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Abstract. Dung’s abstract argumentation frameworks (AF) are a
popular conceptual tool to define semantics for advanced argumenta-
tion formalisms. Hereby, arguments representing a possible inference
of a claim are constructed and an attack relation between arguments
indicates certain conflicts between the claim of one argument and the
inference of another. Based on this abstract model, sets of jointly ac-
ceptable arguments are then gathered and finally interpreted in terms
of their claims. Argumentation formalisms following this type of in-
stantiating Dung AFs naturally produce several arguments with the
same claim. This causes several issues and challenges for argumen-
tation systems: on the one hand, the relation between claims remains
implicit and, on the other hand, determining the acceptance of claims
requires additional computations on top of argument acceptance. An
instantiation that avoids this situation could provide additional in-
sights and advantages, thus complementing the standard instantia-
tion process via Dung AFs. Consequently, the research question we
tackle is as follows: Can one combine different arguments sharing
the same claim to a single abstract argument without affecting the
overall results (and which abstract formalisms can serve such a pur-
pose)? As a main result we show that a certain class of frameworks,
where arguments with the same claim have the same outgoing at-
tacks, can be equivalently (for all standard semantics) represented as
argumentation frameworks with collective attacks where each claim
occurs in exactly one argument. We further identify a class of frame-
works where one even obtains an equivalent Dung AF with just one
argument per claim.

1 Introduction
The formal analysis of human reasoning facing uncertain informa-
tion and conflicting beliefs is an important research area within AI.
Abstract argumentation, as introduced by Dung [16], has been es-
tablished as an important tool to analyze and evaluate the structure
of argumentation systems by treating arguments as abstract entities.
Depending on the particular task, various instantiation processes are
used to model discourses, medical and legal cases [4], but also logic
programs and non-monotonic reasoning formalisms [16, 13].

The general schema is often referred to as the argumentation
pipeline and involves: (1) instantiation of a problem (which is given
in terms of a knowledge base) into an abstract argumentation frame-
work (AF); (2) application of semantics yielding sets of collectively
acceptable arguments (the extensions of the AF); (3) re-interpretation
of the extensions in terms of the original problem. Different instanti-
ation processes have been established, see e.g. [22, 26, 13]. They all
have in common that each generated argument stands for a statement
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Figure 1: Resulting AF from Example 1.

(claim) that follows from elements of the initial knowledge base. Step
(3) hence usually consists of inspecting the claims of the arguments
occurring in the extensions; for instance, one might ask whether a
particular claim is justified in each extension of the AF which is the
case if each extension contains an argument featuring that claim.

Example 1. We consider an instantiation procedure using
ASPIC+ [26]. Let Kp = {b, b, c, c} be the set of premises, Ks =
{b → a, c → a} be the set of strict rules and let the pairs (b, b),
(c, c), (b, c) be contradictory. We instantiate this knowledge base into
a Dung AF which consists of abstract arguments and an attack from
argument A to argument B is present if the claim of A is contradic-
tory to the support of B. The arguments are listed in the table below
and the resulting Dung AF is depicted in Figure 1.

Argument A1 A2 A3 A4 A5 A6

Structure b b c c A2 → a A4 → a

Claim b b c c a a

The evaluation of this AF under stable semantics2 yields the sets
{A1, A3}, {A2, A3, A5} and {A1, A4, A6}. The re-interpretation
in terms of claims gives us the sets {b, c}, {a, b, c} and {a, b, c}. The
arguments A5 and A6 both refer to the same claim a and while the
second and third extensions are disjoint on their arguments they are
not on their claims. That is, multiple arguments with the same claim
can lead to subtle differences in reasoning about claim acceptance.
It is thus a natural question whether or not we can avoid multiple
occurrences of claims in the abstract arguments.

In this paper we are interested under which conditions an instan-
tiation procedure can be modified such that it results in an abstract
representation that requires only one argument per claim and that is
equivalent to the standard attack-model. Some clarifications are in or-
der: (1) When we talk about abstract representations, we mean any
formalism that abstracts away from the contents of the arguments,
and allows for an evaluation that is solely depending on the relations
between arguments. We have already seen the simple Dung AFs at
work. A generalization which we use in this paper are SETAFs (AFs
with collective attacks [25]), where arguments can be jointly attacked

2 A set S of arguments is stable if it attacks exactly those arguments which
do not belong to S.
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Figure 2: Example 1 expressed as SETAF.

by other arguments. (2) The term equivalent refers to the fact that two
abstractions deliver the same result when their extensions are inter-
preted in terms of their claims.

While undoubtedly there are good reasons to keep several argu-
ments with the same claim in the abstract representation (in partic-
ular, to preserve the different lines of support for a specific claim),
there are also advantages of having only one argument per claim on
the abstract level:

• In a representation with only one argument per claim we have an
explicit representation of the conflict relation between the claims,
which remains implicit in the standard case.

• In abstract representations with several arguments per claim we
need to add an additional layer in argumentation systems to ob-
tain the acceptance status of the claims from the acceptance status
of the arguments. This increases not only the complexity of ar-
gumentation systems in practice; recent results also show higher
computational complexity of certain tasks [20] compared to the
standard acceptance problems on the argument level.

• When allowing for several arguments with same claim, the num-
ber of arguments might be exponentially larger than in abstract
representations with only one argument per claim, e.g. in the in-
stantiations for LPs discussed below. Again, this might have sig-
nificant impact on computational aspects.

To exemplify the research question, we show in Figure 2 a SETAF
that fulfills above criteria for Example 1. Hereby, arguments A1 to
A4 have the same claims as the Dung AF; argument A5,6 combines
the two arguments A5 and A6 with claim a. A collective attack
({A1, A2}, A5,6) is interpreted as neither A1 nor A2 attacks A5,6

but when both are considered together they jointly attackA5,6. It can
be shown that the stable extensions of this SETAF are equivalent to
the stable extensions of the Dung AF in Example 1 when interpreted
in terms of claims but duplicate claims are avoided. Notice, that this
cannot by accomplished with Dung AFs as one would need an AF
such that the stable extensions are given by the sets {b, c}, {a, b, c}
and {a, b, c}. However, such an AF does not exist as follows from re-
sults on expressiveness of AF semantics by Dunne et al. [17]. Notice,
that the attack ({A1, A3}, A5,6) in Figure 2 reflects the fact that the
three statements {a, b, c} are in conflict although there is no pairwise
conflict. Also observe that this relation remains implicit in Figure 1.

Similar investigations have been undertaken for concrete instan-
tiation procedures of abstract argumentation, in particular, instantia-
tions for logic programs (LPs) into Dung AFs have been studied in
the literature [13]. Recently, Alcantara et al. [1] proposed an equiv-
alent (under certain semantics) instantiation procedure that results in
a specific class of ADFs (which in the light of [24] can also be inter-
preted as SETAFs) that avoids duplicates of claims.

In order to base our studies independently from concrete in-
stantiations, we utilize the concept of claim-augmented argumen-
tation frameworks, CAFs for short, as introduced by Dvořák and
Woltran [20]. CAFs are AFs where arguments are associated with
claims and semantics deliver those sets of claims attached to the argu-
ments in the extensions under standard AF semantics. CAFs provide

a natural intermediate layer between structured and purely abstract
argumentation formalisms, since they carry the necessary informa-
tion to compute the extensions and at the same time re-interpret them
in terms of the instantiated problem. This is exactly the level of detail
we require for our investigations. Our research question now amounts
to the question of translating CAFs into purely abstract formalisms
such that duplicate claims are avoided, hence allowing for a one-to-
one correspondence between argument names and their claims. We
will focus on the most common semantics, namely preferred, stable,
complete, admissible and grounded semantics [16]. A crucial notion
for our purpose relies on the following restriction on the attack rela-
tion: A CAF is well-formed if arguments with the same claim attack
the same arguments (the AF from Example 1 is indeed well-formed).
This constraint naturally occurs in instantiation processes: attacks are
usually generated under consideration of the claim of the attacker.3

Translating CAFs into an abstract representation without an ad-
ditional claim layer allows to investigate the capabilities of abstract
argumentation formalisms from different viewpoints. (1) Several ap-
proaches to extend Dung AFs have been discussed in the literature.
However, the question on their advantages in the instantiation process
has often been neglected. Our research targets this question by in-
vestigating whether such generalizations are capable of representing
scenarios not directly expressible via Dung AFs. Our main focus here
will be on SETAFs, which have received significant interest in the
last years [21, 31, 18]. (2) From a theoretical perspective, we study
under which circumstances different arguments S1 : c, . . . , Sn : c
(with the same claim but different support) and their relation to other
arguments can be combined into a single argument

∨
i Si : c such

that this amalgamation can still be represented on the abstract level.

The main results of our paper are:

• We show that well-formed CAFs can be equivalently expressed
via SETAFs where the argument names in the SETAF refer to the
claims in the CAF, thus providing a single argument for each claim
(in fact, we show that well-formed CAFs and SETAFs are equally
powerful w.r.t. the semantics under consideration). This result
demonstrates that all instantiation procedures that result in Dung
structures where the arguments’ claims imply well-formedness
can be defined in terms of SETAFs where each argument stands
for a different claim.

• We complement the above results by showing that each SETAF
can be equivalently represented by a well-formed CAF. It thus
follows that SETAFs and well-formed CAFs have the same ex-
pressiveness.

• We strengthen the result for well-formed CAFs by characteriz-
ing a class of CAFs, so-called attack-unitary CAFs, that, under
admissibility-based semantics, can be transformed to an equiva-
lent standard Dung AF.

• We give a rewriting technique for CAFs in order to reduce the
number of arguments with the same claim, even in case when a
full translation to SETAFs or AFs is not possible.

• Finally, we show that for the classes of well-formed CAFs and
attack-unitary CAFs only one attack violating the respective prop-
erty can lead to a situation where a translation to SETAFs (resp.
AFs) is not possible anymore.

Some technical details are omitted due to space constraints. A ver-
sion with full proofs is available at www.dbai.tuwien.ac.at/
research/argumentation/ecai2020-full.pdf.
3 Exceptions are instantiation procedures which allow rule and claim prefer-

ences (cf. ASPIC+).
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2 Preliminaries
In this section, we first introduce standard abstract argumentation
frameworks [16] and recall the semantics we study (for a compre-
hensive introduction, see [5]). We then introduce their generalization
to collective attacks.

Dung AFs. We start with some basic definitions.

Definition 1. A Dung argumentation framework (AF) is a pair F =
(A,R) where A is a finite set of arguments and R ⊆ A × A is the
attack relation. The pair (a, b) ∈ R means that a attacks b. Given an
argument a, we use a+R = {b | (a, b) ∈ R} and a−R = {b | (b, a) ∈
R}; we extend both notions to sets S as expected: S+

R =
⋃
a∈S a

+
R,

S−R =
⋃
a∈S a

−
R . We say that an argument a ∈ A is defended (in F )

by S ⊆ A if a−R ⊆ S
+
R .

Semantics for AFs are defined as functions σ which assign to each
AF F = (A,R) a set σ(F ) ⊆ 2A of extensions. We consider for
σ the functions cf , adm , com , grd , stb, and prf , which stand for
conflict-free, admissible, complete, grounded, stable, and preferred
extensions, respectively.

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free
(in F ), if there are no a, b ∈ S, such that (a, b) ∈ R. cf (F ) denotes
the collection of sets being conflict-free in F . For a conflict-free set
S ∈ cf (F ), it holds that

• S ∈ adm(F ), if each a ∈ S is defended by S in F ;
• S ∈ com(F ), if S ∈ adm(F ) and each a ∈ A defended by S in
F is contained in S;

• S ∈ grd(F ), if S =
⋂
T∈com(F ) T ;

• S ∈ stb(F ), if each a ∈ A \ S is attacked by S in F ;
• S ∈ prf (F ), if S ∈ adm(F ) and there is no T ⊃ S such that
T ∈ adm(F ).

We recall that for each AF F , stb(F ) ⊆ prf (F ) ⊆ com(F ) ⊆
adm(F ), and grd(F ) yields a unique extension. Moreover, seman-
tics σ ∈ {stb, prf } deliver incomparable sets, i.e. for all S, T ∈
σ(F ), S ⊆ T implies S = T .

SETAFs and Collective Attacks. SETAFs, as introduced by
Nielsen and Parsons [25], generalize the binary attack-relation in AFs
to collective attacks of arguments. The formalism captures situations
in which a single argument might be too weak to attack more power-
ful statements.

Definition 3. A SETAF is a pair SF = (A,R) where A finite, and
R ⊆ (2A \ {∅})×A is the attack relation.

Given a SETAF SF = (A,R), then S ⊆ A attacks a if there is
a set S′ ⊆ S with (S′, a) ∈ R. S is conflicting in SF if S attacks
some a ∈ S; S is conflict-free in SF , if S is not conflicting in SF , i.e.
S′ ∪ {a} 6⊆ S for each (S′, a) ∈ R. Finally, a ∈ A is defended by
S if for each set B ⊆ A with (B, a) ∈ R, there is some b ∈ B such
that S attacks b. With these extended notions of conflict and defense
at hand, the semantics of AFs generalize to SETAFs as follows.

Definition 4. Given a SETAF SF = (A,R), we denote the set of all
conflict-free sets in SF as cfs(SF ). For S ∈ cfs(SF ), it holds that

• S ∈ adms(SF ) if each a ∈ S is defended by S in SF ;
• S ∈ coms(SF ), if S ∈ adms(SF ) and a ∈ S for all a ∈ A

defended by S in SF ;

c c b b

a a

Figure 3: The AF F from Example 1 as CAF; here, claims are de-
picted instead of argument names.

• S ∈ grds(SF ), if S =
⋂
T∈coms(SF) T ;

• S ∈ stbs(SF ), if each a ∈ A \ S is attacked by S in SF ;
• S ∈ prf s(SF ), if S ∈ adms(SF ) and there is no T ⊃ S such

that T ∈ adms(SF ).

We introduce attack formulas as an alternative formalisation of the
attack-structure in SETAFs.

Definition 5. For any SETAF SF = (A,R) and a ∈ A, let

DSF
a =

∨
B⊆A,(B,a)∈R

∧
b∈B

b

denote the attack-formula of a in SF .

For each s ∈ A, the models of the attack-formula DSF
s coincide

with the sets S ⊆ A such that S attacks s in SF . Using this iden-
tity, the semantics for SETAFs can be rephrased in terms of attack-
formulas. For example, a set S is stable in SF , if for each s ∈ A,
we have that s ∈ S if and only if δ * S for all δ ∈ DSF

s (following
standard conventions, we will occasionally identify formulas in CNF
or DNF as a collection of sets of literals; in our case, atoms).

3 Argumentation Frameworks with Claims

In order to abstract from a concrete instantiation we use an augmen-
tation of Dung AFs that allows for a uniform representation of the
outcome of a wide variety of instantiation procedures. That is we
consider claim-augmented argumentation frameworks (CAFs) as re-
cently introduced by Dvořák and Woltran [20]. The idea is to assign
each argument in an AF a claim, i.e. an element from a countable
infinite domain of claims C. Hence, different arguments can have
the same claim, but no further information about claims is available.
Notice that CAFs provide exactly the necessary information to com-
pute the extensions and re-interpret them in terms of the instantiated
problem.

Definition 6. A Claim-augmented Argumentation Framework
(CAF) is a triple (A,R, claim) where (A,R) is an AF and claim :
A→ C assigns a claim to each argument of A.

Figure 3 shows the CAF for Example 1. Notice that CAFs cannot
only model the outcome of ASPIC style instantiations but is also
applicable to e.g. instantiations from logic programming [20] and
assumption-based argumentation (ABA).

Semantics of CAFs are defined from the standard semantics of the
underlying AF, but interpret the extensions in terms of the claims of
their arguments. To this end, we extend the claim function to sets, i.e.
claim(S) = {claim(s) | s ∈ S}.

Definition 7. For a semantics σ, we define its claim-based vari-
ant σc as follows. For any CAF CF = (A,R, claim), σc(CF ) =
{claim(S) | S ∈ σ((A,R))}. Given S ∈ σc(CF ), we say that
E ⊆ A is a σ-realization of S in CF if claim(E) = S and
E ∈ σ((A,R)).
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Example 2. Let CF = (A,R, claim) be given with (A,R) as
depicted in Figure 4, and claim(xi) = x, claim(yi) = y for
i = 1, 2. We have comc(CF ) = admc(CF ) = {∅, {x}, {x, y}},
grdc(CF ) = {∅}, and stbc(CF ) = prfc(CF ) = {{x}, {x, y}}.
Note that {x} ∈ admc(CF ) has two adm-realizations, namely
E1 = {x1} and E2 = {x2}.

y1 x1 x2 y2

Figure 4: The AF from Example 2.

Some basic relations between different semantics carry over from
standard AFs. In fact, we have for any CAF CF

stbc(CF ) ⊆ prf c(CF ) ⊆ comc(CF ) ⊆ admc(CF ) (1)

and grdc(CF ) is unique and contained in comc(CF ). Moreover, the
claim-based grounded extension S ∈ grdc(CF ) is still the unique
minimal claim-based complete extension.

As Example 2 shows, claim-based semantics loose some basic
properties, for instance incomparability of stable and preferred exten-
sions. However, this can be circumvented with a particular subclass
called well-formed CAFs which has been defined in [20]; a similar
property has been studied in [22, 3].

Definition 8. A CAF (A,R, claim) is called well-formed if a+R =
b+R for any a, b ∈ A with claim(a) = claim(b), i.e. arguments with
the same claim attack the same arguments.

Proposition 1. For any well-formed CAF CF , S ∈ prfc(CF ) iff
S ∈ comc(CF ) and there is no T ∈ comc(CF ) with T ⊃ S.

Proof. Consider a well-formed CAF CF = (A,R, claim). We
show that for D,E ∈ com((A,R)), D ⊆ E iff claim(D) ⊆
claim(E). The assertion then follows immediately. As claim(.) is
monotone we have that D ⊆ E implies claim(D) ⊆ claim(E).
We next show the converse, i.e. that claim(D) ⊆ claim(E) implies
D ⊆ E. As CF is well-formed, claim(D) ⊆ claim(E) implies
D+
R ⊆ E+

R . That is all arguments defended by D in (A,R) are also
defended by E in (A,R). Finally as D defends all its arguments and
E contains all arguments it defends we have D ⊆ E.

Notice that the above result generalises similar observations for
instantiations from logic programming [13] and ABA [12], which
both result in well-formed CAFs. The following statement follows
from Proposition 1 and (1).

Proposition 2. For σ ∈ {stb, prf } and every well-formed CAF
CF = (A,R, claim), we have (a) σc(CF ) is incomparable, and
(b) |σ((A,R))| = |σc(CF )|.

4 Well-formed CAFs and SETAFs
Our aim is to translate CAFs to argumentation frameworks such that
each claim that appears in the CAF corresponds to exactly one ar-
gument in the argumentation framework. Thus we do not allow ad-
ditional auxiliary arguments that lack a counterpart in their claims
with respect to the original domain. The two main results of this sec-
tion will show that CAFs and SETAFs can be translated to each other
while preserving the outcome in terms of claims. This shows that in
the abstract representation of an instantiation procedure one can trade
multiple claims for collective attacks and vice versa.

4.1 Expressing Well-formed CAFs as SETAFs
We show that each well-formed CAF can be reduced to an equivalent
SETAF by identifying claims in well-formed CAFs with arguments
in SETAFs. In well-formed CAFs, arguments with the same claim
are indistinguishable in terms of their outgoing attacks. Hence, in
contrast to general CAFs, one can speak about claims attacking ar-
guments. We will introduce attack formulas for each claim c. These
formulas intuitively capture all possible sets of claims which jointly
contradict each occurrence of claim c.

Definition 9. Given a well-formed CAF CF = (A,R, claim), then
for each claim c ∈ claim(A), the CNF-attack-formula of c in CF is
defined as

CDCF
c =

∧
a∈A,claim(a)=c

∨
(x,a)∈R

claim(x).

DCF
c denotes any equivalent DNF-formula over the same set of vari-

ables and is called DNF-attack-formula of c in CF .

Note that the attack-formula CDCF
c is unsatisfiable iff there exists

an argument x in CF with claim(x) = c such that x−R = ∅.
Similarly to SETAFs, attack formulas allow for an exact charac-

terization of well-formed CAFs, i.e. each well-formed CAF CF =
(A,R, claim) is uniquely determined (modulo argument names) via
its attack formulas CDCF

c .

Example 3. Consider the following CNF-attack formulas:

CDCF
a = (c ∨ b) ∧ (c ∨ b)

CDCF
b = b CDCF

c = c

CDCF
b = b ∨ c CDCF

c = b ∨ c

The two conjuncts of CDCF
a determine that we have two arguments

with claim a, while the remaining claims appear only once. The dis-
junctions refer to the attackers of the arguments. In fact, we obtain
the CAF as depicted in Figure 3.

We introduce the translation Tcts, which maps each well-formed
CAF CF to a corresponding SETAF Tcts(CF ). Each claim c in the
original framework CF corresponds to an argument in Tcts(CF ),
furthermore we identify each disjunct of the DNF-attack-formula
DCF
c with a collective attack against c. Consequently, the formula
DCF
c coincides with the attack-formula DTcts(CF)

c of the resulting
SETAF Tcts(CF ). Therefore, the SETAF Tcts(CF ) solely depends
on the DNF-attack-formulas DCF

c .

Translation 1. For a well-formed CAF CF = (A,R, claim) we
define Tcts(CF ) = (A′, R′) with A′ = claim(A) and

R′ = {(δ, c) | c ∈ A′, δ ∈ DCF
c }.

Example 4. In Example 3 we have already provided the attack for-
mulas for the CAF CF depicted in Figure 3. The attack formula
CDCF

a for claim a in DNF representation yields DCF
a = (c ∧ c) ∨

(c∧b)∨(b∧c)∨(b∧b). The attack formulas for the remaining claims
are readily given in DNF. Applying Translation 1 yields the SETAF
given in Figure 5: for a, we need a collective attack for each dis-
junct in DCF

a ; for the remaining arguments, each disjunct contains
one atom, thus the incoming attacks remain binary.

Notice that the translation links multiple occurrences of a claim
with collective attacks on a corresponding single argument. There-
fore, it interlinks claim-based extensions of CAFs with extensions
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Figure 5: SETAF Tcts(CF ) from Example 4.

(on the argument level) of SETAFs. As we show next, this is per-
formed in a faithful way, that is, the reviewed semantics of well-
formed CAFs can be reduced to their counterparts in SETAFs.

Theorem 1. For each well-formed CAF CF and σ ∈ {cf ,
adm, com, grd , prf , stb}, Translation 1 provides an equivalent
SETAF Tcts(CF ) such that σc(CF ) = σs(Tcts(CF )).

Proof (for σ ∈ {cf , stb}). First, let σ = cf . We rephrase conflict-
freeness in terms of CNF- resp. DNF-attack-formulas. In well-
formed CAFs, S ∈ cf c(CF ) iff for each s ∈ S there is an a ∈ A
with claim(a) = s such that a is not attacked by any argument b
with claim(b) ∈ S. Note that, for any s ∈ claim(A), CDCF

s iden-
tifies each clause with the set of attacking claims for a particular
occurrence of s in CF . That is, S ∈ cf c(CF ) iff for each s ∈ S,

there is some γ ∈ CDCF
s such that γ ∩ S = ∅. (C1)

In a SETAF SF = (A′, R′), a set S ⊆ A′ is conflict-free iff for all
S′ ⊆ S and all s ∈ S, (S′, s) /∈ R′. In terms of attack formulas,
S ∈ cf s(SF ) iff for each s ∈ S, it holds that

for all δ ∈ DSF
s we have δ * S. (C2)

Now let SF = Tcts(CF ) = (A′, R′). We have (i) DSF
s = DCF

s for
each s ∈ A′ by construction, and (ii) that no δ ∈ DCF

s is a subset of
S iff there exists γ ∈ CDCF

c such that γ∩S = ∅, and thus we obtain
that (C1) is equivalent to (C2), hence the statement follows.

Let σ = stb. A set S is stable on claim-level in CF if for each
s ∈ claim(A), it holds that s ∈ S if and only if (C1). Similarly,
S is stable in Tcts(CF ) if for each s ∈ A′ = claim(A), it holds
that s ∈ S if and only if (C2). Again, the statement follows by the
equivalence of (C2) and (C1).

The result shows that multiple occurrences of claims in CAFs can
be equivalently treated as collective attacks, if the framework satis-
fies well-formedness. Indeed, in our running example (cf. Figure 5),
the stable extensions stbs(Tcts(CF )) are given by the sets {a, b, c},
{a, b, c} and {b, c}.

A natural question that arises is about the contents the arguments
in the resulting SETAF are representing with respect to an initial
instantiation. To this end, let us have one more look on the exam-
ple from the introduction, where argument A5 for claim a builds
on a support consisting of b and rule b → a while argument A6

has support c; c → a. The combined argument A5,6 (see Figure 2)
thus can be interpreted as argument for a with disjunctive support
(b; b → a) ∨ (c; c → a). Now, in order to attack this argument
we need to find combinations of arguments that are contradictory to
each of the disjuncts. Recall that the contradictory relation is given
by {(b, b), (c, c), (b, c)} and argumentsA1,A2,A3,A4 have as their
respective claims b, b, c, c. We thus need together either A1 and A3,
A1 and A4, A2 and A3, or A2 and A4 to attack A5,6. This is exactly
the collective attack structure in Figure 2 and likewise the result of
our translation which delivers this combination by applying the logi-
cal rule of distributivity to the CNF-attack-formula CDCF

a of claim a

in order to obtain the corresponding attack-formulaDSF
a of argument

a for constructing the SETAF.4

4.2 Expressing SETAFs as well-formed CAFs

Our next result shows that it is equally possible to map each SETAF
to a well-formed CAF while preserving the reviewed semantics. That
is, we show that well-formed CAFs and and SETAF have the same
expressiveness and one can easily translate between them.

We will provide a translation Tstc which maps each SETAF SF
to an equivalent well-formed CAF using attack formulas. Each argu-
ment a will correspond to a claim in the resulting CAF; furthermore,
we introduce for each clause γ in the attack formula CDSF

a an argu-
ment aγ labeled with claim a. The clause γ also determines the set
of attackers of the argument aγ .

Translation 2. For each SETAF SF = (A′, R′), we define
Tstc(SF ) = (A,R, claim) as follows:

A = {aγ | a ∈ A′, γ ∈ CDSF
a } ∪ {a∅ | a ∈ A′, CDSF

a = ∅},

R = {(x, aγ) | a ∈ A′, γ ∈ CDSF
a , claim(x) ∈ γ},

claim(aγ) = a.

Example 5. Let SF = (A′, R′) be a SETAF as in Figure 5. In order
to apply the translation Tstc we first compute the attack formulas of
the arguments in SF . For instance, the attack formula DSF

a for the
argument a ∈ A′ is given by (c∧c)∨(b∧b)∨(b∧c)∨(b∧c) where
every disjunct represents a set which attacks a. The corresponding
CNF attack formula is CDSF

a = (c ∨ b) ∧ (c ∨ b). For the remain-
ing arguments, the CNF and DNF representation coincides. Once
every attack formula is constructed, one can apply Translation 2,
where the arguments in the SETAF SF correspond to the claims in
the CAF Tstc(SF ): For a, we introduce two arguments ac∨b, ac∨b
with claim(ac∨b) = claim(ac∨b) = a; the attacks are determined
by the claims which appear in the clauses, e.g. every argument x
with claim(x) = c attacks the argument ac∨b. The resulting CAF
Tstc(SF ) corresponds to the CAF depicted in Figure 3.

By applying similar techniques as in the proof of Theorem 1 it
can be shown that the reviewed semantics for SETAFs correspond to
their counterparts in well-formed CAFs.

Theorem 2. For each SETAF SF and σ ∈ {cf , adm,
com, grd , prf , stb}, Translation 2 provides an equivalent CAF
Tstc(SF ) such that σs(SF ) = σc(Tstc(SF )).

Thus by the Theorems 1 and 2, we conclude that well-formed
CAFs and SETAFs are equally powerful with respect to the seman-
tics under consideration.

Corollary 1. Let σ ∈ {cf , adm, com, grd , prf , stb}. For any well-
formed CAF CF , there is a SETAF SF such that σc(CF ) = σs(SF ),
and vice versa.

Given the exact characterizations of the expressiveness of seman-
tics of SETAFs in [18] the above translation results immediately pro-
vide exact characterizations of the expressiveness of the respective
semantics of well-formed CAFs.

4 Recall that in our translation we use in the SETAF claims anonymously as
argument names.
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5 Classes of CAFs Expressible as AFs
In this section we investigate classes of CAFs that can be directly
expressed by AFs. Prominently, one can show that for well-formed
CAFs (A,R, claim) where the attack relation R is symmetric there
is an equivalent Dung AF. This type of CAFs naturally occurs in in-
stantiations with only rebutting attacks (see [29] for a discussion of
different types of attacks) which is reflected by work on symmet-
ric AFs [15]. However, as we show next, a weaker condition on the
attack structure is already sufficient.

Definition 10. A CAF (A,R, claim) is called attacker-unitary (att-
unitary) if, for any a, b ∈ A with claim(a) = claim(b), it holds that
a−R = b−R , i.e. arguments with the same claim are attacked by the
same arguments.

The crucial property is that in att-unitary CAFs, a set of argu-
ments E defends either all or no occurrences of a claim c. Thus, for
admissible-based semantics, each claim-extension S can be realized
by a maximal representative. That is, the maximal representative of a
claim-extension S is given by the set Emax

S containing all arguments
with a claim from S.

Lemma 1. Let CF = (A,R, claim) be att-unitary and let S ∈
σc(CF ) for σ ∈ {adm, com, grd , prf , stb}. Then Emax

S = {x ∈
A | claim(x) ∈ S} ∈ σ((A,R)).

Next, we present a translation Tcta from att-unitary CAFs to AFs.
Given CAF CF = (A,R, claim), each claim c ∈ claim(A)
is mapped to a single argument c in the resulting AF Tcta(CF ),
wherein c attacks d if at least one argument with claim c attacks the
arguments with claim d in (A,R).

Translation 3. For an att-unitary CAF CF =(A,R,claim), we de-
fine Tcta(CF ) = (claim(A), R′) with

R′ = {(claim(x), claim(y)) | (x, y) ∈ R}.

Example 6. Let CF ′ = (A,R, claim) be an att-unitary CAF,
with A = {x1, y1, x2}, R = {(x1, y1), (y1, x1), (y1, x2))} and
claim(x1) = claim(x2) = x, claim(y1) = y. The AF Tcta(CF

′)
constructed by Translation 3 is given by ({x, y}, {(x, y), (y, x)})
and we have stbc(CF

′) = stbs(Tcta(CF
′)) = {{x}, {y}}.

We next show that CF and Tcta(CF ) are equivalent for the
admissible-based semantics under our considerations.

Theorem 3. For each att-unitary CAF CF and σ ∈ {adm,
com, grd , prf , stb}, Translation 3 provides an equivalent AF
Tcta(CF ) such that σc(CF ) = σs(Tcta(CF )).

Proof (for σ = stb). Let CF = (A,R, claim), F = Tcta(CF ) =
(A′, R′) and consider S ∈ stbc(CF ). By Lemma 1, EmaxS ∈
stb((A,R)). Note that S ∈ cf (F ) by definition of R′. For each
c ∈ A′ \ S there is an x ∈ A \ EmaxS with claim(x) = c
and there is y ∈ EmaxS such that (y, x) ∈ R. Consequently
(claim(y), claim(x)) ∈ R′, and S attacks in F all arguments
a ∈ A′ \ S.

Now, let S ∈ stb(F ) and let c ∈ A′ \ S. Then there is some
argument a ∈ S such that (a, c) ∈ R′. By definition of R′, there
are arguments x, y ∈ A, claim(x) = a, claim(y) = c, such that
(x, y) ∈ R. By att-unitaryness, (x, z) ∈ R for each z ∈ A such that
claim(z) = c. Hence each argument y ∈ A \ EmaxS is attacked by
EmaxS .

Notice that Theorem 3 does not extend to cf semantics. For
conflict-free semantics well-formed and att-unitary CAFs are inter-
translateable, as the orientation of attacks is immaterial. Thus, under
conflict-free semantics att-unitary CAFs correspond to SETAFs.

6 General CAFs
This section is concerned with CAFs neither satisfying well-
formedness nor att-unitaryness. We show that in general one cannot
avoid multiple occurrences of claims. However, we provide a result
that allows to reduce the number of arguments having the same claim.
On the one hand we show that there is no translation from general
CAFs into SETAFs. Moreover, already a small deviation of the re-
spective properties of being well-formed or att-unitary can prohibit
a translation to SETAFs or AFs, respectively. On the other hand, we
provide a result to reduce the number of arguments having the same
claim, even in the case that a translation to a SETAF or an AF is
impossible.

We first investigate whether the introduced translation Tcts from
well-formed CAFs to SETAFs can be extended to arbitrary CAFs
that only slightly deviate from well-formedness. The following ex-
ample shows that this is not the case by providing an example where
already removing one attack suffices to make a semantics-preserving
representation as SETAF impossible.

Example 7. Let CF = (A,R, claim) be the well-formed CAF from
Figure 6 with A = {x1, x2, y1}, R = {(x1, y1), (y1, x1), (x2, y1)}
and claim(x1) = claim(x2) = x, claim(y1) = y. Observe
that in the CAF CF 1 = (A,R′, claim) which arises after remov-
ing the attack a1 = (x2, y1) (i.e. R′ = R \ {a1}), we have that
stbc(CF 1) = {{x}, {x, y}}. However, recent results on the expres-
siveness of semantics in SETAFs [18] show that there is no SETAF
SF such that σ(SF ) = σc(CF 1).

Example 7 shows that already a deviation of well-formedness by
a single attack is sufficient to prohibit a faithful translation from
CAFs to SETAFs. We provide a similar result for att-unitary CAFs:
A semantics-preserving representation for general CAFs that deviate
from att-unitaryness by only one attack is in general not possible.

Example 8. We consider the att-unitary CAF CF ′ =
(A,R, claim) from Figure 6 with A = {x1, x2, y1}, R =
{(x1, y1), (y1, x1), (y1, x2)} and claim(x1) = claim(x2) = x,
claim(y1) = y. The CAF CF ′1 = (A,R′, claim) which arises
when removing the attack b1 = (y1, x2), i.e. R′ = R \ {b1}),
possesses the stable extensions stbc(CF

′
1) = {{x}, {x, y}}. Thus

by similar arguments as in Example 7, we can conclude that there is
no AF F such that σ(F ) = σc(CF

′
1).

Although CAFs cannot be fully translated to SETAFs or AFs with
unique claims in general, there is still potential to reduce the number
of arguments having the same claim. Towards such a simplification
procedure we introduce the concept of redundant arguments.

Definition 11. Let CF = (A,R, claim). An argument a ∈ A
is called redundant (in CF ) w.r.t. argument b ∈ A if a 6= b,
claim(a) = claim(b), a+R = b+R, and a−R ⊇ b

−
R .

x1 y1 x2
a1

CF

x1 y1 x2
b1

CF ′

Figure 6: CAFs CF , CF ′ from Examples 7 and 8.
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a1 b c d e a2

Figure 7: The AF from Example 9.

In the CAF CF from Example 7, the argument x1 is redun-
dant w.r.t. x2: Indeed, we have that x+1 = x+2 = {y1} and
x−1 = {y1} ⊇ ∅ = x−2 . Observe that the framework CF ′ =
({x2, y1}, {(x2, y1)}, claim) where the redundant argument x1 is
deleted yields the same stable extension {x}; in fact, σc(CF ) =
σc(CF

′) for every semantics σ under consideration. The following
proposition states that, for an arbitrary CAF, redundant arguments do
not influence the outcome of the reviewed semantics.

Proposition 3. Let CF = (A,R, claim), a ∈ A be redundant
in CF w.r.t. some b ∈ A, and let CF ′ = (A′, R′, claim) with
A′ = A \ {a}, and R′ = R ∩ (A′ × A′). Then, for σ ∈
{cf , adm, com, grd , stb, prf }, σc(CF ) = σc(CF

′).

It follows that redundant arguments can be safely removed without
changing the semantics. One can apply the above proposition iter-
atively in order to obtain a CAF without redundant arguments. If
the resulting CAF can be translated into a SETAF or an AF then
also the original CAF can be translated into such a framework. An-
other consequence of Proposition 3 is that each well-formed CAF
which violates att-unitaryness by only one attack can be translated
to an equivalent AF. This shows that Translation 3 is indeed robust
against minimal deviations if well-formedness is guaranteed. How-
ever, well-formed CAFs violating att-unitaryness to a slightly higher
extent cannot, in general, be expressed as AFs, as illustrated next.

Example 9. Let CF = (A,R, claim) with (A,R) as depicted in
Figure 7, claim(a1) = claim(a2) = a, and claim(x) = x for
x ∈ {b, c, d, e}. CF is well-formed and stbc(CF ) = {{a, b, d},
{b, e}, {a, c, e}}. Results on signatures for AFs [17] imply that there
is no AFF such that stb(F ) = stbc(CF ). Observe that retaining att-
unitaryness requires the deletion (or addition) of at least two attacks,
e.g. removing (b, a1) and (e, a2) yields an att-unitary CAF.

7 Discussion
Related Work. The work by Amgoud et al. [3] is probably clos-

est to ours. They investigate equivalence in logic-based argumenta-
tion systems and study conditions under which arguments can be re-
moved from a system without affecting its semantics. Their setting
is more limiting as they require arguments to have both equivalent
support and equivalent claims in order to remove one of them. The
notion of CAFs is borrowed from Dvořák and Woltran [20] who in-
troduce CAFs for a different purpose, namely to analyze the com-
plexity of acceptance problems in terms of CAFs. Also related are
semantics-preserving translations to standard AFs that have been in-
vestigated for several generalizations of AFs, e.g. [14, 8, 6]. In con-
trast to our main results where claims are mapped to arguments, all
of these translations concern the argument level only. An exception is
the work by Strass [28] on expressiveness of AFs compared to the ex-
pressiveness of logic programs and propositional logic, where argu-
ments are mapped to propositional atoms. Furthermore, we mention
studies [9, 22, 2] that analyze whether particular properties on the
level of claims (rationality and consistency postulates) are fulfilled
by AF extensions in certain instantiation scenarios. Moreover, Cam-
inada and Oren [11] classified arguments that can be neglected when
computing the grounded extension of infinitary AFs. Their classifica-
tion is similar to our notion of redundant arguments but their results
are limited to grounded semantics.

Finally, the idea of merging arguments with the same claim has
been considered in a different context. Beirlaen et al. [7] extend AS-
PIC+ by a reasoning by cases inference scheme that allows to gener-
ate additional arguments; in [23], Heynick and Strasser model case-
based reasoning by constructing independent assumption sets of the
given arguments (i.e. disjunctive supports) in their argumentative ap-
proach on dynamic proof theories for defeasible reasoning. In con-
trast to our approach both studies do not consider collective attacks;
moreover, the newly generated arguments add to the number of argu-
ments featuring the same claim, that is, multiple arguments with the
same claim are not avoided in those works.

Summary and Outlook. In this work we tackled the research
question under which circumstances instantiation-based argumenta-
tion can be achieved in a way where the abstract representation does
not require multiple arguments for the same claim. This alternative
approach provides an orthogonal view (compared to the standard way
of instantiation) that is centered on the relation between claims rather
than on the relation between single arguments.

We based our investigations on claim-augmented AFs (CAFs),
which reflect the actual structure of the standard instantiation into
Dung AFs but carry information about the claims associated to the
arguments. Our research question then translates into the question
whether (certain sub-classes of) CAFs can be equivalently expressed
in a purely abstract setting (where claims equal argument names). We
showed that well-formed CAFs are equally powerful to SETAFs with
respect to the reviewed semantics and that attacker-unitary CAFs can
be represented as Dung AFs with respect to admissible-based seman-
tics. We also argued that these classes are adequately defined in the
sense that minimal deviations make these translations invalid.

In terms of our research question, we thus have shown that (i)
all instantiation procedures that result in Dung structures where ar-
guments that implicitly share the same claim have the same outgo-
ing attacks can be equivalently mapped to SETAFs where each ar-
gument stands for a different claim; (ii) all instantiation procedures
that result in Dung structures where arguments that implicitly share
the same claim have the same incoming attacks can be equivalently
mapped to Dung AFs where each argument stands for a different
claim. These findings thus give rise to alternative instantiation meth-
ods which (a) provide a single argument for each claim and (b) thus
reduce the number of arguments on the abstract level. A concrete
formalization of such direct instantiation procedures tailored to ad-
vanced argumentation formalisms (like ASPIC+ without preferences
or logic programs) that result in SETAFs is subject of ongoing work.
Investigations of this kind are also relevant from a practical side as
nowadays abstract argumentation is not only understood as concep-
tual tool, but also the base formalism in implementations of argu-
mentation systems, e.g. in the TOAST system [27]. Moreover, first
implementations for SETAFs entered the stage [19] and can be em-
ployed for direct instantiations into SETAFs.

In this initial study we have focused on two classes of CAFs, well-
formed and attacker-unitary. To extend our investigations to further
instantiations, for instance full ASPIC+ with preferences, further
such sub-classes need to be investigated and corresponding abstract
formalisms have to be found which allow for similar translations as
we have shown here. We anticipate that AFs with some form of recur-
sive attacks might be the adequate formalism for this purpose. An-
other direction for future research is to extend our studies to further
prominent argumentation semantics, e.g. naı̈ve, stage and semi-stable
semantics [30], and labelling-based semantics [10].
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[18] Wolfgang Dvořák, Jorge Fandinno, and Stefan Woltran, ‘On the ex-
pressive power of collective attacks’, Argument & Computation, 10(2),
191–230, (2019).
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A Appendix
In this appendix we provide full proofs for the main results of the pa-
per. We first show an alternative characterization of grdc-semantics
that we will exploit later on.

Proposition 4. For any CAF CF , G ∈ grdc(CF ) iff G ∈
comc(CF ) and G ⊆ S for all S ∈ comc(CF ).

Proof. Let CF = (A,R, claim) and consider the grounded ex-
tension G ∈ grd((A,R)). We have that G ⊆ E for all E ∈
com((A,R)) and, by the monotonicity of claim(.), claim(G) ⊆ S
for all S ∈ comc(CF ).

Proofs of Section 3
Proposition 2 (restated). For σ ∈ {stb, prf } and every well-formed
CAF CF = (A,R, claim), we have (a) σc(CF ) is incomparable,
and (b) |σ((A,R))| = |σc(CF )|.

Proof. Let F = (A,R). Then σ(F ) is an incomparable set, σ(F ) ⊆
com(F ), and, as we have shown in the proof of Proposition 1, for
E,E′ ∈ com(F ): E ⊆ E′ iff claim(E) ⊆ claim(E′). Hence, for
S, T ∈ σ(F ), S 6= T implies claim(S) 6⊆ claim(T ). The result
follows.

Proofs of Section 4.1
Theorem 1 (restated). For each well-formed CAF CF and σ ∈
{cf , adm, com, grd , prf , stb}, Translation 1 provides an equivalent
SETAF Tcts(CF ) such that σc(CF ) = σs(Tcts(CF )).

Proof. Let SF = Tcts(CF ) = (A′, R′). We show the result step-
by-step for the different semantics.

(1) Let σ = cf . We rephrase the property of being conflict-free
in terms of CNF- resp. DNF-attack-formulas. In well-formed CAFs,
S ∈ cf c(CF ) iff for each s ∈ S there is an a ∈ A with claim(a) =
s such that a is not attacked by any argument b with claim(b) ∈ S.
Note that, for any s ∈ claim(A), the CNF-attack-formula CDCF

s

identifies each clause with the set of attacking claims for a particular
occurrence of s in well-formed CAFs. That is, S ∈ cfc(CF ) iff for
each s ∈ S,

there is some γ ∈ CDCF
s such that γ ∩ S = ∅. (C1)

In a SETAF (A′, R′), a set S ⊆ A′ is conflict-free iff for all S′ ⊆ S
and all s ∈ S, (S′, s) /∈ R′. In terms of attack formulas we have that
S ∈ cf s(SF ) iff for each s ∈ S, it holds that

for all δ ∈ DSF
s it holds that δ * S. (C2)

We have (i) DSF
s = DCF

s for each s ∈ A′ by construction, and (ii)
that no δ ∈ DCF

s is a subset of S iff there exists γ ∈ CDCF
c such that

γ ∩ S = ∅, and thus we obtain that (C1) is equivalent to (C2), hence
the statement follows.

(2) Let σ = adm . We will translate admissibility in well-formed
CAFs resp. SETAFs to CNF- resp. DNF-attack-formulas. Let S ⊆
claim(A). S is adm-realizable in CF if there exists a set E ⊆ A,
claim(E) = S, which is conflict-free and defends itself. Recall
that in well-formed CAFs, arguments with the same claim attack the
same arguments, which allows for speaking about claims attacking
arguments. Using this advantage, we get that S ∈ admc(CF ) iff

for each s ∈ S, there exists an a ∈ A, claim(a) = s, such that
(b, a) /∈ R for any argument b with claim(b) ∈ S and for all claims
d ∈ claim(A) which attack a, for each argument with claim d there
is a claim s′ ∈ S which attacks the argument. Thus, in terms of
CNF-attack-formulas: S ∈ admc(CF ) iff for each s ∈ S,

there exists γ ∈ CDCF
s such that γ ∩ S = ∅,

and for all d ∈ γ, for all γ′ ∈ CDCF
d

it holds that γ′ ∩ S 6= ∅. (A1)

A set S ⊆ A′ is admissible in SF iff it is conflict-free and defends
itself. The latter is satisfied iff each attacking set B is attacked by
some subset S′ ∈ S, i.e. there is some b ∈ B which gets attacked by
S′. Thus, in terms of DNF-attack-formulas, a set S is admissible in
SF iff for each s ∈ S, it holds that

for all δ ∈ DSF
s it holds that δ * S,

and there exists d ∈ δ, exists δ′ ∈ DSF
d ,

such that δ′ ⊆ S. (A2)

By construction, we have that (i) DSF
s = DCF

s for all s ∈ A′.
Thus it remains to show that A1 and A2 are equivalent. Recall that
(ii) for each γ ∈ CDCF

s it holds that γ ∩ S 6= ∅ if and only if there
exists δ ∈ DCF

s , such that δ ⊆ S.
To show A1 ⇒ A2, fix a witness γ ∈ CDCF

s satisfying A1. We
show that for all δ ∈ DCF

s , δ * S and there exists d ∈ δ and δ′ ∈
DSF
d , such that δ′ ⊆ S. First note that δ * S follows immediately

from (ii). Furthermore observe that each δ ∈ DCF
s contains some

d ∈ γ, such that for every γ′ ∈ CDCF
d , γ′ has non-empty intersection

with S. By (ii), the latter implies that there exists some δ′ ∈ DCF
d

such that δ′ ⊆ S.
To show A2 ⇒ A1, let γ = {d ∈ δ | δ ∈ DCF

s ∧ ∃δ′ ∈
DSF
d such that δ′ ⊆ S}. We show that γ ∩ S = ∅ and for all d ∈ γ,

for all γ′ ∈ CDCF
d it holds that γ′ ∩ S 6= ∅. By (ii) and by definition

of γ, the latter is satisfied, i.e. γ′ ∩ S 6= ∅ for each γ′ ∈ CDCF
d , for

all d ∈ γ. Now assume that γ ∩ S 6= ∅. Let c ∈ S ∩ γ. By definition
of γ, c ∈ δ for some δ ∈ DCF

s and there exists δ′ ∈ DCF
c such that

δ′ ⊆ S. But since c ∈ S, it furthermore holds that δ′ * S by A2,
which is a contradiction.

(3) Let σ = com . We will express completeness of sets in well-
formed CAFs and SETAFs in terms of CNF-, respectively, DNF-
attack-formulas. Let S ⊆ claim(A) = A′. Observe that S is com-
plete iff it is admissible and contains all arguments it defends. For
well-formed CAFs, we already know from (2), that S is admissible
in CF if for each s ∈ S, A1 is satisfied, i.e. there exists γ ∈ CDCF

s

such that γ ∩ S = ∅, and for all g ∈ γ, for all γ′ ∈ CDCF
g it holds

that γ′ ∩ S 6= ∅. Now, for complete sets, defense is not only nec-
essary, but also a sufficient criteria for membership: If S defends an
argument a, claim(a) = s, against any attacker d ∈ claim(A), then
s ∈ S. In terms of CNF-attack-formulas: If there is γ ∈ CDCF

s such
that for all g ∈ γ, for all γ′ ∈ CDCF

g it holds that γ′ ∩ S 6= ∅, then
s ∈ S. Combining both implications, we get that s ∈ S if and only
if A1 is satisfied. A similar reasoning also applies to complete sets
in SETAFs: For any complete set S in SF it holds that s ∈ S if and
only if A2 for all δ ∈ DCF

s , δ * S and there exists d ∈ δ, δ′ ∈ DCF
d

such that δ′ ⊆ S.
Since DSF

s = DCF
s for each s ∈ A′, and, furthermore, since

A1 is equivalent to A2 as shown in (2), we obtain that indeed
S ∈ comc(CF ) iff S ∈ coms(SF ) for any set S ⊆ claim(A).
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(4) Since grdc(CF ) is the subset-minimal claim-based com-
plete extension for any CAF CF by Proposition 4, it follows that
grdc(CF ) = grds(SF ).

(5) We already know that comc(CF ) = coms(Tcts(CF )), by
Proposition 1 the set prfc(CF ) is given by the subset-maximal
sets of comc(CF ), and by definition prfs(Tcts(CF )) is given
by the subset-maximal sets of coms(Tcts(CF )). Hence, we have
prfc(CF ) = prfs(Tcts(CF )).

(6) Let σ = stb. A set S is stable on claim-level in CF if for each
s ∈ claim(A), it holds that s ∈ S if and only if (C1) is satisfied.
Similarly, S is stable in Tcts(CF ) if for each s ∈ A′ = claim(A),
it holds that s ∈ S if and only if (C2) holds. The statement follows
by the equivalence of (C2) and (C1).

Proofs of Section 4.2
In order to prove Theorem 2 we make use of concepts of Section 6.
We start by introducing normalized CAFs which are CAFs without
redundant arguments (cf. Definition 11).

Definition 12. A CAF CF = (A,R, claim) is called normalized if
there are no redundant arguments in CF .

Each CAF can be transformed into a normalized CAF without chang-
ing the outcome of the reviewed semantics. The following result is
by repetitive application of Prop. 3.

Theorem 4. Any CAF CF can be transformed into an nor-
malized CAF CF ′, such that σc(CF ) = σc(CF

′), for σ ∈
{cf , adm, com, grd , stb, prf }.

Next we consider the Translations Tcts and Tstc restricted to the
class of all normalized well-formed CAFs, and respectively, SETAF
in minimal form5. To show the Theorem, it suffices to show that Tcts
and Tstc under these restrictions are each others inverse w.r.t. a fixed
conversion from CNF- to DNF-formulas and vice versa.

Theorem 2 (restated). Let σ ∈ {cf , adm, com, grd , prf , stb}. For
each SETAF SF in minimal form, σs(SF ) = σc(Tstc(SF )).

Using an appropriate CNF-DNF-conversion, we will show that
Tstc and Tcts are each others inverse when restricted to the
class of all SETAFs in minimal form and to the class of
all normalized CAFs, respectively. Recall that, by Theorem 1,
σc(CF ) = σs(Tcts(CF )) for each well-formed CAF and for σ ∈
{cf , adm, com, grd , prf , stb}, consequently we get that σs(SF ) =
σs(Tcts(Tstc(SF ))) = σc(Tstc(SF )).

Let C denote the class of all normalized well-formed CAFs and
let S denote the class of all SETAFs in minimal form. We show
that there are CNF-DNF-formula conversions such that Tstc|S =
(Tcts|C)−1.

To that end, we consider the following conversions.

Definition 13. Let X = {γ0, . . . , γn} denote a CNF- respectively
DNF-formula. We define the corresponding DNF- respectively CNF-
formula con(X) as the set of subset-minimal elements of {δ | ∀i ≤
n : |δ ∩ γi| ≥ 1}.

We call a formula X incomparable if all clauses γ ∈ X are pair-
wise incomparable, i.e. for all γ, γ′ ∈ X , γ * γ′. Observe that
both conversions yield incomparable formulas. We will show that for

5 A SETAF SF = (A,R) is in minimal form if it has no attacks
(A, a), (B, a) ∈ R such that A ⊂ B.

each incomparable CNF- respectively DNF-formula X , the sequen-
tial application of both conversions yield the original formula X , i.e.
con(con(X)) = X .

Lemma 2. Let X = {γ0, . . . , γn} be incomparable then
con(con(X)) = X .

Proof. Let Y = {δ0, . . . , δm} denote the subset-minimal elements
of {δ | ∀i ≤ n : |δ∩γi| ≥ 1}, and let L = {ζ | ∀j ≤ m : |ζ∩δj | ≥
1}. We show that the set of subset-minimal elements min⊆(L) of L
equals X .

X ⊆ min⊆(L): First note that γ ∈ L for all γ ∈ X , since |δj ∩
γ| ≥ 1 for all j ≤ m. For each γ ∈ X , for each a ∈ γ, there is
some δ st δ ∩ γ = {a}. Take all γi such that a /∈ γi, then there is
some δ ⊆ {b | b ∈ γi \ γ} ∪ {a} and |δ ∩ γ| = 1. Now, assume
that there is some γ′ ⊂ γ, γ′ ∈ min⊆(L). Let a ∈ γ \ γ′. Using
the construction above, we get that there exists δ ∈ Y such that
δ∩γ = {a}, consequently, γ′∩δ = ∅. It follows that γ ∈ min⊆(L)
for all γ ∈ X .

min⊆(L) ⊆ X: Towards a contradiction, let ζ ∈ min⊆(L) \X ,
and let δ ⊆

⋃
i≤n γi \ ζ. Such a δ exists, otherwise ζ ⊇ γ for some

γ ∈ min⊆(L). But then δ ∩ ζ = ∅.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Observe that (i) a well-formed CAF CF =
(A,R, claim) is normalized if and only if for each claim c ∈
claim(A) it holds that CDCF

c is incomparable. Similarly, (ii) a
SETAF SF = (A′, R′) is in minimal form if and only if for ev-
ery argument a ∈ A′ it holds that DSF

a is incomparable. Fur-
thermore note that (iii) the output of both translations Tcts and
Tstc solely depends on the choice of the CNF-DNF-conversion. Let
CF = (A,R, claim) and let Tcts and T′cts denote translations using
fixed CNF-DNF-conversions DCF

c and respectively, D′CF
c for each

c ∈ claim(A). Then Tcts(CF ) = T′cts(CF ) iff DCF
c = D′CF

c

for all c ∈ claim(A). Similarly, for every SETAF SF = (A′, R′),
Tstc(SF ) = T′stc(SF ) iff CDSF

a = CD′SFa for all a ∈ A′. Since
con(con(X)) = X for each incomparable CNF- respectively DNF-
formula X , we have that Tstc(Tcts(CF )) = CF for each normal-
ized well-formed CAF and, similar, Tcts(Tstc(SF )) = SF for each
SETAF in minimal form. It follows that Tstc|S = (Tcts|C)−1.

By Theorem 1, we can conclude that σs(SF ) =
σs(Tcts(Tstc(SF ))) = σc(Tstc(SF )) for each SETAF SF in
minimal form.

Proofs of Section 5
In order to prove Lemma 1 and Theorem 3, we show further prop-
erties of att-unitary CAFs. To this end we recall the definition of the
characteristic function from [16].

Definition 14. For any AF F = (A,R), the characteristic func-
tion FF : 2A → 2A of F is defined as FF (S) = {x ∈ A |
x is defended by S}. For any CAF CF = (A,R, claim), for E ⊆
A, we use FCF (E) to abbreviate F(A,R)(E).

We first show that in att-unitary CAFs if a set of arguments defends
one argument with a specific claim then it also defends all the other
arguments with that claim and thus there is a one-to-one mapping
between complete claim-set and complete extensions.

Lemma 3. Let CF = (A,R, claim) be att-unitary and let E ⊆ A.
Then
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1. c ∈ claim(FCF (E)) iff x ∈ FCF (E) for all x ∈ A such that
claim(x) = c; and

2. |comc(CF )| = |com((A,R))|.

Proof. To prove (1), let c ∈ claim(FCF (E)), then there is an ar-
gument x ∈ FCF (E), such that claim(x) = c. Let y ∈ A,
claim(y) = c. Since y− = x−, we can conclude that E defends
y, hence the statement follows. By definition of complete semantics,
E ∈ com((A,R)) iff FCF (E) = E, consequently c ∈ claim(E)
iff x ∈ E for all x ∈ A, claim(x) = c. Thus (2) follows.

We next exploit Lemma 3 to show Lemma 1.
Lemma 1 (restated). Let CF = (A,R, claim) be att-unitary and
let S ∈ σc(CF ) for σ ∈ {adm, com, grd , prf , stb}. Then Emax

S =
{x | claim(x) ∈ S} ∈ σ((A,R)).

Proof. S ∈ σc(CF ) implies the existence of some set of arguments
E ⊆ A, claim(E) = S, such that E ∈ σ((A,R)). Due to att-
unitaryness, E− = (Emax

S )−. The statement follows for σ = adm
since (Emax

S )− = E− ⊆ E+ ⊆ (Emax
S )+. Let σ = com , then

FCF (E) = E by definition. By Lemma 3, c ∈ S iff x ∈ E for each
argument x such that claim(c) = x. It follows that E = Emax

S .
Therefore, since σ((A,R)) ⊆ com((A,R)), it also holds that
Emax
S ∈ σ((A,R)) for σ ∈ {grd , prf , stb}.

We are now prepared to prove Theorem 3.
Theorem 3 (restated). Let CF = (A,R, claim) be att-unitary.
Then σc(CF ) = σ(Tcta(CF )) for σ ∈ {adm, com, grd , prf , stb}.

Proof. Let F = Tcta(CF ) = (A′, R′). For a set S ⊆ claim(A) =
A′, we denote by Emax

S = {x | claim(x) ∈ S} the maximal repre-
sentative of S in CF .

(1) Let σ = adm and let S ∈ admc(CF ), then EmaxS ∈
adm((A,R)) by Lemma 1. We show that S ∈ adm(F ). First
note that S is conflict-free since (x, y) /∈ R for all x, y ∈ EmaxS .
To show that S defends itself, let b ∈ S and let (a, b) ∈ R′

for some a ∈ A′. Then by definition of R′, there are arguments
x, y ∈ A, claim(x) = a, claim(y) = b, such that (x, y) ∈ R.
Since y ∈ Emax

S and Emax
S ∈ adm((A,R)), y is defended by some

z ∈ Emax
S , i.e. (z, x) ∈ R for some z ∈ A such that claim(z) ∈ S.

Consequently, (claim(z), b) ∈ R′ which shows that S defends it-
self.

To show the other direction, let S ∈ adm(F ). We show thatEmaxS

is admissible in (A,R): By definition of R′, EmaxS does not contain
any conflicts. Now, let y ∈ Emax

S , claim(y) = b, and let (x, y) ∈
R for some x ∈ A, claim(x) = a. By definition of R′, we have
that (a, b) ∈ R′. Since S defends itself, there is some c ∈ S such
that (c, a) ∈ R′, therefore there exist z, x′ ∈ A, claim(z) = c,
claim(x′) = a, such that (z, x′) ∈ R. By att-unitaryness, x− =
x′−, thus (z, x) ∈ R. Note that z ∈ EmaxS by definition, hence
EmaxS defends itself.

(2) Let σ = com and let S ∈ comc(CF ). Then Emax
S is com-

plete in (A,R) by Lemma 1. By (1), S ∈ adm(F ). We show that
S contains all arguments it defends: Let a ∈ A′ be defended by S,
i.e. for all b ∈ A′ such that (b, a) ∈ R′, there is some c ∈ S such
that (c, b) ∈ R′. By definition of Translation 3, it holds that for all
b ∈ A′ such that (b, a) ∈ R′, (i) there is y ∈ A, claim(y) = b,
such that (y, x) ∈ R, for some x ∈ A, claim(x) = a; and (ii) there
are y′, z ∈ A, claim(y′) = b, claim(z) = c for c ∈ S, such that
(z, y′) ∈ R. Since CF is att-unitary, y− = y′−, thus x is defended

against y by z ∈ Emax
S . Consequently, x ∈ Emax

S and therefore
a = claim(x) ∈ S. in CF .

To show the other direction, let S ∈ com(F ). We show that
Emax
S ∈ com((A,R)). By (1), EmaxS ∈ adm((A,R)). To show

that EmaxS contains all arguments it defends, let x ∈ FCF (E
max
S ),

claim(x) = a. For each y ∈ A such that (y, x) ∈ R, there is some
z ∈ Emax

S such that (z, y) ∈ R. By construction of R′, we have
that (claim(y), a), (claim(z), claim(y)) ∈ R′ and claim(z) ∈ S,
thus S defends a. Since S ∈ com(F ), we conclude that a ∈ S. By
definition of Emax

S we have that x ∈ Emax
S .

(3) Let σ = grd . By (2) and since grdc(CF ) is the subset-minimal
complete extension by Proposition 4, it follows that grdc(CF ) =
grd(F ).

(4) Let σ = prf . Recall that prfc(CF ) ⊆ comc(CF ). Since
each S ∈ comc(CF ) is realized by Emax

S and, by Lemma 3,
|comc(CF )| = |com((A,R))|, we have that for each S, S′ ∈
comc(CF ), S ⊆ S′ iff Emax

S ⊆ Emax
S′ . By (2), S ∈ comc(CF )

iff S ∈ com(F ), thus the statement follows.

(5) Let σ = stb and S ∈ stbc(CF ). By Lemma 1, EmaxS ∈
stb((A,R)). Furthermore S is conflict-free in Tcta(CF ) by defini-
tion of R′. For each x ∈ A \ EmaxS , there is y ∈ EmaxS such that
(y, x) ∈ R, consequently (claim(y), claim(x)) ∈ R′, hence S at-
tacks all arguments a ∈ A′ \ S.

Now, let S ∈ stb(F ) and let b ∈ A′ \ S. Then there is some
argument a ∈ S such that (a, b) ∈ R′. By definition of R′, there
are arguments x, y ∈ A, claim(x) = a, claim(y) = b, such that
(x, y) ∈ R. By att-unitaryness, (x, y′) ∈ R for each y′ ∈ A such
that claim(y′) = b. Hence each argument y ∈ A\EmaxS is attacked
by EmaxS .

Proofs of Section 6
Proposition 3 (restated). Let CF = (A,R, claim) be a CAF, with
a ∈ A redundant in CF w.r.t. some b ∈ A, and let CF ′ = (A′, R′,
claim) with A′ = A \ {a}, and R′ = R ∩ (A′ × A′). Then, for
σ ∈ {cf , adm, com, grd , stb, prf }, σc(CF ) = σc(CF

′).

Proof. We show the result step-by-step for the different semantics.

(1) Let S ∈ cf c(CF ) and let E be a cf -realization of S in CF .
If a /∈ E, then E is a cf -realization of S in CF ′ as well and thus
S ∈ cf c(CF

′). If a ∈ E, consider E′ = (E \ {a}) ∪ {b}; by
definition claim(E′) = claim(E), thus it remains to show thatE′ ∈
cf ((A′, R′)). First, we have (b, b) 6∈ R as otherwise (b, a) ∈ R
(since a−R ⊇ b

−
R) and also (a, a) ∈ R (since a+R = b+R). By a ∈ E ∈

cf ((A,R) we have a−R ∩ E = emptyset and a+R ∩ E = emptyset
and, since a−R ⊇ b−R and a+R = b+R, we obtain E′ ∈ cf ((A,R) and
thus E′ ∈ cf ((A′, R′). For the other direction, let S ∈ cf c(CF

′)
and E′ a cf -realization of S in CF ′. Clearly, E′ remains conflict-
free in (A,R) and thus S ∈ cf c(CF ).

(2) Let S ∈ admc(CF ) and let E be an adm-realization of S in
CF . If a /∈ E, then E is conflict-free in CF ′. Furthermore, since
E−R ⊆ E+

R , we have that E−R′ = E−R \ {a} ⊆ E+
R \ {a} = E+

R′ ,
hence E defends itself in (A′, R′) and thus adm-realizes S in CF ′.
If a ∈ E, define E′ = (E \ {a}) ∪ {b}. We already know that E′ is
a cf -realization of S in CF ′, thus it remains to show that E′ defends
itself in (A′, R′). First observe that E′−R ⊆ E−R , since b−R ⊆ a−R ,
and E+

R = E′+R , since b+R = a+R. Second, E′−R′ = E′−R : otherwise
(a, c) ∈ R for some c ∈ E′, but since E ∈ cf ((A,R)), this implies
c = b which would yield (a, a) ∈ R via a+R = b+R. Finally, E′+R =
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E′+R′ : otherwise (c, a) ∈ R for some c ∈ E′; this implies (b, a) ∈ R
(since E ∈ cf ((A,R))) and (a, a) ∈ R via a−R ⊇ b−R . Together
with E−R ⊆ E+

R , we thus obtain E′−R′ = E′−R ⊆ E−R ⊆ E+
R =

E′+R = E′+R′ and hence E′ defends itself in (A′, R′). To show the
other direction, let S ∈ admc(CF

′). Then there is a set E′ which
adm-realizes S in CF ′. We show that E′ is an adm-realization of
S in CF : Clearly, E′ is conflict-free in (A,R). It remains to show
that E′ defends itself in (A,R). Suppose this is not the case. Then
a /∈ E′+R and (a, c) ∈ R for some c ∈ E′. It follows that b /∈ E′
since b+R = a+R and E′ ∈ cf (A′, R′). Since E′ ∈ adm((A′, R′)),
it then also follows that b ∈ E′+R′ = E′+R . Because of a−R ⊇ b−R , we
arrive at a ∈ E′+R , a contradiction.

(3) Let S ∈ comc(CF ) and let E be a com-realization of S in
CF . If a /∈ E, we know from above that E is an adm-realization
of S in CF ′. It remains to show that E contains all arguments it
defends in (A′, R′). Let d ∈ A′ be defended by E in (A′, R′); we
have that d−R′ ⊆ E+

R′ = E+
R \ {a}. If (a, d) /∈ R, then d−R = d−R′ ,

consequently d−R ⊆ E+
R , and therefore d ∈ E. If (a, d) ∈ R, then

(b, d) ∈ R (since a+R = b+R), and thus (b, d) ∈ R′. Since a−R ⊇
b−R , we conclude that d is defended by E in (A,R) and therefore
d ∈ E. Now, if a ∈ E, then b ∈ E, since a−R ⊇ b−R . Let E′ =
E \ {a}. We know from above that E′ is an adm-realization of S
in CF ′. Moreover, for each d ∈ A′ which is defended by E′ in
(A′, R′), it holds that d−R = d−R′ ⊆ E′+R′ = E′+R = E+

R , therefore
d ∈ E′. Thus E′ ∈ com((A′, R′)). To show the other direction,
let S ∈ comc(CF

′) and let E′ be a com-realization of S in CF ′.
We already have that E′ is admissible in (A,R). If b /∈ E′, then
E′ ∈ com((A,R)): Consider d ∈ A such that d−R ⊆ E′+R . First
note that d 6= a, otherwise b ∈ E′ since a−R ⊇ b−R . Furthermore,
d−R′ = d−R \ {a} ⊆ E′+R \ {a} = E′+R′ , thus d ∈ E′. If b ∈ E′, then
eitherE′ orE = E′∪{a} is complete in (A,R). For each argument
c ∈ A \ {a}, if c−R ⊆ E′+R , then c−R′ ⊆ E′+R′ , i.e. E′ contains all
arguments fromA\{a} it defends in CF . Hence it remains to check
whether a is defended by E′. If this is the case, i.e. if a−R ⊆ E′+R ,
then E is conflict-free in CF : Towards a contradiction, assume that
a is in conflict with some c ∈ E. If (a, c) ∈ R, then also (b, c) ∈ R
by a+R = b+R. Since E ∈ cf ((A,R)), we have that c = a, i.e.
(b, a) ∈ R. But since E′ defends a, we get that (e, b) ∈ R for
some e ∈ E′, contradiction. If (c, a) ∈ R, then there is an argument
d ∈ E′ such that (d, c) ∈ R. Since E ∈ cf ((A,R)) it follows
that c = a, i.e. (a, a) ∈ R and, therefore, (b, a) ∈ R, which leads
to the same contradiction. It follows that E is admissible in (A,R).
Furthermore, E ∈ com((A,R)), since E and E′ defend the same
arguments. If a−R * E′+R , then E′ ∈ com((A,R)). In both cases, S
has a com-realization in CF . We thus have shown that comc(CF ) =
comc(CF

′).

(4) From comc(CF ) = comc(CF
′) and Proposition 4, it follows

that grdc(CF ) = grdc(CF
′).

(5) Let S ∈ prf c(CF ) and let E be a subset-maximal admis-
sible set in (A,R) such that claim(E) = S. First consider the
case a /∈ E. From (2), we know that E is admissible in (A′, R′).
It remains to show there is no admissible set F ⊆ A′ in (A′, R′)
such that E ⊂ F . Towards a contradiction, assume such F exists.
Again, using the argument from (2), F is admissible in (A,R), a
contradiction. If a ∈ E, then b ∈ E, since a−R ⊇ b−R and each
preferred set is also complete. Let E′ = E \ {a}; in (3) we have
shown that E′ ∈ com((A′, R′)) and likewise that for a complete
set F of (A′, R′) with b ∈ F , F ∪ {a} is complete for (A,R) in
case a−R ⊆ F+

R . It follows that for each such F , E 6⊂ F . Now, let
S ∈ prf c(CF

′) and E′ a prf -realization of S in CF ′. Then E′ is

admissible in CF . We show that either E′ or E = E′ ∪ {a} is a
maximal admissible set in (A,R): Towards a contradiction, assume
that there is an admissible set F ∈ A in (A,R) such that F ⊃ E′. If
a /∈ F , then F is admissible in CF ′, contradiction to the maximality
ofE′. If a ∈ F , then F ′ = (F \{a})∪{b} ∈ adm((A′, R′)). Since
E′ is maximal in (A′, R′), we conclude that E′ = F ′.

(6) Let S ∈ stbc(CF ), let E be a stb-realization of S in CF ,
i.e. E+

R = A \ E and E is conflict-free. In case a /∈ E, it is easy
to see that E ∈ cf ((A′, R′)) and E+

R′ = A′ \ E; thus E is a stb-
realization of S in CF ′. In case a ∈ E, we observe that b ∈ E holds,
too: otherwise, b ∈ E+

R and therefore, by a−R ⊇ b
−
R , also a ∈ E+

R . A
contradiction to E ∈ cf ((A,R)). We show that E′ = E \ {a} is a
stb-realization of S in CF ′. Clearly, claim(E′) = claim(E) = S.
Moreover, E′ ∈ cf ((A′, R′)), and E′+R′ = A′ \E′ = A \E. Hence,
E′ ∈ stb((A′, R′)). For the other direction, let S ∈ stbc(CF

′)
and E a stb-realization of S in CF ′. Clearly E ∈ cf ((A,R)). If
a ∈ E+

R , we immediately get E ∈ stb((A,R)). So suppose a /∈
E+
R . Since a−R ⊇ b−R , b /∈ E+

R , and it follows that b ∈ E, since E
is stable in (A′, R′). We conclude that (b, a) /∈ R and thus, since
a+R = b+R, (a, a) /∈ R. Moreover, as b /∈ E−R we have a /∈ E−R
as well. That is, we have (a, a) /∈ R, a /∈ E+

R , a /∈ E−R , and thus
(E∪{a}) ∈ cf ((A,R)). Moreover, in (A,R) the setE∪{a} attacks
each argument c ∈ A \ E and, since b ∈ E, claim(E ∪ {a}) =
claim(E) = S. Hence,E∪{a} is a stb-realization of S in CF .

The following result has been mentioned inline in Section 6.

Proposition 5. For every σ ∈ {cf , adm, com, grd , stb, prf }, for
every well-formed CAF CF = (A,R, claim), if there exists an att-
unitary CAF CF ′ = (A,R′, claim) with |R4R′| = 1, then there is
an AF F such that σc(CF ) = σ(F ).

Proof. We show that CF can be represented using exactly one argu-
ment per claim. Let a, b ∈ A with claim(a) = claim(b). We show
that a is redundant w.r.t. b in CF or vice versa. By well-formedness,
a+R = b+R. Moreover, CF is almost att-unitary, i.e. att-unitaryness is
satisfied by adding or removing a single attack. By |R4R′| = 1,
there are c, d ∈ A such that either (a) R \ R′ = {(c, d)} or (b)
R′ \ R = {(c, d)}. In the case a 6= d and b 6= d we have a−R = a−R′

and b−R = b−R′ . By att-unitaryness of CF ′, a−R = b−R follows. W.l.o.g.
we assume a = d. In the case (a), att-unitaryness is retained by re-
moving the attack (c, a). We have a−R′ = a−R \ {c} and therefore
a−R ⊇ b−R (since b−R′ = a−R′ by att-unitaryness of CF ′). In case (b),
att-unitaryness is satisfied after adding the attack (c, a). It follows
that b−R ⊇ a−R since b−R = b−R′ = a−R′ = a−R ∪ {c}. In both cases,
a−R , b−R are comparable and thus we have shown that for every two
arguments a, b having the same claim, either a is redundant w.r.t. b
in CF or vice versa.

12


	Introduction
	Preliminaries
	Argumentation Frameworks with Claims
	Well-formed CAFs and SETAFs
	Expressing Well-formed CAFs as SETAFs
	Expressing SETAFs as well-formed CAFs

	Classes of CAFs Expressible as AFs
	General CAFs
	Discussion
	Appendix

