
Using Statistics for Computing Joins with MapReduce

Theresa Csar1, Reinhard Pichler1, Emanuel Sallinger1, and Vadim Savenkov2

1 Vienna University of Technology
{csar, pichler, sallinger}@dbai.tuwien.ac.at

2 Vienna University of Economy and Business (WU)
vadim.savenkov@wu.ac.at

1 Introduction

The MapReduce model has been designed to cope with ever-growing amounts of data [4].
It has been successfully applied to various computational problems. In recent years,
multiple MapReduce algorithms have also been developed for computing joins – one of
the fundamental problems in managing and querying data.

The main optimization goals of these algorithms for distributing the computation
tasks to the available reducers are the replication rate and the maximum load of the
reducers. The HyperCube algorithm of Afrati and Ullman [1] minimizes the former by
considering only the size of the involved tables. This algorithm was later enhanced by
Beame et al. [3] to minimize the latter by taking into account also so-called “heavy
hitters” (i.e., attribute values that occur particularly often). However, in contrast to most
state-of-the-art database management systems, more elaborate statistics on the distribu-
tion of data values have not been used for optimization purposes so far.

Recently, several approaches for handling skew in the computation of joins have
been proposed, improving the partitioning of the data using histograms or varying a
cost model [6, 7], but there is still ample room for enhancements and optimization.
In [5] a survey of recent approaches for dealing with the weaknesses and limitations of
the MapReduce model can be found.

The goal of this paper is to study the potential benefit of using more fine-grained
statistics on the distribution of data values in MapReduce algorithms for join compu-
tation. To this end, we investigate the performance of known algorithms [1, 3] in the
presence of skewed data, and extend them by utilizing data statistics. We compare the
original algorithms with a modified one that makes use of additional statistical mea-
sures. Our initial study shows that our approach can indeed improve existing methods.

2 Preliminaries

A MapReduce join computation consists of three basic phases. First, in the Map-Phase,
a key-value is assigned to every tuple. In the Shuffle-Phase, the tuples are distributed
among the reduce tasks (also called reducers) according to their key-values. In the final
Reduce-Phase, each reducer performs the join on all its tuples. The theoretical founda-
tions of MapReduce query processing have been laid among others by [1–3], based on
the HyperCube algorithm outlined below.

The HyperCube Algorithm. Key-values for tuples are formed by concatenating the
hashes of the join attributes. Consider the triangle join R(A,B) 1 S(B,C) 1 T (C,A)
in which all attributes A, B and C are join attributes. Key-values are triples (ai, bi, ci)
obtained by the respective hash functions ha, hb and hc. A tuple is sent to all reducers
that may have join candidates for it. For instance, the tuple R(a1, b1) is sent to the
reducers identified by keys of the form (ha(a1), hb(b1), ∗) where ∗ matches any value
in the range of hc. We take [1, a], [1, b] and [1, c] to be the ranges of the respective
hash functions ha, hb and hc. The size the range is called the share of the attribute. The
respective shares are thus a, b and c, and the total number of reducers equals the product
of the shares: k = abc.

An important measure for the performance of the HyperCube algorithm is the repli-
cation rate. For instance, each R-tuple R(ai, bi) is replicated c times, since it is sent to
the reducers responsible for the keys (h(ai), h(bi), 1), . . . , (h(ai), h(bi), c). The repli-
cation rate for the triangle join is rc+sa+tb, where r, s and t are the sizes of the tables.
In [1], shares are chosen in order to minimize the replication rate. The solution for the

shares for the triangle query in the model of [1] is a = 3

√
krt
s2 , b = 3

√
krs
t2 and c =

3

√
kst
r2 . For the four-atom chain query R(A,B) 1 S(B,C) 1 T (C,D) 1 U(D,E), the

solutions for the shares are b = d
√

rs
tu , c =

√
st
ru and d =

√
ku
s .

In [3], the shares are chosen to minimize the maximum load per reducer, that is,
the maximum number of tuples sent to a single reducer. The shares are calculated as
the solution to a linear program. In contrast to [1], the method in [3] also addresses
the problem of skew by treating heavy hitters separately. Also the expected load and
maximum load per server is analyzed in [3], and a lower bound for the maximum load
per server is given.

3 An Empirical Study and the Need for Statistics

The goal of our study is to compare the performance of HyperCube-based algorithms.
To this end, we investigate how the shares chosen by such methods influence the work-
load distributions among the reduce tasks, in particular the maximum load. The anal-
ysis was performed on two well-studied types of queries, namely the triangle query
(R(A,B) 1 S(B,C) 1 T (C,A)) and the chain query of length four (R(A,B) 1

S(B,C) 1 T (C,D) 1 U(D,E)). In both cases, there are three join attributes.

Methods. Apart from known methods for computing shares, namely [1] (which we
shall call AU) and [3] (which we shall call BKS), we next introduce baseline methods as
well as weighted variants of AU that take into account additional statistics. To facilitate
a fair comparison, the shares produced by each method are normalized in the following
way: they are rounded to integer values in such a way that the product of the shares is
as close as possible to the fixed number of reduce tasks k. Shares have to be at least 1
and at most k. For the naive method, we define shares naive = (3

√
k, 3
√
k, 3
√
k). The

worst-case we identified, worst = (k, 1, 1), will be omitted from charts to keep the
differences between other methods visible. The nearly-worst-case methods we consider
are defined as share1 = (2 3

√
k, 1

2
3
√
k, 3
√
k) and share2 = (

√
k,
√
k, 1), respectively.

2

Weigthed AU. The shares computed using AU (or BKS) depend only on the sizes of
the tables, but not on other statistics indicating, e.g., the degree of skew. A simple way
to detect a distribution with high variability is using the standard deviation. The more
elaborate gini-coefficient is a measure for the variability of a distribution. For an ob-
servation X with possible values x1, . . . , xn and relative frequencies p1, . . . , pn, the
gini-coefficient is

∑n
i=1 p

2
i . A gini-coefficient close to 1 means that the values are very

unevenly distributed.
We define our method SD as a variant of AU with the following modification: As-

sume that a table T has size t and attributes A and B. Instead of t, we give to AU the
weighted value t · sd(T.A) · sd(T.B), where sd denotes the standard deviation of the
attribute values. The Gini method is defined analogously. Finally, the variant SD2 of
SD is defined by normalizing the standard deviation relative to the maximum attribute
value, i.e., sd2 (T.A) := sd(T.A) /max (T.A). Note that standard deviation is only
defined for numeric values (and our test scenarios use only numeric values). We leave
the study of similar variations of BKS for future work.

Test Methodology. The experimental study was implemented using the programming
language R (http://cran.r-project.org/). The goal of our study is to compute
the work loads of all reducers, and derive in particular the maximum load and various
other statistics based on the loads. Thus, we only implement the Map-Phase of the
MapReduce process. To this end we compute the loads of the reducers and our presented
statistics.

As databases for our test scenarios, we use randomly generated data sets where at-
tributes are generated according to a variety of different distributions. For each such
database, all methods (AU, BKS, . . .) are applied 1000 times to the input tables to com-
pute the shares. In each round, other (randomly generated) hash functions are used.
Performing 1000 repetitions is done to be able to isolate the effect of the method (in
particular, the chosen shares) from the effect of the exact hash function that is used.

Fig. 1: Triangle query – maximum loads Fig. 2: Chain query – maximum loads

3

Triangle Query. For the triangle query, we first look at a sample database generated
using the methodology described above. The number of reduce tasks used is 150. The
resulting maximum load at the reduce tasks can be seen in Fig. 1, where it can be ob-
served that all reasonable methods (i.e., all methods besides the nearly-worst-case ones)
do not show any significant difference in the performance based on the the maximum
loads. When observing the variance and the gini-coefficient of the loads, a similar pic-
ture arises. This is surprising, since the assigned shares differ a lot (see Table 1a). As
expected, AU yields the lowest replication rate.

method a b c replication rate
AU 3 6 8 4.72
BKS 3 6 8 4.72
Naive 5 6 5 4.91
Gini 6 5 5 5.55
SD 3 5 10 4.82
SD2 2 6 11 4.73
share1 10 3 5 7.18
share2 8 9 2 7.18
worst 150 1 1 82.3

(a) First triangle query

method b c d replication rate
AU 8 3 6 13.3
BKS 11 2 7 13.5
Naive 5 6 5 14.5
Gini 48 1 3 25.9
SD 1 50 3 33.0
SD2 7 21 1 41.6
share1 10 3 5 14.4
share2 8 9 2 23.3
worst 150 1 1 75.6

(b) Chain query

Table 1: Shares and replication rates for the triangle and chain queries.

Triangle Query for Highly Skewed Data. For highly skewed data, we show that the AU
and BKS methods do not always yield optimal maximum load. Indeed, the maximum
load produced by AU and BKS exceeds the value obtained with the SD by more than
30%. We illustrate this by an example.

We consider the database instance D given in Fig. 3 and let the maximum number
of reducers be 64. Table R contains 1040 distinct tuples (ai, bi) and the tables S and T
contain groups of 16 ci,j values associated to the same ai or bj value, which sums up to
1040 values per table as well.

In total, few R tuples take part in triangles, but those that take part have 16 ci,j
values that form triangles with them. Such a situation would be typical in a company
where, say, few employees are department heads, but those who are department heads
have a number of employees they are responsible for.

We calculated the shares, the resulting replication rate and maximum load for the
discussed methods. Both AU and BKS yield shares (4, 4, 4). Applying the pigeonhole
principle, one can show that this leads to the load of 65+ 16+ 16 = 97 tuples for most
reducers as a lower bound. A much better maximum load (66 tuples for one reducer
and 33 for the rest) could have been obtained using shares (8, 8, 1). The suboptimal
result of AU and BKS is due to taking only table sizes into account, whereas the SD
method yields the solution (8, 8, 1). An important observation here is that the actual
performance of each method depends heavily on the concrete hash function and that
“usual” hash functions based on integer division may by far miss the optimum.

4

R
A B
a1 b1

...
...

a1040 b1040

S
A C
a1 c1,1
a1 c1,2
...

...
a1 c1,16
...

...
a65 c65,1
a65 c65,2

...
...

a65 c65,16

T
C B
c1,1 b1
c1,2 b1

...
...

c1,16 b1
...

...
c65,1 b65
c65,2 b65

...
...

c65,16 b65

Fig. 3: Database instance D.

Chain Query. For the chain query, a random database is constructed according to the
methodology outlined earlier. Again, our tests are performed for 150 reduce tasks. In-
terestingly, the resulting maximum loads are much higher for share2, Gini, SD, and
SD2 than for the other methods (see Fig. 2). The high maximum load in case of Gini,
SD, and SD2 suggests that some fine-tuning of the weights caused by the data statistics
is needed. On the positive side, it turns out that the loads resulting from the Gini, SD,
and SD2 methods are distributed more evenly among the reducers than with AU and
BKS, as can be seen in Fig. 5. The high variability in the median (Fig. 4), especially for
the Gini method, again underlines that the choice of the hash function is crucial.

Fig. 4: Chain query – median of loads Fig. 5: Chain query – gini of loads

5

4 Conclusion

We have initiated the comparative study of methods for computing joins using MapRe-
duce. We have seen that current methods perform relatively well compared to baseline
and adapted methods. However, we have also seen that data-dependent statistics pro-
vide much potential for further improvement of these algorithms, which needs to be
further explored. In particular, if we aim at a uniform distribution of computation tasks
among the available reducers, taking into account additional statistical measures such
as standard deviation or gini coefficient seems inevitable. Another important lesson
learned from our investigation is the importance and difficulty of choosing an optimal
hash function: even if the shares are – in theory – “optimal” for a certain criterion (such
as maximum load), it is highly non-trivial to actually attain this optimum by choosing
the “right” hash function. Current MapReduce research thus also has to be extended
towards optimizing the hash function. Beyond that, we want to investigate the tradeoff
between the cost of computing statistics and the gain provided by these statistics.
Acknowledgements. This work was supported by the Austrian Science Fund projects
(FWF):P25207-N23 and (FWF):Y698.

References

1. Afrati, F.N., Ullman, J.D.: Optimizing multiway joins in a map-reduce environment. IEEE
Trans. Knowl. Data Eng. 23(9), 1282–1298 (2011)

2. Beame, P., Koutris, P., Suciu, D.: Communication steps for parallel query processing. In: Proc.
PODS 2013. pp. 273–284. ACM (2013)

3. Beame, P., Koutris, P., Suciu, D.: Skew in parallel query processing. In: Proc. PODS 2014. pp.
212–223. ACM (2014)

4. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

5. Doulkeridis, C., Nørvåg, K.: A survey of large-scale analytical query processing in mapre-
duce. The VLDB Journal 23(3), 355–380 (2014)

6. Gufler, B., Augsten, N., Reiser, A., Kemper, A.: Load balancing in mapreduce based on scal-
able cardinality estimates. In: Proc. ICDE 2012. pp. 522–533 (2012)

7. Okcan, A., Riedewald, M.: Processing theta-joins using mapreduce. In: Proc. SIGMOD 2011.
pp. 949–960. ACM (2011)

6

