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ABSTRACT
Web object identification plays an important role in research
fields such as information extraction, web automation, and
web form understanding for building meta-search engines.
In contrast to other works, we approach this problem by an-
alyzing various spatial, visual, functional and textual char-
acteristics of web pages. We compute 49 unique features
for all visible web page elements, which are then applied
to machine learning classifiers in order to identify similar
elements on other previously unexamined web pages. We
evaluate our approach with different scenarios by analyzing
the relevance of the chosen features and the classification
rate of the applied classifiers. These scenarios focus on un-
derstanding search forms from the transportation domain,
particularly flight, train, and bus connections. The results
of the evaluation are very promising.
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1. INTRODUCTION
We propose a novel approach for identifying simple web ob-
jects. Web objects are contiguous parts of a web page that
logically belong together, and the automatic detection of rel-
evant web objects is crucial for web information extraction,
web form understanding, web automation, and web accessi-
bility. Our use case is supervised meta-search in the trans-
portation domain, where we aim for automatic detection and
operation of search forms for flights, trains and buses. For a
small set of web pages that contain transport search forms
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and a small number of annotated examples, we want to au-
tomatically identify those web objects that are required for
actually initiating the search for transport connections.

Web objects correspond to one or more CSS boxes and a
certain rectangular area on a screen, which is the minimal
bounding box of these CSS boxes. In our approach, we
make use of visual information acquired from the CSS object
model and calculate necessary features of the web objects.
Leveraging the CSS object model of the rendered web pages
enables the analysis of the visual characteristics perceived
by users.

Depending on the scenario, some of these web objects play
a special role. For example, in the flight search, we need
to identify specific form control elements such as the depar-
ture airport name and the flight search submit button. This
problem is well-known in web information extraction, but
in our approach we compute 49 unique web object features
from four different categories—including spatial and visual
perception features. These features help in identifying rel-
evant web objects in possibly large and complex web pages
of arbitrary structure.

Our previous research [17] already indicated that there is a
huge potential for considering visual and geometric charac-
teristics in the problem of simple object identification. In the
present paper, we improve our previous research and intro-
duce a more efficient and universal approach for object iden-
tification. We focus on identifying exactly one target web
object for each task, across different web pages, computing
rankings of positively classified objects. Moreover, we also
added more features and a very well performing support
vector machine (SVM) classifier.

Core to our idea is the concept of a feature matrix, which
contains all features of the web objects under consideration.
We employ a pair-wise distance calculation to compute fea-
ture distance vectors between web objects. These vectors
reflect how similar two objects are. We start by providing a
number of positive examples and apply several classifiers to
create rankings of likely matches on previously unseen web
pages.

We believe that our feature set is particularly well suited
to describe and distinguish relevant web objects in the con-
text of complex web pages, especially more robust than ap-



proaches which are based on source code or DOM tree. We
distinguish between features that are inherent to the web ob-
ject, local context features (in a rectangular area surround-
ing a web object), and global (document-wide) features. We
evaluated our approach experimentally in three different test
scenarios. The evaluation results are promising and illus-
trate the efficiency of our techniques. The datasets (flight,
train and bus search domain) and feature distance matrices
are available online.

The main contributions of the paper are: (i) an expressive
description for web objects combining functional, spatial, vi-
sual and textual aspects into 49 features; (ii) a set of distance
metrics between different feature types that can be used to
calculate feature distance vectors; (iii) a workflow that em-
ploys various classifiers to determine rankings of most-likely
matches.

The rest of the paper is organized as follows: In Section 2,
we define the problem and present the overall architecture of
our approach. Section 3 has a closer look on web objects and
their features. Section 4 explains how we extract these fea-
tures from the original web pages. Section 5 provides details
about distance computation and metrics. Section 6 explains
which machine learning techniques we use and discusses the
different classifiers. Section 7 comprises the evaluation of
our approach for four different scenarios. Section 8 provides
an overview of related work. Finally, the paper concludes in
Section 9 and gives an outlook to future work.

2. PROBLEM STATEMENT & APPROACH
In this paper we deal with the problem of finding specific
web objects on previously unseen web pages. The problem
consists of the sub problems of how to describe the desired
objects (e.g., a specific submit button)and how to identify
them on new web pages. This general problem is funda-
mental to many fields of research like Web Data Extraction,
Web Form Understanding, Web Automation, etc.

Our approach uses features based on the visual perceivable
characteristics of web objects for object description and ma-
chine learning techniques for object identification. Applied
to a meta-search setting, this allows for a very universal so-
lution. Here, the common elements of the considered search
forms can be identified on previously unseen search pages,
as long as they follow the same design principles. For eval-
uation, we use such a meta-search setup where we apply
our approach to a number of heterogeneous transport search
pages with very promising results (see Section 7.1).

Another application example would be to identify the dif-
ferent discussion threads and messages on web forums in
order to rearrange them for optimized mobile access. We
demonstrated the feasibility of such an application in [17].

As stated before, the two major problems we address are
(a) how to model a target object and (b) how to identify the
most similar candidates on previously unseen web pages. We
defined features that describe web objects and correspond
to visually perceptible properties on the rendered web page.
Examples of such features are the foreground color or the
number or number of horizontally aligned objects. See Sec-
tion 3 for details on features.
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Figure 1: Web object identification workflow

The identification is based on the notion of feature distances,
which reflect the degree of similarity between objects. To
decide whether two objects are identical or not, we apply
machine learning techniques (see Section 6 for details).

Figure 1 shows an overview of our approach. In this example
we consider only one target object, for example the submit
button that starts a search process. We start from a set of
web pages (A, B, C) where some of them have the target
object manually marked (annotated). Then the basic steps
are:

(1) Feature Extraction: We extract the features of all web
objects from our set of web pages. The output of this
step is a feature matrix for each web page, containing
all web page objects together with their features. In
addition, columns with meta information about the el-
ements are added (e.g. web page id, annotation, etc.).
Section 4 gives details about this step.

(2) Distance Computation: In the next step, the distances
between web objects are calculated. The input data for
this step are the feature matrices. The distances be-
tween objects from annotated web pages serve as train-



ing set for the classifier. They have a defined annotation
class, in our example match or 1 when two examples of
the target button are compared and no match or 0 oth-
erwise. Furthermore, the distances between the target
object and all objects from the non-annotated web pages
are calculated. The resulting distances are stored in the
distance matrix. See Section 5 for details on distance
calculation.

(3) Classification: In the final step, we use that part of the
distance matrix where the annotation class is known as
input for machine learning algorithms. With these, we
train classifiers which are able to estimate whether two
objects are similar (i.e. both are target objects) or not.
We apply these classifiers to the distances between the
annotated target objects and the objects of the new web
pages. This allows us to identify those objects of the
new web pages which correspond to our targeted submit
button. This process is detailed in Section 6.

For simplification, we only describe how we identify a single
target object. Generally, we annotate and identify several
target objects on our web pages. In the process of calculat-
ing the distances, a separate distance matrix is created for
each of these “tasks”, i.e., target objects. The identification
problem is then solved independently for each of these tasks.

3. WEB OBJECTS & FEATURES
In this section, we introduce the main concepts which we use
for describing the objects on a web page. We define several
main structural elements of a web page (see Figure 2):

• A document is a web page rendered by the web browser’s
engine. It is formed by the set of X/HTML or XML files
connected with each other by means of inclusion (e.g. by
elements with the names FRAME, or IFRAME, or OBJECT).
Width and height of the document correspond to the di-
mensions of a minimum bounding rectangle wrapping cor-
responding rendered files—pages.

• A page is a single rendered X/HTML or XML file of a doc-
ument. A set of pages make a hierarchy of pages through
the inclusion relations. From another point of view a page
is a DOM-tree together with computed CSS attributes;
it has the counterpart Window in the Browser Object
Model (BOM) [18].

• We interpret a selected object as a certain visual element—
web object—of the document that corresponds to one or
several visible CSS boxes. And a target object is a se-
lected object to be identified. A selected object has also a
minimum bounding rectangle which is used for computing
features for the object identification tasks. The follow-
ing types of visual elements are considered in this work:
HtmlButton, HtmlCheckbox, HtmlFileUpload, HtmlImage,
HtmlPasswordInput, HtmlRadiobutton, HtmlSelect, Html-
Text, HtmlTextArea, HtmlTextInput. All of these have
corresponding object types in the CSS object model of
a web page and in the Unified Ontological Model
(UOM) accordingly.

• A context of the selected object is a rectangular area cen-
tered on the selected object and defines its neighborhood
presented by the visible CSS boxes. In our evaluation, we
define the context to be equal to 2h × 1.4w, where h is
height and w is width of the selected object; the minimal

Figure 2: Elements of a web page

allowed size is h+ 500× w + 500 pixels [15].

These structural elements have their counterparts in the
Physical Model (PhM) of the UOM, which is acquired
in the process of web page analysis. These objects and their
associated descriptions provide us with the necessary infor-
mation for computing the web objects’ features considered
in this work. The UOM is out of the scope of this paper,
interested readers can refer to [13, 12, 14, 21]. For the spa-
tial analysis we define the geometric space of a web page
(web page canvas) as Euclidean space with pixels as unit of
measure. The top-left corner of the top level page from the
page hierarchy specifies the origin of coordinates. Abscissa
is directed from left to right, and ordinate is from top to
bottom (see Figure 2).

Computation of a set of features allows us to describe vari-
ous aspects of web objects and provide us with the necessary
information for the object identification tasks. Depending
on the considered elements of a web page during the com-
putation of web objects’ features, we distinguish inherent
and relative features. The former describe the characteris-
tics of the web page elements themselves (e.g. of the selected
object, context, or page) and are computed independently
from other structural elements. Inherent features are only
based on the computed styles of the contained CSS boxes
or the attributes of their counterparts in the BOM. Exam-
ples are font color, tag name, height, or font size. Relative
features on the other hand reflect the characteristics of sev-
eral structural elements. Examples are the number of web
objects in the context or the average color distance between
the selected object and all other objects within the context.
Relative features are considered for a pair of structural el-
ements, e.g. a selected object and its context or a selected
object and the document.

We distinguish three categories of features (a feature can be
assigned to several categories):



• Interface features (IF) define the functional roles of ob-
jects (e.g. button, image, text) and structural types such
as lists and tables.

• Spatial features (SF) reflect peculiarities of geometric con-
figurations of web objects, for example, the number of ele-
ments aligned with the selected object, the number of or-
thogonally visible objects, the absolute position etc. Spa-
tial features are computed based on several basic spatial
features and relations, in particular alignment, distance,
topology and direction [12].

• Visual perception features (VPF) relate to visual charac-
teristics of objects, e.g. foreground and background color,
emphasis or font size. They correspond to attributes used
in the fields of graphical user interface design, computer
graphics and computer vision.

• Textual features (TF), e.g., textual content of the selected
object, text above the object, number of lines, number of
tokens. Most of the textual features are adopted from the
area of quantitative linguistics [28].

A comprehensive list of the features used in this work is
presented in [15] and Table 3.

4. FEATURE EXTRACTION
In the process of feature extraction, we analyze specific set
of web pages with manually annotated objects (see Figure 3)
according to the task posed, i.e. identification of web form
elements within the transportation domain (see Section 7.1).
For each web page, the process of feature extraction consists
of two phases: 1) Instantiating the PhM [13, 21, 12] for
a certain web page and 2) Computing the feature matrix
which for every object contains all the features required for
the identification.

The PhM is a domain ontology which describes various as-
pects of a web page such as interface elements (e.g. but-
tons, text input fields, links, and images), layout (geometric
characteristics of web page’s elements), visual characteris-
tics (foreground and background color, etc.). This model
accumulates fundamental information which can be used
in various tasks in the field of web information extraction
and web page understanding. The WPPS framework [13]
was used for generating the PhM for every considered web
page. It has various useful functions; for instance, it allows
a computation of the real background color for every ele-
ment, taking transparency, overlapping, and painting order
[2] into consideration. It also omits invisible objects that
have a too small size or which are topologically inside and
behind another object. During the computation of different
qualitative characteristics (alignment, topology, direction,
etc.), various inaccuracies which can be met in practice are
automatically taken into account. For instance, CSS boxes
can be visually perceived as aligned while according to the
quantitative data they are not. Moreover, the framework
conveys effective means for applying declarative and object-
oriented paradigms. The former is realized by querying the
PhM directly with SPARQL and performing an automatic
reasoning over the logical rules, whereas the latter is done
by means of the abstraction layer that makes object-oriented
approach applicable and API that provides all the necessary
functionality [13]. Thus SPARQL queries together with the
provided API were used for computing additional features
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Figure 3: Feature extraction (FE) workflow

which are absent in the PhM, but are required for generating
the feature matrices in the tasks considered in this work.

5. DISTANCE COMPUTATION
For finding a desired target object based on examples of how
such an object looks like, we need means to compare web
objects. In our system, all web objects are described by their
features. In order to be comparable, the single feature values
need to be related to each other. Figure 4 gives an overview
of how distances are calculated. The feature matrix serves
as input for the distance calculation. Distances are always
calculated for two given rows from the distance matrix. For
each feature fi, a distance di is calculated for the two respec-
tive values from the feature matrix. The resulting distance
vector is then added to the distance matrix.

In the simplest case we only have one target object we are
looking for. We have several examples of this target ob-
ject that have a ‘positive’ annotation and many examples
of other objects with a ‘negative’ annotation. Distances are
then computed for every pair of positive examples, which
receive a ‘positive’ annotation. Additionally, each of these
positive examples is compared to all negative examples, re-
ceiving a negative annotation. Finally, each positive exam-
ple is compared to all non-annotated rows of the feature
matrix, i.e., the objects on previously unseen web pages.
The resulting distance vectors make up the distance matrix,
which is used for further processing (see Section 6).

The following paragraphs explain the basic distance calcu-
lation formulas. Basically, each feature has a corresponding
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Figure 4: Distance computation (DC) workflow

feature distance. The feature distance vector is the vector
that results from the calculation of each of the feature dis-
tances in two given feature vectors. Since not all features are
applicable to all types of objects, we sometimes encounter
null values in feature vectors. By definition, we assign the
maximal distance to distance computations where one or
more of the input values are null. The actual maximal dis-
tance value depends on the specific distance used. In this
way we avoid null values in the resulting distance matrix.

For the different types of features, different formulas for cal-
culating the distance are used. They are explained in the
following paragraphs. Table 3 at the end of the document
gives and overview of all features and their respective dis-
tance formulas.

• Relative distance: For values like pixel height, the pure
numerical difference is not a good comparison criterion
for our purpose. In this case, we rather calculate how
much smaller the smaller value is than the larger value.
In order to overcome several algorithmic issues, especially
regarding possible divisions by zero and handling of neg-
ative values, we arrived at the following formula. f1 and
f2 are two different values of a given feature:

δrel =
1

1 + e−max(f1,f2)
− 1

1 + e−min(f1,f2)

The maximum value for this distance is 1.0, which is also
applied when one or both of the input values are null.

• Absolute distance: Especially for features which already
have a percent value, i.e. a value between 0 and 1, we
calculate the distance between the two values as |f1 − f2|.
The maximum value for this distance depends on the fea-
ture used, but normally it is also 1.0, assuming a feature
value in the range of 0 to 1.

• Boolean distance: For features that take on boolean val-
ues, the distance between two feature values is simply cal-
culated by assigning 0 if the values are identical and 1 if
they are different. This is effectively a logical ∧ operation
with true being interpreted as 0 and false as 1.

• Equality distance: For features that can take on a value
from a set of predefined enumerated values, we calculate
the distance by assigning 0 (‘equal’) if both features have
the same value and 1 (‘not equal’) if they have different
values.

• String edit distance: For comparing text, we use the string
edit distance with transpositions, also known as the Damerau–
Levenshtein distance [7]. For handling null values in the
input, we assume that a missing value equals an empty
string.

• Grid overlap distance: The grid distance feature speci-
fies roughly which areas of the web page a given object
touches. The web page is divided into a 3 × 3 grid, re-
sulting in 9 areas that the object can possibly touch (9-
neighborhood). The grid overlap distance is then calcu-
lated as twice the number of grid areas touched in both
features’ grids divided by the total number of grid areas
touched. This number is subtracted from 1 in order to
have 0 as similarity and 1 as the maximum dissimilarity.
A 3×3 grid was chosen as it proved most useful in prelimi-
nary experiments. Adding additional features for different
grid layouts (e.g., 5× 3) is planned in future versions.

• Color distance: All colors (e.g., foreground color) are rep-
resented in HSV color space, which roughly conforms to
human perception. Accordingly, we calculate the color
distance in HSV color space, with a minimum of 0 (equal)
and the maximum distance in HSV color space at 2.

6. CLASSIFICATION
This section describes the classification process which is il-
lustrated in Figure 5.

The workflow for the classification starts from the output of
the distance computation process (see Section 5). First, the
distance matrix is preprocessed by calculating the z-scores
of its cells (1). We normalize each fi,j by replacing it with
the corresponding z-value zi,j .

. . . d1 . . . dn

. . . . . . . . . . . .

. . . fdi,1 . . . fdi,n

. . . . . . . . . . . .

zi,j =
fdi,j − µ̂.j

σ̂.j
(1)

Afterwards, the resulting matrix with the corresponding class
annotations are used to train a classifier.

Finally, we compare each positively annotated object of the
training set to all objects on a previously unseen web page.
Then we use the trained classifier to estimate the class for
each row in the corresponding subset of the distance matrix.
From these results we can estimate which of a target web
page’s objects is the target object (see subsection 6.2).
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6.1 Machine Learning Techniques
In this subsection, different machine learning techniques that
we evaluate in this work are discussed. The idea is to use
classification techniques of different types (linear, non-linear,
etc.), since the results can be expected to be more diverse
compared to using only classifiers of similar type.

• Logistic Regression is a commonly used classification tech-
nique. What makes it very convenient is the fact that it
returns probabilities which can be interpreted as a cer-
tain class affiliation. Another advantage over similar clas-
sification methods (e.g. linear discriminant analysis
(LDA)) is that it provides the user with inferential statis-
tics. This is useful for analyzing the importance of certain
features. However, this raises the question of model se-
lection. In general, small models help reducing overfitting
and make the classifier more robust. In our experiments, it
shows that models which were reduced stepwise on the ba-
sis of the Akaike information criterion (AIC) [4] per-
form worse than logistic regressions with the full model.
This is surprising, since normally reduced models are used
to reduce the influence of overfitting and make the regres-
sions more robust. Further information on logistic regres-
sions can be found in [23].

• M5PM is a method provided by WEKA1. It is an im-
proved M5 algorithm from Wang & Witten [29]. This
classifier is a decision tree that provides the user with
a regression function. The resulting value can be used as
proxy for the probability, since a higher result value would
indicate a higher probability to belong to a certain class.

• SVM [27] is a common technique in Machine Learning
(ML) which attempts to find a linear separation between
different classes. This separation is achieved by trans-

1http://www.cs.waikato.ac.nz/ml/
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forming the input data into a higher dimensional feature
space. The transformation is done via kernel functions.
Commonly used kernel functions are linear, polynomial,
radial2 and sigmoid3.

6.2 Postprocessing
This subsection deals with the postprocessing of a classifier’s
output. The output of a classifier is its “suggestions” regard-
ing the class affiliations of the distance pairs of web objects.
However, the goal is to find the web object (only one) which
is required for a certain task (e.g. the submit button for a
specific web form). This object is determined by the task.
Figure 6 illustrates how the output can be transformed in
order to identify the most probable target object.

Firstly, the identification function (I) determines which web
object id (column o1 and o2) is the id on the new4 web
page. It uses the information of the column p1, p2 and new
where the first two contain the web page id for o1 and o2
respectively; new is the web page id of the new web page.

Secondly, with the resulting table it is possible to count
the number of appearances for each unique web object (also
known as absolute frequency). The highest frequency in this
list provides the web object which is most likely to be the
searched target object.

6.3 Combining Results of Different Classifiers
In order to receive better classification results, we try to
combine the results of base classifiers. Therefore, we com-
pute the relative frequency from the classifier outputs. The
combined results are the sums of the relative frequencies of
the base classifier for each unique web object. Equation (2)
gives an overview of how the calculation works. ai,j denotes
the absolute frequency for classifier i and unique web object
j. ri,j stands for the relative frequency, where the indices
are equal to ai,j . li is the label of the unique web object.
An interesting observation is that classifier 1 and 2 (from the
illustration) have not necessarily the same elements in the
same order nor the same elements in the list at all. There-
fore, it is required to merge the resulting list accordingly.

2alias Gaussian Radial Basis
3also known as the hyperbolic tangent
4new in this context means the web page on which we want
to detect web objects

http://www.cs.waikato.ac.nz/ml/
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6.4 Dealing with unbalanced classes
This subsection refers to the classes we want estimate with
the classifiers (sometimes referred to as the dependent vari-
able in a regression model). Unfortunately, the class affilia-
tions of this dependent variable are far from balanced. This
means that a vast majority of elements belong to one class
and minor number to the other class. For example, in our
test scenarios described in Section 7.1, the majority are neg-
ative examples.

When training a classifier to the entire test set, it would tend
to overfit towards to the major class. To avoid this, there
has to be a procedure to deal with this undesirable behavior.
In our previous work [17], we decided to use all elements of
the minor class and a sample of size N from the other class.
The size of N for the experiments in Section 7 is 10 times the
minor class. We found this ratio to return the best results
for our application. As we choose the samples randomly,
this approach is not deterministic for each run. To average
the results, we repeat the sampling 10 times. We train the
classifier and measure the classification rate again for each
run.

7. EVALUATION
In this section we present the results of the experimental
evaluation of our method. We decided to test our approach
on a meta-search setting, for which we collected a number
of real life web pages from the area of transportation search
(see Section 7.2). We annotated these sample pages man-
ually in order to describe the most important input fields
for this type of search—target objects. With this input we
implemented our approach described in Section 2. Annota-
tion and generation of the feature matrices was performed
using an application, Objident (see Figure 7), which is build
based on the WPPS framework [13] and has Firefox (XUL-
Runner 1.9.2) integrated. Thus the process of generating
PhMs and computing the required features is hidden from
the user.

7.1 Test Scenarios
In order to test our approach under realistic conditions, we
have defined four scenarios, namely searches for bus, flight
and train connections, as well as a last one, which combines
them all referring to it as the ‘combined’ or ‘all’ scenario.
The latter is especially interesting as it is actually a meta-
search over multiple different connection types. In all four
scenarios, we focused on finding the relevant elements in the
main search forms.

Every considered web page within the scenarios can have
following types of objects: (1) departure location, (2) ar-
rival location, (3) departure date, (4) one-way trip which
corresponds to the control that defines the trip as one-way,
(5) adult passengers which is the number of adult travelers,
(6) submit button which is the button to send a request form
and (7) other which correspond to all other elements on a
web page. We consider every item of this list as a task. Thus
in each scenario each input field (task) has to be found on
the different websites.

In the annotation process, the user specifies a scenario for
every web page and a task for every target object by means
of the Objident. She only assigns the labels for the objects
to be identified (i.e. of the types 1–6), whereas all irrele-
vant elements are automatically recognized and labeled with
other.

7.2 Selected Web Pages
For the aforementioned scenarios we have created an evalu-
ation dataset we call the ATW5 dataset [3]. It contains the
following information required for the method introduced in
this paper: (1) web pages from the transportation domain,
(2) annotations of web page elements with aforementioned
object classes, (3) computed features [15] listed in Table 3
at the end of the paper and (4) computed feature distances
for each pair of elements (see section 5).

The selected web pages were arbitrarily chosen. In order to
test an efficiency of our method over web pages authored in
different languages, we decided to select an equal number of
English, German and Russian web pages. The following list
shows the selected pages per scenario:

• Flight: Aeroflot, Air Berlin, Air Canada, American Air-
lines, Austrian Airlines, Avia Sales, British Airways, Check-
felix.com, Emirates, Lufthansa, Germanwings, Quantas,
Rossiya, Tatarstan, Trip.ru,

• Bus: Avperm.ru, Avtovokzal.ru, Avtovokzal73.ru, Berlin-
LinienBus.de BusEireann.ie, Eurolines.at, GoToBus.com,
Greyhound.com, Matkahuolto.fi, Postbus.at, Postbus.ch,
PublicExpress.de, Regiobus.ch, Turistua.com

• Train: Eurostar.com, IrishRail.ie, OEBB.at, Poezdato.ru,
Portal-Poisk.ru, RZD.ru, s-bahn-berlin.de, saarbahn.de,
SBB.ch, TGV-Europe.com, Trenitalia.com, Tutu.ru, Voyages-
sncf.co.uk

• Combined: All of the above mentioned web pages.

A detailed table with links and a list of available web form
fields can be found in [3, 15].

7.3 Cross-Validation
For evaluation purposes, a k-fold cross-validation is com-
monly used in order to validate the estimated models and
avoid overfitting. The k-fold cross-validation separates the
available data into k partitions of the same size. There-
after, a model is estimated with all data except that from
the first partition. The excluded data is used to validate
the estimated model. This procedure is repeated until every
partition has been used for validation.
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Figure 7: Screenshot of Objident, the feature extraction tool

We have adopted this principle in order to validate the dif-
ferent classifiers. In contrast to the procedure mentioned
above, where the input data is separated into equally large
parts, we have separated our input data into the S different
web pages. As the input data are pairs of elements which
can be from different web pages, we can exclude all distance
pairs of web page x6 from the training set and use it for the
validation.

7.4 Performance Measures
There are several well accepted performance measures for
classification problems. Since our goal is to classify exactly
one positive web object correctly, the positive precision is
the relevant measure for our approach. This value is either
100% in case the one object is classified correctly or 0%
in case we did not find the correct element. Precision is
defined in equation (3). We compute the average precision
over all our test results. The resulting number is the ratio of
instances in which we correctly identified the target object.

precision =
TP

TP + FN
(3)

7.5 Classification Results
This subsection illustrates the classification results of the
different scenarios. First, we present a benchmark of the
classifiers for the above mentioned web pages and scenar-
ios. Then we go deeper and discuss the different outcomes
between the tasks.

7.5.1 Result Overview
6x represents the id of the currently selected web page in
the whole cross-validation process

Table 1: Classification rate in % per classifier
Technique All Bus Flight Train
Log Regression 71.71 75.08 88.97 71.55
M5PM 75.96 70.46 89.87 60.17
SVM linear 72.89 74.46 85.38 66.21
SVM polynomial 46.71 34.31 37.05 9.14
SVM radial 62.32 32.77 54.74 36.03
SVM sigmoid 79.78 64.92 80.13 68.97

C7(All) 62.06 45.08 71.03 29.31

C7(LReg,Sigm.) 77.63 80.31 90.77 77.07

Table 1 gives an overview of the results. It provides the
accuracy per classifier for each scenario. Note that the All-
column is not the average sum of the other three but a sepa-
rate scenario. From the base classifiers the logistic regression
has almost always the best results for the Bus, Flight and
Train scenario. However, its performance in the All scenario
is only average. On contrary, the SVM with the sigmoid ker-
nel does well on the All scenario. Therefore we combined the
two of them and did indeed receive better results than with
the base classifiers alone, except for the All scenario. But
even there the result of the combined classifiers is still better
than their average.

Another interesting notion is that the SVM with the poly-
nomial and radial kernel performed rather poorly. Further-
more, the combination of all classifiers did also not perform
better than the combination of the logistic regression and the
SVM with the sigmoid kernel, indicating that they indeed
complement each other very well. Moreover, the M5PM,
SVM with the linear and sigmoid kernel appear relatively
unstable compared to the logistic regression.

7C stands for a combined classifier. The names in the brack-



Table 2: Classification rate in %, excl. the adult
passengers and one-way trip in the bus and train
scenarios, since too few examples are available

Technique All Bus Flight Train
Log Regression 85.53 86.15 88.97 86.46
M5PM 92.24 82.88 89.87 72.71
SVM linear 87.70 85.58 85.38 80.00
SVM polynomial 57.96 35.38 37.05 11.04
SVM radial 74.67 40.77 54.74 43.54
SVM sigmoid 97.04 80.96 80.13 83.33
C(All) 77.70 52.31 71.03 35.42
C(LReg,Sigm.) 93.55 92.69 90.77 93.13

7.5.2 Detailed Results
Figure 8 shows the classification results per scenario and
task. The y-axis shows the average accuracy for each run.
The classification results for each test run is either 100%
or 0% since there is only one web object to be correctly
classified. Therefore, the arithmetic average is a better indi-
cator than the median. The numbers at the x-axis stand for
the following classifiers: (1) logistic regression, (2) M5PM,
(3) SVM with linear kernel, (4) SVM with polynomial kernel,
(5) SVM with redial kernel, (6) SVM with sigmoid kernel,
(7) combined classifier with all above mentioned classifiers
and (8) combination of the logistic regression with the sig-
moid kernel of the SVM. In addition, the 90% confidence
interval is shown per bar in form of two whiskers.

Figure 8 shows that the adult passenger and the one-way
tasks perform rather poorly (except the flight scenario). This
is due to the fact that there are too few examples to learn
from in these test sets. When looking at the aggregated re-
sults in Table 1 we can also see that the SVM with the poly-
nomial kernel has most often the worst results in each task
(followed by the radial kernel SVM). However, it shows that
the locations (arrival and departure) and the submit button
achieve excellent results with the logistic regression, M5PM,
the linear and the sigmoid kernel SVMs as well as the combi-
nation of the first and last base classifier. Furthermore, the
results of this combined classifier (logistic regression and sig-
moid) is in almost every case above 90% for every task (ex-
cept adult passengers and one-way). This makes it the most
favorable classifier for our meta-search setting, achieving an
impressive classification rate. It is interesting to note, that
not all of the above mentioned observation are statistically
significant9.

As pointed out above, some tasks perform rather poorly due
to a too small number of examples. To give an impression
of how good the results would be if we had more examples
available, we provide the results excluding these undersam-
pled tasks in Table 2.

7.6 Feature Discussion
This section discusses the importance of the single features
for the classification. Out of the used techniques only the
logistic regression provides detailed information about the

ets indicate the combined classifiers.
9This status appears if the confidence intervals of two bars
are not overlapping. Then one is significantly different from
the others.
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Figure 8: Detailed results with 90% confidence in-
tervals

influence of each input feature. Here, the change of explana-
tory power by setting its variable coefficient to 0 is measured.
If the explanatory power of the dependent variable drops
significantly, this variable is considered very important for
describing the dependent variable. This measurement is in
general applied only per feature, which means that it will not
consider interdependencies between several features. There-
fore, it can happen that a single feature is not significant but
that it actually is important in combination with others.

We expected to be able to find a small subset of features that
would be sufficient for the web object identification within
the scope of specific task, scenario, or the transportation
domain. However, this challenge appeared to be unsolvable.
Indeed, considering every feature, we found out that no sin-
gle feature dominates over all others. Furthermore, in the
evaluations across various test cases, it appears that almost
every feature is significantly important. This seems surpris-
ing at first, but this also describes the fact, that a reduced
model by means of the AIC is in general not better than the
complete model.

8. RELATED WORK
The web object identification problem is met in different
areas of science and technology, either expressly or by im-
plication, be it web GUI testing, web accessibility, web data
extraction, or web form understanding for querying meta-
search engines.

In the field of GUI regression testing for web applications
[24], the definition of interactive GUI elements and their
identification play an important role, particularly in the
phases of GUI model learning and evaluation. During this
first phase, various AJAX-aware crawlers can be applied for



traversing all possible interactions on a web page, building
corresponding graph-based interface models (e.g., CRAWL-
JAX [25], AJAX Crawler [10], [8]). The second phase is
a simulation of necessary interactions from generated test
cases. This is often realized using light-weight approaches,
such as Selenium11, Sahi12 or Watij13 [5, 6].

In the area of web automation and web accessibility, there
are several tools to automate repetitive interactions (e.g.,
Ubiquity [11], CoScripter [22]) or to assist disabled persons
in performing certain tasks. While they have a rich language
for expressing interactions and tasks, they are highly depen-
dent on the DOM tree, resulting in a lack of robustness.

Actually, most methods and approaches that refer to the
problem of web page object identification consider either the
source code of a web page or its DOM tree. They do not re-
flect visual and spatial characteristics, which are less volatile
and more closely resemble the way humans look for relevant
objects. Furthermore, these approaches are implicitly sensi-
tive to differences in wording and language. In contrast, our
approach considers visual characteristics, which makes it in-
dependent from source code, more robust against changes,
and applicable to a wide range of web pages.

In this paper, we consider the problem of web form un-
derstanding in the context of building meta-search engines,
which plays an important role in extracting heterogeneous
data from the Deep Web. Existing approaches target on
different web page representations [20]. Since we focus on
visual features in this paper, research works which take the
web page’s layout into account are most relevant for us.
We distinguish rule/heuristics-based approaches [16, 30, 9]
and machine learning approaches [26, 19]. The first group
depends on a set of predefined rules, which can be web-
or domain-specific. These manually constructed rules and
heuristics usually reflect semantics hidden in spatial rela-
tions between web form elements. Machine learning ap-
proaches focus on automatically deriving a model, which
describes specific aspects or features of web forms. In La-
belEx [26], the authors leverage a domain-specific classifier
ensemble for labeling every web from element. In [19], the
authors use a two-layered Hidden Markov Model for auto-
matic search interface segmentation. In contrast to all these
approaches, we are not aimed on manually modeling specific
objects to be identified. Also, we do not target on learn-
ing complicated domain-specific relations for web forms. In-
stead, we provide a novel, universal solution for identifying
basic objects based on annotated examples. Our solution
can work with relatively few examples and provides very ef-
ficient and robust classifiers that achieve impressive success
rates.

In contrast to our previous work [17], in this paper we fo-
cussed on the problem of identifying the most similar objects
on a web page, given a set of examples for a specific target
object. We achieved this by defining a ranking across all
positively classified objects. Solving this specific problem
can help to considerably increase precision and recall of our

11http://seleniumhq.org/
12http://sahi.co.in/
13http://watij.com/

object identification method and allows us to apply it to use
cases like web automation and meta-search. Moreover, we
introduce various additional features, referring to different
aspects of web page representation [15], and test additional
machine learning techniques for object identification. We
evaluate our approach on real life examples in a transport
meta-search setting, where we achieved very promising re-
sults.

9. CONCLUSION & FUTURE WORK
The challenge of developing approaches and means for basic
web object identification is well-known in the fields of web
automation, web data extraction and meta-search. Taking
into account the promising results acquired in our previous
research [17], we introduced a more robust and universal
approach for describing web objects and identifying them
on previously unseen web pages.

The method proposed in this paper is based on the analy-
sis of the visual characteristics of web page’s elements and
the application of various machine learning techniques to
identify specific objects on new web pages. The overall ap-
proach consists of the following steps: feature extraction,
distance computation, and classification. During the extrac-
tion phase 49 various features are generated for the objects
to be compared. The features reflect different aspects of a
web page’s visual representation, such as interface, layout,
textual, and visual perception. Feature distance computa-
tion provides a means to compare objects. Finally, feature
distances are used to train and apply classifiers. Three main
types of classifiers are considered in the evaluation: logistic
regression, decision tree (M5PM) and SVM with four differ-
ent kernel functions. The classifiers are trained to find class
affiliations depending on their feature distances. In this way
we can identify the most similar object on a web page with
respect to a set of sample objects.

We evaluated our approach with real life scenarios from the
area of transportation meta-search. The evaluation problem
was formulated as the task of identifying the expected set of
web form fields on previously unseen transportation search
pages. Using real life examples of flight, train and bus search
pages, our method achieved outstanding results in identify-
ing the required search form elements. However, we want to
experiment with several combined classifiers. This should
address the question, which combination works best. There-
fore, it could be useful to add further base classifiers to find
a good combined one.

Knowing the peculiarities of the considered domain, its se-
mantics, linguistic characteristics and constraints, different
complementary techniques can be applied for improving the
efficiency of the method proposed in this paper. For in-
stance, for the transport search domain, we can expect to
have some compulsory fields (e.g. departure and arrival lo-
cation, submit button), which are always grouped together
in the same HTML form. This fact can be taken into account
for a heuristic post-processing when several candidates for
a specific object (e.g., departure location) are found on the
web page. Furthermore, knowledge from the web design do-
main can be applied to create even more efficient heuristics.
For example, if departure and arrival location are nearly in-
discernible by the classifier, they can be distinguished based

http://seleniumhq.org/
http://sahi.co.in/
http://watij.com/


on the spatial order of their appearance on the web page.
Usually, we expect the departure field to appear above or left
of the arrival field. We believe that the chance of accurately
identifying all required fields of a web form can be increased
even further when applying such domain dependent knowl-
edge. This would be of benefit for specific applications like
meta-search.
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[21] B. Krüpl-Sypien, R. R. Fayzrakhmanov, W. Holzinger,
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[28] R. Vulanović and R. Köhler. Syntactic units and
structures. In Quantitative Linguistics, pages 274–291.
de Gruyter, Berlin, 2005.

[29] Y. Wang and I. Witten. Induction of model trees for
predicting continuous classes. 1996.

[30] Z. Zhang, B. He, and K. C.-C. Chang. Understanding
web query interfaces: best-effort parsing with hidden
syntax. In Proc. of the ACM COMAD’04, pages
107–118, 2004.



Table 3: Object features and distances.

Feature T Description Dist. 
S

el
ec

te
d

 O
b

je
ct

s

Object type E Type of object, e.g., button, input field. Equ. 

IFEditable B Whether the object is editable. Bool. 
Selection B Whether a checkbox or radio button is selected Bool. 
Area R The area of the bounding box in pixels. Rel. 

S
F

Aspect ratio R The aspect ratio between width and height. Rel. 
Foreground color C Foreground color of the object in HSV color space. Color 

V
P

FBackground color C Background color of the object in HSV color space. Color 
Emphasis R Value representing the level of emphasis (font weight, style, etc.). Rel. 
Font size R Font size of the text. Rel. 
Text S Text of the object. Edit 

T
FNumber of lines I How many rows the object contains. Rel. 

Number of tokens I How many tokens (usually words) the text contains. Rel. 

S
el

ec
te

d
 o

b
je

ct
 –

 C
on

te
xt

Type of dominant object E Type of the dominant orthogonally object. Equ .

IFObjects of same type I Number of objects in the context that have the same type. Rel. 
Aligned objects (context) I Number of objects horizontally or vertically aligned with the selected object. Rel. 

S
F

Horizontally aligned objects I Number of objects horizontally aligned with the selected object. Rel. 
Vertically aligned objects I Number of objects vertically aligned with the selected object. Rel. 
Horizontal index (context) I Index of the selected object in the set of horizontally aligned objects. Abs. 
Vertical index (context) I Index of the selected object in the set of vertically aligned objects. Abs. 
Alignment factor R Ratio of objects aligned to the selected object to unaligned ones. Rel. 

V/H alignment ratio (context) R
Ratio of number of vertically aligned objects to number of horizontally 
aligned ones.

Rel. 

Orthogonally visible obj. I Number of orthogonally visible objects. Rel. 
Aligned orth. visible obj. Number of orthogonally visible objects aligned with the target object. Rel. 
Fully aligned orth. visible obj. I Number of orthogonally visible objects fully aligned with the target object. Rel. 
Pixels to character ratio R Average are in the context that is occupied by characters. Rel. 
Average foreground color 
distance 

R
Average HSV foreground color distance between the target object and all 
other objects in the context.

Abs. 

V
P

F

Average background color 
distance 

R
Average HSV background color distance between the target object and all 
other objects in the context.

Abs. 

Upper text S Merged text of the upper orthogonal visible objects. Edit 

T
F

Right text S Merged text of the orthogonal visible objects on the right. Edit 
Lower text S Merged text of the lower orthogonal visible objects. Edit 
Left text S Merged text of the orthogonal visible objects on the left. Edit 

Most similar text distance –
Distance comparing the upper, lower, left and right text, taking the most 
similar ones.

–

Orthogonal nearest text S Text of the nearest ortogonal visible object in the context. Edit 
Nearest text S Text of the nearest object in the context. Edit 

S
el

ec
te

d
 o

bj
ec

t
– 

P
ag

e

Relative Width R Width of the selected object in relation to the page. Abs. 

S
FRelative Height R Height of the selected object in relation to the page. Abs. 

Relative X R X position of the the selected object in relation to the page. Abs. 
Relative Y R Y position of the selected object in relation to the page. Abs. 

S
el

ec
te

d
 o

bj
ec

t
– 

T
op

 p
ag

e Link Type E
Specifies whether the target of a link is within the same page, same domain or 
outside.

Equ. IF

3x3 Grid Location M Dividing the web page in a 3x3 grid, this specifies which areas are touched. Grid S
F

S
el

ec
te

d
 o

b
je

ct
 –

 D
oc

u
m

en
t

Alignments (document) I
Number of objects in the document which are in any alignment with the 
selected object.

Rel. 

S
F

Horizontal Alignments (document) I
Number of objects in the document which are horizontally aligned with the 
selected object.

Rel. 

Vertical Alignments (document) I
Number of objects in the document which are vertically aligned with the 
selected object.

Rel. 

Horizontal Index (document) I Index of the selected object in the sequence of horizontally aligned objects. Abs. 
Vertical Index (document) I Index of the selected object in the sequence of vertically aligned objects. Abs. 

V/H Alignment Ratio (document) R
Ratio of objects vertically to objects horizontally aligned with the selected 
one.

Rel. 

C
on

te
xt

Objects R Total number of objects contained in the context. Rel. IF

Text density R Area of the context used by text divided by the total context area. Abs. 

S
F

Link density R Area of the context used by links divided by the total context area. Abs. 
Link character density R Ratio of characters in links to all characters in the context. Abs. T

F

Data Type (T): Real(R), Integer(I), Enumeration(E), Boolean(B), RGBA Color(C), Bitmap(M), String(S).
Feature groups: interface feature (IF), spatial feature (SF), visual perception feature (VPF), textual feature (TF).
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