f for the revision operator repre-
sented by the assignment generated using d and f , i.e., [κ ◦d, f µ] = min≤d, fκ

[µ]. We
then define the following types of rankings:

w1≤d,min
κ w2 if min d(w1, κ) ≤ min d(w2, κ),

w1≤d, lmin
κ w2 if

−−−−−→
d(w1, κ) ≤lex

−−−−−→
d(w2, κ),

w1≤d, agrκ w2 if agr(w1, κ) ≤ agr(w2, κ),
w1≤d,max

κ w2 if max d(w1, κ) ≤ max d(w2, κ),
w1≤d, lmax

κ w2 if
←−−−−−
d(w1, κ) ≤lex

←−−−−−
d(w2, κ),

w1≤d, dagrκ w2 if dagr(w1, κ) ≤ dagr(w2, κ),
w1≤d, sumκ w2 if

∑
d(w1, κ) ≤

∑
d(w2, κ).

Example 7. If P = {a, b, c}, take κ = {(¬(a ∧ b) ∧ ¬c) ∨ (a ∧ b ∧ c)}, for
which we get that [κ] = {∅, a, b, abc}. For the interpretation w = ∅, we get that
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∅ a b abc
−−−−−→
dH(w, κ)

←−−−−−
dH(w, κ) min max

∑
∅ 0 1 1 3 (0113) (3110) 0 3 5
a 1 0 2 2 (0122) (2210) 0 2 5
b 1 2 0 2 (0122) (2210) 0 2 5
c 1 2 2 2 (1222) (2221) 1 2 7
ab 2 1 1 1 (1112) (2111) 1 2 5
ac 2 1 3 1 (1123) (3211) 1 3 7
bc 2 3 1 1 (1123) (3211) 1 3 7
abc 3 2 2 0 (0223) (3220) 0 3 7

Table 1: Table of Hamming distances for κ from Example 7

−−−−−→
dH(w, κ) = (0113),

←−−−−−
dH(w, κ) = (3110), min dH(w, κ) = 0, max dH(w, κ) = 3 and∑

dH(w, κ) = 5. The distances and aggregated distances for each interpretation are
depicted in Table 1. Notice how the models of κ are distributed when the interpretations
are ranked according to the different aggregation functions used: we have ∅≈H,min

κ a,
since min dH(∅, κ) = min dH(a, κ) = 0, but ∅<H, lmin

κ a, since (0113) ≤lex (0122).
Also, we have that c<H,max

κ abc, c<H, lmax
κ abc and ab<H, sum

κ abc, i.e., models of κ are
not minimal in≤H,max

κ ,≤H, lmax
κ and≤H, sum

κ . In particular,≤H,max
κ makes the models

of κ (i.e., abc, bc, ac and ∅) the least plausible interpretations.

The agreement and disagreement operators (◦d, agr and ◦d, dagr) are simpler than they
appear: the idea behind ◦d, agr is to allow interpretations other than the models of κ
as the minimal elements of the preorder ≤κ. Notice that the score of an interpretation
in ≤d, agrκ is 0 if it is either a model of κ, or it is equidistant from every model of
κ (i.e., its centrality is 0) and it is the ‘closest’ interpretation to κ with this property.
The disagreement operator ◦d, dagr works in similar fashion, by making models of κ
and interpretations minimally equidistant to them the least plausible interpretations in
≤d, dagrκ .

Example 8. IfP = {a, b, c}, take κ such that [κ] = {a, b, c}, and notice that dH(∅, κ) =
(111) and dH(abc, κ) = (222), i.e., they are both equidistant to κ, hence their central-
ity is 0. However, ∅ is closer to κ than abc (its displacement is 0, compared to abc’s
displacement of 1), and agr(∅, κ) = 0. Thus, what ≤H, agr

κ does is to give a minimal
score to models of κ and to the minimally equidistant interpretation ∅. By contrast,
≤H, dagr
κ gives a maximal score to the models of κ and to the maximally equidistant

interpretation abc.

All operators proposed generate a total preorder ≤κ over interpretations, but differ in
how they arrange models of κ in≤κ: this corresponds to the different attitudes an agent
can have towards κ prior to any revision. The operator ◦H,min, known as Dalal’s op-
erator [6], considers all models of κ as the most plausible elements in ≤κ and is the
only operator for which κ ◦ µ is equivalent to κ ∧ µ when κ ∧ µ is consistent. Sim-
ilarly, ◦H, lmin also ranks models of κ as more plausible than any other interpretation,
but discriminates among models of κ. The operators ≤H,max

κ and ≤H, lmax
κ push away

models of κ, under the assumption that they are the most implausible possible worlds.
They difference between them is that ≤H,max

κ considers models of κ equally implausi-
ble, whereas≤H, lmax

κ uses the more fine-grained lexicographic approach. The operator
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◦H, agr makes models of κ the most plausible elements in ≤κ but also allows other in-
terpretations on that position, in particular certain interpretations that are equidistant
to κ as per Example 8. The intuition is that an interpretation equally distanced from
models of κ is like a compromise point of view, with good chances of being correct if
it is close to κ. The operator ◦H, dagr is the dual of ◦H, agr and, finally, operator ◦H, sum
evokes utilitarian approaches by choosing interpretations that minimize the sum of the
distances to each model of κ.

Quick reflection shows that operators obtained with drastic distance dD collapse
into two main categories. To get a grasp on this fact, consider first the drastic revision
operator ◦dr defined, for κ ∈ 2Propcons and µ ∈ Prop, as κ ◦dr µ = κ ∧ µ, if κ ∧ µ is
consistent, and µ otherwise, and the forgetful revision operator ◦fg defined as κ◦fg µ =
µ.

Proposition 5. For any knowledge base κ and formula µ, it holds that κ ◦D,min µ ≡
κ ◦D, lmin µ ≡ κ ◦D, lmax µ ≡ κ ◦D, sum µ ≡ κ ◦dr µ. Moreover, κ ◦D, agr µ ≡ κ ◦fg µ

and κ ◦D,max µ ≡ κ ◦D, dagr µ ≡

{
κ ◦dr µ, if κ is complete,
κ ◦fg µ, otherwise.

Proof. If κ is a complete knowledge base and [κ] = {w0}, then dD(w, κ) = dD(w,w0),
for any interpretation w. In other words,

−−−−−→
dD(w, κ) yields (0) if w = w0 and (1) oth-

erwise. Thus, max dD(w, κ) = 0 if w = w0, and max dD(w, κ) = 1, otherwise. It is
then straightforward to see that if w0 ∈ [µ], then [κ◦D,maxµ] = {w0} = [κ∧µ], and if
w0 /∈ [µ], then [κ ◦D,max µ] = [µ]. If κ is not complete, then

−−−−−→
dD(w, κ) yields (01 . . . 1)

if w ∈ [κ], and (1 . . . 1) otherwise. It is now straightforward to see that the remaining
statements of Proposition 5 hold.

With Hamming distance the landscape is more diverse, as the different attitudes the
operators assume towards models of κ lead to genuinely different revision strategies.
Nonetheless, certain relationships between the operators still hold, with lexicographic
operators being the most discriminating, in the sense that they pick formulas with fewer
models.

Proposition 6. For any κ ∈ 2Propcons and µ ∈ Prop, we have that κ ◦H, lmin µ |= κ ◦H,min

µ |= κ ◦H, agr µ and κ ◦H, lmax µ |= κ ◦H,max µ |= κ ◦H, dagr µ.

All operators generate total preorders over interpretations, so by Theorem 1 they all
satisfy axioms R1−5. Satisfaction with respect to the newly introduced postulates is
clarified below.

Proposition 7. For d ∈ {D,H} and f ∈ {min, lmin,max, lmax, agr,dagr, sum}, the
operators ◦d, f satisfy postulates R6−10, IDF, STB as per Table 2.

Proof. It is already known that ≤d,min
κ (known as Dalal’s operator [6, 16]) satisfies

axioms R5−6. To see why the operator ◦H, lmin satisfies R7, notice that if w1 ∈ [κ] and
w2 /∈ [κ], then the first element in d(w1, κ) is 0, while the first element in d(w2, κ) is
strictly greater than 0. This implies that

−−−−−→
d(w1, κ) <lex

−−−−−→
d(w2, κ), which in turn implies

that w1<
H, lmin
κ w2. Hence property o7 is satisfied, which implies that axiom R7 is
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R6 R7 R8 R9 R10 RIDF RSTB

◦H,min X X × × X X X
◦H, lmin × X × × X × X
◦H, agr X × × × X X X
◦H,max × × X X × × X
◦H, lmax × × × X × × X
◦H, dagr × × X × × X X
◦H, sum × × × × X × X
◦dr X X × × X X X
◦fg X × X × X X X

Table 2: Satisfaction of axioms

satisfied. Additionally, it cannot be the case that w3<
H, lmin
κ w1, for any w3 /∈ [κ],

which shows that property o6 (and hence axiom R6) is satisfied. For ◦H, lmin and axiom
R6, take [κ] = {a, b, ab} and [µ] = {a, b, ab}. We get that [κ ◦H, lmin µ] = {a, b}. The
operator ◦H, agr satisfies axiom R6 because it makes all models of κ, and potentially
other interpretations as well (which is the reason why it does not satisfy axiom R7), as
the equally most plausible interpretations in ≤H, agr

κ . Since all these operator place the
models of κ on the lowest levels of ≤κ, they all satisfy axiom R10.

To see why postulates R8−9 are not satisfied by ◦d,min, ◦d, lmin or ◦d, dagr, notice
that these operators do not make models of κ as the least plausible interpretations in
≤κ. Thus, if κ = a∨b, then κ shares some models with κ, yet these models (along with
all other models of a ∨ b) will be among the most plausible interpretations in ≤d,min

κ ,
≤d, lmin
κ and ≤d, agrκ . The one exception is the forgetful operator ◦fg, which satisfies R8

trivially.
The case for ◦H,max, ◦H, lmax and ◦H, dagr is analogous to the one for ◦H,min,

◦H, lmin and ◦H, agr, as they can be seen as duals of each other. For the operator ◦H, sum,
take [κ] = {a, b, c} and [µ] = {∅, a, b, c}. We get that [κ ◦H, sum µ] = {∅}, as ∅ mini-
mizes the sum of the Hamming distances to the models of κ: this is a counter-example
to axioms R6−7. For R8−9, take [µ′] = {∅, ab, ac, bc}. For ◦H, sum and R10, notice
that adding w′ to [κ] creates a new column for w′ in the table of distances, in which
the distance corresponding to w′ is 0, i.e., the score assigned to w′ in ≤H, sum

κ∨κ′ does
not increase with respect to ≤H, sum

κ . Satisfaction of RIDF and RSTB is straightforward,
keeping in mind how the various operators arrange the models of κ in the generated
preorders.

5 Conclusion
We have looked at the classical revision axioms from the point of view of what they
assume about an agent’s attitude towards its initial beliefs, and argued that this attitude
is embedded in a specific axiom (the KM postulate corresponding to Inclusion and
Vacuity). By varying this axiom we were able to put forward and characterize a wide
range of revision operators, and refine previously entangled intuitions in the process.
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Analysis of the new operators also uncovered the principles of indifference to already
held beliefs (RIDF) and stability (RSTB). Further work is needed to link these notions
to the other axioms, to map out their interplay and to provide them with semantic
characterizations.

At the same time, the more fine grained view on the types of attitudes an agent can
have towards its initial beliefs raises the question of what these attitudes are good for,
i.e., whether they can be used for tasks such as learning [18, 3]. The idea here is to
view revision as part of an ongoing process by which the agent continuously refines its
representation of the outside world, with the aim of settling on stable, correct informa-
tion. Such a task, we think, provides a natural benchmark for revision operators, and it
has the potential to connect belief revision to other topics of importance to the field of
AI.
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